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Abstract

Algorithmic and System Innovations for Network Data Plane: Efficiency,

Scalability, and Flexibility

by

Shouqian Shi

Due to the advanced reliability, scalability, and cost-effectiveness, more and more busi-

nesses are turning to cloud computing. Large-scale cloud networks have been connecting

users, data, and machines more tightly than any past time. According to Forbes, cloud

computing is enjoying a more than 15 percent growth per year in the global market size.

And, Flexera reports that more than half of the surveyed companies, being enterprise

or small businesses, are using more cloud services than they expect due to the impact

of COVID-19. Among the surveyed companies, the top concern in cloud computing

is cost-effectiveness. However, Moore’s law fails in recent years because the cost for

a single gate of an integrated circuit is not decreasing anymore. Hence, architectural

reorganizations and algorithmic innovations are two main approaches to achieve higher

effectiveness in the post-Moore’s law era.

Most cloud networks require high capacity Forwarding Information Bases (FIBs)

to support massive network traffic from numerous end devices. The growth of the FIB

limits the performance of network operations and increases infrastructure costs. We

propose to reorganize the standard SDN model’s functions and extract the common

x



update calculations from the data plane to the control plane [ICNP’19]. We call this

‘skeleton-based update’.

This dissertation presents a new algorithm, Ludo hashing [ACM SIGMET-

RICS’20] for fast key-value lookup, based on the reorganized skeleton-based update

model for SDN. Ludo achieves the most compact memory cost among all alternative

algorithms by saving 40% to 80%+ space than existing dynamic solutions. Ludo hash-

ing is specially designed for cloud computing and distributed systems and is ready

to be applied to many applications, e.g. , network forwarders, Content distribution

network (CDN), cloud load balancers, Network Address Translation (NAT), and data

sharing or collaboration tasks for IoT devices. We then designed Concury [SOCC’20],

a fast and light-weight software load balancer for cloud networks. Concury improves

the throughput by >2x and costs the smallest memory compared to state-of-the-art

L4LB algorithms while providing weighted load balancing. Concury is read-only during

connection establishments and terminations, while the connection consistency is still

guaranteed by design.
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Chapter 1

Introduction

Fast lookups of large-scale key-value items are fundamental functions and de-

sign blocks of numerous networked and distributed systems. These in-memory key-value

lookup engines serve as the indices to store and find the locations, addresses, or direc-

tions of the destination devices or queried data. The representative applications of these

lookup engines include:

1. The forwarding information bases (FIBs) on network routers and switches run in

SRAM. Many FIBs use key-value lookup engines to forward packets in data center

networks [56, 53, 50, 104], metropolitan networks [80], LTE [110], software defined

networks (SDNs) [111, 107], and future internet designs [83], by searching flat

network addresses, as such MAC. The values of the lookup are outgoing packet

ports.

2. In a content distribution network (CDN) or edge network, a number of proxy

servers cache popular internet contents [65, 102, 85]. A lookup table can be used
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to find the server that stores a particular content [43].

3. In a distributed file system, an index is required to maintain metadata and the

location of file storage [76, 97]. The lookup keys are usually file names or IDs, and

the values are locations where the files are stored.

4. Cloud load balancers are important components of a data center, which distribute

packets to replicated backend servers [77, 37, 67]. Here the lookup engine stores

the flow states where each key is a 5-tuple, and each value is a server index.

Network address translation (NAT) also stores flow states and performs lookups

based on 4-tuple for every packet.

5. In embedded IoT devices, lookup tables are required for sharing sensing data and

public keys [60, 93].

This dissertation identifies three important and connected problems in im-

proving the efficiency, scalability, and flexibility of key-value lookup algorithms with

applications in network data plane functions. We propose the solutions with algorith-

mic innovations to address these problems and implement the solutions in real prototype

systems.
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1.1 Architectural reorganization for higher update effi-

ciency in SDN networks.

Packet forwarding is a fundamental function of various types of network devices

running on different layers. For each incoming packet, the forwarding device transmits

it to the link towards one of its neighbors until reaching its destination. There are two

main types of packet forwarding: 1) IP prefix matching that is mostly used on layer-

3 routers; 2) name-based matching that is used on most other network devices. For

name-based forwarding, the input of the forwarding algorithm is a key (also called a

name or address in different designs) included in the packet header, and the output is

an entry that matches the key exactly and indicates an outgoing link. This work focuses

on packet forwarding with such name-based matching, which attracts growing attention

in emerging network protocols and systems. We provide an incomplete list of recently

proposed name-based forwarding designs:

1. On the link layer (layer-2 or L2), interconnected Ethernet has been used for large-

scale data centers [50][109], enterprise networks[104][111], and metro-scale Ether-

net [56][53][80][81], where the key is the MAC or other L2 addresses. Although

many existing data centers employ the fat-tree based design that uses IP rout-

ing, name-based routing still provides a number of advantages, including flexible

management and host mobility. L2 name-based architectures are also suggested

in many future network proposals [56][53][80].

2. On the network layer (layer-3 or L3), flow-based networks, such as OpenFlow-
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style software defined networks (SDNs), match multiple fields in packet headers

to perform fine-grained per-flow control on packet forwarding [111][51][78][86]. The

matching key is some header fields. In addition, many new internet architectures

suggest flat-name forwarding in the network layer, such as MPLS [84], LTE [110],

Mobility-first [83], and AIP [24].

3. On the application layer (layer-7 or L7), a content distribution network (CDN)

uses the content ID as the key to search for the cache server that stores the

content [43][65]. The emerging edge computing provides more sophisticated con-

tent/service caching services [89][102].

Unlike IP addresses, aggregating network names is challenging – if ever pos-

sible. Large networks using name-based forwarding may suffer from the forwarding

information base (FIB) explosion problem: a forwarding device needs to maintain a

large number of key-action entries in the FIB. For long, there have been efforts to apply

dynamic and compact data structures (DCSes) for the forwarding algorithms of network

names, such as Bloom Filters [43][104][71], Cuckoo hashing [111][110], and Bloomier

filters [35][33][105][108], to resolve this problem. We summarize the desired properties

of the DCSes for forwarding algorithm designs:

1. Small memory footprint. Fast memory is the most precious network resource,

such as the on-chip memory (SRAM) on a switch or the CPU cache on a server.

DCSes reduce network infrastructure costs by using a small amount of memory.

2. Fast lookups. Faster lookups mean higher forwarding throughput. The through-
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put of a FIB should reach the line rate to avoid being a bottleneck.

3. Dynamic updates. Modern networks are highly dynamic due to massive in-

coming flows and host mobility. Hence, the DCSes should allow the FIB to be

frequently updated.

Although many FIB algorithms have been proposed, the recently developed

programmable network paradigm [30][32], such as Software Defined Networks [44][72]

and Network Functions Virtualization [9], still provides the potential to further reduce

the time and memory complexity of forwarding algorithms. Hence, there is a need

for re-designing forwarding algorithms with the DCSes under this new paradigm. To

our knowledge, there is no existing work that fully explores the potential of

programmable networks for FIB designs. The only exception is the very recently

proposed Othello hashing [105] based on Bloomier filters, but it has no network-wide

design, as explained later. We design and implement new forwarding algorithms

for programmable networks by re-visiting three representative DCSes: Bloom Filters

[28], Cuckoo hashing [74], and Bloomier filters (Othello hashing) [35][33][105].
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Figure 1.1: Separating a DCS-based FIB into two planes

As shown in Fig. 1.1(a), in a traditional design, the controller only runs the

Routing Information Base (RIB), while the whole FIBs are stored in the data plane.

The key innovation of our re-designs is shown in Fig. 1.1(b). We relocate the memory

and computation of the update function from many FIBs to the central control plane

while the data plane FIBs, supporting direct updates, focus on fast lookups. Our ap-

proach significantly reduces the data plane memory footprint while preserving control

plane scalability. We conduct careful analysis and experiments of the proposed meth-

ods for multiple performance metrics, including memory footprint, lookup throughput,

construction time, dynamic updates, and lookup errors. The results can be utilized for

future forwarding algorithm designs.

Our contributions are summarized as follows. 1) We propose a new design

framework of FIBs in programmable networks. 2) We design new forwarding algo-

rithms with DCSes in the programmable network paradigm that achieve small memory
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and high lookup throughput compared to all existing methods. 3) We implement the

proposed methods in real network environments deployed in CloudLab [1] for real packet

forwarding experiments. 4) Our results provide rich insights into designing forwarding

algorithms. In particular, we find that the Bloom filter based methods, which have

been extensively studied in the literature, are not ideal design choices compared to

other proposed methods in all situations studied in this paper.

1.2 Ludo hashing: algorithmic innovation for higher lookup

efficiency in key-value lookup systems.

The important requirement of in-memory lookup engines (such as those for

name based forwarding) is space efficiency. It is because they are hosted in high levels

of the memory hierarchy or special network devices, where the memory is fast, small,

expensive, and power-hungry. Another requirement is to support dynamic updates

that allow the tables to work in practice, including key-value insertions, deletions, and

changes.

Hash tables are the conventional solutions of fast in-memory key-value lookup.

To resolve hash collisions, the item keys should be stored to tell which value belongs

to which key. For example, the widely used version of Cuckoo Hashing [74] allows up

to 8 key collisions [38, 40, 62, 111, 110]. Hence Cuckoo Hashing must store the keys

or at least the digests of keys [64]. The digest of a key is the hash value of the key,

usually truncated to suit the application. For example, a Cuckoo filter may use 8-bit
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digest for a false-positive rate at 3%. Storing keys may cost more space than storing

the values in the above applications. For example, a typical file ID in a storage system

has hundreds of bits, and each value (disk address) is only tens of bits. For FIBs, the

network addresses (48 to > 100 bits) are longer than the port values (6 8 bits). In a

CDN, the keys (URLs) could be thousands of bits.

Hence, recent efforts have been made to use minimal perfect hash functions

(MPHFs) [27, 39, 49] for in-memory key-value lookups, which significantly reduce the

space costs by avoiding storing keys. For a set of n key-value items where each item is a

tuple (ki, vi) of key ki and value vi, a minimal perfect hash function H ′ maps the n keys

to integers 0 to n−1 without collision. The lookup table can simply use the MPHF and

an array of n values, where the i-th value corresponds to the key that is mapped to i by

H ′. The lookup table does not need to store keys. Unfortunately, none of the existing

MPHFs support fast dynamic updates. When there is a single item insertion/deletion,

the MPHF and whole array that stores values need reconstruction. Bloomier filters

[35, 33] and SetSep [42, 110] are two alternative perfect hash tables that have been

used for network applications [107, 101, 108, 93, 87, 42, 110]. However, Bloomier filters

introduce 100% space overheads to store the values, and SetSep is difficult to update,

as explained in § 4.2.

This work presents Ludo hashing, a space-efficient lookup engine based on

perfect hashing, which supports O(1) lookups and dynamic updates. To our knowledge,

Ludo hashing induces the least space overheads compared with existing solutions of

dynamic key-value lookups. We show the numerical comparison of these solutions in
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Table 1.1 and Fig. 1.2.
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Figure 1.2: Numerical space comparison of dynamic key-value lookups. n = 1 billion,

L = 100 bits, L′ = 30 bits. Ludo uses Bloomier for l < 4. n: number of items in table.

Ludo hashing enables space savings by removing the key storage while main-

taining a low amplification factor (AF) on values. AF is the number of additional bits

taken per item when the length of values is incremented by 1 bit. For example, SetSep

takes 0.5+ 1.5l bits for l-bit values, and the AF of SetSep is 1.5. The core idea of Ludo

hashing can be presented in two steps. Step i): We first insert all key-value items into

a Cuckoo hash table. In this way, the key-value items are divided into a number of

small groups, where each group only contains at most four items. Step ii): For each

group, we find a hash function H such that H maps the four keys to integers 0 to 3

without collision. For most modern random hash function algorithms, we may generate

an independent hash function Hs by using a different seed s. Hence we find the right

hash function for each group by trying different seeds using brute-force. Within each

group, it is only necessary to store one seed s and four values that are in the order of
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the result of Hs(k) for each key k. Both steps cost O(1) time during lookups, and each

insertion/deletion/change can be updated in O(1) amortized time. Eventually, we save

the space of storing four keys — hundreds of bits or more — by using a 5-bit seed,

found within 31 tries.

The main contribution of this work is a dynamic key-value lookup engine that

achieves the least memory cost among existing methods to our knowledge and sup-

ports fast post-construction updates. It is based on our discovery of a minimal perfect

hashing method with an O(1) update cost. The compactness in a dynamic system is

achieved via a novel combination of Bloomier filters, Cuckoo hashing, and brute-force

based slot arrangement. We have implemented the complete software of Ludo hashing

with dynamic updates and single writer/multiple readers concurrency. We implement

and evaluate Ludo hashing in two working systems deployed in a real cloud environ-

ment. Experimental and analytical results are available for each design choice to inspire

future methods and tools. The source code of Ludo hashing is available for result

reproducibility [3].

1.3 Application of the SDN reorganization and Ludo hash-

ing for cloud load balancers.

The load balancer (LB) is a fundamental network function of a data center

that provides internet services. To accommodate the high demand for popular service

at scale, such as a search engine, email, photo sharing/storage, or message posting and
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interactions, a data center maintains multiple backend servers, each carrying a direct

IP (DIP). For a particular service, clients send their requests to a publicly visible IP

address, called the virtual IP (VIP). Each VIP is mapped to a pool of DIPs. An LB uses

different DIPs to replace the VIP on the service requests and balances the load across

the servers so that no server gets overloaded to disrupt the service. An LB usually

operates on or above layer 4.

Conventional hardware-based LBs [18, 16, 13] have limitations on scalability,

availability, flexibility, and cost-efficiency [37]. Hence, major web services such as Google

[37], Microsoft [77], and Facebook [10, 36] have started to rely on stateful software LBs,

which scale by using a distributed data plane that runs on commodity servers, providing

high availability, flexibility, and cost-efficiency. A packet being stateful means that it

belongs to a connection, and the prior packets of the connection have been forwarded

to a DIP. Otherwise, the packet is stateless. For example, the first packet of a TCP

connection is stateless, and the following packets of the same connection are stateful.

The key functions of a stateful LB include the following. 1) For a stateless packet,

which can be sent to an arbitrary DIP supporting its VIP, the LB algorithm should act

as a weighted randomizer to randomly pick a backend server to serve it. The weight

is based on the current capacities of the backend servers. 2) For a stateful packet,

the LB forwards it to the particular DIP that received the prior packets, preserving

packet consistency where all packets of the same TCP connection are served by the

same backend server to preserve the connection nature of TCP on each backend server.

The major challenge of a stateful LB algorithm is to preserve packet consis-
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tency under network dynamics, including new connection arrivals and DIP changes due

to server failures or updates. Most existing LB algorithms use hash tables to store con-

nection states in the data plane [77, 37]. These stateful LBs experience a large memory

cost of storing packet states or low capacity of packet processing. They require a large

number of commodity servers to scale out, e.g., up to 3.5% - 10% of the data center size

as reported by Microsoft [47] and Google [37]. Hence, some LBs use digests of connec-

tions (e.g., hash values of the 5-tuples of connection) rather than full connection states

(such as 5-tuples) to reduce memory costs and improve throughput [37]. This design

has two major weaknesses: 1) using long digests may still require a large amount of

memory while using short digests causes violations of packet consistency due to digest

collisions; 2) a massive number of new connections cause highly frequent data plane

updates – a modern cluster may easily experience thousands of new connections per

second [67] – which significantly hurts the packet processing throughput and possibly

violates packet consistency. Existing methods relying on fast and concurrent reads and

writes to hash tables [40, 63] cannot be easily applied to LB algorithms because they

only work with full keys rather than digests, introducing prohibitively high memory

overhead in large-scale networks. Recent work uses ASICs on programmable switches

for fast table lookups [67] while increasing the infrastructure cost.

We propose the first stateful LB algorithm that resolves the current limitations,

called Concury. 1 Its key innovation and contribution is a novel approach of maintaining

large-scale network states with a massive amount of newly arrived connections, which is

1The name Concury is from Concordia, the Roman goddess of balance and harmony, and Mercury,
the Roman god of messages/communication and travelers, known for his great speed.
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succinct in memory footprint, consistent under network changes, and incurs extremely

infrequent data plane updates. This approach could possibly be applied to many stateful

network functions, such as NAT and LTE Evolved Packet Core, but this work only

focuses on LBs.

Compared to existing stateful LBs [77, 47, 37, 10, 67], Concury pro-

vides two main advantages. 1) We realize that the current limitations of software

LBs stem from the algorithmic designs for state maintenance and lookups: hash tables

storing digests. To reduce memory cost, current LBs store the digests of states rather

than the whole state identifier (e.g., > 100bits for a 5-tuple) [37, 67]. The drawbacks

include 1) false table hits due to digest collisions [67] and 2) table explosion due to the

difficulty of removing digests. Concury uses a data structure to represent all packet

states in a succinct manner (just two small arrays, 2.33n elements in total, where n is

the number of keys) by utilizing the theoretical foundation of minimal perfect hashing

[26, 66, 35, 34, 106]. Concury is designed in such a way that it finds the specific destina-

tions for stateful packets and simultaneously acts as a weighted randomizer for stateless

packets with small memory cost and packet consistency. However, applying the theoret-

ical Othello Hashing is not straightforward. There are several system building challenges

to overcome: supporting efficient and fast lookup, managing connections under limited

resources, no false hits, and data plane updates for every incoming connection. Concury

includes the coordination between the data and control planes such that Concury does

not need to update its lookup tables for every incoming connection. Instead, the Con-

cury data plane is updated once on every backend server change (DIP change), which
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happens much less frequently than new state arrivals. State maintenance and updates

in Concury are much simpler than existing solutions, which allow Concury to maintain

high lookup throughput and consistency.

In addition, Concury can be used for complex internet applications and the

emerging edge cloud [89, 103, 85, 102]. 1) It fits the condition of an edge cloud that

typically has constrained resources – an edge LB may only be hosted by one server

and could be co-located with other services on the server [89, 103, 108]. 2) Traditional

cloud LBs consider a state for every TCP connection. In modern cloud or edge, a single

device may host multiple virtual machines, and hence the states may be for multiple

destinations at both the device level and the process level [89, 103, 108]. The packets

belonging to a single device should be sent to the same DIP. For example, a user device

may keep offloading its video data to an edge server, let the server processes the data, and

later request the analytical results from the server [89]. This whole process consists of

multiple TCP flows and UDP pseudo-flows, all of which should be sent to a consistent

DIP. Unlike previous designs, Concury naturally support multi-connection states. 3)

Modern cloud and edge servers might have heterogeneous capacities in computation,

storage, and bandwidth [89, 103]. Different capacities appears as different weight in

load balancing. Concury reacts quickly to the weight changes due to failures or load

dynamics of the servers.

We make several key intellectual contributions:

1. The workflow of Concury is designed to achieve memory-efficiency, high through-

put, load balancing, consistency, and false hit freedom.
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2. We propose a new method to maintain the dynamic set of states in the control

plane and instantly produce new lookup structures to update the data plane under

DIP pool changes.

3. We add the functions of weighted randomizer and massive connection state main-

tenance to LBs.

4. We implement Concury using DPDK [5] to shows its high performance in two

real networks. We also build a P4 prototype to show its compatibility with

programmable switches. The source code can be accessed here [22], and our results

can be reproduced.

Concury achieves the highest packet processing throughput reported in liter-

ature (67.2 Gbps with single thread on a cheap desktop computer (<$800 not including

the 100GbE NIC)) and low memory cost with zero false hits, compared to existing

stateful LBs. We consider Concury a major improvement because it achieves the best

of three worlds: performance, cost-efficiency, and consistency (correctness). It also sup-

ports dynamic state maintenance that is useful for other network functions and future

applications.
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Solution

Space cost

(bits per

item)

Lookup time

per query

Update time

per operation

MPHF +Array > 1.44+ l (∗)
O(1), >67ns

[39]
Not allowed

SetSep [42, 110] 0.5 + 1.5l O(1), 212ns >120ms

Partial key Cuckoo [64] 1.05(L′ + l) O(1), 163ns >46ns [87]

Bloomier/Othello

[35, 33, 107]
2.33l O(1), 187ns 173ns

Ludo hashing (this

work)
3.76 + 1.05l O(1), 303ns 163ns

Table 1.1: l: bit length of each value. L: bit length of each key. L′: bit length of each

key digest. The empirical values are from our experiments with 64M keys and l = 20

as explained in § 4.6. (∗)The most compact version of MPHF [39] costs 1.56 + l bits

per item, already at a prohibitively high construction time cost: 2ms per item. The

SetSep papers [42, 110] include neither clear update function nor experimental results

of updating. We designed an update function in our best effort.
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Chapter 2

Background Algorithms

In-memory key-value lookup algorithms with small memory footprint support

vital functions of many networked and distributed systems, including network forward-

ing [104, 111, 107, 110], distributed storage [76, 97], cloud load balancers [67], and

content distributions [43, 65]. Our contributions are related to the following key-value

lookup algorithms.

2.1 Bloom filters

The Bloom filter [28] is one of the most popular dynamic and compact data

structures (DCSes) used in network protocols. A filter data structure is a brief expression

of a set of keys K. By querying a key k, a filter should return True if k ∈ K or False

otherwise. As shown in Fig. 2.1, a Bloom filter is a bitmap associated with nh hash

functions, e.g., nh = 3 in this example. To construct a Bloom filter, each element in the

key set K is inserted sequentially. For each key k, nh hash values of k are calculated
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Figure 2.1: Bloom filter for set {x, y, z}

via the nh hash functions. The nh hash values index nh bits in the bitmap, and these

bits are set to 1. To lookup a key k, the nh hash values are calculated, and the indexed

nh bits in the bitmap are checked to see if all bits are 1. In this example, the key w

fails the check. A well-known feature of Bloom filters is that its results include false

positives but no false negatives.

2.2 Cuckoo hashing

𝑘, 𝑣
ℎ1 𝑘1
ℎ2 𝑘1

𝑘′, 𝑣′5 buckets 

4 slots

key 𝑘1

0

1

2

3

4

relocation of 

an existing key

Figure 2.2: (2,4)-Cuckoo Hash Table

Cuckoo hashing [74] is a key-value mapping data structure that achieves O(1)

lookup time in the worst case and O(1) update time on average. As shown in Fig. 2.2:
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a (2,4)-Cuckoo has a number of buckets, each bucket has 4 slots, and every key-value

pair is stored in one slot of the two alternate buckets based on the two hash values h0(k)

and h1(k). The lookup of the value for a key k is to fetch the two buckets and match

the keys in all 8 slots until a key matches k correctly. For an item insertion with key k1,

a single empty slot should be found in bucket h0(k1) or h1(k1). If both the buckets are

full, one existing item (e.g., the one with key k′ in Fig. 2.2) will be relocated to the other

alternate bucket of k′, and k1 takes the slot of k′. If the alternate bucket of k′ is full as

well, an item in that bucket will be relocated recursively. This process stops when every

item is placed in a slot. Many recent system designs choose the (2,4)-Cuckoo hashing

[41][111][110] to maximize the memory load factor.

