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Abstract

Systemic physiological dynamics, such as heart rate variability (HRV) and respiration

volume per time (RVT), are known to account for significant variance in the blood

oxygen level dependent (BOLD) signal of resting-state functional magnetic resonance

imaging (rsfMRI). However, synchrony between these cardiorespiratory changes and

the BOLD signal could be due to neuronal (i.e., autonomic activity inducing changes

in heart rate and respiration) or vascular (i.e., cardiorespiratory activity facilitating

hemodynamic changes and thus the BOLD signal) effects and the contributions of

these effects may differ spatially, temporally, and spectrally. In this study, we charac-

terize these brain–body dynamics using a wavelet analysis in rapidly sampled rsfMRI

data with simultaneous pulse oximetry and respiratory monitoring of the Human

Connectome Project. Our time–frequency analysis across resting-state networks

(RSNs) revealed differences in the coherence of the BOLD signal and heartbeat inter-

val (HBI)/RVT dynamics across frequencies, with unique profiles per network. Soma-

tomotor (SMN), visual (VN), and salience (VAN) networks demonstrated the greatest

synchrony with both systemic physiological signals when compared to other net-

works; however, significant coherence was observed in all RSNs regardless of direct

autonomic involvement. Our phase analysis revealed distinct frequency profiles of

percentage of time with significant coherence between BOLD and systemic physio-

logical signals for different phase offsets across RSNs, suggesting that the phase off-

set and temporal order of signals varies by frequency. Lastly, our analysis of temporal

variability of coherence provides insight on potential influence of autonomic state on

brain–body communication. Overall, the novel wavelet analysis enables an efficient

characterization of the dynamic relationship between cardiorespiratory activity and

the BOLD signal in spatial, temporal, and spectral dimensions to inform our under-

standing of autonomic states and improve our interpretation of the BOLD signal.
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1 | INTRODUCTION

Resting-state functional magnetic resonance imaging (rsfMRI) is

widely used to investigate resting-state networks (RSNs), or sets of

brain regions that exhibit covarying blood oxygen level dependent

(BOLD) signal fluctuations in the absence of explicit stimuli (Biswal

et al., 1995). The synchrony between BOLD signals, or functional con-

nectivity, within RSNs is reflective of spontaneous neuronal coactiva-

tion between brain regions that support a common function, as

demonstrated by studies identifying correlations between simulta-

neous hemodynamics and neuronal activity across several frequency

bands, recorded by intracortical electrophysiology (Shmuel &

Leopold, 2008) and calcium imaging (Ma et al., 2016) in animals, and

electrocorticography (He et al., 2008; Kucyi et al., 2018; Miller

et al., 2009) and magnetoencephalography (Baker et al., 2014;

Brookes et al., 2011; Hipp et al., 2012) in humans. Although these

studies establish neuronal contributions to functional connectivity,

the resting-state BOLD signal detects changes in blood oxygenation

as an indirect measure of neuronal activity and thus can be modulated

by hemodynamic and vascular changes driven by autonomic activities,

such as heart rate variability (HRV) (Chang et al., 2013) and respiration

volume per time (RVT) (Birn et al., 2006). These slow physiological sig-

nals oscillate within the same frequency range as neuronally driven

hemodynamic fluctuations and are well known to account for a signifi-

cant variance in fMRI signals during resting state (Shmueli et al., 2007;

Wise et al., 2004).

HRV, defined as changes in instantaneous heart rate over time, is

a widely used marker of autonomic activity due to its regulation by

parasympathetic inhibition and sympathetic excitation (Berntson

et al., 1997). Specifically, high frequency (0.15–0.4 Hz) HRV fluctua-

tions are primarily mediated through respiration-induced heart rate

modulation and parasympathetic outflow, while low frequency (0.05–

0.15 Hz) HRV fluctuations are facilitated through a mixture of sympa-

thetic and parasympathetic effects. RVT, which measures changes in

depth of breathing, can also be modulated by autonomic states, such

as vigilance state (Oken et al., 2006) or exercise (Guyenet, 2014), and

predominantly fluctuates at 0.02–0.04 Hz at rest due to respiratory

feedback mechanisms (Ogoh, 2019). While both of these systemic

physiological dynamics are influenced by the central autonomic

system, alluding to their neural origins, they also affect blood oxygen

delivery (i.e., BOLD) in brain regions through non-neuronal cerebro-

vascular modulation, such as changes in blood oxygenation or vascular

tone (Birn et al., 2006; Shmueli et al., 2007). Thus, synchrony between

regional BOLD activations and systemic physiological dynamics (HRV

and RVT) could be due to network-specific autonomic influences

(i.e. brain activity facilitating changes in cardiorespiratory activity) or

vascular influences (i.e. cardiorespiratory activity facilitating regional

changes in vascular tone and thus the BOLD signal) (Gu et al., 2022).

This synchrony can differ spatially, temporally, and spectrally

depending on the relative contributions of neuronal and vascular

effects. A previous study differentiated neural and vascular sources of

BOLD oscillations at 0.1 Hz by measuring phase-locking (i.e., changes

in phase offsets (Lachaux et al., 1999)) between the BOLD signal and

heart rate interval, and identified temporal switching between neuron-

ally and vascularly driven BOLD fluctuations in autonomic brain

regions at rest (Pfurtscheller et al., 2017). However, an examination of

these systemic physiology-derived neural and vascular influences

of BOLD activation across time, frequency, and brain networks is a

fundamental gap in understanding brain–body communication. A

spectral characterization of autonomic and vascular contributions to

RSNs, with additional phase information to discern temporal lags and

ordering, is critical to identifying potential network patterns driven

by systemic physiology or cerebrovascular modulation (Bright

et al., 2020; Chen et al., 2020) as opposed to neuronal coactivation,

and improving functional connectivity interpretations (Glover

et al., 2000). Examining the covariance of cardiorespiratory and brain

network dynamics can also inform our understanding of the BOLD

signal in altered autonomic states, such as autonomic dysregulation in

psychiatric disorders (Kemp et al., 2010) or varying arousal states and

cardiovascular conditions (Al-Bachari et al., 2014; Lv et al., 2013). In

this study, we will evaluate the coherence between RSN BOLD acti-

vations and systemic physiological dynamics at rest in spatial, tempo-

ral, and spectral dimensions to characterize autonomic and vascular

effects on brain hemodynamics.

