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Abstract

A genetic etiology is identified for one third of congenital heart disease (CHD) patients, including 

8% attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs 

to CHD, we compared genome sequences from 749 CHD probands and their parents with 1,611 

unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a 

burden of DNVs in CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10−4). 

Independent analyses of enhancers showed excess DNVs in associated genes (27 genes vs. 3.7 

expected, P = 1 × 10−5). We observed significant overlap between these transcription-based 

approaches (OR = 2.5, 95% CI 1.1–5.0, P = 5.4 × 10−3). CHD DNVs altered transcription levels in 

five of 31 enhancers assayed. Finally, we observed DNV burden in RNA-binding protein 

regulatory sites (OR = 1.13, 95% CI 1.1–1.2, P = 8.8 × 10−5). Our findings demonstrate an 

enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as 

high as observed for damaging coding DNVs.

Congenital heart disease (CHD), which occurs in 1% of live births, has seen marked 

improvements in survival with modern surgical and medical management1. The decrease in 

infant mortality has increased CHD prevalence in older individuals and exposed co-

morbidities impairing quality of life and life expectancy. Elucidation of CHD etiologies may 

improve outcomes, so the NHLBI-funded Pediatric Cardiac Genomics Consortium (PCGC) 

recruited >13,000 patients and utilized whole exome sequencing (WES) and chromosome 

microarrays to study CHD genetic architecture. Our analyses identified damaging rare 

transmitted and de novo variants (DNVs) in 8% of sporadic CHD (including 28% of 

syndromic and 3% of isolated CHD)2–5. Many DNVs identified in CHD patients alter 

proteins functioning in chromatin modification, regulation of transcription, and RNA 

processing4.

Based on these findings, we hypothesized that additional CHD causes may reside in 

noncoding elements functional during cardiac development. To explore that, we performed 

whole genome sequencing (WGS) to identify single nucleotide variants (SNVs) and small 

insertions/deletions (indels) in 763 CHD trios comprised of affected probands and 

unaffected parents and in 1,611 child-parent trios without CHD. First, 14 CHD probands 

with previously undetected likely causal genetic variants were identified; then, we compared 

noncoding DNVs using three approaches in the remaining cohort. Two strategies focused on 

cardiac gene regulatory elements, using a neural network model predicting variant-level 

resolution functional impact and by analyzing multiple DNVs in genes with human fetal 

heart enhancers overlapping cardiomyocyte differentiation open chromatin. We identified 

significant overlap between results from these complementary approaches and confirmed 

differences on transcription activity for 5 of 31 variants tested. Our third strategy, which 

interrogated RNA processing, found significant enrichment of noncoding DNVs in cases. 

Finally, we observed potentially contributory noncoding DNVs in isolated CHD probands as 

well as those with neurodevelopmental delays or extracardiac anomalies, suggesting varying 
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degrees of cardiac specificity. Taken together, these results demonstrate a noncoding DNV 

contribution to CHD mediated through transcriptional and post-transcriptional regulatory 

effects on cardiac development.

RESULTS

Trio cohort characteristics and sequencing.

We performed WGS (coverage = 30x) on 763 CHD probands (311 with extra-cardiac 

anomalies; 452 with isolated heart malformations) and unaffected parents enrolled by the 

PCGC (Supplementary Table 1a, phenotype summary in Supplementary Table 1b)2. Subjects 

underwent WGS if prior WES studies5 failed to identify rare damaging missense or loss-of-

function coding variants in CHD genes (Supplementary Table 5). We also studied DNVs in 

1,611 individuals without CHD or autism, who had siblings with autism, and their parents 

from the Simons Simplex Collection6. To ensure accurate variant detection, de novo variants 

(DNVs) were identified using GATK and further evaluated with FreeBayes7 local 

realignment, classification by a neural network trained on Integrated Genomics Viewer 

(IGV) plots8, and manual curation of ambiguous variants (see Methods; Supplementary 

Tables 2 and 3). PCR-based Sanger sequencing validated 98% of 266 de novo SNVs and 

94% of 83 de novo indels in cases. In controls, 94% of de novo SNVs were present in at 

least one published analysis (Extended Data Fig. 1)9,10. We identified a mean of 71 de novo 
SNVs and five de novo indels per CHD proband (58,090 DNVs) and 68 de novo SNVs and 

five de novo indels per control subject (117,344 DNVs), similar to WGS data obtained on 

similar platforms and coverage11.

As expected, DNVs per subject correlated with paternal (βCHD = 1.4, PCHD = 5 × 10−54, 

βcontrol = 1.4, Pcontrol = 6 × 10−86) and maternal (βCHD = 0.5, PCHD = 2 × 10−5, βcontrol = 

0.4, Pcontrol = 3 × 10−8) ages (multiple variable linear regression; Extended Data Fig. 2)11,12. 

SNVs drove this association, but there was also a de novo indel association with paternal 

(βCHD = 0.07, PCHD = 2 × 10−4, βcontrol = 0.05, Pcontrol = 3 × 10−4) but not maternal age 

(βCHD = 0.01, PCHD = 0.6, βcontrol = 0.03, Pcontrol = 0.1)13. Without parental age adjustment, 

cases had more DNVs per subject than controls (P = 2 × 10−9, two-sided t-test), but not after 

adjustment (P = 0.1). To account for this difference, comparisons were made with respect to 

the total number of DNVs in CHD probands and controls.

Coding DNVs identified by WES and WGS.

WES data were available for 612 of 763 CHD probands4,5. Among 628 coding DNVs 

including 582 within WES capture regions (lifted over14 to hg38), WES and WGS both 

identified 509 (81%), while 38 of 69 DNVs called only by WES were confirmed by WGS 

IGV visualization (see Supplementary Note). Fifty coding DNVs identified solely by WGS 

(8%; 0.08/proband) included four within and 46 outside WES capture regions. One initially 

called by WES was removed for low read depth; three were not called by WES but 

confirmed by WES IGV visualization.

These analyses defined damaging DNVs in established CHD genes (PTPN11, NOTCH1 (n = 

2), FBN1, FLT4, NR2F2, GATA4), and identified six subjects with 22q11 copy number 
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variants and one with trisomy 21. The proband with a previously reported pathogenic FBN1 
DNV in exon 42 (1–00761) had mitral stenosis, brachycephaly, short stature and other 

features consistent with geleophysic dysplasia (MIM 614185), 50% of which is caused by 

damaging DNVs in FBN1 exon 41 or 42. Damaging DNVs in known CHD genes were 

confirmed with reference-free DNV calling (see Methods) and IGV visualization. Six 

potentially damaging DNVs were identified in candidate CHD genes, including one 

insertion detected only with reference-free calling (Supplementary Table 4), but these 

individuals were retained for noncoding analyses. Excluding probands with likely causal 

genetics, 749 CHD probands were analyzed for noncoding DNVs.

Quantitative burden with categorical DNV classifications.

We observed no noncoding DNV enrichment in 749 CHD trios for DNVs associated with 

human (n = 210) or mouse (n = 614) CHD genes or genes highly expressed in heart 

development (n = 4,420) (Supplementary Tables 5 and 6). Similarly, we observed no 

enrichment in noncoding cardiac regulatory features comprising transcription factor binding 

sites (nhuman = 8, nmouse = 45), histone marks (nhuman = 45, nmouse = 60), and DNase 

hypersensitivity sites (nhuman = 23, nmouse = 3) assayed on cardiac cells (nhuman = 15), 

prenatal/fetal heart tissue (nhuman = 26, nmouse = 34), and postnatal heart tissue (nhuman = 35, 

nmouse = 74) (see Methods, Extended Data Fig. 3, and Supplementary Table 7)15–32.

Qualitative burden with HeartENN.