2.3 Bloomier filters

We propose to use the data structures and algorithms of minimal perfect hash-

ing [26, 66, 35, 34, 106] for many key-value lookup systems, including network for-

warders, cloud load balancers [67], and content distributions [43, 65]. One well-known

family of perfect hashing based data structures are Bloomier filters [35, 34]. The recently

proposed Othello Hashing [106, 107] makes use of Bloomier filters to support forwarding

information bases in programmable networks, including a variant of Bloomier filters as

its data plane, a construction program in its control plane, as the interaction protocols

of the two planes. Othello finds a setting of Bloomier filters to achieve good time/space

trade-off for dynamic network environments. Though it was not designed for LBs, Oth-
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Figure 2.3: Construction of Othello hashing

ello qualifies as a great fit for LBs based on three reasons: 1) the lookup of Othello

data plane is super fast and memory efficient; 2) the lookup is collision free, though no

full key is stored in the data plane; 3) we designed an asynchronized update algorithm

between the control plane to data plane while keeping the PCC and weighted load bal-

ancing for all the time. We illustrate the first two points in this section, and the third

point is detailed in § 5.4.

A Bloomier filter is not used as a filter, but a mapping for a set of key-value

pairs. Let S be the set of keys and n = |S|. The lookup of each key returns an l-bit

value mapped to the key.

Bloomier filter construction in the Othello control plane. We use an

example in Fig. 2.3 to show the Bloomier filter of a set of five key-value pairs. Each

of the keys k1 to k5 has a corresponding l-bit value. Two arrays A and B are built

with ma and mb elements, respectively, where ma = n,mb = 1.33n. Each element of

the arrays is an l-bit value. In this example, l = 2, and assume m = ma = mb = 8

for better illustration. For every value i in A, we place a vertex ui, and for every value
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Figure 2.4: Lookups of Bloomier filter

j in B we place a vertex wj . Two hash functions ha and hb are used to compute the

integer hash values in [0,m − 1] for all keys. Then, for each key, we place an edge

between the two vertices that correspond to its hash values. For example, ha(k1) = 6

and hb(k1) = 5, so an edge is placed to connect u6 and w5. For a key k and its

corresponding value v, the requirement of Bloomier is that the two connected elements

A[ha(k)]⊕B[hb(k)] = v, where ⊕ is the bit-wise exclusive or (XOR). For key k1 in this

example, u6⊕w5 = 012 = 1. Vertexes colored gray represents “not care” elements. Note

that after placing the edges for all keys, the bipartite graph, called graph G, needs to

be acyclic. If G is acyclic, it is trivial to find a valid element assignment such that the

values of all keys are satisfied [106]. If a cycle is found, the construction needs to find

another pair of hash functions to rebuild G. It is proved that during the construction

of n keys, the expected total number of re-hashings is < 1.51 when n 6 0.75m [106].

The expected time cost to construct G of n keys is O(n), the time to delete or change

a key is O(1), and the time to add a key is amortized O(1). The design can be trivially

extended to l > 2.
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Bloomier filter lookups in the Othello data plane. The Othello lookup

structure is simply a Bloomier filter containing the two bitmaps A and B, as shown in

Fig. 2.4 (a). To look up the value of k1, we only need to compute ha and hb, which are

mapped to position 6 of A and position 5 of B (starting from 0). Then we compute

the bit-wise XOR of the two bits and get the value 012. Hence the lookup result is

τ(k) = a[ha(k)]⊕ b[hb(k)].

The lookups are memory-efficient and fast. 1) The data plane only needs to

maintain the two arrays. The keys themselves are not stored in the arrays. Hence

the space cost is small (2m/n per key). 2) Each lookup costs just two memory access

operations to read one element from each of A and B. It fits the programmable network

architecture: the data plane only needs to store the lookup structure, two arrays, while

the control plane stores the key-value pairs and the acyclic bipartite graph G. When

there is any change, the control plane updates the two arrays and lets the data plane

to accept the new ones. When a Bloomier filter performs a lookup of a key that does

not exist during construction, it returns an arbitrary value. For example, in Fig. 2.4(b),

k6 6∈ S and its result may be an arbitrary value. We will utilize this property to construct

a weighted randomizer.

It should be noted that updates may require re-hashing, which, although hap-

pens in low probability (O(1/n)), still takes O(n) time and may introduce a notable

latency to the control plane response time. Hence we propose an advanced data struc-

ture called OthelloMap that always maintains an up-to-date lookup structure in the

control plane to limit the response time to microsecond level, as explained in § 5.4.4.
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Chapter 3

Re-designing Compact-structure based

Forwarding for Programmable Networks

3.1 Overview

Forwarding packets based on networking names is essential for network pro-

tocols on different layers, where the ‘names’ could be addresses, packet/flow IDs, and

content IDs. For long, there have been efforts using dynamic and compact data struc-

tures for fast and memory-efficient forwarding. We identify that the recently developed

programmable network paradigm has the potential to further reduce the time/memory

complexity of forwarding structures by separating the data plane and control plane. We

realize that there is a lack of comprehensive study and comparison of these methods in

different network layers and situations. In addition, recently developed programmable

networks have the potential to further reduce the time/memory complexity of forward-
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ing structures with new designs.

This work presents the new designs of network forwarding structures under

the programmable network paradigm, applying three typical dynamic and compact

data structures: Bloom filters, Cuckoo hashing, and Othello hashing. We study two

representative cases of name-based forwarding, namely L7 overlay content lookup and

L2 address-based forwarding. We conduct careful analyses and experiments in real net-

works of these forwarding methods for multiple performance metrics, including lookup

throughput, memory footprint, construction time, dynamic updates, and lookup errors.

The results give rich insights into designing forwarding algorithms with dynamic and

compact data structures. In particular, the new designs based on Cuckoo hashing and

Othello hashing show significant advantages over the extensively studied Bloom filter

based methods, in all situations discussed in this work.

3.2 Related Work

To address the FIB explosion problem, DCSes have been proposed as the

forwarding data structures in various types of network devices.

Bloom filters. The construction and lookup of the Bloom filter [28] is pre-

viously introduced in § 2. The basic idea of using Bloom filters for FIBs is that for

every link to a neighbor, the forwarding node maintains a Bloom filter for the set of

names/addresses that should be forwarded to this link, such as Summary Cache [43] and

BUFFALO [104]. Each lookup takes O(nh · d) time, and each update takes O(d + nh)
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time, where d is the node degree. Despite the complex lookup and update, false posi-

tives still occur, which hurt the bandwidth. The Shifting Bloom Filter [99] achieves fast

lookups, but its false positive rate is high.

Cuckoo hashing. The construction and lookup of the Cuckoo hashing [74] is

introduced in § 2. FIBs using Cuckoo hashing store the link or port index in each ‘value’

field together with the key (name), such as CuckooSwitch [111]. ScaleBricks [110] uses

both Cuckoo hashing and SetSep [42] for cluster network functions. SetSep is a compact

structure with no update function, and hence it is out of the scope of this work.

Bloomier filters. The Bloomier filters [35][33] and their variants Othello

hashing [105][94] and Coloring Embedder [100] are key-value lookup tables inspired by

dynamic perfect hashing [66][27]. The construction and lookup of the Othello hashing is

introduced in § 2. The important features of Othello are 1) the memory cost is small as

it stores no keys in the lookup structure; 2) it uses only two memory accesses to lookup

a key in the worst case; 3) it takes O(1) average time for each addition/deletion/update.

Concise [105] is an L2 FIB design based on Othello. One weakness of Concise is that

it cannot tell whether a key (name/address) exists in the network. If a packet carries

an invalid key, Concise forwards it to an arbitrary neighbor, as shown in Fig. 2.4(b).

SDLB [108] and Concury [88] are L4 load balancers using Othello.
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3.3 Network models

We study the network forwarding problems of L2 and L7 networks with modern

programmable networks. We give a general abstraction of both network architectures

and formalize the corresponding forwarding problems.

3.3.1 Optimizing DCSes in Programmable Networks

Programmable networks use software running on general-purpose computers or

programmable switches to perform various network functions, e.g., packet forwarding,

firewalling, load balancing, and traffic monitoring. The typical examples include SDNs

[69][54][52][44][72][30], software routing and switching [59][78][111][51][86], and network

functions virtualization (NFV) [9][75][37]. We observe that the programmable network

paradigm provides a new opportunity to allow new data structures and algorithms to

run on network devices and their further optimizations. As shown in Fig. 1.1(a), existing

networks require each data plane device to host the entire FIB, such as the flow table,

which supports both the lookup and update functions. Even in the current SDNs, the

controller only runs the Routing Information Base (RIB) but not the FIBs. We propose

to split the FIB into two components, which perform the lookup and update functions,

respectively. The FIB data plane (DP) component focuses on the lookup and

only performs simple memory writes for updates. Hence the DP fits in fast memory

(e.g., switch ASICs or CPU cache). The FIB control plane (CP) component is

responsible for the full states and calculations for the construction and updates of the
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DPs and can be run on a server. This idea creates two optimization opportunities

for FIB designs: 1) without the update component, the FIB lookup function can be

built with a DCS with a small memory footprint; 2) The FIB construction and update

component can be reused for network-wide data-plane nodes to preserve control-plane

scalability. The reusability depends on the specific application. However, it is always

more efficient than maintaining a different update component for every node.

3.3.2 Layer-2 Forwarding

L2 applications. In a modern data center network, there are a massive

amount of physical servers [56][50][80]. Each server has an ID (e.g., its MAC address).

An interconnection of switches connects the servers. Each switch has multiple ports con-

necting neighboring switches and servers. A switch in a data center may be a gateway

that connects to external networks or a core switch that only connects to internal de-

vices. Each network packet (Ethernet frame) processed by a switch includes the MAC

of the destination server. A switch forwards the packet to a neighbor based on FIB

lookups using the MAC. Many modern networks are variants of this model [56][50][80].

For example, in a multi-tenant data center network, multiple VMs are hosted in one

physical server. The FIB serves the same function with the only difference: multiple

VMs may connect to a switch through a single port. This model is not limited to L2.

If MAC is replaced with other network IDs or addresses in other layers, the FIB still

provides similar functions. For flow-based networks [69], the flow ID may be a combi-

nation of source/destination IPs, MACs, and other header fields. The forwarding may
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be on a per-flow basis rather than a per-destination basis. LTE backhaul networks and

core networks can also be regarded as an instance of the L2 network model, especially

for the down streams from the Internet to mobile phones. The destinations are mobile

phones, and the IDs are Tunnel End Point Identifiers (TEIDs) or International Mobile

Equipment Identities (IMEIs) of the mobiles [110].

L2 networking model. There are a total number of n switches connected

with each other to form an L2 network. Each port of a switch is linked to either a server

or another switch. The maximum number of ports is fixed as d. Each server has an

address k as its unique ID or search key. The forwarding structure on each switch should

include the server-port mapping of all servers in the network. The port information of

k indicates the next-hop node to route the packet to the server k. A switch may receive

network packets sent to any server.

In programming networks, the switch fabric only includes the DP. And there is

a logically centralized CP, possibly running on a separate server [72]. The CP executes

the routing and other protocols and sends updates to the switch DP. We do not compare

routing protocols in this work and focus on forwarding.

3.3.3 Layer-7 Forwarding

L7 applications. Many L7 overlay networks conform to the following model.

For an L7 CDN such as Akamai, a large number of data contents provided by the data

center of the service provider are cached among the CDN hosts (i.e., cache servers) across

diverse geographic regions [65]. The content cache can help to significantly reduce the

28



latency of content downloading requested from the users. When a user is requesting a

content by its URL, the DNS server will direct the user request to the nearest CDN

host. Due to the massive volume of content resources, a single CDN host cannot hold

all of them. Hence, a CDN host may forward the request to another nearby CDN host

that caches the requested content. Hence, each CDN host should maintain a forwarding

table, including the ID/URL of all contents and the corresponding neighboring hosts. A

CDN may also use consistent hashing [55][65] for content indexing. The major weakness

of consistent hashing is that it cannot preserve content locality: a content will be placed

to an arbitrary host based on hash values, possibly far from its original users. We only

consider forwarding table based CDN content indexing [43]. This model may be applied

to other networks such as distributed data storage [23], P2P systems, or edge computing

[89].

L7 networking model. There are a total number of n nodes (e.g., CDN

hosts) in the overlay network that stores contents. Each content has a unique ID k that

could be a URL. The set of all cached contents K in a region has the cardinality nk.

Each node has a certain number of neighbors and maintains an index of a subset of K.

These subsets may arbitrarily overlap. Every node has a local content list to remember

the IDs of contents stored on itself. A FIB is maintained at every node which stores

the content-location mapping, where the location could be the IP address of the node

that stores the content. Upon a content lookup, the ID of the node holding this content

is returned. If no node stores the content, null is returned, and the request should be

forwarded to the remote data center. The contents are stored into and removed from the

29



nodes frequently, so the design of the FIB should also take dynamics into consideration.

Each node runs the FIB (DP component) locally. There is a separate program

running the CP component, which could be either local or remote. In this work, we do

not compare cache replacement algorithms – they are out of scope.

3.3.4 Comparing L2 and L7

In L7, a node can be connected to arbitrarily many neighbors because those

connection links are virtual, such as TCP sessions. The number of neighbors of an L2

switch is bounded by the number of physical ports: an important parameter of the

switch related to its price. Routing in L2 will usually take multiple hops from the

source to the destination. L7 routing paths are much shorter in this model. Packet

forwarding in L2 and L7 can be simplified and unified in the following statement: given

a packet carrying the key k, the forwarding structure should return the index of the

corresponding outgoing link. The network updates discussed here can be key addition

(new host joining with a new address in L2 and new content being stored in L7), key

deletion (existing host failing or leaving in L2, and content deletion in L7), or value

update of a key (host moving to a new location or routing path changes in L2 and

content being stored at a new location in L7).

3.4 Forwarding structure designs

By exploring the potential of the programmable network paradigm, we opti-

mize the lookup/memory/update efficiency of DCSes based forwarding algorithms. We

30



propose three forwarding structures and algorithms: Bloom Forwarder (BFW) based

on Bloom filters [28], Cuckoo Forwarder (CFW) based on a new data structure Cuckoo

Filtable, and Othello Forwarder (OFW) that extends Othello hashing [105]. CFW and

OFW are considered our main design contributions, and BFW is a baseline

for comparison.

3.4.1 Bloom Forwarder (BFW)

Limitations of existing methods. Both BUFFALO [104] and Summary

Cache [43] use Bloom based forwarding, and their ideas are similar. For every outgoing

link, the forwarding node maintains a Bloom filter (BF) representing the keys of the

packets that should be forwarded to this link. To look up a key, the node iteratively

checks each BF and then picks the index of the first matched BF [43] as the link index.

There are d BFs for d links on a node. Summary Cache uses the counting Bloom filters

(CBFs), which support deletion operations. The drawback of CBFs is that they increase

the memory cost by a factor of log2 nk in the worst case, where nk is the number of

keys. BUFFALO [104] uses BFs as its DP and maintains CBFs in its CP to save the

switch ASICs. The main weakness of using CBFs in the CP is that CBFs only record

the hashed bits but do not store keys. Hence, it is impossible to reconstruct the DP in

cases like topology changes and BF resizing because reconstruction requires all original

keys to build new BFs.

Bloom Forwarder (BFW). BFW uses a similar DP design to BUFFALO

[104], but a different CP design. We follow the extensive optimizations proposed in
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Figure 3.1: Update messages for forwarders

BUFFALO to minimize the false positives. In addition, we propose to use a Cuckoo

hashing table to store all keys in the CP because the CBFs do not support DP recon-

struction. The DP includes both the BFs of all ports for lookups and a set of CBFs

to support incremental updates without reconstruction. The CBFs are kept in DP be-

cause a centralized CP may neither have enough memory to maintain all CBFs of all

forwarding nodes nor enough computation power to perform a small update (such as

new address join or leave), which will trigger different updates in different CBFs for all

DPs.

One possible question is whether the DP could maintain log2 d BFs of the same

size rather than d BFs, such that the replies from all log2 d BFs can form a log2 d-bit

long index that represents a set of keys that should be forwarded to each link. After

careful study, we find that this method is very memory-inefficient and may cause high

false positives, mainly due to the different cardinalities of the key sets of these BFs. We

explain this reason in details in Appendix A.1.1.
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3.4.2 Cuckoo Forwarder (CFW)

Limitations of existing methods. CuckooSwitch [111], the typical example

of Cuckoo hashing based forwarding, uses the (2,4)-Cuckoo hashing table as its FIB and

stores the full keys in the hash table. This approach incurs high memory overhead on

the DP. Cuckoo filter [41] stores the fingerprints of keys rather than the full keys, but

it only supports membership queries and cannot be used as the FIB.

New Design: Cuckoo Forwarder (CFW) Data Plane. The CFW DP

uses a new structure design proposed by us called Cuckoo Filtable, which borrows

the ideas from both Cuckoo hashing and Cuckoo filters. It is a table of nb buckets, and

each bucket includes 4 slots. Each slot stores the fingerprint fk of a key k and the value

v associated with k, which is the index of the link to forward packets carrying ID k,

as shown in Fig. 3.2. fk is the fingerprint of k with a fixed and much shorter length

than k, which can be computed by applying a hash function to k. Storing fk instead

of k significantly reduces the memory cost. To lookup k for an incoming packet, CFW
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Figure 3.3: CFW insertion and lookup workflows

fetches two buckets based on h1(k) and h2(k) and computes the fingerprint fk. Then for

each slot in these two buckets, CFW compares fk with the stored fingerprint. If there

is a match, the stored value v, which is the link index of the next hop neighbor, will

be returned. Different from the existing “partial key Cuckoo” solution [64], the Cuckoo

Filtable addresses the following challenges.

Challenges in CFW DP design. By storing the fingerprints, CFW ex-

periences false hits : The fingerprint f(k) of a key k will match a slot that stores the

fingerprint of another key k′ if f(k) = f(k′). There are two kinds of false hits. 1) k

does not exist in the network, called an alien key, and it has the same fingerprint as an

existing key k′. This type of false hits is called false positives. It is impossible to avoid

34



false positives unless CFW stores the entire keys. The false positive rate depends on the

length of the fingerprints. 2) k and k′ both exist in the network and happen to share

the same fingerprint and locate in the same bucket. This is called a valid key collision.

This problem is critical: in an L2 Ethernet-based enterprise or data center network, all

forwarding nodes in a subnet/data center may share the same set of keys [56], and thus,

a pair of colliding valid keys k and k′ will collide at every node. One of the destinations

will never be successfully accessed. We call this problem key shadowing.

To resolve valid key collisions, we adopt a two-level design, as shown in Fig. 3.2.

Level 1 is a Cuckoo Filtable that stores non-colliding fingerprints and their values,

as described above. Level 2 is a Cuckoo hashing table that stores full keys whose

fingerprints collide with one or more other keys. A key k will be moved to Level 2 if

these two conditions are satisfied: 1) there is another k′ such that fk = fk′ ; and 2) k

and k′ have at least one common bucket. Each key relocated to Level 2 will be inserted

into a collision avoidance set (explained later) to prevent future false hits. We expect

that only a small portion of keys are stored in Level 2. Thus the memory cost does

not increase significantly. A lookup operation is to first search for the fingerprint in the

first level, and if there is a miss, CFW looks up the key in the second level, as shown in

Fig. 3.3(a).

New Design: CFW Control Plane. The CFW CP stores the network

topology and routing information. For the FIB, the CFW CP uses a two-level design to

support fast constructions and updates for all DPs. The difference between the CP FIB

and the DP FIB is that each slot in Level 1 of CP FIB stores three fields: the full key
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k, the fingerprint fk, and the physical host ID (only for multi-tenant networks). The

full keys are used to help with key additions and deletions. When a reconstruction is

needed, the two-level CP FIB can immediately be converted to the two-level DP FIB

by removing all full key fields. Besides, when some DPs hold the same set of keys, the

CP FIBs of the nodes share the same ‘skeleton’: the same key at different nodes is in

the same position of the lookup structure (though their value fields are different). The

construction of a DP FIB is to directly copy the skeleton without full keys and resolve

each key to the port index on the node based on the routing information stored in the

RIB. It means that the CFW CPs on different nodes will have the same size of hash

tables, and the slots of the same location store the same key. The only difference is

that their value fields are different in L2 – for L7 even the values are the same. This

property has not been explored by any prior work. Based on this design, if there

is a central control program, a network-wide update will be extremely fast.

Challenges in CFW CP design. One problem may happen when there is

a three-key collision: keys a, b, and c have the same fingerprint and share a bucket.

a and b are already stored in the Level 2 hash table. When c is added to the FIB, it

will be directly added to the Level 1 without collisions – because a and b are not there.

However, it causes a problem in DP lookups: all lookups of a and b will hit c’s slot.

In CFW, this problem is resolved by storing additional information in Level

1 of CP FIB. Level 1 maintains a collision avoidance set at each bucket, which stores

all valid keys that have this bucket as one of its two alternative buckets. For every key

being inserted, CFW should first check if its fingerprint collides with any fingerprint in
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the collision avoidance sets of its two alternative buckets to avoid possible collisions, as

shown in Fig. 3.3(b). Every inserted key is added to the collision avoidance set of both

the alternative buckets. If a collision is detected before the insertion, the two colliding

keys are moved to the second level.

CFW CP-DP synchronization. The CP to DP synchronization is achieved

by incremental updates. The format of a single update message is shown in Fig. 3.1

(b). The two bits for the operation type ranged among ‘addition’, ‘deletion’, and ‘mod-

ification’. The field lv is the indicator of the level this update is going to be made in.

bid and sid are common to specify the bucket index and the slot index, respectively.

The ‘Cuckoo update path’ should be sent in a key addition message. Upon receiving an

incremental update message, the DP updates the FIB accordingly.

There is a design choice for CFW: align the buckets to the cache line size to

achieve fast lookup performance (aligned) or place the buckets next to each other to

get a smaller memory footprint (compact). We choose compact as analyzed in [7] and

Appendix A.1.4.

3.4.3 Othello Forwarder (OFW)

We further explore the efficiency of Othello hashing [105] for a new FIB design

in programmable networks.