Recent studies have suggested that couplings between systemic

physiological modulations and the BOLD signal vary across the brain,

specifically with spatial organization similar to those of neuronal

RSNs. For example, by clustering voxel-specific physiological response

functions across the brain, Chen et al. identified resting-state “physio-
logical networks” which exhibit distinct BOLD temporal response

functions to heartbeat interval (HBI, computed as the instantaneous

beat-to-beat interval over time) and RVT, and resemble large-scale

functional networks (Chen et al., 2020). Additionally, using a simulta-

neous hypercapnia challenge orthogonal to cognitive stimuli and sub-

sequent independent component analysis, Bright et al. identified

component maps with high spatial overlap with cognitive networks,

but dominant temporal correlation with the physiological stimulus

(Bright et al., 2020). These studies provide evidence for network-

specific organization of cerebrovascular regulation, which spatially

parallels that of neuronal networks and may drive non-neuronal syn-

chrony between BOLD signals within a network. To further elucidate

these potential “physiological networks” and evaluate network-

specific contributions of systemic physiological dynamics to the BOLD

signal, in this study, we compare BOLD coherence with HBI/RVT

across established RSNs. We hypothesize that there is significant

coherence between HBI/RVT and networks traditionally associated

with autonomic function (e.g., somatomotor and ventral attention net-

works) (Chang et al., 2013; Critchley et al., 2003), especially at fre-

quencies where the BOLD signal is predominantly neuronally driven.

To assess the interplay between these biological signals, we

utilize wavelet transform coherence (WTC) in rapidly sampled resting-

state fMRI data with simultaneous pulse oximetry and respiratory

monitoring of the Human Connectome Project (HCP). WTC is a time–

frequency analysis that estimates the linearity and phase difference of

two non-stationary signals with optimized time and frequency resolu-

tion (Torrence & Compo, 1998). Previous fMRI studies have used
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WTC to demonstrate temporal and spectral variability of intra- and

inter-network connectivity of the default mode network (Chang &

Glover, 2010) and phase offsets between regional brain activations

during a visual task (Müller et al., 2004), highlighting dynamic BOLD

relationships between brain regions. As opposed to traditional correla-

tion or coherence measures, WTC identifies transient synchrony

between non-stationary BOLD and physiological signals at various

frequencies and quantifies phase differences in those instances of

synchrony to gain information on the temporal order of the signals.

Furthermore, with the fast temporal sampling of the HCP data, we

can examine synchronies at higher frequencies of the BOLD signal,

where there is emerging evidence of neuronal contributions (Chen &

Glover, 2015; Lee et al., 2013; Lewis et al., 2016; Trapp et al., 2018).

The wavelet analysis provides a more accurate and efficient method

of time–frequency localization for a wider range of dominant frequen-

cies when compared to a conventional windowed Fourier transforma-

tion and subsequent correlation analysis (Torrence & Compo, 1998).

Overall, by utilizing WTC, we will identify differences in the interplay

of systemic physiological signals and BOLD activations across time,

frequency, and spatial brain networks.

2 | METHODS

2.1 | Data and pre-processing

Resting-state fMRI data from 50 healthy young subjects (25 male;

22–35 years old) of the HCP were examined in this study (Smith

et al., 2013). Subjects were selected from a cohort that was assessed

for peripheral signal quality in a previous study (Chen et al., 2020). For

each subject, we analyzed the first 15-min resting-state BOLD fMRI

session, collected using a gradient-echo, simultaneous multi-slice EPI

sequence (TR = 0.72 s, TE = 33.1 ms, multi-band factor = 8, flip

angle = 52�, 72 slices, echo spacing 0.58 ms, left-to-right phase

encoding direction). Peripheral cardiac and respiratory signals were

recorded at a 400 Hz sampling rate, using a pulse oximeter placed on

the fingertip and a respiratory bellow secured around the chest

respectively. Subjects were instructed to keep their eyes open and fix-

ate on a crosshair fixation target for the duration of the scan. All data

was previously processed with the “minimal preprocessing pipeline”
of the HCP (Glasser et al., 2013), which includes a temporal high-pass

filter of 2000s, but no physiological denoising.

2.2 | Processing of HBI, RVT, and BOLD timeseries

Peripheral sensor recordings were processed using the TAPAS PhysIO

Toolbox (Kasper et al., 2017) of SPM. HBI was calculated as the

inverse of average heartbeat durations, measured from pulse oxime-

try, in 6 s sliding windows centered at the time of each imaging vol-

ume (TR). RVT was computed as the difference between inhalation

and exhalation amplitudes, measured from respiratory bellows,

divided by the temporal spacing of the maxima, and interpolated to

the center of each imaging volume (Figure 1a). The average BOLD

timeseries was calculated within each of the seven resting-state net-

works, including the dorsal attention (DAN), default mode (DMN),

frontoparietal (FPN), limbic (LN), somatomotor (SMN), ventral atten-

tion (VAN), and visual (VN) networks, identified by Yeo's atlas

(Thomas Yeo et al., 2011). Final HBI, RVT, and BOLD RSN timeseries

were individually mean-normalized.