Finding no genome-wide significant DNV burden in global regions of cardiac transcriptional 

regulation among CHD probands, we predicted impact with variant-level resolution. We 

developed HeartENN (Heart Effect Neural Network, Fig. 1), an extension of DeepSEA33, 

which predicts molecular effect differences between any two alleles for every regulatory 

feature using convolutional neural networks. Another DeepSEA extension successfully 

identified noncoding DNV enrichment in autism34. HeartENN was trained on 1,000-bp 

genomic sequence context with the same 184 cardiac noncoding regulatory features used for 

previous region-based burden tests, but not those used for subsequent multiple-hit analysis 

(see Methods; Supplementary Table 7). Aside from using cardiac epigenomic training data 

and extending to mouse features, HeartENN is similar to DeepSEA. The HeartENN mean 

receiver operator characteristic area-under-the-curves (ROC AUCs) for mouse and human 

features were 0.9 and 0.85, respectively, similar to DeepSEA ROC AUCs; the area under the 

precision-recall curves were also comparable (Extended Data Fig. 4). Beyond restricting to 

heart-related features, we defined no other CHD relevance hypotheses. The maximum 

functional difference score observed in any feature was assigned to each DNV 

(Supplementary Table 8).

We defined a range of scores relevant to congenital defects by contrasting maximum 

functional difference scores between Human Gene Mutation Database regulatory mutations 

(n = 1,564), inclusive of congenital defect pathogenic variants, and regulatory 

polymorphisms (n = 642). As these variants are from diverse malformations, we evaluated 

signals using DeepSEA33,34, which is generalizable to multiple organ systems. Pathogenic 

variants, but not polymorphisms, had an excess of DeepSEA scores ≥ 0.1 (Extended Data 

Fig. 5a). Lacking an equivalent dataset of CHD noncoding variants to evaluate HeartENN, 
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we compared the DeepSEA and HeartENN null distributions. After randomly down-

sampling DeepSEA to match the number of HeartENN annotations and applying HGMD 

polymorphism scores, we observed similar null distributions for HeartENN and DeepSEA 

(Extended Data Fig. 5b). We therefore set HeartENN scores ≥ 0.1 as potentially biologically 

meaningful for CHD.

The majority (>96%) of DNVs had HeartENN scores < 0.1, suggesting little functional 

impact from most variants. CHD cases were enriched for HeartENN scores ≥ 0.1 (n = 2,238 

DNVs in CHD, n = 4,177 DNVs in controls, Fisher’s exact test P = 8.7 × 10−4, OR = 1.09, 

95% CI 1.04–1.15, attributable risk = 183/2,283 DNVs). We tested enrichment across 

multiple cut-offs, observing (i) no marginal (P < 0.05) significance in controls at any cut-off, 

(ii) higher odds ratios with stricter thresholds (Fig. 2a and Supplementary Table 9), and (iii) 

significance when accounting for all thresholds (Fig. 2b, permutation P = 1.7 × 10−3, 10,000 

permutations). Above 0.25, we observed consistent positive effect sizes despite decreased 

sample sizes, suggesting lack of power with more stringent thresholds. To test if the signal 

was consistent across functionally significant HeartENN scores, we placed every DNV into 

0.02-HeartENN-score bins. We calculated the difference in fraction of DNVs in every 0.02 

bin (Fig. 2c) and observed a strong propensity towards cases across bins.

We tested whether other noncoding variant prioritization methods ranked HeartENN-

damaging (score ≥ 0.1) variants as pathogenic. There was statistically significant support 

from all tested algorithms (LINSIGHT35, CADD36,37, DeepSEA33,34, GERP++38, and 

GWAVA TSS39) (Extended Data Fig. 6). We observed a case-control burden with CADD ≥ 

15 (PBonferroni = 0.019), albeit without a dose-response relationship or cardiac-relevant 

interpretation.

Gene set enrichment of DNVs with HeartENN ≥ 0.1 upstream or downstream (<1 kb) or 

within 5’-UTR, intronic, or 3’-UTR sequences showed enrichment of known human CHD 

genes in cases (Fig. 2d and Supplementary Table 10; n = 18/959 genes in cases, n = 10/1,704 

genes in controls, OR = 3.2, 95% CI 1.4–7.9, hypergeometric 1-sided P = 5.7 × 10−4). 

Notably, one proband with isolated CHD had a DNV (maximum HeartENN score 0.15, ID 

1–07589) within a previously validated GATA4 enhancer with heart-constrained activity 

(Vista ID hs2205, heart-specific in 6/7 E11.5 embryos)27.

Burden of genes with multiple DNVs in human fetal cardiac enhancers.

A second approach interrogating noncoding DNVs focused on regions experimentally 

implicated in human cardiac developmental gene expression regulation. This strategy 

harnessed 31,555 human fetal heart enhancers identified by H3K27ac chromatin 

immunoprecipitation (ChIP) of human fetal cardiac tissues (8–17 weeks post-conception, 

see Methods). None was included in HeartENN. We intersected these fetal cardiac enhancers 

with open chromatin sequences from ATAC-seq during human induced pluripotent stem 

cells differentiation into cardiomyocytes (hiPSC-CMs). Based on prototypic gene 

expression, ATAC-seq was performed at two differentiation states: cardiac mesoderm (day 8; 

155,989 ATAC peaks) and primordial cardiomyocytes (day 17; 62,326 ATAC peaks). The 

subset of ATAC peaks overlapping cardiac enhancers defined 21,618 prioritized human fetal 

heart enhancers (Supplementary Table 11). We assessed these sequences for DNVs.
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Within prioritized human fetal heart enhancers, we identified 2,427 DNVs in CHD cases and 

5,160 DNVs in controls (Fisher’s exact P = 1, Supplementary Table 12). Assignment of 

nearest genes defined 1,793 genes in CHD cases and 3,195 genes in controls. Among CHD 

cases, 27 genes were marginally enriched for DNVs. No gene was enriched for DNVs in 

controls (Fig. 3a and Supplementary Table 13). In 105 permutations of randomly assigned 

case or control status, fewer genes exhibited DNV enrichment than observed (P < 1 × 10−5, 

Fig. 3b).

These 27 genes were associated with 99 case DNVs and 13 control DNVs (Supplementary 

Table 14). Nine case DNVs but none in controls had HeartENN scores ≥ 0.1 (Supplementary 

Table 14), significantly more than < 4% expected by chance (1-sided hypergeometric P = 5.4 

× 10−3, Fig. 3c). Significance was assessed using the null hypothesis of proportional overlap, 

which was appropriate as HeartENN used different cardiac epigenomic data from the 

prioritized human fetal heart enhancers. Ten of the 27 genes enriched for DNVs in 

prioritized human fetal heart enhancers were highly expressed in E14.5 mouse hearts (P = 

0.06): COL1A2, MAPRE2, SEPT11, PSMA7, SORBS1, RPL25, FILIP1, MITF, SUN1, and 

ATE1 (Supplementary Table 13). Twelve genes (FNIP1, COL1A2, MITF, MAPRE2, 

PSMA7, LRRTM2, NAB1, SUN1, SEPT11, MARCH3, RPL29, and ATE1) have a pLI > 0.5 

(P = 0.03), reflecting a modest probability of LoF variant intolerance based on their 

prevalence in the Exome Aggregation Consortium (ExAC)40. One gene (COL1A2) was 

observed at the intersection of these findings: it includes a HeartENN ≥ 0.1 DNV, has a high 

pLI, and is highly expressed during mouse heart development. COL1A2 encodes a collagen 

that is highly expressed in developing cardiac valves37. Among the seven individuals with 

COL1A2-associated human fetal heart enhancer DNVs, all had pulmonary and/or aortic 

valve abnormalities, an enrichment trend compared to the 742 participants without such 

DNVs (486/742, P = 0.05).

Functional effects of de novo variation on transcriptional activity.