Limitations of existing methods. Concise [105] is an L2 FIB based on

Othello hashing. Concise has two main limitations. 1) It only includes the design for a

single switch but misses the design for network-wide CP-DP coordination; 2) It has no
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ability to filter alien keys that do not belong to the network.

New Design: Othello Forwarder (OFW) Data Plane. The OFW DP

consists of two arrays A and B, and two different hash functions h1 and h2. The lookup

of a given key k works as follows: the h1(k)-th element in A, A[h1(k)], and the h2(k)-th

element in B, B[h2(k)], are fetched; and the DP calculates τ = A[h1(k)]
⊕

B[h2(k)].

The result τ is the concatenation v||f , where v is the index of the forwarding port and f

is a fingerprint to filter alien keys, as in Fig. 3.4. The DP then calculates the fingerprint

fk of the key k. If fk = f , v is returned, otherwise null is returned to indicate an alien

key. If all the request keys are guaranteed to be valid, the length of f is set to 0. The

main drawback of adding fingerprints is the high memory cost because the total number

of slots in arrays A and B is 2.33nk for nk keys, and thus, one bit in the fingerprint field

contributes 2.33 bits to the overall memory. Intuitively, when the fingerprint grows by

1 bit, the DP can reduce 50% false hits. An interesting result is that using only 1 bit

can filter more than 50% alien keys: we call the last bit of a fingerprint as ‘emptiness

indicator’, which is set to 1 when this element in the array A or B is associated with
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one or more keys. If both indicators in the fetched two elements are 1, then there may

be a key matching the two values. If either of them is 0, then the lookup key must be

an alien key. We prove that this method can detect an alien key k with the probability

63.2% > 50%, as derived in Appendix A.1.2.

New Design: OFW Control Plane. The OFW CP uses a new data struc-

ture, OthelloSet, to support efficient network-wide FIB updates. The simplest way to

maintain the OFW CP is to maintain an array of key-port pairs for every node. In this

way, however, the CP may not have enough memory to hold all the arrays, and the DP

construction will be prohibitively time-consuming. Our important observation is that

if some nodes share the same set of keys, they also share the same bipartite graph G

because G only depends on the keys. Hence, OFW CP maintains the routing informa-

tion, an array of key-host pairs, and a ‘skeleton’ for all DPs. As shown in Fig. 3.5, one
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graph G and two arrays X and Y are maintained in the CP as the ‘skeleton’, such that

X[ha(k)]
⊕

Y [hb(k)] is the index of the key-host pair array. For the construction of each

node, OFW CP calculates the host-port mapping for each key in the array. Then based

on G and the derived key-port mapping, the OFW DP (arrays A and B for lookup) can

be easily constructed.

The reasons to use OthelloSet are: 1) OthelloSet stores full key-value infor-

mation, which suffices to be a CP data structure; 2) we have to maintain a bipartite

graph G of the Othellos at the CP to quickly synchronize with DPs. The key insight

here is that, although the link indices (values) corresponding to the keys are different

on different nodes, h1, h2, and G can be shared between the CP OthelloSet and all

CPs in the network. To construct a new FIB or to incrementally update FIBs in the

network, Othello reconstruction is no longer needed, and the CP only has to determine

the values to fill the slots in arrays A and B.

3.4.4 Control plane reusing and scalability

The key reason for letting the BFW DP to store the CBFs is that the CBFs

cannot be reused among different forwarding nodes, and every node must have a set of

unique CBFs. Hence, storing the CBFs in the central controller will cause significant

scalability problems. In fact, the server used in our experiments cannot afford to store

CBFs for over 100 nodes. On the other hand, the DPs of CFW and OFW can be reused

if different nodes are forwarding the same set of addresses, which is true in many L2

networks [50][56][53][80]. We understand that in some practical networks that are not
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pure L2 flat networks, nodes in different regions may have different sets of addresses.

However, the designs of CFW and OFW can still significantly reduce the control plane

overhead if some nodes share similar sets of addresses, e.g., those in the same subnet.

OFW CP-DP synchronization. The OFW synchronization message format

is, as shown in Fig. 3.1 (c). indices stores the indices of slots to mark as empty (last bit

set to 0). xor stores a value to apply XOR with the influenced connected component

in the bipartite graph, and cc stores the indices of the slots in the influenced connected

component, i.e., a tree in G. OFW DP performs key additions and value modifications

via traversing the tree to change the values in the arrays A and B trivially.

Implementation optimizations. Further optimizations are made onto the

existing version of Othello hashing [105]. 1) A valid bipartite graph in an Othello is loop-

free. During a value update or a key addition, we re-assign values to half of instead of all

the slots in the connected component in the bipartite graph. 2) During a value update,

edges in G are critical information because we have to know the connected component

in order to change values by traversing. In the previous implementation, the connection

information is stored by maintaining one linked list of edges at each node, and a

hash function is invoked to find out every neighbor. We assign one linked list of the

connected edge-neighbor pairs to each node, reducing one hash function call while

keeping one memory load at each traverse step. 3) To ensure G is loop-free after a key

joining, a loop detection can be performed in two possible ways: a) maintain a disjoint

set during the additions and deletions and check the two slots A[h1(k)] and B[h2(k)]

are in different sets; b) traverse the connected component starting from A[h1(k)] and
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see if B[h2(k)] is encountered. Although both ways cost O(1) time, we choose approach

a) because a) only involves 2 memory loads and 1 comparison, while b) requires at least

2 memory loads and more calculations. The previous implementation uses b).

3.5 Analysis and Further Optimization

We conduct theoretical analysis on the following three aspects: the memory

footprint in the DP, times of hash function invocations and memory reads for each

lookup, and times of hash function invocations and memory reads and writes for each

FIB update. We also present the system design details guided by the analysis. The

notations are listed in Table 3.1.

3.5.1 DP memory footprint

The data structures at the DPs are analyzed as two parts for BFW and CFW

– the total memory footprint and the memory footprint of frequently accessed parts

during lookup. We use the symbol M to denote the overall memory footprint and let

Mf be the memory footprint of the most accessed parts that can be hosted in fast

memory.

BFW. For BFW, a FIB is divided into two parts: the counting Bloom filter

and the Bloom filter. The Bloom filter is the frequently accessed part. The FIB memory

footprint of BFW M b and M b
f (both in bits) are (1+ ls)m and m, respectively, where m

is the sum of the lengths of all Bloom filters and m = nhnk/ ln 2 for nh hash functions

[28].
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Symbol Description

nk total number of valid keys

d number of links

lp length of port index encoding

lf length of fingerprint field in slots

lk length of a key

ls length of counters in CBF

lb bucket length in Cuckoo hashing or Cuckoo filter

nb

number of buckets a key is mapped to in Cuckoo hashing or Cuckoo

Filtable (usually 2)

ns number of a slots in a bucket (usually 4)

rl load factor of Cuckoo hashing or Cuckoo filter

el el =
1
rl

nh number of hash functions for a Bloom filter

Table 3.1: Notations
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CFW. The CFW DP consists of two levels. Level 1 is the Cuckoo Filtable

that stores key fingerprints, which is the frequently accessed part. Level 2 stores the

full keys for the colliding keys. We first calculate the expected portion of keys at Level

1, η, and then derive the expected CFW memory footprint M c. We show in Appendix

A.1.3 that η is a function of lf and is independent of nk. We define the function Eη(l)

to reflect the experimental results. Based on that, the memory footprint of Level 1 is

M c
f = Eη(lf )·nk ·el(lf+lp) and the total memory is M c = M c

f+(1−Eη(lf ))nk ·el(lk+lp).

OFW. There is only one data structure in the OFW DP, which means the

whole FIB memory Mo and the most accessed memory Mo
f are the same: Mo

f = Mo =

2.33nk · (lp + lf ), where the coefficient 2.33 is derived in [105].

3.5.2 Time complexity

Although different FIB designs have different workflows in lookup, hashing

keys and loading memory contents are common and most time consuming, compared

to other operations such as calculating memory offsets. Hence, we use the number of

memory accesses and hash function invocations to measure time complexity. Memory

accesses and hash function invocations are highly related because the main purpose

of hash functions is to direct the memory access location. However, there are some

differences between the two numbers: 1) other than memory loads for slots, the key

itself should be loaded from the memory, which is not ignorable for many cases; 2)

CFW and OFW need to hash the key for one additional time to get the fingerprint of

the key; 3) the memory read for one bucket in a Cuckoo Filtable or one slot in a Cuckoo
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Filtable or an Othello is not always achieved in one memory load operation because

the target memory area may be too long to fit into a cache line, or it may exist in

two consecutive cache lines; 4) for Level 2 of the CFW, the lengths of the keys are not

constant especially for L7 so that longer keys should be put into the dynamic memory,

e.g., slabs and cannot be directly embedded into the slots. We denote the numbers of

memory accesses and hash function invocations as Cm and Ch, respectively. We denote

the expected numbers of memory loads and hash function invocations of an alien key

as Cm,e and Ch,e, respectively. The detailed derivations are skipped due to space limit

and are available on [7] and Appendix A.1.5

BFW.

E(Cb
h) =

d−1
∑

i=1

1

d
((i− 1)Ct + nh) =

d− 1

2
Ct + nh

E(Cb
h,e) =

(

d−1
∑

i=1

((1− p)nh)
i−1
· (1− (1− p)nh) (i · Ct)

)

+ ((1− p)nh)
d
(d · Ct)

(3.1)

E(Cb
m) = E(⌈lk/lc⌉+ Cb

h) = ⌈lk/lc⌉+ E(Cb
h)

E(Cb
m,e) = E(⌈lk/lc⌉+ Cb

h,e) = ⌈lk/lc⌉+ E(Cb
h,e)

(3.2)

CFW. (Assuming the key locations are uniformly random)

E(Cc
h) = 2 +

nb − 1

2
+ (1− Eη(lf )) (1 + nb)

E(Cc
h,e) = 1 + nb + nb = 1 + 2nb

(3.3)

E(Cc
m) = ⌈lk/lc⌉+

nb·ns
∑

i=1

⌊i/ns⌋ · E(Cb) + E(Cm,i)

nb · ns

E(Cc
m,e) = ⌈lk/lc⌉+ nb · E(Cb)

(3.4)

45



8 16 32 64 128 256
Number of ports on a forwarder

10

15

20

25

30

M
em

or
y
fo
ot
p
ri
nt

(M
B
)

BFW

CFW

OFW

Figure 3.6: Memory with gateways

0.0001 0.0010 0.0100
Target false positive rate

20

25

30

35

40

45

50

M
em

or
y
fo
ot
p
ri
nt

(M
B
) OFW

CFW

BFW

Figure 3.7: Memory w/o gateways

OFW. The expected portion of empty slots in A and B are: ǫa = (ma−1
ma

)nk ≈

e−
nk
ma ≈ 0.471 and ǫb = (mb−1

mb
)nk ≈ e

−
nk
mb ≈ 0.368. Let lg = gcd(lf + lp, lc). Assume the

lf + lp is always smaller than lc. We get:

Co
h = 3

Co
h,e = ǫa + 2 · (1− ǫa)ǫb + 3 · (1− ǫa)(1− ǫb)

(3.5)

E(Co
m) = ⌈lk/lc⌉+ 2 ·

(

1 +
lf + lp − lg

lc

)

E(Co
m,e) = ⌈lk/lc⌉+ ((1− ǫa)ǫb + 2 · (1− ǫa)(1− ǫb))

·

(

1 +
lf + lp − lg

lc

)

(3.6)

3.5.3 Collision rate and false positive rate

We consider two problems caused by hash collisions: valid key collisions and

false positives. A key collision happens between two valid keys, causing the lookups

of the two keys to end up with the same value. A false positive happens when an
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alien key that does not exist in the network gets the value of an existing key. We use

CR and FP to denote the valid key collision rate per lookup and the alien key

false positive rate per lookup, respectively. We obtain the following results, and

the detailed derivation can be found in Appendix A.1.6.

BFW.

FPb = 1− (1− (1− p)nh)
d

E(CRb) =

d
∑

i=1

(

1−
1

2nh

)i−1

·
1

d · 2nh

(3.7)

CFW.

CRc = 0

FPc = 1− (1−
1

2lf
)rlEη(lf )·nsnb

(3.8)

OFW.

CRo = 0

FPo =
1

2lf−1
· (1− ǫa) · (1− ǫb)

(3.9)

3.5.4 Numerical results and discussions

We show the numerical results to compare different forwarders and make some

design choices based on the results.

DP memory footprint. We consider the DP memory in two situations: with

and without gateways. As described in § 3.3, the gateways may exist at the border of

a network. A gateway is also a forwarder, but with full key information. Hence, a

gateway will drop invalid requests and only forward valid requests. Having all incoming
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requests passing through the gateways, there is no false positive at internal forwarders.

If gateways are used, then other forwarding nodes do not need to filter alien keys. Note

that even if gateways exist, BFWs on internal nodes still suffer from the key collisions,

but there is no collision in CFW and OFW. We fix nk to be 10M , lk = 128, CR = 1h

for BFW, lf = 0 for OFW, and we pick lf for CFW giving out the smallest memory

footprint. We let lp range from 5 to 13. The results in Fig. 3.6 show that OFW provides

the least memory cost, around 20%-60% of the other two.

If there is no gateway, we calculate the smallest memory footprints of the three

forwarders achieving a certain level of false positive rate. We fix nk to 10M and let the

false positive rate range from 0.01 to 0.0001. We carefully adjust the parameters of

the three forwarders to let them have the smallest memory footprint while meeting the

target false positive rate, as detailed in Appendix A.1.7. The numerical results are

shown in Fig. 3.7.

Comparing the results in Figures 3.6 and 3.7, it is clear that when gateways

exist, OFW costs much less memory than the other two designs. However, without

gateways, OFW needs much more memory to achieve a certain level of false positive.

CFW costs the least memory when false positive < 0.4%. Hence, an ideal solution

may be using Cuckoo hashing or OthelloSet at the gateways and using OFWs for the

remaining internal nodes.

False positives in L7. In the L7 overlay network model, a client request

is received by an overlay node such as a CDN node, and then the node checks the

local resource pool. If the request is met, it replies with the result; otherwise, the
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request is forwarded to another edge node according to the FIB. Invalid requests should

be dropped here because of FIB miss. Due to false positives, some requests may be

wrongly forwarded to other nodes. We calculate the expected forwarding hops for valid

requests of the three forwarders in the L7 network as a direct effect of false positives.

We set lf to 8 for OFW, and adjust lf for CFW and m for BFW to let them have

the same memory footprint with OFW. The result is shown in Fig. 3.8. We find that

although OFW has more false positives with the same memory footprint, the impact

on L7 routing path is minimal.

Cache line alignment. The above results of CFW are based on the compact

setting, which means buckets are not aligned to cache lines, as opposed to the aligned

setting. We compare the memory footprints as well as the expected number of memory

loads between compact and aligned settings in simulated L2 and L7 networks (lp = 5,

lk = 128 to simulate the L2 networks, and lp = 14, lk = 360 for the L7 networks), as

shown in Figures 3.9 and 3.10. From the figures, we conclude that there is little value

to align the buckets to cache lines because the latency gain is too small compared to

>2x memory cost.

Hash function invocation in L2 and L7 networks. The number of hash

function invocation Ch is a simple indicator for the lookup performance because hashing

is more time consuming than other basic operations, and a hash value usually directs a

memory load destination. The expected value and upper bound of Ch for both CFW

and OFW are rather low because of their designs. The Ch for OFW is at most 3 for an

alien key and is exactly 3 for a valid key. In CFW, the upper bound is 9 for both a valid

50



key and an alien key. But Ch can be very high for BFW and is linear to d. Because on

the one hand, d may be high, an alien key should be tested against all d Bloom filters to

be considered as alien, and a valid key is expected to pass the correct Bloom filter after

d
2 Bloom filters. And on the other hand, nh may be large to meet a strict false positive

target, especially when the d is large and the false positive rate for a single Bloom filter

must be very low to effectively filter out an alien key from d Bloom filters at the FIB.

The most important issue of BFW is the scalability with the number of ports. We set

nk = 10M , lk = 360, lf = 8 for both OFW and CFW, and change lp. We clearly show

the exponential explosion of Cb
h while comparing with CFW and OFW in Fig. 3.11. So

it is clear that BFW is not suitable for a network where the number of neighbors may

be large for a node, e.g., an L7 network.

3.6 Implementation

Algorithm implementation. We implement all three forwarder prototypes

in a total of 4360 lines of C++ code, and these prototypes share a part of the code.

We build the CFW prototype based on the presized cuckoo map implementation in

the Tensorflow repository [11], with several major modifications to implement Cuckoo

Filtable and the control plane of CFW. We also implement the collision avoidance sets

at the control plane Level 1 table. The insertion workflow is specially implemented and

tested for the two-level Cuckoo Filtable and the collision avoidance sets. We reuse the

code from the GitHub repository of Othello hashing [4] and add the extra functions such
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as fingerprint checking and the control plane to data plane incremental synchronization.

As the Bloom filters and CBFs are easy to implement, we just implement the BFW and

its control plane from scratch and implement the incremental update feature. We adopt

Google FarmHash [2] as the hash function for all experiments.

Algorithm benchmark setup. We evaluate the single-thread performance

of three forwarder algorithms on a commodity desktop server with Intel i7-6700 CPU,

3.4GHz, 8 MB L3 Cache shared by 8 logical cores, and 16 GB memory (2133MHz

DDR4).

CloudLab benchmark setup. We implement the forwarder prototypes

BFW, CFW, and OFW using Intel Data Plane Development Kit (DPDK) [5] running

in CloudLab [1]. DPDK is a series of libraries for fast user-space packet processing

[5]. DPDK is useful for bypassing the complex networking stack in the Linux kernel,

and it has the utility functions for huge-page memory allocation and lockless FIFO,

etc. CloudLab [1] is a research infrastructure to host experiments for real networks and

systems. Different kinds of commodity servers are available from its 7 clusters. We

use two nodes c220g2-011307 (Node 1) and c220g2-011311 (Node 2) in CloudLab to

construct the evaluation platform of the forwarder prototypes. Each of the two nodes

is equipped with one Dual-port Intel X520 10Gbps NIC, with 8 lanes of PCIe V3.0

connections between the CPU and the NIC. Each node has two Intel E5-2660 v3 10-core

CPUs at 2.60 GHz. The Ethernet connection between the two nodes is 2x10Gbps. The

switches between the two nodes support OpenFlow [69] and provide the full bandwidth.

Logically, Node 1 works as one of the forwarders in the network, and Node
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2 works as all other nodes in the network, including gateways and switches in the L2

network and hosts in the L7 network. Node 2 uses the DPDK official packet generator

Pktgen-DPDK [6] to generate random packets and sends them to Node 1. The destina-

tion IDs carried by the generated packets are uniformly sampled from a set of valid IDs.

BFW, CFW, or OFW is deployed on Node 1 and forwards each packet back to Node 2

after determining the outbound link of the packet. By specifying a virtual link between

the two servers, CloudLab configures the OpenFlow switches such that all packets from

Node 1, with different destination IDs, will be received by Node 2. Node 2 then records

the receiving bandwidth as the throughput of the whole system.

L2 Network setup. We use one ISP network topology from the Rocketfuel

project [90] as the topology model of the simulated network. Gateways are placed in the

networks. ld of OFW is set to 0, while ld of Level 1 of CFW is set to 13 for the lowest

memory footprint. The lookup keys may be valid or alien, sampled from the following

categories: 32-bit IPv4 addresses, 48-bit MAC addresses, 128-bit IPv6 addresses, and

104-bit 5-tuples.

L7 network setup: We model the L7 network topology as a fully connected

graph with 318 nodes, the same as the number of nodes in the L2 network model. The

requested keys may be valid or alien, sampled from the std::string representation of the

resource IDs (45 bytes) and resource URLs (155 bytes). To filter out most alien requests

while keeping the FIB small enough, we set ld = 8 for both CFW and OFW according

to the analytical results in § 3.3.
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3.7 Evaluation

In this section, we carry out the algorithm benchmark and the CloudLab ex-

periments to evaluate the performance of the three forwarder prototypes.
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3.7.1 Comparison methodology

We identify the most common situations in typical networks to abstract im-

portant parameters from these situations for comparison. We evaluate the data plane
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Figure 3.23: Length of incremental update

messages for L7

forwarding throughput, control plane construction time, data plane construction time,

and data plane incremental update throughput for all three forwarders.

The distributions of lookup requests are simulated in two types: uniform dis-

tribution and Zipfian distribution. To understand the performance variations, each data
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Figure 3.24: Throughput (speed) of incre-

mental updates for L2
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Figure 3.25: Throughput (speed) of incre-

mental updates for L7

point is the average of 10 experiments with different random seeds, and the error bar

on each data point shows the minimum and maximum value among the 10 results.

We conduct two kinds of comparisons: 1) Algorithm micro-benchmarks to

evaluate performance metrics; 2) Real packet forwarding experiments in CloudLab to

understand the overall performances of the three forwarders in a real network. For

algorithm micro-benchmarks, we compare the following performance metrics of all three

forwarders: 1) Throughput of valid keys and invalid keys in L2 and L7 networks; 2)

Control plane to data plane synchronization latency; 3) Control plane construction

time.

3.7.2 Algorithm evaluation

Compare to prior methods. We have conducted experiments of the studied

methods with prior solutions: CFW vs. CuckooSwitch [111]; OFW vs. Concise [105]. All
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ferent key types
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Figure 3.27: L2 network CP construction
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Figure 3.28: L7 network CP construction
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Figure 3.29: L2 network DP construction

time

of BFW, CFW, and OFW have a better or same performance in throughput

and memory efficiency compared to prior solutions. We show some represen-

tative results. We calculate the memory footprint for a single FIB to show that the
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CFW saves a considerable amount of memory compared to Cuckoo hashing as in Cuck-

ooSwitch. We set the lk = 64 (MAC addresses) for both FIBs, and FP = 1h for Cuckoo

Filtable. The results in Fig. 3.20 shows CFW, avoiding storing full keys, saves > 3x

memory compared to Cuckoo hashing. To show the advantage of adopting OthelloSet

in OFW, we compare the construction time for a single forwarder: exporting OFW DP

from OthelloSet CP skeleton vs. building OFW DP from scratch. We set lk = 48 and

lp = 8. As shown in Fig. 3.21, OthelloSet achieves > 3 faster DP construction and for

a network of 64M entries. In summary, both CFW and OFW significantly improve the

existing methods. We show more results by comparing them with BFW.

L2 throughput. We evaluate the lookup throughput of both the gateway

node and core nodes in L2 networks. Figures 3.12 to 3.15 show the throughput of

BFW, BFW gateway (BGW), CFW, CFW gateway (CGW), OFW, and OFW gateway

(OGW) an L2 network where forwarding addresses are valid MAC addresses. The

experiments are performed with single-thread instances of the three prototypes. We

change the total amount of addresses stored in the FIB and observe the throughput in

terms of million queries per second (Mqps).