2.3 | Wavelet transform coherence

Wavelet transform coherence (WTC) is a signal-processing method,

based on the continuous wavelet transform (CWT), that measures the

coherence and phase lag between two non-stationary timeseries as a

function of both time and frequency. The CWT of a timeseries xn of

length N, with uniform time stepsΔt, is defined as:

WX n,sð Þ¼
ffiffiffiffiffiffi

Δt
s

r

X

N

n0¼1

xnψ
�
0 n0 �nð Þ Δt

s

� �� �

, ð1Þ

where s represents the wavelet scale. In this study, we define the

wavelet function (ψ0) as the complex Morlet wavelet:

ψ0 ηð Þ¼ π�1=4eiω0ηe�η2=2, ð2Þ

with ω0 ¼6, as these parameters provide an optimal trade-off

between time and frequency localization and the Fourier period (T) is

approximately equal to the scale s¼1:03T (Grinsted et al., 2004;

Müller et al., 2004). The CWT captures the power and local phase of a

timeseries as a complex value in time and frequency (scale) dimen-

sions. The cross-wavelet transformation of two timeseries, which is

defined as:

WXY n,sð Þ¼WX n,sð ÞWY�
n,sð Þ, ð3Þ

captures the joint power and phase difference between two time

series as a function of time and frequency. Cross-wavelet power is

calculated as the modulus, WXY n,sð Þ�

�

�

� (Figure 1b). WTC is defined as
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�

�

�

�

2

s�1 WX n,sð Þ�

�
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�
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�
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�
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�
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�

�

�

�

2
ð4Þ

and produces the magnitude-squared coherence, or phase-locked

behavior, as an R2 value, ranging from 0 to 1 in time and frequency

space (Figure 2). Cross-wavelet power and WTC were calculated

between the RSN's average BOLD signal and the peripheral physio-

logical signal for each combination of RSN (DAN, DMN, FPN, LN,

SMN, VAN, VN) and peripheral physiological signal (HBI and RVT).

2.4 | Significance testing of coherence magnitude

A Monte Carlo approach with autoregressive (AR) bootstrapped time-

series was used to evaluate the significance of coherence magnitude.
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Each input signal (BOLD signal or peripheral physiological signal) was

modeled using an AR process of order 1, as used in previous studies

to model BOLD timeseries across large regions of interest (Chang &

Glover, 2010). In a separate analysis, we also modeled HBI and RVT

using a higher model order used in previous studies of HBI (Hipp

et al., 2012; Miranda Dantas et al., 2012) and found consistent results

to our AR1 analysis (Figures S3 and S4; Table S1). After estimating

AR1 coefficients for each signal, 300 pairs of bootstrapped timeseries

were generated. WTC magnitude was then calculated for each boot-

strapped pair to generate a null distribution and determine a 95%

significance threshold at each scale (i.e., frequency).

2.5 | Group-level coherence analyses

For each participant, we calculated the percent of timepoints with sig-

nificant coherence between RSN BOLD and peripheral signal based

on the Monte Carlo approach. Percent time with significant coherence

was chosen over time-averaged coherence as our aggregate metric to

ensure fair comparisons across frequency, as WTC exhibits different

time-frequency resolution across scales (Chang & Glover, 2010).

Values within the “cone of influence” of the WTC time-frequency

space, that is, points where edge-effects induce lower confidence in

calculated values, were excluded from all aggregate coherence met-

rics. For each dominant frequency band of the respective systemic

physiological dynamic (i.e., 0.05–0.15 and 0.15–0.4 Hz for HBI and

0.02–0.04 Hz for RVT), the average percent time with significant

coherence across participants was compared between RSNs using

repeated measures ANOVAs (RP-ANOVA). Post-hoc paired t-tests

were performed with Bonferroni correction to correct for multiple

comparisons. For each individual RSN, paired t-tests with Bonferroni

correction were also used to compare percent time with significant

coherence between low (0.05–0.15 Hz) versus high (0.15–0.4 Hz) HBI

frequency bands.

Coherence was also measured between RSN signals and a ran-

domly generated timeseries with the same power spectrum as the

original HBI/RVT signal (referred to as the null HBI/RVT signal). Null

HBI/RVT signals were created by shuffling the phase over time while

maintaining the amplitude of the Fourier transform of each signal. The

same comparisons between RSNs in each frequency band and

F IGURE 1 (a) Calculation of heartbeat interval (HBI) and respiration volume per time (RVT) timeseries from raw pulse oximetry or respiratory
bellow recordings. (b) Time-averaged cross-wavelet power of HBI/RVT and BOLD activations for each resting state network across frequencies.
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between frequency bands for each RSN were performed on RSN

coherence with the null HBI/RVT signal to determine if observed

network-specific coherence were due to power differences.

2.6 | Analysis of phase differences

To further investigate the temporal interplay between these systemic

physiological and BOLD signals, points in the time–frequency space

were categorized by phase offset (0� π
4,

π
2� π

4, π� π
4, and � π

2� π
4)

between signals, as calculated by the cross-wavelet transform. Phase

offsets represent temporal lags between two signals as a fraction of

the oscillation period, where phase offsets of 0, π2, π, and � π
2 indicate

that fluctuations in a timeseries of interest are respectively in-phase,

lagging, anti-phase, and leading those of a reference signal. In our

analysis, we used each RSN BOLD signal as reference and the corre-

sponding HBI/RVT signal as the timeseries of interest, and our inter-

pretations of “BOLD leading” and “HBI/RVT leading” are based on

this reference. For each frequency, percent time with significant

coherence in each phase category was calculated while again exclud-

ing unreliable timepoints inside the cone of influence.