We assessed potential transcriptional effects of 31 DNVs (Fig. 4a) identified by HeartENN 

and/or prioritized human fetal heart enhancers using massively parallel reporter assays 

(MPRAs)41. Paired sequences (300–1,600 bp) containing reference or DNV sequences were 

synthesized and introduced into a pMPRA1 plasmid. At least three independent plasmid 

libraries were produced and transfected into multiple wells of iPSC-CMs at differentiation 

day 17 or 37. Transcriptional activity was assessed by comparing RNA/DNA test sequence 

reads per well. We observed no significant differences in transcriptional activity by construct 

length (Extended Data Fig. 7). Five of 31 construct pairs showed significant mean 

differences between reference and DNV sequences for at least three replicates (Fig. 4; t-test 

2-sided BH-adjusted P < 0.05), including two DNVs that increased transcriptional activity. 

Two additional pairs showed DNV-reference transcriptional differences for two replicates 

but no overall statistical significance (Extended Data Fig. 8). These seven MPRA-positive 

variants were among 18 identified by both HeartENN (score ≥ 0.1) and prioritized human 

fetal heart enhancers or HeartENN (score ≥ 0.1) and ATAC-seq peaks. Among 13 variants 

selected with a single bioinformatic approach, none reproducibly yielded significant MPRA 

differences.

Richter et al. Page 7

Nat Genet. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Post-transcriptional regulatory enrichment.

In addition to transcriptional regulatory disruption, we tested noncoding DNV enrichment 

affecting post-transcriptional regulation. RNA-binding proteins (RBPs) mediate post-

transcriptional regulation through pre-mRNA splicing, transport, localization, degradation, 

and translational control. We obtained 160 RBP eCLIP datasets from two ENCODE cell 

lines15. Because there are no cardiac eCLIP data, we inferred transcriptionally active cardiac 

binding sites by overlapping the human fetal heart H3K36me3 active transcription mark 

(used in HeartENN) and human embryonic stem cells (not used in HeartENN or prioritized 

human fetal heart enhancers). Using this narrower RBP binding site definition, we tested 

noncoding burden for all 162 annotation combinations (Fig. 5a): H3K36me3 histone mark, 

SNV and/or indel, constrained/haploinsufficient gene proximity, and transcription start site 

(TSS) or 3’-UTR anchor. The number of independent tests, determined with eigenvalue 

decomposition, was used to determine the Bonferroni P-value multiple testing adjustment42. 

This yielded 105 independent tests with significance threshold P = 4.76 × 10−4.

We observed a significant enrichment of RBP DNVs overlapping H3K36me3 marks (Fig. 

5b,c). The most significant result is RBP variants overlapping UCSF4 stem cell H3K36me3 

(OR = 1.13, 95% CI 1.1–1.2, Fisher’s exact test 2-sided P = 8.77 × 10−5, 1,672 case DNVs, 

Supplementary Table 15). The signal was statistically significant for multiple embryonic 

stem cell types and when limited to constrained genes or TSS proximity. Intersecting these 

biologically relevant features yielded the largest statistically significant effect size (OR = 

1.3, 95% CI 1.1–1.5, P = 2.68 × 10−4, 327 case DNVs).

We tested variant-level intersections between these post-transcriptional and transcriptional 

regulatory results. For the most significant RBP-implicated DNVs, there was a statistically 

significant overlap with DNVs in prioritized human fetal heart enhancers in cases (n = 10, 

OR = 3.6, 95% CI 1.9−∞, hypergeometric 1-sided P = 2.1 × 10−4) but not controls (n = 0). 

There was no significant overlap between RBP-implicated and HeartENN-damaging (score 

≥ 0.1) DNVs in cases (n = 78, OR = 1.21, 95% CI 1.0−∞, P = 0.05) or controls (n = 122, 

OR = 1.12, 95% CI 0.9−∞, P = 0.10). In contrast, for RBP-implicated DNVs in constrained 

regions, we observed only one case DNV intersecting with prioritized fetal human heart 

enhancers and a statistically significant overlap with HeartENN-DNVs in cases (n = 19, OR 

= 1.52, 95% CI 1.0−∞, P = 0.033) but not controls (n = 16, OR = 0.86, 95% CI 0.5−∞, P = 

0.7). Thus, in addition to transcriptional regulatory disruption, we find evidence that 

disturbed post-transcriptional regulation machinery may contribute to CHD.

Distribution of noncoding DNVs in canonical variant classes.

We characterized DNVs in canonical variant classes (intronic, promoter, UTR, etc.) for 

HeartENN-damaging (score ≥ 0.1) DNVs, prioritized human fetal heart enhancer multiple-

hit DNVs, and post-transcriptional regulatory-disrupting DNVs (Extended Data Fig. 9). The 

majority of DNVs not identified by any bioinformatic method were intergenic (52% in 

cases, 52% in controls). In contrast, variants prioritized by the three methods were more 

likely intronic, with over-representation among other canonical categories depending on the 

method. This provides additional evidence that CHD-associated noncoding DNVs may have 

functional impacts.
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Recurrently implicated genes with noncoding DNVs.

Among the union of implicated noncoding DNVs (HeartENN-damaging DNVs (2,238 

cases, 4,177 controls), prioritized human fetal heart enhancer multiple-hit DNVs (99 cases, 

13 controls), and post-transcriptional regulatory-disrupting DNVs from all seven 

Bonferroni-significant enrichments (2,149 cases, 3,963 controls)), 25 genes were recurrently 

implicated (unadjusted two-sided binomial P < 0.05) (Supplementary Table 16). High-

interest genes were identified with haploinsufficiency constraint (pLI > 0.5 or missense Z-

score >3), high mouse E14.5 heart expression rank, human or mouse CHD gene 

membership, and CHD-associated KEGG pathway membership. Results included two 

human CHD genes, but corresponding probands did not have the characteristic CHD 

phenotype, pulmonic stenosis. Candidate genes included SHOC2 (human CHD gene, 

constrained), ZNRF3, CPSF3 (CHD-associated KEGG pathway, constrained), and MAP4K4 
(96th percentile embryonic heart expression, constrained).

Association between candidate noncoding DNVs and neurodevelopmental disorders or 
extracardiac anomalies.

We tested whether implicated noncoding DNVs were associated with phenotypic subgroups: 

isolated CHD (n=298), CHD with neurodevelopmental disorders (NDD) (n = 267), or CHD 

with extracardiac anomalies (ECA) (n = 305). Compared to probands with WES-identified 

damaging DNVs in highly expressed cardiac genes, CHD probands with DNVs in the 27 

genes associated with prioritized human fetal heart enhancers had a lower frequency of NDD 

(odds 20/53 vs. 113/119; OR = 0.40, 95% CI 0.2–0.7, P = 0.002) but a similar prevalence of 

ECA (34/39 vs. 173/184; OR = 0.92, 95% CI 0.5–1.6, P = 0.87).

In contrast to probands with prioritized human fetal heart enhancer DNVs, most probands 

had at least one HeartENN-damaging (score ≥ 0.1) DNV, and presumably only a minority 

would be associated with CHD. Therefore, we tested phenotype associations by comparing 

HeartENN-damaging DNV enrichment within subgroups to controls (Extended Data Fig. 

10a). A consistent enrichment was observed across all subgroups. We then tested the 

hypothesis that the parent algorithm, DeepSEA, which previously implicated noncoding 

DNVs in autism34, would also identify a burden in CHD cases with NDDs. No significant 

association was observed, but the highest effect size was observed for CHD with NDDs (OR 

= 1.05, 95% C.I. 1.0–1.1, two-sided Fisher’s exact test P = 0.18). A similarly consistent 

enrichment within sub-groups was observed for RBP-implicated DNVs (Extended Data Fig. 

10b).

Contribution to CHD.

We estimated the mean attributable risk to CHD in the WES-negative cohort across all three 

methods (see Methods), assuming at most one causal, functional DNV per proband. 