The throughput decreases with the growth of FIB size because larger FIBs

incur higher cache miss rates. OFW performs around 3x faster than CFW because of

its small memory and simple lookup logic. BFW performs >10x worse than the other

two. OGW performs 2x faster compared to other gateways when FIB size is small.

As memory loads dominant the lookup latency for gateways when FIB is large, the

lookup throughputs of all three forwarders are close. OFW performs slightly better
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under Zipfian distribution than under uniform distribution when the FIB size is 4M.

L7 throughput. For L7 overlay networks, the forwarding throughput is ex-

amined with both valid addresses and alien addresses at each forwarder. Figures 3.16

and 3.17 show the throughput of BFW, CFW, and OFW in an L7 network where for-

warding addresses are valid resource IDs. The experiments are performed with single-

thread instances of the three prototypes. We change the total amount of addresses

stored in the FIB and observe the throughput.

There is a noticeable drop in the OFW and CFW lookup throughput in the

L7 network compared to those in L2. Because the hash function invocation is much

slower with 10x longer input and the memory footprint of OFW in the L7 network is

around 3x larger than that in the L2 network because of two reasons: 1) OFW has

to store key fingerprints to filter alien addresses; and 2) the value length is changed

from 8 to 16 due to more neighbors in the overlay. The throughput of BFW is only

< 10% compared to the other two because BFW needs to check the Bloom filter of every

neighbor (considering false positives). As shown in Fig. 3.26, with the same number of

addresses, the lookup throughput decreases with the increasing length of addresses.

Different types of keys. We evaluate the lookup throughput for different

key types, including IPv4, MAC, IPv6, flow ID, and URL (CDN content name). The

results in Fig. 3.26 show that OFW always achieves the highest throughput, seconded

by CFW.

Alien addresses. To understand the difference between lookups of alien

addresses and valid addresses, we also examine the alien address lookup at gateways in
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Figure 3.30: L2 DP throughput for Zipfian

(single thread)
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Figure 3.31: L2 DP throughput for Zipfian

(two threads)

L2 networks and the alien address lookup at forwarders in L7 networks. Fig. 3.18 shows

the throughput of BFW gateway (BGW), CFW gateway (CGW), and OFW gateway

(OGW) where forwarding addresses are invalid MAC addresses, and Fig. 3.19 shows the

throughput of BFW, CFW, and OFW in an L7 network where forwarding addresses

are invalid resource IDs. We vary the total amount of addresses stored in the FIBs.

All gateways show performance decreases with alien addresses because CFW performs

key matching for all addresses in the two buckets of the two levels (16 slots in total) to

conclude the address is alien, and OFW performs one extra address lookup to detect

the alien address. In L7 networks, CFW also exhibits a drop in throughput because the

alien key lookups perform matching with 16 slots in two levels. The performance drop

for OFW is caused by the memory expansion, and the decrease only happens at small

FIB sizes.
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Figure 3.32: L2 DP throughput for Uni-

form (single thread)
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Figure 3.33: L2 DP throughput for Uni-

form (two threads)
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Figure 3.34: L7 DP throughput for Zipfian

(single thread)
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Figure 3.35: L7 DP throughput for Zipfian

(two threads)

Data plane incremental update. As the valid addresses and their cor-

responding values are subject to change at runtime to reflect the network dynamics,

FIB incremental updates happen frequently. The workflow of an incremental update is
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Figure 3.36: L7 DP throughput for Uni-

form (single thread)
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Figure 3.37: L7 DP throughput for Uni-

form (two threads)
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Figure 3.38: DP throughput in CloudLab

(invalid MACs, 1 thread)
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Figure 3.39: DP throughput in CloudLab

(invalid MACs, 2 threads)

modeled below. 1) The control plane receives an update report from the application

specific message sources. Updates have three types: key addition, key deletion, and

value modification. 2) The control plane updates the FIB skeleton to reflect the change
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Figure 3.40: L7 DP throughput for invalid

IDs (single thread)
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Figure 3.41: L7 DP throughput for invalid

IDs (two threads)

and generates update messages for data planes based on the skeleton and the network

routing information. 3) The data plane of each node receives the update message and

updates its FIB accordingly.

The evaluation focuses on the communication overhead between the control

plane and data planes, as well as the update throughput for the data planes. We set

the FIB size to 4M for both models and use the MAC addresses for both models and

use the MAC addresses as addresses in the L2 network model and IDs as addresses

in the L7 network model. We uniformly generate update messages of three different

types and apply the same sequence of updates to the three forwarders. We record the

average message lengths and the finish time of different update types, and we calculate

the throughput of different update types in millions of operations per second (Mops).

Figures 3.22 and 3.23 show the update message lengths of BFW, CFW, and
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OFW in the L2 and L7 networks. Unlike those of BFW, the update message lengths of

CFW and OFW change little in different network models because the key information is

required in three types of update messages of BFW and the addition update messages of

CFW only when the insertions fall into Level 2 of the FIB. Value modification messages

of OFW is longer than those of CFW because a value modification in OFW involves

recoloring the whole connected component. Deletion messages are much shorter for

OFW because it only needs to mark the empty indicator bits in up to 2 slots. Though

CFW and OFW do not need to include full keys in the update messages, their addition

messages are longer because CFW needs to include the cuckoo path, and the OFW

needs to include the recoloring.

Figures 3.24 and 3.25 show the update throughput of BFW, CFW, and OFW

in L2 and L7 network models. OFW is fast in key deletion because it only needs to

mark the empty indicator bits. CFW is more than 10 times faster than others on value

modifications because the update of CFW is simply copying the value to the specified

slot. As we expect the update is less than 1M per second, all the three forwarders

support realtime incremental updates.

Construction time. Although most updates in a network are incremental

updates, there are always cases where new DP construction is needed, such as system

checkpoint loading or forwarding node addition. We examine the construction time of

a forwarding structure. Figures 3.27 and 3.28 show the control plane construction time

at different FIB sizes in L2 and L7 network models. The keys are MAC addresses in

the L2 network model and resource IDs in the L7 network model. CFW and OFW
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are about 5x slower than BFW in CP construction. That is because Cuckoo Filtable

is faster to construct than Othello, and the two-level design degrades the construction

performance of CFW CP. However, the two-level design is necessary to make the data

plane memory consumption times smaller than the plain Cuckoo hashing approach,

which stores addresses. The high variation of control plane construction time in OFW

is because of the varying number of rebuild times. In contrast, the CFW faces much

less rebuild during the construction.

Fig. 3.29 shows the construction time from the CP to a single DP at different

FIB sizes in the L2 network model. CFW and OFW data plane constructions are fast

because of our ‘skeleton’ design. The addresses are MAC addresses. The construction

involves value reassignments because CP stores the mapping from addresses to hosts,

while the FIB in a DP is a mapping from addresses to links. CFW is fast because

the value reassignment is simply traversing over slots. In OFW, the value reassign-

ment involves traversing connected components, which exhibits less locality than that

of CFW.

3.7.3 Evaluation in a real network

We conduct both single-thread and multi-thread forwarding experiments to

evaluate the throughput of different forwarders. The multi-thread experiments run on

the DPDK poll mode.

We first evaluate the maximum forwarding capacity of Node 1 by an ‘empty’

forwarder that loads the key from each packet and transmits it to Node 2, without
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looking up any FIB or table. The maximum capacity is 28.40Mpps for 64-byte L2

packets.

L2 throughput. Figures 3.30 to 3.33 show the throughput of BFW, CFW,

and OFW in an L2 network where the forwarding keys are valid MAC addresses. We

vary the total amount of addresses stored in the FIB and observe the throughput. The

addresses are sampled from both Zipfian and uniform distributions. The forwarders have

lower throughput under uniform key distribution because the memory access pattern

exhibits a lower locality. OFW performs the best among the three on both single thread

and two threads. While the single thread OFW almost reaches the forwarding capacity,

two threads of OFW are sufficient to reach the forwarding capacity for a 16M FIB.

Throughput for Zipfian distribution grows for all three forwarders because their memory

access patterns have more locality. CFW on two threads also reaches the forwarding

capacity. For all cases, OFW and CFW perform >2x better than BFW.

L7 throughput. Figures 3.34 to 3.37 show the throughput of BFW, CFW,

and OFW in an L2 network where forwarding addresses are valid resource URLs; and

Figures 3.40 and 3.41 show the throughput when addresses are all invalid. We change

the total amount of addresses stored in the FIB and observe the throughput in terms of

million queries per second (Mqps). Valid addresses are sampled from both Zipfian and

uniform distributions. While uniform key distribution is worse than Zipfian distribution

for BFW, CFW, and OFW, CFW performs the worst when addresses are all invalid

because CFW is forced to try all possible slots to conclude the absence for each alien

address. OFW shows the highest throughput for most experiments mainly because

67



of its quick lookup and its independence from address validness. Other interesting

observations are: 1) All three forwarders failed to reach the forwarding capacity because

for each packet, they need to calculate the digest of its destination URL, which is much

longer than a MAC address; 2) L7 lookup is bounded by the bus bandwidth between

CPU and memory. The reason is listed as following: 1) L7 routing capacity is much

larger than what the three forwarders achieve, which means the PCIe bandwidth is not

the bottleneck; 2) The throughput does not grow when we add more threads for all

three forwarders, which means computation is not the bottleneck.

3.7.4 Summary of comparison.

Throughput. OFW and OGW exhibit >2 times lookup throughput com-

pared to CFW and CGW in L2 and for alien keys in L7. In other cases, the throughput

of OFW and CFW are similar. The lookup throughput of BFW is < 10% compared to

the other two.

Memory footprint. (Evaluated and compared in Section 3.5.4) When alien

addresses are not a concern, such as in core switches, OFW costs the least memory. The

memory cost of CFW and BFW are similar. When we need to filter alien addresses,

such as on gateway switches, the memory cost of OFW is higher than that of CFW or

BFW.

Incremental update. OFW and CFW can perform > 10M updates per

second, while BFW is much slower than them.

Construction time. CFW and OFW are about 5x slower than BFW in CP
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construction but still takes < 1sec for n = 1M. However, the key issue is that the CP

of CFW and OFW can be reused for DPs on different nodes, providing high scalability.

For BFW in L2, every node needs a completely different construction process.

Performance in real networks. OFW provides higher throughput than

CFW and BFW in real packet forwarding. Compared to the lookup for valid addresses,

there is less throughput drop in OFW than the other two for invalid addresses. The FIB

using OFW can reach full bandwidth using a single thread. As L7 forwarding involves

much longer IDs than L2 forwarding, all methods cannot reach the forwarding capacity

due to memory bandwidth between CPU and memory.

3.8 Insights and Discussion

Design consideration by network operators. For networks using name-

based forwarding, there are two types of forwarding nodes: gateway nodes and core

nodes. On gateway nodes, CFW provides the lowest false positives rates given the

same memory budget. Hence, CFW and potentially other Cuckoo variants in the future

are ideal design choices for gateway nodes. On core nodes, false positives are not a

consideration. OFW provides the highest throughput and lowest memory cost compared

to other solutions. Hence, OFW and potentially other Othello variants are ideal design

choice for core switches/routers. In all situations studied in this proposal, BFW, the

Bloom filter based solution, is not the best choice.

Further optimization. From the results, the performance of Cuckoo Filtable
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downgrades dramatically compared to Cuckoo hashing. Design optimizations are pos-

sible but hard. It is difficult for a Cuckoo hashing based FIB to store a small number

of addresses to achieve memory efficiency while avoiding valid key collisions, which lead

to key shadowing described in § 3.4. The implementation of collision avoidance sets

at Level 1 of CFW FIB can be further improved because we store full keys in the sets

instead of memory addresses of the keys, which may waste memory and, in turn, down-

grade the construction performance. An adaptive Cuckoo filter (ACF) [70] is a filter

for approximate membership queries, rather than a key-value lookup table that can be

used for forwarding. It costs more space to resolve false positives, and it cannot avoid

valid key collisions, which lead to key shadowing.
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Chapter 4

Ludo hashing: Compact, Fast, and

Dynamic Key-value Lookups for

Practical Network Systems

4.1 Overview

Key-value lookup engines running in fast memory are crucial components of

many networked and distributed systems such as packet forwarding, virtual network

functions, content distribution networks, distributed storage, and cloud/edge comput-

ing. These lookup engines must be memory-efficient because fast memory is small

and expensive. This work presents a new key-value lookup design, called Ludo hash-

ing, which costs the least space (3.76 + 1.05l bits per key-value item for l-bit values)

among known compact lookup solutions, including the recently proposed partial-key

Cuckoo and Bloomier perfect hashing. In addition to its space efficiency, Ludo hashing
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works well with most practical systems by supporting fast lookup, fast updates, and

concurrent writing/reading. We implement Ludo hashing and evaluate it with both

micro-benchmark and two network systems deployed in CloudLab. The results show

that in practice, Ludo hashing saves 40% to 80%+ memory cost compared to existing

dynamic solutions. It costs only a few GB of memory for 1 billion key-value items and

achieves high lookup throughput: over 65 million queries per second on a single node

with multiple threads.

4.2 Related Work

In-memory key-value lookup engines with small memory footprint support vi-

tal functions of many networked and distributed systems, including network forwarding

[104, 111, 107, 110], distributed storage [76, 97], cloud load balancers [67], and content

distributions [43, 65]. Space efficiency is the most significant requirement of these appli-

cations because they are all running in fast and small memory, such as cache, DRAM,

or ASICs, in order to serve frequent lookups.

Hash Tables are conventional tools for in-memory key-value lookups. Most

existing hash table implementations require storing the complete keys. In particular,

Cuckoo Hashing [74] could achieve O(1) lookup time in the worst case and amortized

O(1) update time. The construction and lookup of the (2,4)-Cuckoo hashing [74] is

introduced in § 2. Many recent system designs choose the (2,4)-Cuckoo to achieve high

memory utilization and fast lookups, such as the memory cache system MemC3 [40],
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the software switch CuckooSwitch [111], the LTE FIB ScaleBricks [110], and the cloud

load balancer Silkroad [67]. The amortized insertion time of (2,4)-Cuckoo is proved to

be constant [68, 98] and empirically shown [74, 40]. The insertions are proved to be

successful asymptotically almost surely (a.a.s.) for load factor < 98.03% and n → ∞

[31, 45].

Partial key Cuckoo hashing (PK Cuckoo) costs less space by storing the

key digests instead of full keys. A basic version of PK Cuckoo is proposed in [41], and a

more compact version, Vacuum filter, is proposed in [95]. SILT [64], an index for flash

storage, proposes to use 15-bit key digests instead of the full keys. Using key digests is

not a trivial solution. Short key digests incur hash collisions and false mappings, and a

nontrivial two-level design is proposed in [87] to address the collisions.

EMOMA [79] is a lookup data structure with a full version of (2,4)-Cuckoo

holding the key-value mappings. A counting block bloom filter (CBBF) is placed in the

cache to maintain the bucket choice of each key, such that each lookup costs exactly one

off-chip memory load. There are three major differences between Ludo and EMOMA:

1) Ludo aims to reduce the memory cost while EMOMA requires significantly more

memory cost – even higher than a full (2,4)-Cuckoo. The key reason is that Ludo

resolves collisions within a bucket via a very short seed instead of storing full keys in

EMOMA. 2) EMOMA optimizes the lookup throughput while Ludo does not. 3) Ludo

records the bucket choice of all keys without any error, while EMOMA uses a CBBF,

which exhibits false positives and counter overflows. 4) On a single insertion, keys in

EMOMA may be inserted into and deleted from the CBBF multiple times, which hurt
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the update speed.

Bloomier filters [35, 34] are instances of minimal perfect hashing (MWHC)

[26, 66, 35, 34, 107], originally proposed for static lookup tables. Othello Hashing is a

data structure and a series of algorithms based on Bloomier filters designed for dynamic

forwarding information bases [107]. Othello hashing includes both the lookup structure

running in fast memory such as switch ASICs and a maintenance structure running in

resource-rich platforms such as servers. The construction and lookup of Othello hashing

is introduced in § 2. Coloring Embedder [101] is a recent work with a similar design to

Bloomier. Its space cost is also close to that of the Bloomier and Othello.

SetSep [42, 110] is a lookup table that uses brute force to resolve collisions.

Suppose the key set has cardinality n, and all values are of the same length l. During

SetSep construction, a global hash function distributes the keys across ⌈n/4⌉ buckets,

each of which contains 4 keys on expectation, with high variations. 256 consecutive

buckets form a block, and blocks are built independently. To build a block, a greedy

algorithm is used to map its buckets to 64 groups, each holding 16 keys on expectation.

For the i-th value bit in each group, a 16-bit array m and an 8-bit hash seed s are

found by brute-force, such that for every key value pair (k, v) in the group, m[hs(k)] =

vi, where v0, v1, · · · , vl−1 are bits of v. All key-value items of the failed groups are

put into a small plain hash table. Ludo hashing provides two major advantages over

SetSep. First, Ludo hashing can be updated in O(1) complexity, while a single insertion

into SetSep may cause reconstructions of the involved group, block, or even the whole

data structure. The main challenge of its updates is that SetSep has no theoretical
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or empirical bound on the average number of group/block/global level reconstructions

per update. Experimental results show that SetSep takes 10x construction time and

>1000x update time compared to Ludo. Second, Ludo hashing has the smallest space

cost among the aforementioned algorithms when the value length is > 7, which is the

case for most applications.

4.3 Problem Definition and Models

We formally define the problem in this work. We are given a set of key-value

items S and |S| = n. Each item in S is a tuple 〈ki, vi〉 of key ki and value vi. Every key

is unique in S. All values have the same size (i.e., number of binary digits), denoted by

l. The goal of this work is to find a key-value lookup engine that provides the following

functions with minimized time and space costs.

1. The lookup function query(k) returns the corresponding value v for the query key

k, where 〈k, v〉 ∈ S.

2. The construction function construct(S) constructs a table for the set S.

3. The insertion function insert(k, v) inserts the item 〈k, v〉 to the current table.

4. The deletion function delete(k) deletes the item with key k from the current

table.

5. The value change function remap(k, v′) changes the value of the item with key k

to v′, in the current table.
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System model. The proposed Ludo hashing includes the lookup structure

and maintenance structure.

• The lookup structure in fast memory focuses on the lookup function. Its space

cost and lookup time are minimized.

• The maintenance structure maintains the full key-value state and performs con-

struction and update functions. It can run in a different thread or even on a

different machine from where the lookup structure runs.

• Necessary update information will be constructed by the maintenance structure

and sent to the lookup structure. The time complexity of each update is an

important metric.

For space-efficient lookup engines that do not store full keys, a separate mainte-

nance structure is necessary to support updates. Otherwise, update correctness cannot

be guaranteed. In practice, the lookup structure is hosted in fast and small memory,

while the maintenance structure can be hosted in slower but larger memory. This model

has been extensively used in system designs [64, 60, 43, 65, 107, 108, 67, 110, 42].

4.4 Design of Ludo hashing

4.4.1 Challenges and the main idea

A typical MPHF consists of two-level hashing [27]. The first level hashing

g : U → [0, r − 1] divides the entire set K of n keys randomly into r buckets. The
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numbers of keys in all buckets vary significantly, and the maximum number of keys in a

bucket is much bigger than n/m based on the ‘balls into bins’ results [82]. The buckets

are sorted in descending order of their size. In this order, the second level finds a hash

function fi : U → [0,m − 1] for each bucket Bi such that the hash result of every key

in Bi does not collide with any other key in all previous buckets. Let ǫ = m/n− 1 and

λ = n/r, the time complexity of the above construction is O(n(2λ + (1/ǫ)λ)) [27]. In

most cases, an insertion will cause the reconstructions of O(r) second level hashes fi.

Our main contribution is to allow each update to finish in O(1) time by a

novel utilization of (2,4)-Cuckoo and Othello, which has not been discovered before.

Ludo first uses (2,4)-Cuckoo and Othello together to build a function F that divides

the keys into r buckets, each of which has up to 4 keys, and then find a seed to resolve

the collisions among each bucket. This design provides two unique benefits: 1) each

insertion only affects O(1) buckets (proved by [68, 98] and empirically < 6 among all

our experiments), while in other MPHFs, this number is unbounded; 2) within each

bucket, Ludo only needs to find a hash that maps four keys to [0, 3] without collision,

which is significantly easier than other MPHFs that need the results to be collision-free

across all buckets.

Step 1: Uniform-sized grouping. By observing the (2,4)-Cuckoo Hash

Table shown in Fig. 2.2, we find that it includes a number of buckets, each containing

up to 4 keys. This organization is close to our requirement of uniform-sized grouping.

However, each key could be placed to any of its two alternate buckets based on the

insertion process of (2,4)-Cuckoo. If we use a simple hash function to map keys to
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buckets, then the sizes of buckets suffer from a high variation. Resolving collisions of

different numbers of keys will cause a significant waste of space, as shown in § 4.4.6.

Hence, our idea is to combine a Bloomier filter [33, 107] and the bucket information of

keys in the (2,4)-Cuckoo as the uniform-sized grouping function F . In a (2,4)-Cuckoo,

each key k can only stay in one of the two alternate buckets, indexed h0(k) and h1(k).

Given an already constructed (2,4)-Cuckoo, we only need a Bloomier filter to maintain

only 1 bit of information per key: whether the key stays in the bucket h0(k) or h1(k).

Recall that Othello Hashing is a dynamic extension to the original Bloomier filter, and

Othello supports key-value lookups with 100% correctness using 2.33 bits per key for

1-bit values [107]. Hence, we need 2.33 bits per key to locate each key to the bucket

holding it in a constructed (2,4)-Cuckoo.

Step 2: Collision resolution. Given a bucket B of four keys, we want to

find a function F ′

B that maps the four keys to four different slots without collision.

In this way, we can match all keys to their corresponding values without storing keys.

Note that we may sample sufficiently many independent random hash functions from

a universal hash function family H. For example, Google’s Farm Hash [2] accepts

a ‘seed’ as input, and different seeds will result in independent hash functions. The

probability that a randomly seeded hash function maps 4 keys to 4 slots without collision

is 4!/44 = 3/32. Therefore, by trying different hash functions with brute force, we can

find a hash function that maps the 4 keys without collision in a limited number of

attempts. Once a function is found for a bucket, the seed value is stored along with

the bucket. In our implementation, the seed costs 5 bits, i.e., 1.25 bits per key — a

78



significant space saving comparing with storing the keys.