2.7 | Significance testing of temporal variability of
coherence

Our novel wavelet analysis provides a dynamic measure of coherence

between two signals, which can inform our physiological interpreta-

tion of coherence between RSNs and HBI/RVT. To test whether the

observed temporal pattern of coherence between RSNs and HBI/RVT

exhibits greater temporal variability than produced by two signals

with a stationary relationship, we utilized a Monte Carlo approach

with vector autoregressive (VAR) bootstrapped timeseries (Chang &

Glover, 2010). Each pair of signals was modeled using a VAR model of

order 1. Using the estimated VAR coefficients, 1000 pairs of boot-

strapped timeseries were generated. For each bootstrapped pair,

WTC was calculated and represented as the complex quantity

WTC n,sð Þ¼R2 n,sð Þ �eiϕ n,sð Þ, ð5Þ

where ϕ n,sð Þ is the phase. Temporal variability at each scale (s) was

calculated as:

var zð Þ¼ < z�μzð Þ z�μzð Þ� > ð6Þ

σ2 sð Þ¼ var WTC n,sð Þð Þ ð7Þ

where brackets < > represent the sample mean, * represents the

complex conjugate, and μz ¼ < z> . Unreliable timepoints inside

the cone of influence were excluded. For each scale, the null distribution

of temporal variability of coherence was used to determine a 95% signifi-

cance threshold. The percentage of participants with significant temporal

variability of coherence was then calculated at each frequency.

3 | RESULTS

3.1 | Network-specific frequency profiles for
percent time with significant coherence with HBI/RVT

Both HBI and RVT demonstrated high cross-wavelet power with RSN

signals below 0.1 Hz (Figure 1b). However, individual wavelet

F IGURE 2 Wavelet transform coherence (WTC) plots from a representative subject. WTC visualization highlights different frequency bands
of visual network coherence with heartbeat interval (�0.08 and 0.25 Hz) and respiration volume per time (�0.02 Hz). Color bar signifies
magnitude of coherence measured in units of R2. Arrows indicate phase offset between the two temporal signals. Outlined areas represent time-

frequency points with significant coherence, as determined by a Monte Carlo simulation with boot-strapped timeseries.
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transform coherence plots highlight significant coherence between

HBI and RSN signals at frequencies above 0.1 Hz (Figure 2). Distinct

frequency bands of significant coherence across time are apparent for

each peripheral signal and differ by peripheral signal.

Percent time with significant coherence with HBI differed by RSN

and frequency band. Greater differences in percent time with signifi-

cant coherence between RSNs were observed in the lower frequency

band compared to the higher frequency band of HBI (RP-ANOVA:

low frequency p = 6.5e�17, high frequency: p = 6.0e�4). Table 1

details post-hoc paired t-test results between RSNs within each fre-

quency band. Dominant RSNs also differed by frequency band. At

lower frequencies, the SMN, VN, and VAN exhibited the greatest per-

cent time with significant coherence, while at higher frequencies sen-

sorimotor (SMN), salience (VAN), and higher order association

networks (DMN and FPN) were dominant (Figure 3b). Percent time

with significant coherence was greater in the lower frequency band

than in the higher frequency band of HBI for all RSNs (paired t-test:

p < .007 for all RSNs), which is consistent with low cross-wavelet

power observed at higher frequencies (Figure 1b).

All RSNs were significantly coherent with measured HBI signals

for a greater percentage of time than null HBI signals in both the low

and high frequency bands of HBI (Figure 3a). When coherence was

calculated with a null HBI signal, frequency profiles of percent time

with significant coherence did not differ between RSNs (with excep-

tion of the LN exhibiting decreased percent time with significant

coherence in the lower frequency band), indicating that observed dif-

ferences in frequency profile between RSNs were not due to their

power differences. Percent time with significant coherence between

RSN and null HBI signals also did not significantly differ between fre-

quency bands in any of the RSNs, suggesting that the observed differ-

ences between frequency bands were not due to power differences.

For RVT, signals were significantly coherent for the greatest

amount of time in the dominant frequency band of RVT, 0.02–

0.04 Hz, for all RSNs. However, percent time with significant coher-

ence differed between RSNs within this frequency band (RP-ANOVA:

p = 7.3e�6; see Table 1 for post-hoc paired t-test results between

RSNs within the RVT frequency band). At these frequencies, percent

time with significant coherence was the greatest in the VAN, with

sensorimotor (SMN and VN) networks and the FPN also exhibiting

significant coherence for larger percentages of time (Figure 4b).

Percent time with significant coherence between RSN and null RVT

signals did not significantly differ within the RVT frequency band

TABLE 1 Results of post-hoc paired t-tests comparing percent time with significant coherence between resting-state networks (RSN) in each
frequency band.

RSN 1 RSN 2

Low frequency HBI (0.05–0.15 Hz) High frequency HBI (0.15–0.4 Hz) RVT frequency (0.02–0.04 Hz)