HeartENN-damaging (score ≥ 0.1) DNVs contribute to a maximum of 24% of CHD in this 

cohort, and enrichment decreased with increasing HeartENN cut-offs (11% attributed to 

HeartENN ≥ 0.2, 2.9% attributed to HeartENN ≥ 0.3). This resulted in a final HeartENN 

contribution range of 3–24%. DNVs in prioritized human fetal heart enhancers contributed 

to 12.1% of CHD, including 1.1% attributable to shared HeartENN ≥ 0.1 DNVs. Lower 

percentages for DNVs associated with genes having pLI > 0.5 (5.4%) or high embryonic 
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mouse heart expression (3.8%) resulted in a contribution range of 4–12%. Finally, DNVs 

implicated in post-transcriptional disruption contributed to 10.0% of CHD in this cohort. 

Although the cumulative percentage mean attributed risk (17–45%) suggests a substantial 

contribution in WES-negative CHD, these estimates must be refined in future studies. In 

summary, the fraction of CHD with contributory noncoding predicted functional DNVs in 

this WES-negative cohort is at least as high as the fraction of damaging coding DNVs 

identified with WES.

DISCUSSION

Noncoding variants remain potential contributors to disorders with unexplained genetics. 

Using WGS, we tested this hypothesis through systematic examination of noncoding 

regulatory elements in a mutation-negative CHD cohort. We, like others42–45, observed a 

lack of significant findings across broad noncoding annotation categories. By contrast, our 

alternative interrogation of noncoding variants implicated noncoding DNVs in CHD 

pathogenesis.

HeartENN, which provided variant-level scores, similar to the multifaceted DeepSEA 

algorithm that uncovered noncoding DNVs in autism34, defined significantly more DNVs in 

CHD probands. Separate analyses of prioritized human fetal heart enhancers identified 

distinct and some overlapping DNVs in CHD cases. Notably, functional assays were positive 

when these two strategies were combined. Although there was no transcriptional regulatory 

category-wide burden, we observed Bonferroni-significant category-wide burden among 

heart-transcribed RBP binding sites. These data implicate noncoding DNVs in CHD at both 

transcriptional and post-transcriptional regulatory levels. Our ability to detect signals was 

strongly influenced by availability of cardiovascular development noncoding genomic data, 

allowing us a narrow search space for DNV interrogation.

Through the two cardiac regulatory element strategies and their significant overlapping 

results, we identified known and potential human CHD genes. HeartENN-damaging variants 

were enriched for known human CHD genes (e.g., GATA4, OFD1), but there was little 

concordance between observed and reported cardiac/extracardiac phenotype constellations. 

Only one of seven genes identified with both approaches is implicated in heart development: 

COL1A2 encodes a collagen highly expressed in developing cardiac valves46, and all seven 

probands with noncoding COL1A2 DNVs had pulmonary and/or aortic valve abnormalities. 

Whether the other overlapping genes represent novel CHD genes or poor understanding of 

noncoding DNVs’ genic regulation remains uncertain. Among 20 non-overlapping genes 

with multi-DNV enrichment in prioritized human fetal heart enhancers, four are implicated 

in heart development: ATE1 depletion causes CHD in mice47; LRRTM2 resides within a 

CHD-associated region48; MITF regulates GATA4 expression49,50; and RPL29 encodes a 

target of LSD, a demethylase whose depletion causes CHD in mice51,52. Other gene 

associations include cardiomyopathy (FNIP1)53, striated muscle disorders (SUN1)54,55, and 

mouse embryonic lethality (SEPT11)56. When considering the union of transcriptional and 

post-transcriptional variants, SHOC2, CPSF3, ZNRF3, and MAP4K4 regulatory regions 

were consistently identified.

Richter et al. Page 10

Nat Genet. Author manuscript; available in PMC 2020 December 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among 31 DNV-containing sequences functionally tested in iPSC-CMs, five (16%) 

significantly altered transcription. While that rate is consistent with bioinformatic 

enrichment analyses, there are reasons to consider this a lower bound. The sequences were 

only tested in fetal cardiomyocytes at two time points using minimal promoters not in their 

native genomic context. Oligogenetic effects were not modeled in this functional assay. 

Genes associated with the five positive DNVs provide clues regarding CHD causality. JPH2 
encodes junctophlilin-2, a membrane protein necessary for T-tubule formation, for which an 

N-terminal cleavage fragment modulates MEF2-mediated gene transcription, altering ERK 

and TGF-β signaling57. SEMA4B is in the top quartile for developing heart gene expression 

and encodes a semaphorin that signals through plexin receptors. Perturbations in 

semaphorin-plexin signaling can lead to CHD58,59. Future studies of additional DNVs 

incorporating more complex models will be needed to elaborate CHD pathogenesis 

precisely.

Our cohort was selected for WES-negative trios and higher paternal age to increase 

statistical power to identify a noncoding and de novo signal, respectively. Among this CHD 

cohort, we estimated that the fraction of subjects harboring noncoding predicted functional 

DNVs that contribute to CHD is at least as high as the fraction of CHD cases with 

contributory coding DNVs. We observed consistent results in isolated CHD and those with 

NDDs or ECAs, which is distinctly different than the NDD and ECA enrichment among 

CHD probands with damaging coding DNVs. For the prioritized human fetal heart enhancer 

DNVs, this manifested as depletion of patients with CHD and NDD compared to WES-

implicated coding DNVs. These results could be explained by cardiac-specific effects in at 

least a subset of DNVs, suggesting future work could build on the cardiac relevance 

described here with a focus on cardiac specificity. The implicated GATA4 enhancer in a 

proband with isolated CHD illustrates the potential to uncouple frequently associated 

phenotypes through cardiac-selective regulatory effects.

While our findings established that noncoding DNVs contribute to CHD pathogenesis, the 

relevant genetic mechanisms remain to be explored. Previous studies of rare coding variants 

suggested some are sufficient to engender CHD (i.e., Mendelian genetic model), while many 

others are associated with incomplete penetrance, suggesting greater genetic complexity 

(e.g., oligogenic model) and/or environment effects. While noncoding DNVs contributing to 

CHD could act in a simple Mendelian manner (for instance, substantially reducing allelic 

expression), more modest gene expression effects would be congruous with an oligogenic 

mechanism. Future studies of noncoding variants observed in CHD are needed to establish 

transcriptional effect sizes and their ability to perturb heart development individually and in 

concert with other relevant factors.

These data are the first to systematically associate human CHD with cardiac regulatory 

DNVs. Our findings highlight the potential of WGS to more fully elucidate the genetic 

architecture of CHD. Extension of the statistical framework used is likely to define 

additional noncoding variants in CHD. When applied to larger cohorts, we expect to refine 

the magnitude of noncoding effects and to investigate complex CHD genetics, such as 

epistatic and pleiotropic effects of noncoding and coding variants.
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METHODS

Participants.

Pediatric Cardiac Genomics Consortium (PCGC).—Patients with structural CHD 

and their parents (n = 763 trios) were enrolled in the PCGC’s Congenital Heart Disease 

Network Study (CHD GENES: ClinicalTrials.gov identifier NCT01196182)2. The protocols 

were approved by the Institutional Review Boards of Boston’s Children’s Hospital, Brigham 

and Women’s Hospital, Children’s Hospital of Los Angeles, Children’s Hospital of 

Philadelphia, Columbia University Medical Center, Great Ormond Street Hospital, Icahn 

School of Medicine at Mount Sinai, Rochester School of Medicine and Dentistry, Steven and 

Alexandra Cohen Children’s Medical Center of New York, and Yale School of Medicine. 

All participants or their parents provided informed consent. Individuals with a chromosomal 

aneuploidy, copy number variation associated with CHD, or likely causal variant identified 

with WES were excluded. The echocardiogram, catheterization, and operative reports were 

reviewed to determine cardiac phenotypes. Extracardiac structural anomalies were obtained 

from the medical records. Patients were classified as having neurodevelopmental disorders 

(NDDs) if parents reported the presence of developmental delay, learning disability, mental 

retardation, or autism for individuals at least 12 months old.