4.4.2 System overview

The complete Ludo hashing includes two components: the Ludo lookup struc-

ture and Ludo maintenance structure. The Ludo lookup structure, considered as the

data plane, runs in fast memory and supports lookup queries. The Ludo maintenance

structure, considered the control plane, can run in slower memory, possibly on a sepa-

rate machine. The lookup structure receives update information from the maintenance

structure and updates accordingly.

Ludo lookup structure. As shown in Fig. 4.1, a Ludo lookup structure is a

tuple 〈O,B, h0, h1,H〉 where B is an array of buckets, each bucket B[i] includes a hash

seed s and 4 slots storing up to 4 values; h0 and h1 are two uniform hash functions; O

is an Othello lookup structure that returns 1-bit value to indicate whether a key k is

mapped to bucket h0(k) or h1(k); and H is a universal hash function family. The query

of a key k will output the value vk. Ludo lookup structure will query two locators in

turn: the bucket locator to indicate the bucket that stores the value, and the slot

locator to determine the slot that stores the value. The bucket locator will lookup k in

Othello and get a result b ∈ {0, 1}. Then v is in bucket hb(k). The slot locator computes

t = Hs(k) where s is the seed stored in this bucket and t ∈ {0, 1, 2, 3}. Finally, the value

in slot t of bucket hb(k) is returned as vk.

Ludo maintenance structure. As shown in Fig. 4.2, a Ludo maintenance

structure is composed of two main parts: 1) a complete (2,4)-Cuckoo holding all in-
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Figure 4.1: Lookup workflow of Ludo lookup structure

serted key-value items, and each bucket stores a seed for the slot locator; 2) an Othello

maintenance structure that stores whether each key is in bucket h0(k) or h1(k). It can

produce an Othello lookup structure used in the bucket locator. The seed s is found by

brute force such that Hs maps the keys in the bucket to different slots without collision.

We name the full (2,4)-Cuckoo as the ‘source Cuckoo table’ of the lookup structure.

To generate the Ludo lookup structure, the maintenance program first generates an

Othello lookup structure and sets it as the bucket locator. Then it builds a table where

each bucket includes the seed and only the four values in the order of the Hs(k). The

Ludo maintenance structure supports updates including item insertions, deletions, and

value changes (Sec. 4.4.8) and will reflect them in the lookup structure. Multiple Ludo

lookup structures can be produced from and associated with the maintenance structure

to receive update messages and update locally.

We define the load factor of a Ludo hashing as the number of slots storing

values to the number of total slots. We use load factor 95% as the target load factor of
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Figure 4.2: Ludo maintenance structure

Ludo. The total space cost of Ludo hashing is 3.76 + 1.05l for l-bit values.

4.4.3 Ludo lookup structure

We show the pseudocode of the Ludo hashing lookup algorithm in Algorithm 1.

This algorithm is simple and fast. It contains two steps: querying the bucket locator

and the slot locator, respectively. Each step takes O(1) time.

4.4.4 The bucket locator

The bucket locator, implemented with an Othello lookup structure, main-

tains the bucket location of all inserted key-value items and serves in the uniform-sized

grouping step. Given a query key k, the Ludo lookup structure locates k to a bucket by

querying Othello. The return value b is 0 or 1, denoting the value of k is stored in the

first alternate bucket h0(k) or the second one h1(k). The proposed bucket locator has

the following properties.

1) It locates every inserted key-value item to the bucket holding it without
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Input: The Ludo lookup structure and the key k

Output: The lookup result v of k

begin

// Step I: compute bucket location

1 b← Othello lookup result of k

2 B ← hb(k)-th bucket of the table

// Step II: compute slot location

3 s← seed stored in B

// Hs(k) ∈ {0, 1, 2, 3}

4 v ← B.slot[Hs(k)]

end

Algorithm 1: Ludo hashing lookup algorithm

error.

2) It costs amortized O(1) time for dynamic updates, at high throughput in

practice (over 10 million operations per second [87]). During updates, it still supports

fast lookup [107].

3) The current design is a good tradeoff among solutions that are fast in lookup

and updates and compact in mapping keys to {0, 1}, such as SetSep [42] and Bloom

filter cascades [60].

We compare their space costs in Fig. 4.3. Note that the filter cascades [60] cost

different space when the distribution of keys to 0 and 1 changes. We collect the statistics

of a (2,4)-Cuckoo with 100 million keys from 10 independent runs. The distribution of

items stored in the bucket (h0(k), h1(k)) is (0.7175, 0.2825) with the standard deviation
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of 0.0008. By looking at 0.28 in Fig. 4.3, SetSep and filter cascades cost less space than

Othello by about 0.3 bits per key. The reason for choosing Othello is that SetSep is

difficult to update, as shown in § 4.6, and filter cascades are slow in lookup because each

lookup costs a higher number of memory loads on average. Fig. 4.4 shows the lookup

throughput for different numbers of key-value items, where each key is a 32-bit integer,

and each value is 0 or 1 at the probability 0.7175 or 0.2825, respectively. Perfect hashing

algorithms like CHD [27] and RecSplit [39] are also compared here, but they are not

compact enough because an additional bit array is required to store the values, which

costs 1 bit per item.

4.4.5 The slot locator

After locating the bucket, Ludo hashing retrieves the bucket content that in-

cludes a seed s and 4 value slots. Ludo hashing then calculatesHs(k) and gets a result in

range {0, 1, 2, 3}. H is a universal hash family, and each seed produces an independent
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random hash function. Finally, it returns the value stored in the Hs(k)-th slot.

It should be noted that the order of the values in each bucket of a Ludo lookup

structure does not necessarily follow the order in the source Cuckoo table of

the Ludo maintenance program. The order of the key-value items in a bucket of the

source Cuckoo table is determined by the insertion and relocation processes. In Ludo

lookup structure, however, we only need a collision-free key-to-slot mapping, and

the order of keys makes no difference.

The brute-force seed searching starts from s = 0. It increases s by 1 at each

time until Hs(·) maps the 4 keys of the bucket to {0, 1, 2, 3} without collision (called a

valid seed). This design is much less complex than finding the seed that produces the

same order of the items in the source Cuckoo table. Our experimental studies show that

it saves around 4.6 bits per key and use 4.2% time.

For O(1) time lookups, each bucket should have the same size. Hence, the

space to store the seed in every bucket should also be the same. For e-bit seed space, if

the brute-force searching cannot find a valid seed by up to value 2e − 2, the seed space
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Figure 4.6: Possible Ludo variants: Single, Separate, and Grouped

will store 2e−1 (i.e., all 1 bits) to indicate that it is an overflow seed. Overflow seeds will

be stored in a separate but much smaller table. We show the memory cost breakdown

of seeds in buckets and the overflow table for different seed lengths in Fig. 4.5. Our

implementation uses 5-bit seeds for minimal space cost.

The bucket and slot locators in total use 3.76 bits per key, including 2.33 bits

for the bucket locator, 1.31 bits for the slot locator (assuming 95% load factor), and

0.12 bits for the overflow table. Each lookup takes 4 hash function calls and 3 memory

loads — small constant time.

4.4.6 Design optimizations

The current design of Ludo lookup structure is chosen from a number of vari-

ants that achieves similar tasks, as shown in Fig. 4.6. We show the current design is

more optimized than the others in the following.

Recall that each key can be mapped to two alternate buckets h0(k) and h1(k).

For each bucket B, we define the ‘T0 keys’ of B as the keys whose h0(k) buckets are B

and the ‘T1 keys’ as the keys whose h1(k) buckets are B.
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Design option 1: Single locator (‘Single’). We do not use the bucket

locator. At each bucket, a hash seed is stored. For each key k, we always retrieve the

seed s stored in the bucket h0(k). If the value of k is stored in the bucket h0(k), Hs(k)

should be the correct slot position from 0 to 3. If the value is in the bucket h1(k), Hs(k)

should be from 4 to 7, indicating one of the 4 slots in bucket h1(k). Hence, the seed s

of bucket B is used for all T0 keys of B.

This method is simple to implement and requires fewer memory loads for each

lookup: only one memory load with 71.75% possibility versus 3 for Ludo. However, the

numbers of T0 keys of all buckets are not uniformly distributed and could possibly have

high variation. In our experiments of 100 million items, some buckets may have > 20

T0 keys, and thus the brute force process could be very time-consuming and result in

very long seeds. This introduces a dilemma: setting a short seed length leads to a

large portion of seed overflow while setting a long seed length incurs big memory waste.

Design option 2: Separate seeds (‘Separate’). This method stores two

hash seeds s1 and s2 in each bucket: Hs1(·) computes an 1-bit value for all tier-1 keys,

indicating whether the key is in bucket h0(k) or h1(k); and Hs2(·) maps all keys in this

bucket to 4 slots without collision. Hence, s1 works as the bucket locator, and s2 works

as the slot locator. Compared to the Ludo hashing design, it moves the time and space

costs of Othello to the calculation of Hs1(·) and the storage of s1. However, s1 still

needs to handle T0 keys with large variations.

Design option 3: Grouped buckets (‘Grouped ’). This method applies

an additional optimization to save space for the seed s1 in Separate. We combine the
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space of 4 consecutive buckets as a group and use a shared space for their s1 seeds (4

is a number chosen for good cache locality and space saving). The shared space is used

to store a long seed to filter all T1 keys in all 4 buckets. This method is designed to

amortize the large variation of T0 keys in every bucket.

Design comparisons. We conduct the experiments of the 4 design choices

Single, Separate, Grouped, and Ludo hashing, and compare their results. We generate

1 million uniformly distributed 32-bit integers as keys and set the load factor of Ludo

hashing to 95%. To make the evaluations finish in a reasonable time, we set an upper

bound 216 for the number of seed attempts per bucket. We denote the seed length for

the bucket locator of Separate as ‘Separate-bucket ’, the seed length for the slot locator

of Separate as ‘Separate-slot ’, and the seed length per bucket for the bucket locator of

Grouped as ‘Grouped-bucket ’. Note that the seed lengths of the slot locators of Ludo

hashing and Grouped are both equal to Separate-slot.

Fig. 4.7 shows the cumulative distribution of the memory overhead (seed size)
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of each bucket, and Fig. 4.8 shows the number of attempts to find the right seeds for

each bucket. Single requires much longer seed sizes and higher computation overhead

than other solutions. Note that Grouped fails to construct more than 30% groups in

216 attempts, as shown in Fig. 4.8. The sudden increase of the Grouped curve indicates

the bound of this design. For Separate to work, the seed of the bucket locator requires

8 bits, allowing a small portion of overflow. This cost is thus about 2.11 bits per key,

slightly less than using Othello. However, as shown in Fig. 4.8, Separate takes 3x time

to compute the seeds compared to Ludo. Hence we believe the current design selects a

good tradeoff.

Overflow seeds. As shown in Fig. 4.7, more than 98% slot locator seeds

can be stored in 5 bits. Hence we set the seed length in each bucket to 5 bits. If a

seed is larger than 30, it is marked overflow by storing the seed as 31. The map from

the bucket index to the overflow seed is inserted into a small (2,4)-Cuckoo, called the

overflow table, both in the maintenance structure and the lookup structure. According

to the experiments in § 4.6, we show two facts: 1) We have never observed any seed that

needs more than 8 bits. Hence, the value length is just 1 byte in the overflow table; 2)

The overflow rate is always around 1.2% and independent from the number of items in

the table. The amortized cost of overflow seeds is around 0.12 bit per key.

Insertion fallback table. Recall we set the target load factor of the source

Cuckoo table to 95%, which is a load factor in our experiments that never introduce

a single insertion failure in breadth-first search (BFS) within 5 steps. For the strong

robustness as a system, we set aside another small hash table to store the full key-value
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mapping for all items failed to be inserted, although in practice we have never seen

failed insertions during the experiments for load factor < 95%. The fallback table is

similar to the stash approach used in Cuckoo [58, 57]. We store a fallback bit along

with ha and hb. At the beginning of each lookup, if the fallback bit is 1, it means

the fallback table stores some items. Hence the fallback table is first queried, and the

corresponding value is returned if there is a match. If the fallback bit is 0, the query

goes through the normal lookup procedure, as shown in 4.1. In theory as long as the

load factor < 98.03%, the insertions are successful asymptotically almost surely (a.a.s.)

assuming n → ∞ [45, 31] as explained in Section 4.4 and Appendix A.2.2. This is the

main reason why we never encounter a single insertion failure during our experiments.

When the load factor reaches an application-dependent threshold (such as 94%) during

system execution, the Ludo maintenance program will start to build a new Cuckoo table

with a higher capacity, which will be used to replace the original lookup table as soon as

its load factor exceeds 95%. The implementation of this fallback table can be standard

hash tables such as C++ unordered map. The rebuild happens in the maintenance

server, not on the query devices.

Why (2,4)-hash table? We conclude (2,4) is the best configuration for

Ludo, based on the following reasons. 1) (2,4)-Cuckoo is almost optimal in load factor

(maximum load ≈ 98% in theory [45, 31] and > 96% in practice). 2) (2,4)-Cuckoo

minimize the space costs of the bucket and slot locators. Recall the bucket locator costs

2.33⌈log2 d⌉ bits per key, where d is the number of alternative buckets. Any increment

in d will cost at least 2.33 bits per key, over 60% of the current overall overhead 3.72
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bits per key. Besides, 5 or more slots in one bucket contribute little to the load factor

[45, 31], but the expected number of slot locator tries grows from ∼ 44/4! ≈ 10.7 to

∼ 55/5! ≈ 130 or even higher.

4.4.7 Ludo hashing construction algorithm

We design the Ludo maintenance structure to support fast construction and

updates to the Ludo lookup structure. The construction takes O(n) for n key-value

items, and each update takes amortized O(1) time.

As shown in Fig. 4.2, the Ludo maintenance structure includes 1) a (2,4)-

Cuckoo, which maintains all the inserted key-value items and decides their key-to-bucket

mapping; 2) a seed in each bucket to determine the slot positions of the values; 3) an

Othello maintenance structure to keep track of the current Othello lookup structure.

As shown in Fig. 4.9, constructing a Ludo maintenance structure and Ludo lookup

structure from scratch consists of the following steps.

Step 1. We start a standard (2,4)-Cuckoo construction. All key-value items

are serially inserted into the Cuckoo table, whose size is estimated by a load factor 0.95.

Step 2. For every bucket, a valid seed s is one that hashes keys to slots

without collision. Numbers 0, 1, · · · , 30 are tested in sequence to see if any is a valid

seed. If all s from 0 to 30 are invalid, the algorithm stores 31 to indicate an overflow.

Step 3. For every key, get the 1-bit bucket placement information: 0 indicates

the item is stored in bucket h0(k), and 1 indicates it is stored in bucket h1(k). The

algorithm then constructs the Othello maintenance structure O to track this information
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Figure 4.9: Ludo construction algorithm

for all keys.

Step 4. Construct the Othello lookup structure by simply copying the two

data arrays from the Othello maintenance structure. Hence, the Othello lookup and

maintenance structures give the same lookup result for every input key.

Step 5. Construct a table with the same number of buckets as the source

Cuckoo table. For each bucket in the source Cuckoo table (called the source bucket),

copy the seed s to the bucket in the same position as the target table (called the target

bucket). For each key-value item 〈k, v〉 in the source bucket, copy v into the Hs(k)-th

slot of the target bucket.
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Figure 4.10: Ludo hashing system at runtime

4.4.8 Ludo hashing update algorithm

As a part of a practical system, Ludo hashing at runtime consists of two kinds

of processes: the Ludo maintenance program holding a Ludo maintenance structure

to maintain the full system state, possibly duplicated for robustness, and the Ludo

maintenance program running as multiple instances (e.g., multiple lookup servers or

routers), as shown in Fig. 4.10. The Ludo maintenance program receives update reports

from applications, constructs update messages according to its current state, and sends

them to all Ludo lookup programs. Each Ludo lookup program answers the lookup

queries from applications and updates its memory according to the messages from the

Ludo maintenance program. Similar to other key-value lookup tables, Ludo hashing has

three kinds of updates: key-value item insertions, item deletions, and value changes. We

discuss the three update algorithms separately.

Item insertion. The Ludo maintenance program takes three steps to con-

struct the update message for an item insertion. 1) It first inserts this key-value item

〈k, v〉 into the source Cuckoo table and records the cuckoo path. The cuckoo path
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of an item insertion is defined as the sequence of the positions of key relocations,

where each position is determined by (bucket index, slot index) [40]. In the exam-

ple of Fig. 4.11, 〈k9, v9〉 is inserted into the table. 〈k2, v2〉 is relocated to from position

(b4, s3) to (b2, s3) and 〈k8, v8〉 is relocated from (b2, s3) to (b0, s3). Hence the cuckoo

path is (b4, s3), (b2, s3), (b0, s3). 2) For each relocated key-value item, its position is

switched between its alternate buckets h0(k) and h1(k). In Fig. 4.11, both k2 and k8

have switched between their alternate buckets. The ludo maintenance program updates

the corresponding value in the Othello maintenance structure and makes the changes

in the Othello lookup structure. 3) For each modified bucket, the Ludo maintenance

program finds a new slot locator seed by brute force. The pseudocode is shown in

Appendix A.2.1.

When the Ludo maintenance program finishes updating by the above steps,

it creates an update message including three fields: type tells the update message type

(insertion, deletion, or change), val is the value of the new item for insertion, and

update sequence is a sequence of nodes, representing the updates applied to the Ludo

lookup structure. Each node in update sequence corresponds to a position in the cuckoo
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path and includes the following: the bucket index bIdx, slot index sIdx, the new seed of

this bucket s, the new order of values in the slots of this bucket vodr, and the changes

made to the Othello lookup structure Ochg. The pseudocode of the update steps is

shown in Appendix A.2.1.

All associated Ludo lookup programs receive the same update message and

follow the update sequence in that message to perform the insertion. Each Ludo lookup

program traverses the nodes of the update sequence reversely and takes three steps at

each node: 1) Copy the bucket indicated in the node to a temporary memory. 2) Write

the new seed into the bucket, reorder values according to vodr. 3) Atomically write the

bucket back to the table and apply the change to the Othello lookup structure. The

pseudocode of the update steps is shown in Appendix A.2.1. The compiler barriers and

version array are necessary for concurrent reads during updates.

Item deletion. In the Ludo maintenance program, deletions serve for space

reclaim for future new items, and a deletion is achieved by deleting the item in the source

Cuckoo table and the associated bucket location information in the Othello maintenance

structure. There is no change to the Ludo lookup structure. If the number of items is

lower than a threshold, e.g., the load factor < 80%, a reconstruction can be triggered

on the maintenance program to reduce the size of the lookup structure. During that

process, the lookups are still on the existing lookup structure.

Value change. A value change only involves an update to a single slot and

does not require any change in the bucket/slot locators. The Ludo maintenance program

will perform a lookup in the source Cuckoo table to locate the bucket/slot position of
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the item, change the corresponding value, and send out a value change message to the

lookup structure, specifying the new value and its location in the target table. The

Ludo lookup program will perform the value change according to the message.

Consistency under concurrent read/write. We design Ludo hashing as

a dynamic key-value lookup table under the single writer multiple reader model. To

make the Othello lookup structure work well under concurrency, all modifications to

the nodes belonging to the same key should appear atomic to the lookup threads. To

allow concurrency in the lookup table, the value reordering should use the reverse order

in the update sequence, and sequential writes of a single bucket should be atomic to

the lookup threads. We extend the version-based optimistic locking scheme proposed

in [40] and [107] for the target Cuckoo table and Othello lookup structure, respectively.

Besides, we use the lock striping method proposed in [40] to reduce the size of the

version array from the number of buckets to a constant 8192 at a 0.01% false retry rate.

The pseudocode is shown in Appendix A.2.1.

Ludo reconstruction. In very rare cases, such as table resizing, the Ludo

maintenance program needs to reconstruct the Ludo lookup structure. During the re-

construction time, the data plane still queries the old lookup structure and use the

fallback table to guarantee correctness. When reconstruction finishes, the new lookup

structure is sent from the maintenance program to the data plane. The update oper-

ations on the lookup structures are atomic. The new lookup structure is loaded from

the update message, and the old lookup structure is immediately discarded. Since then,

the queries will be based on the new lookup structure.
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Parallel updates. The update algorithm on the maintenance program can

be at some level of parallelism. If two updates do not touch the same bucket, then

they can be computed in two threads without violating correctness. The requirement

is to have a shared array to store the locks of the buckets. If a bucket is currently in

writing, the lock is set to 1, and other threads must wait to visit this bucket. We do

not implement the parallel version of updates because the current update speed (>1M

operations per second) is sufficiently high.

4.5 Analysis

We summarize the performance analysis of Ludo hashing: 1) The space cost of

the Ludo hashing is 3.76+ 1.05l bits per item; 2) Each lookup costs 3.02 memory loads

on average; 3) Each insertion, deletion, or value change costs O(1) time on average; 4)

the communication cost for each update is O(1) on average. The following presents the

details.

4.5.1 Space cost of Ludo lookup structure

A Ludo lookup structure consists of three parts: the Bloomier filter for the

bucket locator, the lookup table storing values and seeds, and a small table for the

overflow seeds. The Bloomier filter costs 2.33 bits per key. The seeds cost 5 bits per

bucket, i.e., 1.25 bits per key. The overflow table contains 1.2% of the seeds statistically,

and each entry in the overflow table costs 29 + 8 = 37 bits. Since the load factor of the

Ludo lookup structure is 95%, it costs 1.05l bits per item, where l is the length of each
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value in bits. In total, the average memory cost per key-value item is: 2.33+5×1.05/4+

37 × 1.05 × 0.012/4 + 1.05l = 3.76 + 1.05l bits. The space cost of the fallback table

is O(nf ), where nf is the number of fallback keys and nf → 0 based on the insertion

correctness analysis below. Also, our experiments never find a single fallback key. When

the lookup structured is updated, the load factor may be set to an application-specific

threshold (such as 94%). Hence the space cost may increase to 3.78 + 1.06l.

4.5.2 Lookup overhead

A key-value lookup in Ludo lookup structures always requires 3 memory loads:

two for the Bloomier filter, and one to fetch the bucket holding the value. If the seed

overflows (with probability 1.2%), another 1 or 2 random loads are required in the

overflow table to get the seed. Hence we get the average number of memory loads

3 + 0.012× (1× 0.71 + 2× 0.29) = 3.016.

4.5.3 Insertion correctness

From existing theoretical results of random graphs presented by Cain et al.

[31] and independently Fernholz and Ramachandran [45], it has been proved that all

n keys can be inserted into a (2,4)-Cuckoo table asymptotically almost surely (a.a.s.)

such that each bucket has at most 4 keys if the load factor < 98.03%, assuming uniform

hashing and n→∞. This result has been confirmed by later studies [48, 46, 61, 98]. A

detailed explanation can be found in the Appendix A.2.2. In practice, our design sets

the load factor threshold to 95% to avoid hitting the tight threshold. In fact, we have
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not observed a single failure case among over 20 billion insertions during our tests.