t-value p-value Sig† t-value p-value Sig† t-value p-value Sig†

DAN DMN 2.13 3.80E�02 ns �2.73 .009 ns 1.98 5.40E�02 ns

DAN FPN �0.97 3.37E�01 ns �3.42 .001 * �0.26 7.95E�01 ns

DAN LN 5.57 1.08E�06 **** 0.59 .561 ns 1.23 2.23E�01 ns

DAN SMN �5.56 1.10E�06 **** �4.18 .000118 ** �2.45 1.80E�02 ns

DAN VAN �3.00 4.00E�03 ns �2.34 .023 ns �4.25 9.65E�05 **

DAN VN �5.10 5.49E�06 *** 0.14 .886 ns �0.33 7.45E�01 ns

DMN FPN �3.48 1.00E�03 * �1.68 .099 ns �3.24 2.00E�03 *

DMN LN 4.03 1.95E�04 ** 3.21 .002 * �1.33 1.90E�01 ns

DMN SMN �6.00 2.32E�07 **** �0.85 .4 ns �3.56 8.33E�04 *

DMN VAN �4.23 1.03E�04 ** 0.98 .331 ns �4.40 5.85E�05 **

DMN VN �4.38 6.15E�05 ** 2.11 .04 ns �2.43 1.90E�02 ns

FPN LN 6.59 2.86E�08 **** 3.85 .000344 ** 1.88 6.60E�02 ns

FPN SMN �4.37 6.55E�05 ** 0.16 .874 ns �1.75 8.60E�02 ns

FPN VAN �2.09 4.20E�02 ns 2.19 .033 ns �3.32 2.00E�03 *

FPN VN �3.16 3.00E�03 ns 2.76 .008 ns �0.05 9.60E�01 ns

LN SMN �7.91 2.67E�10 **** �2.98 .004 ns �3.62 6.90E�04 *

LN VAN �7.22 3.02E�09 **** �2.22 .031 ns �4.73 1.95E�05 ***

LN VN �7.18 3.44E�09 **** �0.38 .706 ns �1.49 1.44E�01 ns

SMN VAN 3.63 6.70E�04 * 2.56 .014 ns �2.22 3.10E�02 ns

SMN VN 1.81 7.70E�02 ns 2.56 .014 ns 2.02 4.90E�02 ns

VAN VN �1.49 1.41E�01 ns 1.56 .126 ns 3.22 2.00E�03 *

Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, frontoparietal network; LN, limbic network; Sig†, significance adjusted

with Bonferroni correction; SMN, somatomotor network; VAN, ventral attention network; VN, visual network. *p <0.0024, **p < 2.4E-4, ***p < 2.4E-5,

****p < 2.4E-6
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(RP-ANOVA: p = .791), suggesting that observed differences between

RSNs were not due to their power differences.

3.2 | Unique frequency profiles for phase
difference categories

Across RSNs, phase offset categories demonstrated distinct frequency

profiles for percentage of time with significant coherence between

HBI and RSN signals (Figure 5). In-phase instances of coherence

(0� π
4) were dominant at lower frequencies (peak �0.05Hz), while the

anti-phase category (π� π
4) did not exhibit a distinct peak at any fre-

quency. Phase categories that indicate a temporal offset between HBI

and RSN signals (π2� π
4 and � π

2� π
4), exhibited different frequencies with

the greatest percentage of significantly coherent timepoints. The

“BOLD leading” group (� π
2� π

4) peaked at lower frequencies

(�0.15Hz) and the “HBI leading” group (π2� π
4) at higher frequencies

(�0.25Hz). This observation indicates that temporal order of HBI and

BOLD signals varies depending on frequency band. Interestingly, peak

frequencies also differed between in-phase and “BOLD-leading”
phase categories in the lower frequency band (�0.05 and 0.15Hz

respectively). Frequency profiles for each phase category remained

consistent across RSNs, with exception of the LN, which lacked a

“HBI leading” peak at high frequencies. Overall, our analysis demon-

strated that phase offsets between HBI and the BOLD signal differ by

frequency.

F IGURE 3 Coherence
between heartbeat interval (HBI)
and resting-state network (RSN)
blood oxygen level dependent
(BOLD) signal activations.
(a) Percentage of time with
significant coherence between
RSN BOLD activations and HBI
was averaged across participants

for each frequency. Coherence
between RSN BOLD activations
and a null HBI signal, with the
same power spectrum as true
HBI, are represented by dashed
lines. Standard error bars shown
in Figure S1a. (b) Percentage of
time with significant coherence
was averaged across participants
within each frequency band of
HBI. RSN profiles were more
distinct in the lower frequency
band than in the higher frequency
band (RP-ANOVA: low frequency
p = 6.5e�17, high frequency:
p = 6.0e�4; see Table 1 for post-
hoc paired t-test results between
RSNs within each frequency
band). All RSNs exhibited greater
coherence with HBI in the lower
frequency band than in the higher
frequency band (paired t-test:
p < .007 for all RSNs).
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Dominant frequencies of coherence between RVT and the BOLD

signal also differed by phase category across networks (Figure 6).

In-phase instances of coherence (0� π
4) were dominant at lower

frequencies (�0.04Hz), while anti-phase instances generally repre-

sented low percentages of significant timepoints, with a slight peak at

higher frequencies (�0.4Hz). Phase categories that indicate temporal

F IGURE 4 (a) Percentage of time with significant coherence between resting-state network (RSN) blood oxygen level dependent (BOLD)
signal activations and respiration volume per time (RVT) was averaged across participants for each frequency. Coherence between RSN BOLD

activations and a null RVT signal, with the same power spectrum as true RVT, are represented by dashed lines. Standard error bars shown in
Figure S1b. (b) Percentage of time with significant coherence was averaged across participants within the dominant frequency band of RVT
(0.02–0.04 Hz). The ventral attention, somatomotor, and visual network tended to have greater coherence than the default mode, dorsal
attention, frontoparietal, and limbic networks (RP-ANOVA: p = 7.3e�6; see Table 1 for post-hoc paired t-test results between RSNs within the
RVT frequency band).

F IGURE 5 Percentage of time with significant coherence by phase offset for heartbeat interval (HBI) and resting-state network (RSN) blood
oxygen level dependent (BOLD) signal activations. Phase offsets demonstrate distinct frequency profiles across networks. Shaded areas represent
standard error.
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offset between RVT and BOLD signals (π2� π
4and � π

2� π
4), again differed

in the frequencies where they show the greatest percentage of signifi-

cant timepoints. While “RVT leading” category (π2� π
4) represents a

large percentage of coherent timepoints at very low frequencies (peak

�0.02Hz), “BOLD leading” instances generally made-up low percent-

ages of coherent timepoints, with a slight peak at higher frequencies

(peak �0.2Hz). This indicates that temporal order of RVT and BOLD

signals also varies with frequency band. Frequency profiles for

in-phase and “RVT leading” categories remained consistent across

RSNs, while the small peaks of anti-phase and “BOLD leading” cate-

gories differed slightly between networks. Overall, our analysis

demonstrated that phase offsets between RVT and the BOLD signal

differ by frequency.