Controls.—Controls comprised 1,611 CHD- and autism-unaffected sibling-parent trios 

derived from sporadic autism quartets that consisted of one offspring with autism, one 

unaffected sibling, and their unaffected parents6. Controls were ascertained from 1,627 

siblings after excluding 16 with a past medical history including CHD. The Simons 

Foundation kindly provided the phenotypic and genomic data for these unaffected trios.

Whole genome sequencing and variant identification.

DNA of the PCGC samples were sequenced at the Baylor College of Medicine Genomic and 

RNA Profiling Core (n = 900), the New York Genome Center (NYGC) Genomic Research 

Services (n = 75), and the Broad Institute for Genomic Services (n = 1,314) following the 

same protocol. Genomic DNAs from venous blood or saliva were prepared for sequencing 

using a PCR-free library preparation (n = 2,289) or SK2-IES library preparation (n = 75, 

Broad). All samples were sequenced on an Illumina Hi-Seq × Ten with 150-bp paired reads 

to a median depth >30x per individual. The controls were prepared similarly to cases. 

Specifically, the controls were sequenced at NYGC (n = 4,833) with 150-bp paired reads and 

median depth >30x per individual, using either a PCR-based library preparation on an 

Illumina Hi-Seq 2000 (n = 114) or a PCR-free library preparation on an Illumina Hi-Seq × 

Ten (n = 4,719). Previous Simons Simplex Collection sequencing of controls was performed 

at NYGC on the Illumina Hi-Seq 2500 (n = 120) or Illumina Hi-Seq × Ten (n = 4,761) to 

>30x coverage with 150-bp paired reads.

For both cases and controls, reads were aligned to GRCh37 or GRCh38 with the Burrows-

Wheeler Aligner (BWA-MEM)60. GATK Best Practices recommendations were 

implemented for base quality score recalibration (QSR), indel realignment, and duplicate 

removal61. Standard hard filtering parameters were used for SNV and indel discovery across 
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all 763 PCGC and 1,611 control trios, followed by N+1 joint genotyping and variant 

QSR62,63.

Identification and confirmation of de novo variants (DNVs).

DNV identification was performed for both cases and controls by pooling three pipelines 

from PCGC members at Mount Sinai, Columbia and Harvard. Mount Sinai used two tiers, a 

high stringency tier and a low stringency tier. High stringency tier parameters were GATK 

PASS (i.e., variants classified as true with an adaptive error model based on known true sites 

and artifacts), heterozygous ratio (AB) set to 0.3–0.7 in the proband, homozygous ratio (AB) 

less than 0.01 in both parents, depth (DP) ≥ 10, Joint Genotyping allele count (AC) = 1 

across all trios, Genotype Quality (GQ) > 60 (proband and parents), Alternate Allele Depth 

(AAD) > 7 in the proband, and AAD < 3 in each parent. The lower tier consisted of de novo 
calls falling outside of the higher tier that did not fail the following filters: GATK PASS, 

heterozygous AB set to 0.2–0.8, DP 7–120, AC = 1 in all trios, GQ > 60 (proband), GQ > 30 

(parents), AAD > 7. At Columbia, parameters for DNV identification were heterozygous or 

homozygous for the alternate allele in the proband, homozygous for the reference allele in 

the parents, not in a multiallelic site (3 or more), AC ≤ 2 in the cohort, Fisher’s exact test 

strand bias (FS) < 25, variant quality by depth (QD) > 2 for SNVs and QD > 1 for indels, 

ReadPosRankSum > −3 for indels, proband genotype Phred-scaled likelihood (PL) ≥ 70, 

proband AAD ≥ 6, proband heterozygous AB ≥ 0.28 if AAD ≥ 10 or heterozygous AB ≥ 

0.20 if AAD < 10, parental GQ ≥ 30, parental DP ≥ 10, parental AB < 0.035, and population 

frequency < 0.1% (1KG, ESP, ExAC). For the third pipeline at Harvard, the parameters were 

AC = 1, DP 7–64 inclusive, ADD ≥ 5, heterozygous AB 0.2–0.8 inclusive, homozygous AB 

≤ 0.1. Putative de novo calls near indels, in a homopolymer indel, or in a dinucleotide repeat 

were subsequently visually filtered with IGV. After consolidating de novo calls, all variants 

were force called with FreeBayes7. GATK and FreeBayes both perform local realignment. 

GATK uses a combination of known common variants, indels, and entropy calculations to 

generate log of the odds ratio (LOD) scores for alternative consensus sequences, replacing 

original alignments if LOD scores are higher. FreeBayes generalizes this Bayesian caller 

approach to allow for multiallelic loci and non-uniform copy number across samples, and 

the combination of GATK and FreeBayes variant calling was previously reported to improve 

the positive predictive value of indel identification to >97%64. Therefore, FreeBayes variant 

calling was performed on GATK-identified de novo variants to reduce false-positive 

variants. DNVs in Sinai’s high evidence tier but false with FreeBayes were manually 

reviewed. Finally, IGV plots of all the putative DNVs were passed through an 8-layer 

convolutional neural network trained on curated IGV plots, and classified into 6 categories 

(de novo SNVs, de novo insertions, de novo deletions, complex, uncertain, and false 

positives)8. Predicted false positives were excluded. Predicted de novo insertion, deletion, 

complex and uncertain events were subject to further manual inspection to remove additional 

false positives. DNVs with ExAC allele frequency > 0.1% as well as DNVs in nonstandard 

chromosomes, segmental duplications (score ≥ 0.99), low complexity regions, low 

mappability (300 bp, score < 1) regions, mucin or HLA genes, and ENCODE blacklisted 

sites were removed15,65–67. Finally, all DNVs within 50 bp in the same proband were 

considered a single event (i.e., a mutation cluster) for region-based and multiple-hit 
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enrichment tests. DNVs identified using GRCh37 were lifted over to GRCh38.14. Sanger 

sequencing validation was performed for 266 de novo SNVs and 83 de novo indels.

Reference-free calling to identify candidate coding DNVs.

An alternative, reference-free DNV calling algorithm, RUFUS (https://github.com/

jandrewrfarrell/RUFUS)68, was also used to call de novo variants in PCGC probands. 

Briefly, RUFUS compares the k-mer sequences directly from the raw Illumina reads of the 

proband-parent trio to identify unique DNA sequences present in the child that represent de 
novo genetic variation. Sequencing reads that contain these unique k-mer sequences are 

assembled using an in-built sequence assembler. Assembled contigs, containing the de novo 
allele, are mapped back to the human reference sequence for localization, using the BWA 

algorithm. RUFUS then interprets the aligned contigs to produce a VCF formatted variant 

report. All types of de novo variation (SNVs, short INDELs, and SVs of all types) are 

identified in a single run of the program.

Gene sets.

The three gene sets used in this study were genes in which coding mutations cause isolated 

or syndromic CHD in humans (human CHD genes), genes for which mouse knock-downs or 

knock-outs are associated with CHD (mouse CHD genes), and the top quarter of expressed 

genes during heart development (high heart expression, HHE genes)3,4. To generate the 

mouse CHD gene set, mammalian phenotype ontology (MPO) terms potentially relevant to 

CHD were identified. These were reviewed to remove cardiovascular terms not specific to 

CHD, such as cardiac dilation/hypertrophy, arrhythmias, and coronary artery disease69. Data 

on the mouse strains associated with these MPO terms were downloaded (http://

www.mousemine.org/mousemine/). Only single-gene transgenic mutant mouse strains were 

kept, and these mouse genes were converted to their human orthologs (ftp://

ftp.informatics.jax.org/pub/reports/HOM_MouseHumanSequence.rpt).

Multiple hypothesis testing correction for region-based test.

The P-value threshold was determined by correcting for the number of independently tested 

hypotheses. Because the 184 noncoding features were highly correlated (Supplementary Fig. 