When the load factor < 95%, the insertions are unlikely to fail from the above

results. When the Ludo maintenance program detects the current load factor reaches

94%, it will start to build a new Cuckoo table with a higher capacity. The insertion

failures (if any) will be stored in the fallback table. This design guarantees correctness

via these properties: 1) the runtime load factor will not be higher than 95% in most

time; 2) even if the load factor temporarily exceeds 95% while the rebuild of Ludo with

higher capacity has not finished, most insertions are still successful as the theoretical

threshold is 98%; 3) even if there is an insertion failure, the fallback table is able to

store it and guarantees correctness of lookups.

4.5.4 Update overhead

Item insertion. The time complexity of each insertion to Ludo includes three

parts: 1) the time to add the item to Othello; 2) the number of nodes in the update

sequence of each Cuckoo insertion, and 3) the time of updating the bucket of each node.

We show the time of each insertion to Ludo is amortized O(1) and independent of n

based on the facts that all these three parts are either O(1) or amortized O(1). Inserting

an item to Othello is proved to be amortized O(1) [107]. From the theoretical results in

[68], for a (2,k)-Cuckoo with load factor 1/(1 + ǫ) and k ≥ 16(ln(1/ǫ)), each insertion

costs amortized constant time ((1/ǫ)O(log log(1/ǫ))) by breadth-first search [68, 98]. Our

design uses k = 4, which is less than 16(ln(1/ǫ)). There is no proof of constant-time

insertion for this setting. In our experiments, all insertions finish within 5 levels of
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breadth-first search. For each node in the update sequence, the update includes re-

compute a seed (up to 31 attempts) and re-ordering the values (up to 4). It costs

constant time for each node. We list the lengths of the update message fields. type:

1 bit; For each node in the update sequence, bIdx: 30 bits; sIdx: 2 bits; seed: 8

bits; vorder: 2 bits for each slot and 8 bits in total; Bchg contains the indices of the

influenced nodes in the Bloomier filter, 32 bits for each index.

Each item deletion or value change costs O(1) time and communication cost.

We discussed the average case above. In the worst case (very rare), an update

may cause a reconstruction of Othello, but it only happens with probability O(1/n) as

proved in [107]. The Cuckoo table will not experience reconstructions when the load

factor is no more than 95%, as shown above.

4.6 Implementation and evaluations

4.6.1 Evaluation methodology

In this section, we conduct two types of performance evaluation of Ludo hash-

ing: 1) Evaluation of the in-memory lookup tables on a commodity workstation with

two Intel E5-2660 v3 10-core CPUs at 2.60GHz, with 160GB 2133MHz DDR4 memory

and 25MB LLC; 2) Case study of Ludo hashing on two real network systems, namely

distributed content storage and packet forwarding.

We implement the Ludo maintenance structure and Ludo lookup structure

prototypes in 3272 lines of C++ code. We also make use of the open source implemen-
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tation of Cuckoo Hashing (presized cuckoo map in the Tensorflow repository [11]) and

Othello Hashing (its authors’ implementation [4]), with several major modifications to

implement bucket/slot locator, update, and concurrent reading/writing. The buckets

of Ludo lookup structure are stored as an array of 64-bit integers by carefully applying

a series of bit-wise operations, such that there is no single bit waste on storing the

buckets. The source code of Ludo hashing is available for results reproducibility [3].

We identify the following metrics to be evaluated:

1. Memory cost, the most important metric to characterize the space efficiency.

2. Speed of update to characterize the update time.

3. Lookup throughput for single thread, multiple threads, and with concurrent

reading/writing.

4. Construction time of the lookup engine.

Each data point shown in the figures is the average of 10 independent exper-

imental runs. We also use the error bars to show the standard deviation among the

10 results. For lookup throughput evaluations, the request workloads are in two types:

in the uniform distribution and Zipfian distribution. For the uniform distribution, all

items are requested with an equal probability. For the Zipfian distribution, items are re-

quested with biased probabilities, which better simulates the workload in most practical

systems. We set the Zipfian parameter to be 1.

We compare Ludo hashing with the following dynamic lookup solutions: (2,4)-

Cuckoo [74, 40], partial key Cuckoo [64, 87], Othello Hashing [107], and SetSep [42, 110].
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We implement partial key Cuckoo based on the Tensorflow repository [11], with several

major modifications to support fingerprint collision resolution. We implement SetSep

and made several extensions to allow some level of updates of SetSep after construction

– but still, reconstructions are frequently needed. We use Google FarmHash [2] as the

hash function for all experiments.

4.6.2 Evaluation of in-memory lookup engines

We denote the number of key-value items as n, the sizes of each value, key,

and digest as l, L, and L′, respectively, all in bits.

Memory cost. Fig. 4.12 shows the memory cost breakdown of Ludo lookup

structure, SetSep, Othello Hashing lookup structure, Cuckoo hashing, and partial key

Cuckoo hashing, where n = 1B, L = 100, and L′ = 30. We set l as 10 and 20. Clearly,

Ludo hashing needs the least memory cost among all designs for both l = 10 and 20.

By comparing the breakdown parts of each design, we find that Ludo uses a similar

space to store the values, which seems unavoidable for every key-value lookup table.

Note that Othello embeds the values in the two arrays A and B. Ludo saves much

space cost by reducing the key storage while maintaining a low amplification on value

storage. Despite being difficult to update, SetSep costs more space than Ludo hashing,

especially for large l.

From the analytical comparison in Fig. 1.2, Ludo always costs the least memory

when l > 3. We then compare the actual memory cost of the in-memory lookup tables

in three practical setups. 1) For the application of indexing distributed contents, we set
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Figure 4.12: Memory cost for different value lengths (1B keys)

l = 20, L = 500, L′ = 60, assuming there are 1M content storage nodes. We set n to

be 512M and 1B and show the results in Fig. 4.13. Ludo only requires 3.3GB for 1B

items, while other designs need at least 6.3GB. Here Ludo saves almost 50% memory.

2) For the application of network FIBs, we set l = 8, L = 48, L′ = 30, assuming a

switch has 256 ports and MAC addresses are used. The results are shown in Fig. 4.14.

It is known that a commodity switch has < 100MB SRAM [67], and Ludo only needs

50.5MB for 32M addresses. 3) For the application of indexing key-value storage, we

set l = 40, L = 200, L′ = 60 and show the results in Fig. 4.15. Ludo only uses 6.1GB

memory to support 1B items, while other designs need > 12GB.

Dynamic update. We evaluate the update throughput of Ludo hashing, Oth-

ello Hashing, and SetSep, which characterizes the maximum number of updates a table

can support in the unit of millions of operations per second (Mops). All experiments are

performed in a single thread, with equal numbers of insertions, deletions, and changes.

We set L = 32 and l = 20, change the table size, and show the results in Fig. 4.16 where

SetSep only performs the updates that do not cause reconstruction. Each update event
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may be an insertion, deletion, or value change, with equal probability. The results show

that Ludo allows > 5Mops updates, which is sufficient for most applications. Othello

shows comparable performance with Ludo, while SetSep performs > 1000x worse than

the other two even if we only consider the updates that do not cause reconstruction. As

shown in the results below, each reconstruction of SetSep may take hundreds of seconds

to >5 hours.

Single-thread lookup throughput. We compare the single-thread lookup

throughput of Ludo, Othello, partial key Cuckoo, and SetSep, in Zipfian (Fig. 4.17)
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put for uniform

and uniform (Fig. 4.18) workload, respectively. We set l = 20 and vary n, and the

throughputs are in the unit of million queries per second (Mqps).

The throughput under uniform queries decreases with the growth of table size

because the memory is randomly accessed, and a larger table incurs a higher cache

miss rate. The throughput under Zipfian distribution is less degraded by the table size

because the L3 cache satisfies most queries. Othello/Bloomier shows the highest lookup

throughput. Ludo hashing is slower because, for a single lookup, it requires 1 more hash

function calculation and 1 more memory load. However, it still satisfies > 5M queries

per second when n 6 16M and > 3M when n = 1B. The throughput satisfies most

applications and unlikely to become the system bottleneck.

Throughput under updates. We wonder whether concurrent writing/reading

would affect the performance. Fig. 4.19 shows the lookup throughput of Ludo under

concurrent updates (writing) by varying the update frequency, where L = 64, l = 20,

and n = 16M. Our observation is that there is no noticeable throughput degradation
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when the update frequency grows to up to 1.6K updates per second. Since 1.6K up-

dates per second are sufficient for most dynamic applications, we may conclude that the

lookup throughput is stable under concurrent writing.

Multi-thread throughput. We also show the results of multi-thread lookup

throughput in Fig. 4.20, with up to 20 threads on a single machine and concurrent

updates (100 and 1600 times per second). We find that the throughput scales linearly

with the multi-thread. It achieves > 300Mqps with 20 threads for n = 1B.

Construction time. We also examine the construction time of the lookup

105



engines. Fig. 4.21 shows the construction time of different designs by varying n, for

L = 64, and l = 20. SetSep is >10x slower than other tables and takes >5.5 hours to

construct for 1B keys. All other tables have similar construction time. For 1B items,

Ludo hashing can be constructed in 30 minutes.

4.6.3 Case studies of real systems

We study the practical system performance with Ludo hashing for two applica-

tions. All experiments in this subsection perform real query packet receiving

and forwarding.

4.6.4 Case 1: indexing distributed contents

In this system, a large number of data contents are stored among the dis-

tributed storage nodes. There is an index node that accepts the queries of contents and

forwards them to the correct storage nodes. The index node can be easily replicated to

avoid the single point of failure. This model may be applied to many practical systems

such as distributed data storage in a data center [23], CDNs [65], or edge computing

[89]. In our experiments, the requested keys are uniformly sampled from the std::string

representation of the content IDs (45 bytes).

Implementation details. We run the experiments in CloudLab [1], a re-

search infrastructure to host experiments for real networks and systems. We imple-

ment Ludo hashing, Bloom filter based lookup table (Summary Cache [43]), partial key

Cuckoo hashing, and Othello Hashing to serve as the content lookup engine. We use two
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nodes in CloudLab to construct the evaluation platform of the forwarder prototypes.

Each of the two nodes is equipped with one Dual-port Intel X520 10Gbps NIC, with 8

lanes of PCIe V3.0 connections between the CPU and the NIC. They are denoted by

Node 1 and Node 2 in the following presentation. Each node has two Intel E5-2660 v3

10-core CPUs at 2.60GHz. The Ethernet connection between the two nodes is 2x10Gbps.

The network between the two nodes provides full bandwidth. Logically, Node 1 works

as the index node, and Node 2 works as all storage nodes in the system. The clients

generate queries from the content IDs with Zipfian and uniform distributions.

Throughput of query processing and forwarding. We evaluate the

query processing and forwarding throughput of Ludo hashing, Bloom filters, partial

key Cuckoo, and Othello in the distributed content storage system. The measurements

are in million queries per second (Mqps). We vary the number of contents from 16K to

16M. Figures 4.22 to 4.25 show the throughput versus number of items, in single and

two threads, with Zipfian and uniform workload, respectively. Ludo hashing provides

the highest throughput as the index among the four methods. The reason is that the

bucket locator of Ludo hashing is compact enough to fit into the L3 cache so that it is

likely to have only one load from the main memory for the table bucket access. Other

solutions may have two main memory loads. Another interesting observation is that the

capacity of querying processing and forwarding is bounded by 7 Mqps, which is smaller

than the network bandwidth. The throughput does not grow significantly when we add

more threads, which infers computation is not the bottleneck. Hence we consider the

throughput is bounded by the bus bandwidth between CPU and memory.
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4.6.5 Case 2: forwarding information bases (FIBs)

A modern data center network includes a large number of physical servers

[56, 50, 80]. Each server is identified by its network address (e.g., its MAC address). An

interconnection of switches connects the servers. Each switch has multiple ports con-

necting neighboring switches and servers. A switch forwards the packet to a neighbor

based on FIB lookups using the packet address. Many modern networks are variants of

this model [56, 50, 80]. For software defined networks [69], the flow ID may be a combi-

nation of source/destination IPs, MACs, and other header fields. The forwarding may

be on a per-flow basis rather than a per-destination basis. LTE backhaul networks and

core networks can also be regarded as an instance of this network model, especially for

the down streams from the Internet to mobile phones, where the destination addresses

are Tunnel End Point Identifiers (TEIDs) of mobiles [110].

Implementation details. In the CloudLab prototype, we implement the

FIBs as software switches [111, 107] that are running on the end hosts. We implement

the FIBs using Ludo hashing, Bloom filter based method (Buffalo [104]), partial key

Cuckoo hashing [111], and Othello Hashing [107]. For each FIB implementation, we

make several major modifications to support Dijkstra routing. The prototypes work

with Intel Data Plane Development Kit (DPDK) [5] to support packet forwarding using

end hosts. DPDK is a series of libraries for fast user-space packet processing [5] and is

useful for bypassing the complex networking stack in the Linux kernel, and it has utility

functions for huge-page memory allocation and lockless FIFO, etc. We modify the code
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of the key-value lookup tables and link them with DPDK libraries. The query keys are

in four types: 32-bit IPv4 addresses, 48-bit MAC addresses, 128-bit IPv6 addresses,

and 104-bit 5-tuples. We still use the two nodes in CloudLab (denoted by Nodes 1 and

2) for this prototype. The Ethernet connection between the two nodes is 2x10Gbps.

The switches between the two nodes support OpenFlow [69] and provide full bandwidth.

Logically, Node 1 works as a switch in the network, and Node 2 works as the neighboring

switches and end hosts in the network.

Node 2 uses the DPDK official packet generator Pktgen-DPDK [6] to generate

random packets and sends them to Node 1. The packets sent from Node 2 carry the

destination addresses with Zipfian or uniform distributions. Each FIB prototype is

deployed on Node 1 and forwards each packet back to Node 2 after determining the

outbound link of the packet. By specifying a virtual link between the two servers,

CloudLab configures the OpenFlow switches such that all packets from Node 1, with

different destination addresses, will be received by Node 2. Node 2 then records the

receiving bandwidth as the throughput of the whole system. The maximum network

bandwidth is 28.40 million packets per second (Mpps).

Packet forwarding throughput. Figures 4.26 to 4.29 show the packet for-

warding throughput of the four solutions, by vary the number of addresses stored in

the FIB, with Zipfian and uniform distributions, for single thread and two threads, re-

spectively. While Othello Hashing performs the best on a single thread, two threads

of Ludo hashing, partial key Cuckoo hashing, and Othello Hashing are sufficient to fill

the full network bandwidth (called line rate) for a 16M FIB. For all cases, FIBs with
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Figure 4.26: FIB throughput with

Zipfian workload (single thread)
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Figure 4.27: FIB throughput with

Zipfian workload (two threads)
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Figure 4.28: FIB throughput with

uniform workload (single thread)
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Figure 4.29: FIB throughput with

uniform workload (two threads)

Ludo hashing, Othello Hashing, and partial key Cuckoo hashing performs >2x higher

throughput than Bloom filters.

111



5 10 15 20 25

Extra bits per k-v pair

0

20

40

60

80

100

%
of

co
lli
si
on

PK Cuckoo

Othello

SetSep

Ludo

5 10 15 20 25

Extra bits per k-v pair

0

1

2

3

4

5

%
of

co
lli
si
on

PK Cuckoo

Othello

SetSep

Ludo

Figure 4.30: Memory cost and collision rate

4.6.6 Summary of evaluation

Memory footprint. Ludo hashing is the most compact among all dynamic

in-memory lookup tables under all configurations.

Lookup throughput. Ludo lookup structure achieves 5 to 20 Mqps single-

thread throughput for up to 1B items. The throughput scales linearly with the number

of threads and can achieve 65Mqps on one node.

Runtime update. Ludo lookup structure performs > 6M updates per second.

The throughput of Ludo lookup structure is stable with concurrent updates.

Construction time. Ludo hashing can be constructed for 1B items in 10

minutes.

Performance in real systems. Ludo hashing provides higher throughput

than other methods in the content lookup system. In the packet forwarding system,

Ludo hashing can easily achieve maximum network bandwidth with two threads.
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4.7 Discussion

Partial-key Cuckoo. One may consider setting short digests in partial-key

Cuckoo [64] is a straightforward solution. However, short digests cannot be used because

the key collision rate grows. Assuming values are l-bit long and l = 20, we change the

key digest bit length L′ from 1 to 20 for partial key Cuckoo and observe the relation

between the extra memory cost and key collision rate. The extra memory cost is defined

as the overall memory cost of the lookup data structure minus nl, where n is the number

of keys. We insert 1M random MAC addresses into different partial key Cuckoos, and

the results are shown in Fig. 4.30.The right figure zooms in and shows the results near

1% of key collision. If we configure the PK Cuckoo to take no more than the memory

of Ludo, > 40% keys will be mapped to more than one value. If we control the collision

rate under 0.1%, the PK Cuckoo takes > 3x extra memory than Ludo.

Alien keys. Let K be the set of the keys of all items. An alien key (kα) is

defined as a key that was never inserted into the item set, i.e., kα /∈ K. The lookup of

an alien key may result in an arbitrary value by a perfect hash table, and we denote this

as the ‘alien key problem’. The alien key problem is not unique for Ludo. It exists for

all perfect hashing based designs that do not store keys, including SetSep [42], Bloomier

filters [28], and Othello [107]. There is a simple trade-off: either store the keys with

several times higher memory cost or accept the alien key problem and try to limit its

impact. However, for any key k ∈ K, the lookup by Ludo hashing will always be correct.

Hence there is no false lookup result.
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Most applications in the context of this work are not sensitive to

alien keys, namely the distributed content index, network forwarding, and storage

index. For a distributed content index, querying an alien key will make the index

forward the request to an arbitrary storage node. The storage node will then find

that no data in the node match this key. Hence it simply notifies the client of a ‘not

exist’ message. For a network forwarding device, a packet with an alien address will be

forwarded to an arbitrary port. Note that every packet will carry the time-to-live (TTL)

field that will decrease by 1 after each forwarding action. Hence a packet will either be

dropped when the TTL becomes 0 or dropped at a destination that does not match the

address. Also, most networks will have firewalls that can filter all packets with alien

addresses. In the above situations, an alien key has a limited negative impact.

Alien keys will become a problem for applications that need to filter keys such

as firewalls. Hence none of the perfect hashing methods can be used for firewalls. For

applications that really need to filter alien keys, a filter function can be added to the

lookup table. Ludo hashing can be perfectly combined with a Cuckoo filter [41, 92] to

have a better trade-off between false positives and memory compared to Bloom filters.

Other methods such as Othello and SetSep will need either extra memory or lookup

time to work with a filter. This topic is beyond the scope of this work, and we skip the

details due to space limit.
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Chapter 5

Concury: A Fast and Light-weight

Software Cloud Load Balancer

5.1 Overview

A load balancer (LB) is a vital network function for cloud services to balance

the load amongst resources. Stateful software LBs that run on commodity servers

provide flexibility, cost-efficiency, and packet consistency. However, current designs

have two main limitations: 1) states are stored as digests, which may cause packet

inconsistency due to digest collisions; 2) the data plane needs to update for every new

connection, and frequent updates hurt throughput and packet consistency. Compared to

large clouds, the emerging edge data centers bring more LB design challenges, including

resource efficiency, consistency of multi-connection state, and weighted load balancing.

However, current stateful software LBs face a dilemma: storing all states in the LB
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incurs high resource cost while using digests causes false hits and table explosion due

to collisions. In this work, we present a new software stateful LB called Concury, which

is the first solution to solve these problems. The key innovation of Concury is a new

method to maintain large network states with frequent connection arrivals, which is

succinct in memory cost and consistent under network changes and incurs low update

cost. Unique features of Concury include 1) packet consistency with extremely low

update frequency; and 2) low memory cost without inconsistency, resulting in higher

throughput than other stateful LB algorithms under network dynamics. The evaluation

results show that the Concury algorithm provides 4x throughput and consumes less

memory compared to other LB algorithms while providing weighted load balancing and

false-hit freedom for both real and synthetic data center traffic. We implement Concury

and evaluate it in two real networks. It achieves 67.2 Gbps single-thread throughput on

a cheap desktop computer in 100GbE – the highest performance to our knowledge.

5.2 Related Work

An LB is an important component of a data center network, which distributes

incoming traffic to different backend servers or other network functions [77, 47, 96, 37,

10]. Traditional hardware load balancers are expensive and not flexible. Hence, many

large cloud services choose to use software load balancers [77, 47, 37, 10, 19]. In addition,

LBs are also important for edge data centers [91, 89, 108, 25], which allow heterogeneous

devices on the path to the remote cloud to offer storage and computing resources.
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LB Algorithm
Lookup

(Mpps)

Memory

(MB)

Weighted

LB

False

hits
Packet type

Extra

hardware

Update

interrupt

ECMP + hash table (Ananta [77]) low high unclear No any type No frequent

Hash table w/ digest (Maglev [37]) 14.63 18.63 Yes exist TCP only No frequent

Multi HTs w/ digest (SilkRoad [67]) 16.11 4.36 No exist TCP only ASIC frequent

Concury (this work) 66.28 3.84 Yes No any type No infrequent

Table 5.1: Comparisons among stateful LB algorithms with example results. The nu-

merical values are from the microbenchmark using 1M concurrent connections. More

results can be found in § 5.6.

Stateful load balancers. Ananta [77] is a software stateful LB in a three-level

architecture, which includes data center routers that run ECMP, a number of software

multiplexers (SMuxes) on commodity servers, and a host agent on each backend server.

However, each Ananta instance provides a very slow packet processing speed, as shown

in [47]. Duet [47] makes use of forwarding and ECMP tables on commodity switches to

store VIP-DIP mappings. Under frequent DIP pool changes, Duet may not be able to

maintain PCC [67]. Maglev [37] is Google’s distributed software load balancer running

on commodity servers. The core algorithm of Maglev is to use a hash table to store

connections as digests for load balancing and a new consistent hashing algorithm for

resilience to DIP pool changes. SilkRoad [67] implements LB functions on state-of-

the-art programmable switching ASICs, which requires more than 50MB SRAM. It

supports high-volume traffic with low latency and preserves consistency. Deploying

SilkRoad introduces extra hardware cost –each SilkRoad switch costs 6.5K USD, and

multiple switches are needed for every cluster. In addition, both Maglev and SilkRoad
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may include false hits during connection lookups due to the usage of digests rather than

the complete state information. False hits cause two main problems. 1) A packet may

be forwarded to a DIP that does not provide the correct service of its VIP and then

fails. 2) Multiple states may share a digest in the table. It is difficult to decide when to

delete a digest. Deleting the digest of a finished state might terminate an active state if

their digests collide. Hence the table size may explode over time, or some active states

may be terminated. The typical data structure that can be used to maintain states in

the above methods is Cuckoo Hashing [74]. Bonomi et al. proposed to use Approximate

Concurrent State Machines (ACSMs) to maintain dynamic network states [29], but this

method cannot be used for LBs. We compare Concury with existing stateful LBs in

Table 5.1, where the experimental values are based on the DIP-V 16M-state network in

5.6.2.