3.3 | Network-specific frequency profiles for
percentage of participants with significant temporal
variability of coherence with HBI/RVT

In all RSNs, the percentage of participants with significant temporal

variability of coherence with HBI peaked within the two key fre-

quency bands of HBI. A greater percentage of participants had signifi-

cant temporal variability of coherence in the lower frequency band

(>50%) than the higher frequency band (Figure 7). Peak percentages,

especially in the lower frequency band, differed by RSN, with the

highest percentage observed in sensory and salience networks (SMN,

VN, VAN).

The percentage of participants with significant temporal variabil-

ity of coherence with RVT peaked at lower frequencies of RVT in all

RSNs. However, the significant temporal variability of coherence was

observed in less than half of all participants for all RSNs, fewer than

for HBI (Figure 8). Peaks in percentage of participants with significant

temporal variability of coherence were observed at about 0.05 and

0.15 Hz in most RSNs.

4 | DISCUSSION

This study provides a characterization of coherence between BOLD

activations and systemic physiological signals across RSNs using a

time-frequency wavelet analysis. We identified higher synchrony

between HBI and rsfMRI signals within a low frequency regime of

HBI fluctuations (0.05–0.15 Hz), compared to its higher frequency

regime (0.15–0.4 Hz), with unique profiles for RSNs. Distinct

RSN profiles were also observed in the synchrony between BOLD

activations and RVT fluctuations in its dominant frequency band

(0.02–0.04 Hz). Somatomotor (SMN), visual (VN), and salience (VAN)

networks demonstrated the greatest percent time with significant

coherence with both systemic physiological signals when compared to

other RSNs, which is consistent with their established roles in auto-

nomic processing. However, significant coherence was observed in all

RSNs regardless of direct autonomic involvement. Furthermore, our

phase analysis revealed distinct frequency profiles of percentage of

time with significant coherence between BOLD and systemic physio-

logical signals for different phase offset categories across RSNs. This

observation suggests that the phase offset and temporal order of

signals varies by frequency. Lastly, we identified significant temporal

variability in coherence for a majority of participants in the lower

F IGURE 6 Percentage of time with significant coherence by phase offset for respiration volume per time (RVT) and resting-state network
(RSN) blood oxygen level dependent (BOLD) signal activations. Phase offsets demonstrate distinct frequency profiles across networks. Shaded
areas represent standard error.
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frequency band of HBI, with distinct frequency profiles across net-

works. Frequency profiles for percentage of participants with signifi-

cant temporal variability of coherence with RVT also differed by RSN,

but with fewer participants exhibiting significant temporal variability

of coherence at all frequencies. Characterizing the phase offset and

temporal variability of coherence can help inform our understanding

of neuronal (i.e., brain activity facilitating changes in cardiorespiratory

activity) and vascular (i.e., cardiorespiratory activity facilitating

F IGURE 7 Percentage of participants with significant temporal variability of coherence between heartbeat interval (HBI) and resting-state
network (RSN) blood oxygen level dependent (BOLD) signal activations. Significance of temporal variability at each frequency was determined by
a Monte Carlo approach with bootstrapped timeseries generated with a vector autoregressive model.

F IGURE 8 Percentage of participants with significant temporal variability of coherence between respiration volume per time (RVT) and
resting-state network (RSN) blood oxygen level dependent (BOLD) signal activations. Significance of temporal variability at each frequency was
determined by a Monte Carlo approach with bootstrapped timeseries generated with a vector autoregressive model.
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regional changes in vascular tone and thus the BOLD signal) compo-

nents of systemic physiological effects on the BOLD signal at rest and

in altered autonomic states.

We identified significant coherence between HBI and BOLD acti-

vations of all RSNs, with strongest coherence in RSNs involved in

somatomotor or salience processing. Our findings are consistent with

previous studies that identified significant correlations between HBI

dynamics and the BOLD time series in autonomic regions associated

with salience processing and motor control, such as the anterior cin-

gulate cortex, putamen, insula, and supplementary motor area, at rest

(Chang et al., 2013) and in response to a task (Critchley et al., 2003).

This supports the hypothesis that synchrony between HBI and BOLD

signals is a result of neuronal activation to salient stimuli eliciting both

a local, cerebral hemodynamic modulation (i.e., BOLD change) and a

systemic adjustment in physiology (i.e., HBI change). Our phase analy-

sis in the lower frequency band (0.05–0.15 Hz) is consistent with this

theory, as HBI and RSN signals tended to be in-phase or show BOLD

leading HBI (based on the � π
2 category) during coherent timepoints at

low frequencies, indicating that changes in BOLD precede changes in

HBI. Our analysis of temporal variability also supports this interpreta-

tion, as RSN and HBI signals exhibited high temporal variability in

their synchrony, especially in the lower frequency band, suggesting

that synchrony between signals varies over time. Changes in auto-

nomic state could be one source of this variability, as states of arousal

could influence the degree of brain–body communication. Future

studies could conduct similar wavelet coherence analyses in altered

autonomic states, such as autonomic dysregulation in psychiatric con-

ditions (Kemp et al., 2010; Licht et al., 2008), various vigilance states

(Chang et al., 2013), sleep stages (Fultz et al., 2019), and stress (Wang

et al., 2005), to gain information on differences in brain–body commu-

nication in these conditions.