1), the number of independent hypothesis tests was set as the number of eigenvectors that 

explain ≥99% of the variance in the correlations between the features42. A P-value was 

simulated for all pair-wise correlations between features. The P-value is equal to the fraction 

of 10,000 permutations with a more extreme correlation than observed. Observed was 

calculated based on the overlap between DNVs and features. For each permutation, a 

random feature overlap matrix was generated by treating the observed overlaps as random 

variables and sampling from a binomial distribution. Eigenvalue decomposition of these P-

values was used to estimate the number of effective tests that explain ≥99% of the variance 

in the 184 features. For the 184 noncoding cardiac gene regulatory features, this 

corresponded to 47 independent, effective tests and a Bonferroni P-value of 1.1×10−3 

(0.05/47). These 184 features (i.e., 47 effective features) were tested in the context of six 

gene sets and genome-wide, so we corrected for these additional hypotheses. In order to 

account for testing six gene sets and genome-wide for 47 effective noncoding features, a 
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final P-value cut-off of 1.3 × 10−4 = 0.05/(47×7) was used as a significance threshold for all 

comparisons.

HeartENN.

HeartENN encompasses two neural network-based epigenomic effects models: one for 

human heart chromatin data and one for mouse heart chromatin data. Both models use the 

same convolutional neural network architecture but predict different genome-wide features 

(90 for human, 94 for mouse) based on the heart-specific chromatin profiles available for 

each organism. The models were trained with PyTorch using the Selene library70.

Training and evaluation data for the genome-wide features (e.g., histone marks, transcription 

factors, and DNase I accessibility) included data processed from the Cistrome, ENCODE, 

and Roadmap Epigenomics projects, as well as a published dataset of 36 genome-wide 

p300/CBP and H3K27ac ChIP-seq profiles from ex vivo cardiac tissue samples in mouse 

and human across many conditions and developmental stages (Supplementary Table 7)11–28.

The architecture of the HeartENN models is extended from the DeepSEA33,34 architecture. 

In addition to HeartENN models predicting different regulatory features, the main changes 

are that (i) the HeartENN architecture contains double the number of convolution layers, (ii) 

the models predict the epigenomic features of the center 50-bp region and use the remaining 

950-bp as the surrounding context sequence, and (iii) the number of kernels used in each 

convolution has been reduced (see Supplementary Note for details).

DNVs within RefSeq protein-coding exons were not scored with HeartENN (CHD 

probands, 792 DNVs; CHD-unaffected subjects, 1,749 DNVs); DNVs in noncoding exons 

were scored.

Accounting for varying HeartENN thresholds.

We compared the number of DNVs in CHD probands to unaffected subjects with HeartENN 

scores above varying thresholds. In this context, optimal power for rejecting the null 

hypothesis that cases and controls have similar rates of relevant HeartENN scores is 

achieved with the variable threshold test71. This was performed by DNV case-control label 

swapping across all HeartENN cut-offs in 0.05 intervals. For every resample, we randomly 

assigned case-control status to DNVs with replacement and identified the most significant P-

value at any cut-off. Comparing this null distribution to the most extreme observed P-value 

resulted in a resampling P-value.

iPSC-derived cardiomyocyte differentiation and ATAC-seq.

Accessible chromatin regions during cardiomyocyte differentiation were identified via 

Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) of isogenic 

human iPSC-CMs during several points during states of differentiation.

Cells were differentiated according to previously described methods with small 

modifications72. One million iPSCs were plated in 6-well plates and maintained for three 

days. The differentiation process was performed when cells were ~95% confluent. 

Differentiation was performed using the GSK inhibitor (ChIR 18 μM) and Wnt inhibitor 
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protocol (IWP4 5 μM) referenced above. Selection was performed at days 12–15 using 

glucose-starved media. Cells were harvested at days 8, 17, and 30. Cell viability had to be 

>80% for cells collected. Cells were observed under a microscope, and for days 17 and 30, 

cells were only collected if the whole well was beating (wells that only had beating clusters 

were discarded).

ATAC-seq was performed as previously described73,74. Briefly, 50,000 cells were harvested 

and lysed to isolate nuclei. Nuclei were treated with Tn5 transposase (Nextera DNA Sample 

Prep Kit, Illumina) and DNA was isolated. Fragmented DNA was then amplified using bar-

coded PCR primers and libraries were pooled. ATAC libraries were visualized on the tape 

station for characteristic nucleosome patterning before sequencing. Pooled libraries were 

then sequenced (Illumina Next-seq) to a depth of 100 million reads per sample. Reads were 

aligned to the hg19 reference genome using BWA-MEM and peaks were called using 

HOMERv4.975. Functional analysis of ATAC-seq peaks was performed using ChIPseeker 

(v.1.14.1)76. De novo motif enrichment was performed using HOMERv4.9. Differential 

peaks were identified using HOMERv4.9. Libraries that contained an excess of 

mitochondrial DNA (>15% for iPSC-CMs) were removed. Each replicate was analyzed 

individually (n = 3–4 per time point) and compared to other replicates at the same time 

point, and data were also visualized in IGV/UCSC Genome Browser. Comparison of any 

two replicates results in ~85–95% peak overlap between replicates.

Enrichment for genes with burden of DNVs in associated fetal cardiac enhancers.

Cardiac enhancer elements were identified by H3K27ac peaks from human cardiac tissue77. 

Enhancer peaks were assigned to the closest RefSeq transcription start site and intersected 

with ATAC-seq peaks from days 8 or 17 (see “iPSC-derived cardiomyocyte differentiation 

and ATAC-seq”). The likelihood of multiple genes having DNV enrichment was assessed by 

randomly permuting the 7,378 total DNVs associated with the prioritized human fetal heart 

enhancers to case or control status with the same 2,218:5,160 ratio. The number of genes 

with enrichment P < 0.05 in either cohort was calculated using a two-sided Fisher exact test.

Massively parallel reporter assays (MPRAs).

The effect of CHD noncoding DNVs on enhancer activity was assessed by MPRAs41, using 

constructs with longer sequences so as to assess those residing in broad ATAC peaks 

identified in D17 iPSC-CM peaks. DNVs were selected for study using the following 

criteria: HeartENN score ≥ 0.1 and with a prioritized human fetal heart enhancer (8 of 9 

tested); HeartENN score ≥ 0.5 (11 of 22 tested); prioritized human fetal heart enhancer for 

which the associated gene was highly expressed in the developing heart (mouse E14.5 

expression rank >75th percentile) and highly constrained (pLi > 0.8) (9 of 24 tested); and 

HeartENN score ≥ 0.1 and within a strong iPSC-CM D8 or D17 ATAC-seq peak as well as 

an overlapping human fetal H3K27ac peak (11 of 24 tested). Of note, most of the DNVs 

meeting those criteria that were not tested either contained a restriction site that would have 

prevented cloning of the full-length sequence or had repetitive sequences that were 

problematic for synthesis.
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Gene fragments with 300–1,600 bp in length harboring reference and variant alleles were 

synthesized by Twist. Each fragment was separately PCR amplified, and SfiI restriction 

enzyme sites were incorporated. After cleaning with AmpureXP beads, equimolar amount 

pooled constructs were combined. To minimize occurrence of the restriction enzyme site in 

the enhancer sequences, SalI was substituted for XbaI when cloning the inserts and to 

accommodate this change, the SalI site downstream of the polyA signal in the pMPRA1 

(Addgene 49349) was mutated, using MfeI and BbsI sites in proximity. Modified MPRA 

plasmid sequences were verified using Sanger sequencing.