Stateless load balancers. Beamer [73] and Faild [25] are recently proposed

stateless LBs. Their forwarding logics do not store connection states but use a simple

mapping algorithm (static or consistent hashing). They write a new field to every packet

header to carry its DIP. The end servers need to examine every packet header to ensure

that the packet is consistent with the state on this server. If not, the server performs

overlay re-routing to the correct DIP. This method requires a kernel modification on

the network stack of every server to add extra network processing. The computation

and memory overheads are thus transferred to the server side and on a per-packet

basis. Overlay re-routing might not be a significant problem when states are short-

term. However, for multi-connection states that are long-term, stateless LBs may cause
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re-routing of most stateful packets because, after a duration, the mapping would become

very different. Compared to these methods, Concury only requires each server to run a

lightweight state-tracking program in the application-layer, which does not change the

network stack. Performance comparison of stateful and stateless LBs would be apple-to-

orange because overhead occurs in different places. We do not intend to declare a clear

victory between stateful and stateless LBs. The purpose of this work is to improve the

stateful LB design and leave the choice between stateful and stateless LBs to network

operators.

5.3 System Models and Objectives

A service provided by a cloud/edge data center is identified by a publicly visible

IP address, called virtual IP (VIP). The clients send their service requests to the VIP.

An LB balances the load across the cloud/edge servers so that no server gets overloaded

and disrupts the service. Each backend server is identified by a direct IP (DIP). Hence,

the core function of an LB is to map the VIP on a packet header to a DIP, based on

the header information of the packet (e.g., its 5-tuple or other state identifiers). Each

VIP is associated with its DIP pool, which includes the DIPs of the servers that provide

the service identified by the VIP. The DIP pool of a VIP may vary depending on the

service size and the environment (cloud or edge). If a server maintains the state of a

packet, the packet must be sent to the DIP of the server. A state could be an ongoing

connection or multi-connection.
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Figure 5.1: General model of a stateful LB

Achieving all requirements of an LB stated in § 5.1 is challenging. Simple

stateless algorithms (such as ‘consistent’ hashing) provide no guarantee of consistency.

It is because the distribution algorithm needs to change when there is a DIP pool or

weight change, and then stateful packets may be mapped to another server. An example

of consistency violation by static hashing is shown in Appendix A.3.1.

Recent stateful LB designs [37, 67] need to store connection states and ensure

that all packets matching a state are consistently mapped to the same DIP. We sum-

marize a general model of stateful LBs (as shown in Fig. 5.1), analyze the components

of this model, and point out the design objectives.

1. LB data plane (LB-DP). The LB-DP processes packets and finds a

DIP for each packet carrying a VIP. The DIP should be selected from the DIP pool

behind the VIP, representing the set of servers providing the service of this VIP. The

core algorithm should provide two functions: i) find the corresponding server (DIP) for

each stateful packet, and ii) assign an available server (DIP) based on given weights
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for each stateless packet. The design objectives of the LB-DP is to achieve high packet

processing throughput and efficiency of memory cost because high-speed memory is a

precious resource on both commodity servers (cache) and hardware switches (ASICs). In

addition, the LB-DP should balance the stateless packets based on the weights reflecting

the current capacity of each server, which may be heterogeneous and dynamic. For

example, if a server is serving many large-size connections, it has to receive fewer new

states than others in the near future. So we identify the ‘weight’ as an important input

to the LB, and we expect that an LB acts as a weighted randomizer for new states.

2. LB control plane (LB-CP). The LB-CP receives the state changes

from the servers, including new state establishments and state removals. Many existing

designs use a TCP SYN packet as the indicator of a new state and allow LB-DP to notify

the LB-CP directly [37, 67]. However, it does not work for UDP or multi-connection

states. The design objectives of the LB-CP is to efficiently maintain all state of the

incoming packets and quickly construct the new LB-DP to reflect packet consistency

once an LB-DP update is needed. Ensuring that all packets of a connection are delivered

to the same server is critical for LBs because recovering a broken connection usually

takes a long time and significantly hurts the user experience. In the edge or cloud where

a unified data management layer is absent, packets from different flows of a single device

should be sent to the same server. Achieving the device-level consistency could avoid

overlay re-routing for many emerging applications such as media offloading.

3. Update. The LB-CP will notify LB-DP to make necessary changes under

certain network dynamics, such as DIP pool and weight changes. The design objective
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of the update process is to reduce the frequency of updating because it will interrupt

packet processing on the LB-DP.

Although Concury needs the servers to send state notifications, the servers do

not need to maintain any state, just like prior stateful LBs. In other designs, server-to-

LB messages are necessary for weighted load balance [47].

5.4 Design of Concury

5.4.1 System overview

Notations. Let M be the number of VIPs in the network. Each VIP vi is

assigned an index i and its DIP pool contains ti DIPs. The number of states of VIP vi

is ni.

Concury follows the DP model introduced in § 5.3, including both the data

plane and control plane. The input of the Concury data plane (Concury-DP) is a packet

whose destination address is a VIP, and the output is the same packet whose destination

has been replaced by a DIP. At each backend server (identified by a DIP), there is a

lightweight application-layer program that tracks the current states at this server, which

has been used for existing data center LBs [47]. The state tracking program will report

the Concury control plane (Concury-CP) about new and terminated states. Concury-

CP will update Concury-DP only when the DIP pool of a VIP changes, i.e., server

failure/addition and server weight change. The update only applies to a small part of

Concury-DP. The design objectives have been discussed in § 5.3.
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Figure 5.2: Workflow of Concury data plane

Challenges of designing Concury. One key innovation of Concury is to

abandon the conventional “lookup-then-distribute” workflow of prior LB designs and

adopt a new approach that achieves ‘lookup’ and ‘distribute’ simultaneously. However,

Bloomier and Othello were not originally designed for LBs. The challenges of applying

Bloomier include: 1) how to adjust Bloomier for both active state lookups and weighted

randomizer; 2) how to design the data plane to minimize memory cost and maximize

throughput; 3) how to resolve the false hits problem without modifying the server

network stack; and 4) how to relax the requirement of updating for every new state in

the data plane.

5.4.2 Concury data plane

Concury uses Bloomier filters as both a lookup structure to represent the state-

to-DIP mapping and a weighted randomizer. As introduced in § 2, a Bloomier filter

is built based on a set S of keys. In Concury, each key is the identifier of a state,
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i.e., 5-tuple. The value corresponding to a key is a DIP code (Dcode), which will be

eventually converted to a DIP – the address of a backend server that holds the state.

Note that a Bloomier filter provides the state-to-DIP mapping but does not actually

store the keys. Hence the memory cost is significantly reduced.

There are two possible approaches to construct the state-to-DIP lookup struc-

ture of Concury. 1) All VIPs share a single lookup structure. 2) Each VIP has an

individual Bloomier filter as the lookup structure, called a Bloomier array set (BAS),

which stores only the state-to-DIP mapping of this particular VIP. This requires M

BASes. We use this approach rather than a single and unified BAS because, 1) Upon

change of a VIP’s DIP pool, it is only necessary to update the Dcodes this VIP. The

others are kept still. 2) Separating different VIPs further ensures a packet is not for-

warded to a DIP in another VIP’s pool. 3) Experimental results show that separate

lookup structures provide 5% faster lookup speed than a unified one.

Note that maintaining per-VIP structures can also be used by other stateful

LBs such as Maglev [37] to avoid the cross-VIP problem. However, it still cannot resolve

the digest-deletion problem stated in § 5.2. Concury is unique because it can deal with

both types of problems.

The workflow of Concury data plane is shown in Fig. 5.2, which includes three

main steps. We show the pseudocode in Appendix A.3.1. The lookup operation is

simple and fast, including just four read operations and the hash computation.

Step 1. When Concury receives a packet, it first gets the VIP index i using

the VIP vi in the packet header, by either a table lookup or calculation. Since VIPs are
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determined by the edge/cloud operator, one can simply assign all VIPs with a single

prefix, e.g., a 22-bit prefix, then the last 10 bits of a VIP can be used as the VIP index,

supporting 1K VIPs. Concury maintains a VIP array that stores the memory addresses

of different BASes, using a static array whose index is the VIP index. The result of

Step 1 is the memory address of the BAS of VIP vi. The array is small and static.

Step 2. Using the memory address from Step 1, Concury finds the BAS for

VIP vi, denoted as BAS-i. BAS-i only includes the two arrays A and B to support the

calculation of the lookup result τ(k) = A[ha(t)] ⊕ B[hb(t)], where t is the 4-tuple of k,

without the destination IP address compared to the 5-tuple. The result is an l-bit value

called DIP code, denoted as Dcode. Each DIP code will be mapped to an actual DIP

in Step 3, and it is a many-to-one mapping. Two different DIP codes may be mapped

to a single DIP.

Step 3. This step finds the actual DIP using the l-bit Dcode. Concury

maintains a 2D array called DIP array, denoted by DA. The element DA[i][Dcode] is

the DIP of the Dcode for VIP vi. This 2D array is independent of the number of current

states and does not cost much memory. Assume there are 512 VIPs and l = 12. The

memory cost is about 2MB. Note DA[i][Dcode] for any l-bit value of Dcode is a valid

DIP of the VIP vi. To further reduce the memory cost, DA[i][Dcode] can be a DIP

index that can be transferred to a DIP with one more static table lookup.

Data plane complexity analysis and comparison. Detailed analysis and

comparison are presented in Appendix A.3.3. Here we present the results.

1) Time cost. Concury-DP is very simple and fast. Each lookup is in O(1),
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Figure 5.4: Chi-squared test

including at most 6 read operations from static arrays, 2 hash computations (32 bits for

each), and an XOR computation. This cost is smaller than Cuckoo+digest, a commonly

used LB table design [37, 67], which needs more read operations and hash computations

for both stateful and stateless packets.

2) Space cost. Let n be the number of total states, ld be the length of

Dcode, and lv be the length of the DIP index in the DIP table. The total memory cost

of Concury-DP is 2.33ldn+64m+2ld lvm+48 ·2lv bits, which is much smaller than that

of Cuckoo+digest in practical setups.

5.4.3 Weighted load balancing

Reason for using DIP code. One may notice that to process the first

packet of a new state, Concury gets Dcode and then translates it to the DIP, rather

than directly putting the DIPs as the lookup results of a BAS. Our method reduces the
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construction

storage cost because a DIP is 32-bit long, while a DIP code can be much shorter, e.g.,

10 bits. The total number of distinct DIP codes, 2ld , can be larger than the number

of DIPs, e.g., by more than an order of magnitude, in order to provide the granularity

for a weighted randomizer. The Dcode to DIP mapping is determined by how the LB

wants to assign the weights among DIPs of this VIP. For example, if Dcode has 4 bits

and there are 4 DIPs, and all DIPs have equal weights, then we may map Dcode in

[0000, 0011] to DIP1, Dcode in [0100, 0111] to DIP2, Dcode in [1000, 1011] to DIP3,

and Dcode in [1100, 1111] to DIP4. We may consider Dcode as a ball and each DIP as

a bin.

How to achieve weighted load balancing. We first show that for an

unknown state, the probability that a BAS will return a particular Dcode is uniformly

distributed among all possible values of Dcode.

For a new state c, the lookup result of a BAS is Dcode = τ(c) = A[ha(c)] ⊕
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B[hb(c)], where A[ha(c)] and B[hb(c)] are both l-bit values. Assume that A[ha(c)]

(B[hb(c)]) has an equal probability of being any element in array A (array B), which is

true if ha and hb are uniform hashes. Each element in A or B can be either ‘determined’

or ‘free’. A determined element corresponds to a white vertex as in the example of

Fig. 2.3, whose value should be fixed during the construction to provide correct lookups

for current states. A ‘free’ element corresponds to a gray vertex, and its value is ‘not

care’. We assign uniformly random values for every free element. As a result ifA[ha(c)]

and B[hb(c)] are both determined, Dcode is determined. If one of A[ha(c)] and B[hb(c)]

is free, then Dcode is random. We know that A and B both have m elements, and

there are m2 possible pairs of A[ha(c)] and B[hb(c)]. Among them, only n pairs produce

determined values ofDcode, and the portion is n/m2 < 1/n. Hence, only a small portion

of the results are determined, and the others can be considered uniformly random.

We use empirical results to validate this uniformity. Fig. 5.3 shows one typical

example. We let the value length l = 10. Hence, there are 1024 possible Dcodes. We

enumerate all possible combinations of indexes of A and B and compute the resulting

Dcodes. The hash function used in Concury is CRC32. We observe that using Concury,

the combinations (stateless packets) are very evenly distributed to different Dcodes,

with min, 10%, mean, 90%, and max values to be 925, 980, 1024, 1066, and 1120,

respectively. Results of other experiments are similar.

We compare Concury with MD5 and SHA256. Although MD5 and SHA256

are not strictly uniform, they are considered sufficiently uniform in practice. We show

that Concury is comparable to them in uniformity and is sufficiently good to use in
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practical systems. We conduct two well-known statistical tests, the chi-squared test and

Kolmogorov-Smirnov test, to compare Concury, MD5, and SHA256 with the uniform

distribution. As shown in Fig. 5.4 and 5.5, each of them fails around or less than 10%

of the tests because they are not strictly uniform. Concury is no worse than either MD5

or SHA256, especially when ld > 11 (Dcode count > 2048). In our implementation, we

set ld = 12. We will further evaluate the load distribution to DIPs in § 5.6.6.

Based on the uniform Dcode distribution, we may use the Dcode-DIP mapping

to implement a weighted randomizer. The number of Dcode should be larger than the

number of DIPs by a certain scale, e.g., >8x. Then, the weight of a DIP is reflected by

the number of entries in the table DA. For example, if DIP d1 has weight 1.0, and DA

holds 100 entries pointing to d1, then for DIP d2 with weight 2.0, DA should hold 200

entries pointing to d2. If d2 is near full, which is unlikely, then the weight of d2 should

be lowered to reflect its current remaining capacity, and new connections go to d2 with

a smaller probability. This weight change will incur a full synchronization between the

control plane and the data plane of Concury, which is detailed in § 5.4.5.

5.4.4 Concury control plane

The tasks of the Concury control plane (Concury-CP) are two-fold: 1) tracking

existing states; and 2) generating new data plane structures, mainly the new BASes,

when a data plane update is required. A näıve solution is to use a hash table to store

a set of state-DIP pairs. When an update is needed, the new BAS is constructed from

the set. Our innovative idea is to design a new data structure called the OthelloMap
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Figure 5.7: Lookup/update of an OthelloMap

that maintains both the state-DIP pairs and the BASes for all current states. Note if

the network includes M VIPs, the control plane has M OthelloMaps. The purpose of

using OthelloMap is to quickly generate a new Concury-DP when a network dynamic

happens. An illustration is shown in Appendix A.3.4.

Components of an OthelloMap. As shown in Fig. 5.7, an OthelloMap of

VIP v includes two parts. 1) An array C of size n, where n is the number of current

states of VIP v. Each element of C stores a state-DIP pair. 2) A BAS O constructed

using the set of current states. The lookup result of O, using the state identifier (ID)

c, is the index i such that C[i] stores the state-DIP pair of c. Note the length of i is no

smaller than ⌈log2 n⌉ bits.

Set query to OthelloMap. The set query is a basic function of OthelloMap.

The input is a possible state ID c′, and the output is either the corresponding DIP or

‘not exist’. To conduct a set query, the OthelloMap performs a lookup to the BAS O

using c′ and get a value i. If the state exists, C[i] includes the DIP. Otherwise, the

connection stored in C[i] does not match c′. Hence, it can return ‘not exist’. This
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process takes O(1) time.

Addition/deletion to OthelloMap. To add a state-DIP pair 〈c,DIP 〉, to

the OthelloMap, we first apply a set query of c. If c exists, C[i] is revised to 〈c,DIP 〉.

If c does not exist, we store 〈c,DIP 〉 to C[n + 1]. Then we add 〈c, n + 1〉 to BAS O.

This process takes amortized O(1) time. To delete a state-DIP pair 〈c,DIP 〉 from the

OthelloMap, we apply a set query of c. If c does not exist, we do nothing. Otherwise,

c and its DIP are stored in C[j]. We delete them from C[j] and move the element in

C[n], say 〈c′, DIP ′〉, to C[j]. Then we revise the value corresponding to c′ in BAS O

from n to j. This process takes O(1) time.

Memory cost analysis of Concury-CP. Let li be the length of the index i

and lk be the length of each state-DIP pair information. The memory cost of Concury-

CP is 2.33lin + (lk + ld)n + 64m + 2ld lvm + 48 · 2lv , where 2.33lin is the overhead of

the BAS O, (lk + ld)n is the overhead of the array C, and the remaining is for the VIP

array and DIP array that need to be updated to the data plane.

Performance gain using OthelloMap. We compare the time to construct

a new DP with and without OthelloMap. The results are shown in Fig. 5.6. OthelloMap

significantly reduces the response time in the control plane during Concury updates by

over 50%.

Interaction of Concury-CP and Host Agents. Concury-CP receives state

arrival/termination reports from Host Agents running on different DIP servers. Upon

receiving a report, Concury-CP performs corresponding addition/deletion operations to

the corresponding OthelloMap.
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We discuss Task 2 of Concury-CP, i.e., how Concury-CP generates new data

plane structures for network updates in the next subsection.

5.4.5 Reactive control/data plane update

Concury-CP does not have to update the Concury-DP on receiving state ar-

rival/termination reports. Instead, it only updates the Concury-DP when there is a

DIP-pool change. It is because only under a DIP-pool change, the current Concury-DP

may violate consistency. Recall that Concury-DP includes the VIP array, the BASes

for all VIPs, and the DIP array. For the change on a DIP pool of VIP vi, only the BAS

related to vi and the i-th dimension of the DIP array needs to be updated, which are a

relatively small portion of the entire Concury-DP. All other parts can be kept still.

Updating the DIP array is based on the load balancing method introduced in

§ 5.4.3, which is fast. To generate the updated BAS of vi, denoted by Oi, we need to

include all current states and remove terminated ones. The BAS of the OthelloMap of

vi, denoted by O′

i, includes all states. The only difference between Oi and O′

i is their

lookup values (Dcode versus OthelloMap index). Recall that the main computation

complexity of BAS construction is to compute the acyclic bipartite graph G to include

the set of keys. Once G is determined, assigning the values of the keys can be done by

starting from either end of the component, with complexity bounded by a one-time pass

of the values. Therefore we simply re-use the G from the OthelloMap and assign the

Dcode values, which takes a short and bounded time. In the end, Concury-CP sends

the updated structures to Concury-DP using a programmable network API.
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The pseudocode of Concury-DP updating is in Appendix A.3.2. Upon receiv-

ing the update message, Concury-DP only needs to modify the arrays related to one

particular VIP. Since the memory spaces of all VIPs are independent, the modified

memory size is very small (less than 1MB in most cases). The packets to other VIPs

can be concurrently processed while updating the data plane. In addition, we design

the concurrent control method that locks 1024 bits at the same time for updating and

only blocks packet lookups that need to access the 1024 bits. Due to space limitations,

we skip the details.

Update complexity. The time/space complexity of data plane update is in

O(ldni), where ni is the number of connections of VIP vi and ld is the length of Dcode.

Note that Concury updates happen infrequently (once per DIP change) and only apply

to the part of data plane structures of one VIP.

5.5 Consistency guarantee under dynamics

An LB experiences three types of dynamics: 1) state arrival/termination; 2)

DIP pool changes; 3) VIP changes. It is important that packet consistency is still

preserved during network dynamics. For state arrival and termination, Concury-DP

has no change. In this case, every packet to a VIP i will have three possibilities for the

BAS lookup.

1) The state ID of the packet, k, is known by Concury-CP during the con-

struction of BAS-i, and the value of looking up k is Dcode, which can be mapped to the
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DIP holding this state. Then the lookup result τ(k) equals to Dcode, and the packet

will be forwarded to the correct DIP.

2) The state ID k is unknown by Concury-CP during the construction, and

the packet is the first one of a new state. Then according to the property of BAS, τ(k)

is an arbitrary l-bit Dcode. According to the property of the table DA, DA[i][Dcode]

always stores a valid DIP for VIP vi. Hence the packet will be forwarded to a valid DIP

D.

3) The state ID k is unknown by Concury-CP during the construction, and the

packet is not the first one of a new state. Hence the first packet was processed after the

latest construction and update, which was forwarded to a DIP D. Since the data plane

has not been updated since then, Concury still returns D as the DIP of this packet,

which preserves consistency.

Concury does not cause false hits either. Using the three-level lookup structure,

for any new TCP packet or UDP packet, the corresponding BAS will return a Dcode

that will be mapped to a valid DIP.

When a DIP pool change happens, the Dcode to DIP mapping needs to be

adjusted. Again using the example in Section 5.4.2, we may map Dcode in [0000, 0011]

to DIP1, Dcode in [0100, 0111] to DIP2, Dcode in [1000, 1011] to DIP3, and Dcode

in [1100, 1111] to DIP4. The state c is mapped to 0100 and hosted on DIP2. Suppose

DIP4 fails, and the mapping is adjusted as: Dcode in [0000, 0100] to DIP1, Dcode in

[0101, 1001] to DIP2, Dcode in [1010, 1111] to DIP3. Then the corresponding values

in DA should be adjusted, e.g., DA[i][0100] should be changed to DIP1 from DIP2.
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Also, packets of state c should stick to DIP2, and hence we change its Dcode to 0101

and revised the BAS accordingly. In this way, packet consistency is preserved.

VIP changes are very infrequent and can be handled easily. It requires only

adding an element to the VIP array and adding/deleting corresponding BAS and one

dimension of the DIP array. No packet consistency is involved.

Concury achieves packet consistency without requiring updating for every new

state. It only updates when there is a DIP change. This is a unique feature of Concury

compared to other stateful LBs to achieve processing and update efficiency.

There is a possible consistency violation when a packet of a new state arrives

during a Concury update. This is a common problem for all software LB designs. We let

Concury buffer all stateless packets during updates. Note compared to other methods

that update on a per-connection basis, Concury updates on a per-DIP-change basis.

Hence, such a problem happens very infrequently.