Despite observing the highest coherence in autonomic-related

RSNs, such as SMN, VAN, and VN, significant coherence with HBI

was apparent in both frequency bands for all RSNs, regardless of their

traditional association with the autonomic system, which points to

wider involvement of RSNs in autonomic activity. A recent study iden-

tified significant autonomic associations between BOLD and cardiova-

gal activity in more diverse regions of the brain than previously

reported using correlation of fMRI with inhomogeneous point-process

models of heart beat dynamics in the HCP dataset (Valenza

et al., 2019). In particular, this study found classic DMN regions, such

as the posterior cingulate cortex, precuneus, anterior cingulate cortex,

and medial prefrontal cortex, and FPN regions, such as the middle cin-

gulate cortex, superior frontal gyrus, and superior parietal lobule, to

be significantly correlated with heartbeat dynamics, suggesting a

dynamic role of the autonomic system. Our findings support this inter-

pretation of the autonomic network as a collection of brain regions

that both mediates systemic physiological dynamics and facilitates

higher processing, rather than an independent network. Separate from

autonomic roles, RSNs may show significant coherence to systemic

physiology due to parenchymal microvascular density or proximity to

large brain vessels. High vascularization or proximity to large vessels

may induce significant coherence due to greater influence of non-

neuronal vascular dynamics on the BOLD signal. However, a previous

study comparing brain regions with high cardiorespiratory response

function amplitudes and brain regions high vessel density found multi-

ple cases where high BOLD amplitudes did not align with high vessel

density, suggesting that vascular anatomy only partially accounts for

variation in cardiovascular effects of the BOLD signal across the brain

(Chen et al., 2020).

Furthermore, we identified significant synchrony between HBI

and RSNs in both low and high frequency bands of HBI. Significance

of coherence at higher frequencies could be due to parasympathetic

modulations of heart rate, which alter cerebral blood flow, vascular

tone, and oxygenation, or remnant quasiperiodic fluctuations from

cardiorespiratory cycles (Katura et al., 2006; Shmueli et al., 2007). The

phase analysis supports our predominantly vascular interpretation of

the synchrony at higher frequencies. At higher frequencies, coherent

timepoints exhibit HBI and BOLD signals in-phase or HBI leading

BOLD (based on the π
2 category), alluding that changes in heart rate

induce vascular factors that affect the BOLD signal. When conducting

the same analysis on 10 ICA-FIX (FMRIB's ICA-based X-noiseifier)

(Salimi-Khorshidi et al., 2014; Smith et al., 2013) denoised rsfMRI

scans of HCP, in which spatial and temporal components classified as

noise are regressed out, percentage of time with significant coherence

with DMN was overall decreased, especially in the higher frequency

band of HBI (Figure S2a). This suggests that coherence in the higher

frequency band of HBI is driven by quasiperiodic fluctuations such as

respiration, which occupies similar frequencies and modulates heart-

beat periods through respiratory sinus arrhythmia (Berntson

et al., 1997). However, phase category trends remained the same,

with characteristic in-phase peaks at 0.05 and 0.25Hz, a “BOLD lead-

ing” peak at 0.15Hz, and a “HBI leading” peak at 0.25Hz. Future anal-

ysis using RETROICOR (Glover et al., 2000) to remove quasiperiodic

cardiac and respiratory fluctuations could be performed to further elu-

cidate the contributions of these dynamics to the high frequency

BOLD signal.

Lower coherence and greater differences in coherence across

RSNs in the higher frequency regime compared to the lower fre-

quency regime are likely due to inherent hemodynamic filtering (i.e., a

low-pass filter) of the BOLD signal. However, recent studies have

identified that the BOLD signal can measure neuronal activity at

higher frequencies than previously assumed by the canonical hemody-

namic response function (Chen & Glover, 2015; Lee et al., 2013; Lewis

et al., 2016; Trapp et al., 2018), although the precise mechanisms

underlying these fast fMRI dynamics remain unclear. As one possible

mechanism, Chen et al. demonstrated that lower intensity stimuli,

such as spontaneous neural events at rest (Liu & Duyn, 2013), elicit

faster and narrower hemodynamic responses, which enables high fre-

quency fluctuations in neural activity to manifest in the BOLD signal

(Chen et al., 2021; Thompson et al., 2014). With this interpretation,

higher frequency components of the BOLD signal are likely composed

of a variety of small, spontaneous neural dynamics, compared to lower

frequency components that are dominated by large, salient neural

events. Thus, high frequency BOLD fluctuations may be less coherent

with major autonomic changes, such as HBI, due to the high
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frequency BOLD signal's composition of a variety of smaller, transient

neuronal changes. This potential reasoning is consistent with our find-

ing that RSNs have similar synchrony with HBI in the higher fre-

quency band, that is, networks associated with neurogenic autonomic

processing have more similar coherence to other networks.

Recently, Attarpour et al. conducted a similar frequency analysis

of the coherence between cardiac and regional BOLD signals, focus-

ing specifically in cerebrospinal fluid (CSF) regions (Attarpour

et al., 2021). Consistent with our study, they observed peaks in coher-

ence with HBI in both the low and high frequency regimes in all

regions, including gray matter, white matter, and CSF. Brain tissues

and venous regions exhibited peak coherence at lower frequencies,

similar to those identified in gray matter regions in our study, while

CSF and arterial ROIs exhibited peak coherence at higher frequencies

up to 0.25 Hz. This finding supports our interpretation of high fre-

quency coherence having primarily vascular as opposed to neuronal

origins, as CSF oscillations contain essentially no neuronal signals and

show dominant coherence at high frequencies. In contrast to our

study of gray matter regions, in CSF the frequency of peak coherence

varied from 0.14 Hz in the lateral ventricles to higher frequencies up

to 0.25 Hz in the third ventricle and cerebral aqueduct. These discrep-

ancies point to differing mechanisms facilitating the relationship

between HBI and BOLD activations in gray matter and CSF regions.