Gene fragments were cloned using the published MPRA protocol41. In short, the pooled 

enhancer fragments were digested with SfiI and ligated to the modified and digested 

pMPRA1 backbone with T4 DNA ligase. Plasmids were transformed into 5’alpha 

electrocompetent E. coli and harvested with Qiagen Maxiprep. Isolated plasmid was 

digested with SalI and KpnI with Shrimp Alkaline Phosphatase. Promoter and luciferase 

isolated from pMPRAdonor2 (Addgene 49353) were than cloned into the intermediate 

plasmid. Final plasmid library was cleaned and concentrated with ethanol.

iPSCs were cultured under standard condition using mTesr. iPSCs were differentiated into 

CMs using the standard protocol78, and iPSC-CMs were selectively enriched using glucose 

starvation for 4 days. iPSC-CMs were replated into monolayers with 10x TrypLE. After 

replating, healthy cells that were vigorously beating were used for library transfection using 

Lipofectamine 3000 according to the manufacturer’s instruction. Total RNA was harvested 

with Trizol 48 h after transfection, and genomic DNA was removed with DNase1. cDNAs 

were synthesized using the SuperScript III First Strand Synthesis kit with oligo dT according 

to the manufacturer’s instruction. MPRA barcodes were amplified from cDNAs and 

plasmids using the Tagseq primers.

Sequencing reads containing correct plasmid sequences were selected from raw reads. 

Barcode sequences were then matched, counted, and normalized to the total number of 

barcode reads in the sequencing run.

Every variant in the “HeartENN ≥ 0.1 + FHP” group was replicated using four independent 

plasmid libraries; variants in the remaining three groups were replicated using three 

independent plasmid libraries. Libraries one, two, and four were transfected on 

differentiation day 17, while the third was transfected on day 37. Each plasmid library 

experiment was repeated in four or five wells. Together, this resulted in 12–20 expression 

measurements per mutant and wild-type variant with an extremely robust set of replicates 

incorporating different wells, plasmid libraries, and time points.

RNA binding protein eCLIP binding data.

Raw eCLIP binding data for the 160 available RNA binding proteins were obtained from 

ENCODE15. Peaks were called from replicates using CLIP Took Kit (CTK)79 and further 

processed80 into a narrower, higher confidence set of binding regions for each RBP. All 

peaks were then given 50 base pair padding on both sides to expand the genomic coverage 

and increase the number of variants associated with each RBP.
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Analysis of disruption of post-transcriptional regulation.

Five groups of annotations were defined to investigate post-transcriptional regulation 

through disruption of RNA-binding protein binding: (i) 3 variant types (SNV, indel, all); (ii) 

3 region types (TSS ± 20 kb region anchor where TSS is gene transcription start sites, 

3’UTR region anchor defined as (TES – 5 kb, TES + 20 kb) where TES is gene transcription 

end sites, no region restriction); (iii) 1 RBP category (union of eCLIP peaks from 160 RBPs, 

padded on both sides with 50 bp); (iv) 2 gene sets (unconstrained or pLI > 0.5 constraint on 

nearest gene); and (v) histone mark annotations for actively transcribed regions in relevant 

proxy tissues, specifically H3K36me3 in eight human embryonic stem cell tissues: ES-I3 

stem cells (E001), ES-WA7 stem cells (E002), H1 stem cells (E003), H9 stem cells (E008), 

HUES48 stem cells (E014), HUES6 stem cells (E015), HUES64 stem cells (E016), ES-

UCSF4 stem cells (E024); plus human fetal heart tissue (E083).

Histone modification peaks were downloaded as broadPeak files, originally determined from 

Roadmap Epigenomics ChIP-Seq25. Raw broadPeaks were preprocessed as follows to 

include the majority of the area between the 5’ and 3’ UTRs for transcribed genes and 

smoothen noise in identifying actively transcribed regions in proxy tissues: gaps under 1 kb 

between histone peaks within this region were filled in, resulting in slightly improved signal 

for genes with many nearby peaks throughout.

Picking one annotation from each group resulted in 162 possible combinations. These 

annotation categories were considered in the combination-wide association test and yielded 

105 independent tests, giving 4.76 × 10−4 as the strict Bonferroni threshold. Two-sided 

Fisher’s exact tests were used to obtain odds ratios and associated P-values for all test 

combinations. DNVs within RefSeq protein-coding exons were excluded.

Attributable risk calculation.

The fraction of CHD attributable to noncoding DNVs was calculated by determining the 

excess fraction of DNVs in cases compared to controls, and we then assumed at most one 

contributory DNV per proband to calculate the attributable fraction (Equation 1). This AR 

was calculated for HeartENN-damaging DNVs at successively stringent thresholds, DNVs 

within prioritized human fetal heart enhancers in multiple gene sets, DNVs shared between 

these results, and DNVs implicated in the top RBP enrichment. The AR is cumulative across 

methods (after subtracting out the contribution of shared DNVs) and represent estimates that 

should be refined in future studies.

Equation 1.Implicated de novo variant attributable risk.

ARDNV =
DNV cases,candidate

DNV cases,total
−

DNV controls,candidate
DNV controls,total

ARcases =
ARDNV × DNV cases,total

Ncases
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Statistics.

All burden tests were calculated using 2-sided Fisher’s exact tests with base values set to the 

total number of DNVs in cases or controls. Using total number of DNVs as baseline, instead 

of number of trios, accounts for parental age. The significance threshold was P < 0.05, 

adjusted for multiple testing within each hypothesis space as specified in the preceding 

Methods.

Extended Data
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Extended Data Fig. 1. Other pipelines identified 94% of DNVs in control trios.
Overlaps with DNVs identified in 1,470 control trios with two other pipelines9,10. Of note, a 

third analysis of these trios did not include de novo calls43. For consistency with other 

pipelines, only SNVs were included and variants in LCRs, blacklists, segmental 

duplications, and repeats were excluded. Together, 94% of de novo SNVs were called by at 

least one other pipeline.
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Extended Data Fig. 2. Correlation between parental age at proband birth and DNVs/trio.
Multiple linear regression (βpaternal_agex + βmaternal_agex + βintercept + ε) was fitted on 763 

CHD and 1,611 unaffected individuals to calculate the associations between paternal and 

maternal age for SNVs, indels, and combined. Regression coefficients and P-values are 

shown, uncorrected for multiple hypotheses. Sequencing metric comparisons between the 

centers, colored by cases (n = 763) and controls (n = 1,611), found moderate bias in DNV 

quantity, so the background statistical parameter throughout the manuscript is total number 

of DNVs. Box plots show medians and interquartile ranges.
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Extended Data Fig. 3. De novo variant (DNV) CHD-unaffected burden.
The number of DNVs in 184 noncoding annotations (points) genome-wide and within 10 kb 

of TSSs for 6 gene sets (facets) was counted in CHD (n = 749) and Simons unaffected (n = 

1,611) individuals. The P value threshold (1.5 × 10−4, horizontal blue line) is 0.05 divided 

by the product of the number of effective annotations (n = 47) and number of gene sets (n = 

7). The P value (y-axis) was calculated with a 2-sided Fisher’s exact test, the odds ratio (x-

axis) was DNVsannotation,CHD/DNVstotal,CHD vs. DNVsannotation,unaffected/

DNVstotal, unaffected. No annotations surpassed the P value threshold. CHD, congenital heart 

disease; HHE, high heart expression.
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Extended Data Fig. 4. HeartENN performance was comparable to DeepSEA.
HearENN ROC AUC mean = 0.93 and AUPRC mean = 0.34. ROC AUC, receiver operator 

characteristics area under the curve; AUPRC, area under the precision recall curve.
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Extended Data Fig. 5. Determining an absolute functional difference score range.
a, Comparison of HGMD disease mutations (blue, n = 1,564) and polymorphism (gray, n = 

642) DeepSEA absolute functional difference scores at varying functional cut-offs illustrates 

a similar distribution and functionally impactful range ≥0.1 (arrow) for disease mutations. 