We also observed significant synchrony between RVT and the

BOLD signal in the dominant frequency band of RVT (0.02–0.04 Hz)

for all RSNs. Phase offsets within this frequency band indicate that

RVT changes precede BOLD changes (based on the π
2 category), which

points to RVT-induced changes in blood oxygenation or vascular tone

mediating changes in the BOLD signal at these frequencies (Birn

et al., 2006). Our analysis of temporal variability also supports this

vascular interpretation of BOLD–RVT coherence, as only a minority

of participants exhibited significant temporal variability of coherence,

even at the key RVT frequencies, indicating that the synchrony

between BOLD and RVT signals is consistent over time. When com-

pared to neurogenic effects, vascular changes have a more direct

effect on blood oxygenation (i.e., the BOLD signal) and thus the rela-

tionship between BOLD and RVT may vary less over time. Further-

more, the coherence magnitude was observed in salience and

somatomotor networks. A previous study identified a distinct respira-

tory response function for sensorimotor regions compared to other

gray matter regions (Chen et al., 2020). A respiratory response func-

tion characterizes the timing and magnitude of the BOLD changes in

response to RVT changes. Thus, differences in the timing between

RVT change and BOLD response, such as those observed in somato-

motor regions, can lead to greater synchrony of the BOLD and RVT

signals in that network. Higher synchrony in somatomotor

and salience networks could also reflect vascular brain organization

that spatially match neuronal networks and induce network-specific

coherence with systemic physiological signals, such as RVT (Bright

et al., 2020; Chen et al., 2020).

While our wavelet analysis provides a unique characterization of

instantaneous coherence across time and frequencies, this analysis

may not be generalizable to all datasets. In this study, we leveraged

the high sampling rate of resting-state fMRI data provided by the

HCP to analyze a large frequency range with reduced effects of signal

aliasing. The high temporal resolution of HCP data allowed us to more

accurately investigate the relationship between systematic physiology

and neuronal signals; however, resting-state fMRI data with lower

temporal resolution may suffer from frequency aliasing and exhibit

different patterns of coherence. Modern simultaneous multislice

sequences enable sub-second acquisitions with similar temporal reso-

lutions to our study, thus increasing the generalizability of our find-

ings. Furthermore, analyses of non-stationary signals, such as our

wavelet analysis, may require longer timeseries to disentangle fre-

quency components over time. To test the effect of scan duration on

our results, we extracted subsets of the original 15 min of BOLD sig-

nal and HBI/RVT recordings into 5- and 10-min timeseries and

observed similar frequency profiles and RSN differences across scan

durations (Figure S4), suggesting that our analyses and findings are

generalizable to datasets with reduced scan duration. RVT results may

be less reliable at shorter scan durations due to differences in quality

of respiratory recordings.

Caution should also be taken in the interpretations of phase off-

sets. To interpret temporal order from a phase offset, we must assume

that the beginning of each recording represents the definitive start of

the signal. However, biological signals, such as HBI, RVT, and BOLD

activations, exist before and after our recorded signals, which makes it

difficult to conclude which signal is leading or lagging in instances of

temporal offset. To help interpret temporal order on a group level, we

identified the median time lag with the highest cross-correlation

between HBI/RVT and RSN signals across participants for each fre-

quency band. The positive or negative time lag, in conjunction with

phase difference, was then used to estimate temporal order of signals

for that frequency band. We observed the highest cross-correlation

between HBI and RSN signals when BOLD led HBI by �2 s in the

lower frequency band and when BOLD lagged HBI by �1 s in

the higher frequency band. The contrasting temporal order of signals

is consistent with our findings of opposite phase offsets in the two

frequency bands. In the RVT frequency band, we observed the highest

cross-correlation between RVT and RSN signals when BOLD lagged

RVT by �3 s, which is consistent with our interpretation of RVT lead-

ing RSN signals.

There are several limitations to our study. First, to calculate BOLD

activations per RSN, we averaged the temporal signal across large

areas of the Yeo atlas, which decreases region-specific sensitivity of

our BOLD measurements, but increase the signal-to-noise ratio of our

timeseries. Despite this averaging, we were able to identify significant

network differences in coherence, supporting the network-specificity

of our aggregate BOLD signals. Additionally, magnitudes of coherence

did not correspond to the size of RSN masks, indicating that observed

differences in coherence were not due to differences in the number

of voxels averaged. Next, the BOLD signal and our peripheral mea-

surements are recorded at disparate areas of the body, which may

influence the coherence and phase offsets between signals. We were

able to find significant coherence between timeseries recorded on

these separate devices; however, the timing differences of our
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recording devices is a limitation in interpreting our phase offsets.

Lastly, we did not convolve our systemic physiological signals with

response functions before coherence analysis to avoid assuming a

temporal order of the signals, as applying cardiorespiratory response

functions would enforce peripheral signals leading BOLD signals and

applying the hemodynamic response function would enforce the

reverse. Additionally, there is evidence of differing cardiorespiratory

response functions across gray matter (Chen et al., 2020) and applying

a singular response function may induce differences in coherence.

However, our use of non-convolved signals may reduce overall coher-

ence between signals, as we do not account for differences in the tim-

ing or shape of the response between signals. Despite these concerns,

we were still able to identify significant coherence for both signal

orderings (i.e., BOLD leading and HBI/RVT leading) and a majority of

our time lags are consistent with expected physiological timing.

5 | CONCLUSION

Ultimately, this study provides insight into the dynamic relationship

between systemic cardiovascular modulations and neuronal activity.

Utilizing phase offset and temporal variability information provided by

our wavelet analysis of coherence, we identified differences in vascu-

lar versus autonomic effects across frequencies and RSNs. Disentan-

gling these components of the BOLD signal can inform fMRI methods

to investigate these vascular or autonomic dynamics with greater

specificity. Further studies using this method could also enhance our

understanding of brain–body communication and functional connec-

tivity interpretations in altered autonomic states. In summary, using a

wavelet coherence analysis, we were able to characterize synchrony

between systemic physiological dynamics and BOLD activations in

temporal, spectral, and spatial dimensions to improve autonomic and

vascular interpretations of the BOLD signal.
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