No statistical significance testing was performed. b, The similarity of null distributions for 

DeepSEA (gray, downsampled to 184 features) and HeartENN (heart) HGMD 

polymorphism scores suggested that the DeepSEA functional score range was also 

applicable to HeartENN (gray and red n = 642). Scores of 0 set off to left (as 10−4).
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Extended Data Fig. 6. Support for HeartENN ≥ 0.1 functional ranking.
For all DNVs (n = 170,171), overlap between HeartENN ≥0.1 (n = 6,415) and other 

noncoding scores was assessed with a 2-sided Fisher’s exact test (left panel). Case-control 

burden for these other noncoding scores (right panel) was statistically significant for CADD 

≥15 (PBonferroni = 0.019) with a 2-sided Fisher’s exact test (cases n = 56,164 and controls n 
= 114,065). For both panels, unadjusted P-values are tabulated, and red indicates a 

Benjamini-Hochberg-adjusted P-value false discovery rate (FDR) < 0.05.
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Extended Data Fig. 7. Relationship between sequence length inserted into the pMRPA1 plasmid 
and the transcript reads/plasmid copies in MPRAs.
The length of the sequences inserted into the pMPRA1 plasmid (x-axis) ranged from 300 to 

1,600 bp. After transfection of four libraries (color coded as per key) into the iPSC-CMs, the 

resulting ratios of transcript reads (mRNA) per plasmid copies (DNA) are graphed on the y-

axis, showing no systematic relationship between insert length and transcriptional level.
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Extended Data Fig. 8. DNVs with a trend towards decreased expression by MPRA assay.
Box plots for two DNVs for which two MPRA replicates were significantly different but 

overall statistical significance across all replicates was not attained. Boxplots show the 

median fold change (FC), first and third quartiles (lower and upper hinges), and range of 

values (whiskers and outlying points). Statistical significance was assessed with 2-sided t-
test Benjamini-Hochberg-adjusted P-values. Each boxplot has at least 3 independent 

experiments with 4 technical replicates each.
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Extended Data Fig. 9. Fraction of DNVs in each of the canonical variant classes.
The fraction was calculated separately within CHD and unaffected subjects for each of the 

three methods (including overlaps) and the total number of variants in each group (right 

table).
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Extended Data Fig. 10. DNV enrichment in phenotype subgroups.
a, Enrichment of DNVs with predicted functional impacts (score ≥0.1) for HeartENN (left) 

and DeepSEA (right) within phenotype subgroups. b, Enrichment of de novo SNVs with 

H3K36me3 marks implicated in RNA-binding protein disruption in different subgroups for 

the most significant (left) and highest effect size (right) hits. Both a and b were performed 

with a 2-sided Fisher’s exact test (unadjusted P-values and 95% C.I.s shown) comparing the 

fraction of DNVs in each subgroup (HeartENN ≥ 0.1, DeepSEA ≥ 0.1, etc.) to the same 

control cohort. For HeartENN, there were n = 4,177 control DNVs with HeartENN ≥ 0.1 

and n = 109,888 control DNVs with HeartENN < 0.1. NDD, neurodevelopmental disorder; 

ECA, extracardiac anomaly.
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Figure 1 |. Analysis schematic.
Overview of approach to identifying a noncoding de novo variant burden in congenital heart 

disease (CHD). ATAC, Assay for Transposase-Accessible Chromatin;, TF, transcription 

factor; DHS, DNase hypersensitivity sites; RBP, RNA-binding protein; NS, not significant; 

HeartENN, Heart Effect Neural Network.
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Figure 2 |. Enrichment of noncoding de novo variants (DNVs) with functionally relevant 
HeartENN scores.
a, The number of noncoding DNVs above varying HeartENN thresholds (x-axis) was 

counted in CHD (n = 749) and unaffected (n = 1,611) individuals and compared to the total 

number of scored DNVs in CHD (n = 56,164) and unaffected (n = 114,065) individuals, 

plotted as odds ratios with 95% confidence intervals (counts, odds ratios, and Fisher’s exact 

test 2-sided unadjusted P-values are listed in Supplementary Table 9). b, Permutations of 

case-control status (n = 10,000, grey) found a significant P-value when accounting for all 

cut-offs (P = 1.7 × 10−3, 1-sided) by comparing the most significant observed P-value (red) 

to the most significant P-value per permutation (grey). c, The fraction of DNVs in 0.02-

HeartENN-score bins demonstrated consistent propensity towards cases for functionally 

relevant HeartENN bins. d, Known human CHD genes with HeartENN-damaging (≥0.1) 

DNVs were enriched in CHD (nCHD = 18, nunaffected = 10, OR = 3.2, hypergeometric 1-

sided P = 6 × 10−4), with the top five (shown here) predicted to disrupt CTCF and H3K27ac 

features. FET, Fisher’s exact test.
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Figure 3 |. Genes with multiple DNVs in prioritized human fetal heart enhancers.
a, Genes with burden of DNVs in associated fetal cardiac enhancers with P < 0.05 for CHD 

(n = 749) compared to unaffected (n = 1,611). For each gene, the DNV burden P-value (x-

axis) was determined with a two-sided Fisher’s exact test comparing DNVs in CHD (n = 

56,164) versus unaffected individuals (n = 114,065) and is plotted against the pLI (y-axis). 

Dot size reflects the number of DNVs in the CHD cohort, and red denotes genes in the upper 

quartile of gene expression during heart development. Five genes without pLI values are not 

shown. b, Distribution of the number of nominally enriched genes by 100,000 random 

permutations of DNVs within prioritized human fetal heart enhancers demonstrates 

significant enrichment of genes with burden of CHD DNVs. As there were never 21 genes 

observed in permutation test, the most extreme P-value would be 10−5 (one-sided). c, 

Overlap between DNVs with HeartENN score ≥ 0.1 (n = 2,238) and those within prioritized 

human fetal heart enhancers (n = 99) is significantly enriched in CHD (1-sided 

hypergeometric distribution, no overlapping DNVs in controls). d, Top features representing 

a diverse spectrum of transcriptional regulation.
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Figure 4 |. Massively parallel reporter assays for selected DNVs.
a, Pairs of reference and DNV sequences were selected based on bioinformatic analyses for 

the following classes: prioritized human fetal heart enhancer only, high HeartENN score 

(≥0.5) only, HeartENN score ≥ 0.1 at an ATAC-seq peak, and HeartENN score ≥ 0.1 in a 

prioritized human fetal heart enhancer. The numbers of pairs tested and the numbers for 

which the DNV sequence resulted in significantly different levels of transcription are 

indicated. b, Boxplots for the five pairs for which the transcription level from the DNV (MT) 

was significantly different from the reference (WT) sequence. Boxplots show the median 

fold change (FC), first and third quartiles (lower and upper hinges), and range of values 

(whiskers and outlying points). Both a and b show 2-sided t-test Benjamini-Hochberg P-

values; each boxplot has at least 3 independent experiments with 4 technical replicates each, 

and the HeartENN ≥ 0.1 + FHP group was repeated 4 times. c, The genomic positions of the 
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five DNVs for which transcription was significantly altered are indicated along with their 

bioinformatic classes, HeartENN functional difference scores, and associated genes.
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Figure 5 |. Enrichment of variants in RNA-binding protein category annotations.
a, Five groups of annotations were defined to investigate post-transcriptional regulation 

through disruption of RNA-binding protein binding, resulting in n = 162 combinations of (i) 

variant type; (ii) region type; (iii) RBP category; (iv) gene sets, specifically pLI constraint on 

nearest gene; and (v) histone mark annotations for actively transcribed regions in relevant 

proxy tissues*. These annotation categories were considered in the category-wide 

association test and yielded 105 independent tests, giving 4.76 × 10−4 as the strict 

Bonferroni threshold. b, Variant enrichment and significance for each test category, 

determined with a two-sided Fisher’s exact test: SNV-only tests used a total of n1 = 52,004 

case SNVs and n0 = 106,438 control SNVs; SNV + indel tests used a total n1 = 55,827 case 

variants and n0 = 113,467 control variants. The association tests passing Bonferroni 

significance have been highlighted in red. c, Detailed tabulation of the seven Bonferroni-

significant Fisher’s exact tests (two-sided).
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