5.6 Implementation and Evaluation

5.6.1 Evaluation methodology

We conduct three types of evaluations: 1) algorithm micro-benchmark; 2) Con-

cury prototype using DPDK [5] deployed in two real networks (100GbE lab network and

CloudLab [1]), and 3) a P4 prototype running on Mininet [17]. Our code is publicly

available with an anonymous link [22]. The results can be reproduced. The

purpose of the algorithm micro-benchmark is to compare the algorithms of Concury
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over existing solutions thoroughly. The purpose of evaluating software LB with DPDK

is to show the actual performance of Concury running in real networks. The purpose
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of the P4 evaluation is to show that Concury can also be deployed to programmable

switches.

We compare Concury with two recent stateful LB algorithms: 1) Hash table

with digest, used in Maglev [37]; and 2) Multi hash tables with digest, used in SilkRoad

[67]. Note SilkRoad was designed for special hardware, i.e., programmable switch ASICs

with > 50MB memory. Hence, the performance shown in [67] is different. Since Maglev

and SilkRoad are not open-source, we implement their LB algorithms in our best effort

to improve their performance and ensure consistency, but we are not able to rebuild

identical system prototypes of Maglev and SilkRoad as some of their technique details

are not fully presented [37, 67]. In addition, we also separate the hash table of Maglev on

a per-VIP basis –a fix to reduce potential digest collisions but not fully resolving it. We

evaluate the performance metrics, including memory cost, processing throughput, and

load balancing. For all experiments, we verify that packets of a single state are always

sent to a single DIP. Concury causes neither packet consistency violation nor false hits,

hence we do not spend space to show them further. We do not compare Concury with

stateless LBs [73, 25], such as Beamer [73]. It is because the main overhead of stateful

and stateless LBs are at different places: network function side vs. server side. Also,

stateless LBs require to change the server stack, whose cost is difficult to measure.

Hence it is hard to conduct a toe-to-toe comparison.

We use CRC32-C [8] for robust and faster hash results in Concury. Recall that

the construction of BASes may need sufficient different hash functions. We generate

these hash functions using the following approach. Let H be a CRC32 hashing, and
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seed be a 32-bit integer. We let ha(k) = H(k, seeda) and hb(k) = H(k, seedb). Thus,

ha and hb are uniquely determined by seeda and seedb, respectively.

We use the real traffic trace from the Facebook data center networks [14] for

experiments. Since the packets in the trace only carry the DIPs, we assign them to 128

VIPs. We also generate synthetic traffic for production runs and dynamic experiments

over a duration of time. We generate two settings of the synthetic traffic: 1) DIP-E.

All VIPs have the same number of DIPs, and they have the same number of concurrent

states at any time. 2) DIP-V. VIPs have varied numbers of DIPs, and the numbers of

concurrent states also vary with the numbers of DIPs. The number of VIPs may be 128

or 256. We also consider two types of networks: The Small network models an edge,

and the Large network models a cloud. In the Small network, each VIP has 32 DIPs for

DIP-E and 8 to 64 DIPs for DIP-V (32 on average). In the Large network, each VIP

has 128 DIPs for DIP-E and 32 to 256 DIPs for DIP-V (128 on average). We vary the

number of states from 1K to 16M for Large and 1K to 1M for Small, which covers the

range of practical networks. According to actual measurement [67], the 99th percentile

number of concurrent connections in the PoP cluster of a large web service provider is

smaller than 10M. Other types of clusters and edge networks have fewer active states,

varying from a few thousand to 10M.

For most experiments, we conduct production runs for at least 20 times and

take the average. The variations are small and difficult to show in the figures.
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5.6.2 LB algorithm evaluation

Algorithm implementation details. We have implemented the complete

functions of both Concury-DP and Concury-CP on a commodity desktop server with
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plane updates

Intel i7-6700 CPU, 3.4GHZ, 8 MB L3 Cache shared by 8 logical cores, and 16 GB

memory (2133MHz DDR4). Different components of Concury interact as in Fig. 5.2.

In addition, we need to provide a series of packets from different states and let Concury

process them. One straightforward approach is to feed the LB with an existing traffic

trace. However, the time for transmitting the data from the physical memory to the

cache is too long compared to the packet processing time on Concury. Hence, we use a

linear feedback shift register (LFSR) to generate the states (identified by the 5-tuple) of

every packet. The generated states are uniformly distributed over all possible 5-tuples,

which is the worst case for load balancing performance for the lack of time locality. One

LFSR generates about 200M states (5-tuples) per second on our server. In addition, we

provide event-based simulation using real traffic data to study the processing delay on

Concury. Note that LFSR gives no favor to Concury because the states are generated
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in a round-robin scenario, which provides the minimum cache hit ratio. We use 1883

lines of C++ code in total for this prototype.

Memory efficiency. Fig. 5.8 and 5.9 show the memory cost of the LB algo-

rithms of Concury, Maglev, and SilkRoad in Small networks for the DIP-E and DIP-V

setups, respectively. The memory cost of Concury is less than 1MB for <256K states

and 4MB for 1M states. The memory is only 20%-30% of that of Maglevwhen the num-

ber of states is >64K. It is very close to that of SilkRoad. We also show the memory

cost results in Large networks in Fig. 5.10 and 5.11. Concury has similar advantages

compared to Maglev. When there are 8M concurrent states, both Concury and SilkRoad

use < 38MB. The memory cost for the DIP-E and DIP-V setups are similar. Concury

is very efficient in terms of memory cost: it can be implemented on hardware switches

with limited programmable ASICs or commodity servers that have limited caches. Both

Maglev and SilkRoad use digests, which introduce false hits. Concury provides false-hit

freedom using similar or less memory.

Processing throughput. The processing throughput of an LB algorithm

characterizes its capacity. With higher throughput, the network needs to deploy fewer

instances of the LB, and the infrastructure cost is reduced. Fig. 5.12 and 5.13 show

the throughput of the LB algorithms of Concury, Maglev, and SilkRoad in Small net-

works, using a single thread on a commodity desktop, for the DIP-E and DIP-V setups,

respectively. The metric is in millions of packets per second (Mpps). Note SilkRoad

was designed for programmable switch ASICs. We implement the algorithm used in

SilkRoad, named ‘Multi-level Hash Tables with Digest’ (Multi HT-digest), on commod-
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ity servers, and compared it to Concury. Similarly, we also implement the algorithm

used in Maglev, named ‘Hash Table with Digest’. Concury achieves > 65Mpps when

the number of concurrent states is < 1M and shows > 2x advantage compared to Hash

Table with Digest and Multi HT-digest. For Large network results shown in Fig. 5.14

and 5.15, when the number of states is > 1M , the throughput reduces because the

memory size is larger than the CPU cache size. However, Concury still maintains the

> 2x advantage in throughput. The main reason resulting in the throughput advantage

of Concury is that the data plane of Concury requires simpler operations than others.

In addition, Fig. 5.16 shows the throughput of Concury scales well with the number of

threads: it reaches > 250Mpps with < 1M states. The threads share the same memory

space and do not compete for cache space. To validate that the performance is not

CPU-dependent, we perform the same experiments on a workstation with Intel Xeon

CPU E2-2687W. In all experiments, Concury shows higher throughput than others.

The results are not shown due to space limitations.

Cost of data plane update. Data plane updates consume CPU time. Hence,

on a single thread, if data plane updates are complex, the throughput will evidently

downgrade. Existing LBs have no concurrent read/write designs [37, 67]. We conduct

the following set of experiments to evaluate the impact of updates to Concury-DIP per-

formance. We set the number of concurrent states to 1M and let new states join the

network. The arrival rate ranges from 1K per second to 256K per second, reflecting

the arrival rate in real networks. The DIP pools also change once per 10 seconds. The

throughput during updates is shown in Fig. 5.17. The throughput of Hash table-digest

143



(in Maglev) and Multi HT-digest (in Silkroad) clearly downgrade (to <10Mpps) com-

pared to the results shown in the static experiments in Fig. 5.15. Concury experiences

downgrading too (to 42Mpps), but the impact is limited. Hence, the data plane update

cost of Concury is small compared to other methods.

Response time and scalability of Control plane update. We show

the performance of Concury-CP in two aspects: 1) Response time of a DIP/weight

change; and 2) Update time for new states. When a DIP/weight change happens, both

the control and data planes need to be updated to reflect the change. Concury-DP

provides a tremendous advantage in response time by leveraging OthelloMap, as shown

in Fig. 5.6. We find that when there are 8K to 128K states for one VIP (1M to 16M

in total), the Concury-CP response time is only 2-12ms. On the other hand, Maglev

requires very complex updates because it uses digests rather than the entire keys in the

hash table. We further show the time cost of inserting new states to the control plane

in Fig. 5.18. Note both the x and y axes are in logarithmic scale, and all three curves

increase linearly with the number of the new states. For 16M new states, it only takes

Concury a few seconds to complete all updates. Hence, Concury-DP is sufficiently fast

and scalable to complete updates.

5.6.3 Evaluation of Concury in real networks

Implementation details. We implement Concury as a software LB using

Intel Data Plane Development Kit (DPDK) [5] in two real networks: 1) a lab 100GbE

built by Mellanox MCX516A-CDAT NICs and 2) CloudLab [1]. DPDK is a series of
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libraries for fast user-space packet processing [5]. DPDK is useful for bypassing the

complex networking stack in the Linux kernel, and it has utility functions for huge-page

memory allocation and lockless FIFO, etc. We modify the code of Concury-DP and link

it with DPDK libraries.

5.6.4 100GbE in the lab

To build a lab 100GbE, we connect two commodity servers (called Node 1 and

Node 2) back-to-back to construct the evaluation platform of Concury. Each of the two

nodes is equipped with a Dual-port Mellanox MCX516A-CDAT NIC, which provides

2x100Gbps duplex bandwidth. There are 16 lanes of PCIe V3.0, which only support

a bandwidth of duplex 120Gbps between the NIC and the CPU. Each node has an

Intel i7-6700 8-core CPU at 3.40GHz and costs <$800, and each NIC costs $800. The

Ethernet connection is 2x100Gbps.

Logically, Node 1 works as both a series of clients and a number of back-

end servers (DIPs) in the cloud, and Node 2 works as the software LB. Node 1 uses

the DPDK official packet generator Pktgen-DPDK [6] to generate random packets and

sends them to Node 2. The 5-tuples of the generated packets are uniformly randomly

distributed, which exhibits the least locality in memory access and shows the lower

bound performance of Concury. Concury is deployed on Node 2 and forwards each

packet back to Node 1 after determining and rewriting the DIP of the packet. Node 1

then checks the packet consistency to DIPs and records the receiving bandwidth as the

throughput of the whole system.
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In the real network, the results show that the Concury software LB achieves

100% packet consistency and the load balancing results are identical to those in § 5.6.2.

Fig. 5.19 shows the throughput of Concury for DIP-V traffic, measured in

Gbps, where every packet is 256 bytes long, same to the experiments of Maglev [37].

We first evaluate the maximum capacity of the platform by a simple forwarder that reads

the 5-tuple of each packet and transmits it to the incoming port without looking up any

FIB or table. The maximum capacity is 72.02 Gbps.1 We evaluate up to 16M concurrent

connections in the LB, as shown in Fig. 5.19. On a single thread, Concury can process

67.20 Gbps (93% of the maximum capacity). We do not find a better single-

thread software LB throughput in the literature. Using 2 threads, Concury

improves little towards the maximum capacity, and the bottleneck is thus not on the

Concury LB algorithm. We expect a much higher throughput of multi-thread Concury

if it is deployed on servers with more powerful NICs and memory buses. Fig. 5.20 shows

the CDF of the algorithm processing latency of Concury. The latency is on a 24-packet

batch basis. We collect the latency information by recording the time before fetching

a batch of the packets and after sending out all packets in the batch. > 99% batches

finish less than 7 us.

172.02 Gbps equals to 35.16 Mpps. We find it is common that the maximum transmission capacity
is less than the NIC bandwidth. For example, Maglev [37] deployed by Google shows that its maximum
capacity on a 10GbE NIC is 12 Mpps (=6.14 Gbps).
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Figure 5.22: P4 prototype on Mininet
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Figure 5.23: Normalized DIP load by P4

(real traffic)
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Figure 5.24: Normalized DIP load by P4

(synthetic traffic)

5.6.5 CloudLab

CloudLab [1] is a research infrastructure to host cloud computing experiments.

Different kinds of commodity servers are available from its 7 clusters. We use two nodes

c220g2-011307 (Node 1) and c220g2-011311 (Node 2) in CloudLab to construct the eval-

uation platform of Concury software LB prototype. Each of the two nodes is equipped

with one Dual-port Intel X520 2x10Gbps NIC, with 8 lanes of PCIe V3.0 connections
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between the CPU and the NIC. The switches between the two nodes support OpenFlow

[69] and are claimed to provide full bandwidth. Fig. 5.21 show that the Concury in

CloudLab also achieves 100% packet consistency. On a single thread, Concury can pro-

cess and forward at least 17.63 Mpps (62.5% of the maximum capacity). Using 2 threads,

Concury can achieve the maximum network capacity of the node. As a comparison, the

hash table based method cannot achieve the network capacity by 2 threads.

5.6.6 Evaluation on P4 prototype

We also build a P4 prototype of Concury, in which the data plane includes

around 400 lines of P4 code. The prototype is based on the simple switch behavioral

model [20] of the P416 language [12]. To manage data plane tables, we add a middle

layer between the data plane and control plane with C++ Thrift remote procedure call

(RPC) API provided by library PI [21].

We use Mininet [17] to implement the experimental platform to run Concury,

which includes a P4 switch as the Concury LB, a Concury control plane program, a

host to generate packets from clients, and a host representing 16K logical DIPs, as

shown in Fig. 5.22. The receiving host uses the promiscuous mode to accept packets

with different DIPs. We use libtins network packet sniffing library [15] to generate and

send packets. To allow the control plane to communicate with the data plane through

RPC, we add the NAT support to the prototype; hence the host can access TCP ports

of the physical machine. We use the P4 prototype to evaluate the load balancing of

Concury using both real and synthetic traffic. Given that Concury shows significant
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improvement over SilkRoad on software LB, as shown in § 5.6.2 and Concury-DP is no

more complex than that of SilkRoad, we expect Concury’s throughput on a hardware

switch may be no worse than that of SilkRoad. The results of load balancing should be

consistent on both Mininet and hardware switches.

In this set of experiments, every VIP has 128 DIPs, and DIPs have different

weights, which reflect their resource capacities, to receive new connections. We use each

connection to represent a state. We define a metric L, called the normalized DIP load,

as L = ci/wi where ci is the number of connections forwarded to DIPi and wi is the

weight of DIPi. We show the normalized DIP load inside one VIP in Fig. 5.23 and 5.24

for real and synthetic traffic, respectively. We find that the loads for DIPs are evenly

distributed. Two DIPs showing 0 are with weight 0. The results of the other VIPs are

very similar.

5.6.7 Summary of evaluation

As stated in § 5.3, the design objectives include the high packet processing

throughput, efficiency of memory cost, weighted load balancing, quick construction, and

packet consistency. Concury performs well in all aspects. Compared to prior solutions,

Concury shows the advantages in all these aspects and is only weaker in inserting new

states, as shown in Fig. 5.18. The insertion speed is still sufficiently good for large cloud

networks. In addition, Concury is a portable solution and does not rely on any specific

platform.
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Chapter 6

Future Directions

In this chapter, I list the ongoing works and possible research directions based

on this dissertation.

Cloud and Edge Networks: Efficiency, Scalability, and Availabil-

ity. My ongoing works go further in cloud and edge networking algorithm opti-

mizations by the following directions: 1) Further reuse the common computations and

in-memory data structures of different algorithms collocating in the same forwarding

middlebox (e.g., load balancer, switch, or router) for higher forwarding efficiency as

well as smaller memory footprint. 2) Optimize the memory and computation costs and

balance load where the data distributions or data retrieval patterns may be skewed,

based on application-specific data structures and algorithms. 3) Solve the data place-

ment and retrieval problem other than hashing or virtual locations to be more flexible

on the variety of data placement policies/requirements by the service provider or users.

4) Develop an efficient and accurate virtual memory management and memory object
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allocation and indexing system for serverless or hardware-disaggregated environments.

I plan to solve another fundamental forwarding problem in data-centric appli-

cations where requires a co-design of the application and network: forwarding based on

configurable semantics rather than IP/MAC addresses. For example, in the backend of

web services inside a single cloud, the message distribution between end hosts relies on

data exchange service middleware, and the prevailing programming model for data ex-

change is topic based publication-subscription (Pub-Sub), e.g., RabbitMQ, Kafka, etc..

The existing Pub-Sub solutions introduce data brokers to collect messages from pub-

lishers, category messages via topics, and distribute messages to the subscribers of the

corresponding topics. The data distribution and associated QoS requirements, however,

can be achieved in a more efficient way by exploring the complete programmability of

the SDN enabled switches on two key missing features in the current network layer and

transport layer: 1) multicast based on topics and the subscription information instead

of a set of IP addresses and 2) QoS policies are directly configured to the network based

on topics and participant roles, instead of embedding into each packet.

Security and privacy enforcement and enhancement from resource

limited devices. A great amount of data will be generated, processed, and trans-

mitted by IoT devices (e.g., wearable health care sensors, indoor hygrometers and ther-

mometers, Alexa echo, etc.). Due to the constraints in computation power and memory

space, many existing security solutions are not applicable to IoT devices. We develop

VERID [IoTDI’19], a verifiable data outsourcing system for IoT applications. VERID

enables important ranged selection and aggregate queries of sensing data while impos-
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ing minimal overhead for resource-constraint IoT devices. We then develop CCV [IN-

FOCOM’19] to efficiently verify public-key certificates on resource-constrained IoT

devices. Our ongoing work provides higher level security for certificate validation on

IoT devices by supporting certificate revocation (CR). Existing on-device CR checking

solutions either cost prohibitively much storage or require too much computation and

network traffic when the CR list updates (submitted to SIGMETRICS’21).

Verify control plane configurations in virtualized networks. This is an

ongoing work with Google, and more details are hidden here due to policies. Will submit

to a USENIX conference. Modern cloud platforms feature a set of virtual network

functions (VNFs) to facilitate the network deployment, including router, firewall, etc.

Though even simpler in configuration and deployment compared with SDN, virtualized

components still exhibit subtle behavior features which once encountered, may be hard

to analyze and reinstate. Existing efforts present in network intent verification where a

series of user-specified checks can be launched against the current network control plane

or data plane to find out whether the current network contains a forwarding loop, drops

traffics that should be forwarded, etc. This work fills the gap between the configuration

and verification by providing a derivation engine to figure out the new data plane based

on the current one and a proposed set of configuration changes. Based on this, more

formal methods are used to verify the network behavior model to check if adding a new

type of VNF, or changing the behavior of an existing VNF will cause ambiguity or break

existing forwarding behaviors.

Platforming for Trusted Execution Environments (TEEs). TEEs from
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modern CPU manufacturers like Intel and ARM enable secure remote execution. Com-

pared with secure multi-party computation (MPC), TEEs are much more efficient be-

cause no complex interaction is required during the computation, and TEEs support

a wider range of applications because besides pure computation, TEEs can also store

states (e.g., store the votes and open the results later) and cause side-effects (POST to

or GET from a website). Despite the advantages, TEEs are still not well-received by

end users and the industry, mainly due to the following three problems I am solving

(will submit to a USENIX conference): 1) the non-trivial hardware requirements and

heavy configuration burdens for ordinary users; 2) no common code base and sharing

platform like GitHub, PyPI, and DockerHub, and developers should work on their own

for each feature; 3) some public libraries or applications are not publicly tested and

thus no guarantee on the correctness and security requirements during execution. I

plan to solve the above issues by introducing a whole new development platform, from

environment check and setup tools, CLI package management, IDE semantic supports,

code hosting, public verifiable unit-testing, and hosting of TEEs for resource limited

devices and applications based on ad-hoc networking.
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Chapter 7

Conclusion

This dissertation provides algorithmic and system innovations for cloud net-

works, with emphasis on efficiency, scalability, and flexibility. The contributions are

categorized into the following three directions.

We provide a comprehensive study of redesigning DCSes for packet forward-

ing with network names in multiple network models. By utilizing the programmable

network model, we propose new forwarding structure designs based on three represen-

tative DCSes: BFW (based on Bloom filter), CFW (based on Cuckoo hashing), and

OFW (based on Othello hashing). They improve existing non-programmable-network

methods by a big margin in both memory efficiency and control plane scalability. The

analytical and experimental comparison among these three methods reveals that CFW

and OFW fit various network setups that can be chosen by network operators, while

BFW may not be ideal in most cases.

Ludo hashing is a practical solution for space-efficient, fast, and dynamic key-
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value lookup engines that can fit into fast memory. Its core idea is to use perfect hashing

and resolve the hash collisions by finding the seeds of collision-free hash functions in-

stead of storing the keys. We present the detailed design of Ludo hashing, including

the lookup, construction, and update algorithms under concurrent reading and writ-

ing. The analytical and experimental results show that Ludo hashing costs the least

memory among known solutions that can be used for in-memory key-value lookups

while satisfying > 65 million queries per second for 1 billion key-value items on a single

node. Ludo allows fast updates. We further demonstrate that Ludo hashing achieves

high performance in practice by implementing it in two working systems deployed in

CloudLab.

We design and implement a new software stateful LB called Concury, which

achieves weighted balancing of incoming traffic, maintaining consistency, high through-

put, memory efficiency, and false hit freedom. It satisfies the requirements of a load

balancer for cloud and edge data centers. Concury represents connection states without

storing the actual state information and incurs low update cost. We implement Concury

on both software and P4 prototypes and evaluate it in two real networks. Evaluation re-

sults show that Concury provides higher packet processing throughput by >2x and lower

memory cost compared to existing stateful LB algorithms. In real network experiments,

Concury achieves the highest packet processing throughput reported in literature. Our

future work will be extending Concury to mobile client environments.
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[25] João Taveira Araújo, Lorenzo Saino, Lennert Buytenhek, and Raul Landa. Balanc-

ing on the Edge: Transport Affinity without Network State. In Proc. of USENIX

NSDI, 2018.

[26] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Monotone

minimal perfect hashing: searching a sorted table with O(1) accesses. In Proc. of

ACM SODA, 2009.

[27] Djamal Belazzougui and Fabiano C. Botelho. Hash, displace, and compress. In

Proc. of Algorithms-ESA, 2009.

[28] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, 1970.

158



[29] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George

Varghese. Beyond Bloom Filters: From Approximate Membership Checks to

Approximate State Machines. In Proc. of ACM SIGCOMM, 2014.

[30] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and

David Walker. P4: programming protocol-independent packet processors. ACM

SIGCOMM Computer Communication Review, 2014.

[31] Julie Anne Cain, Peter Sanders, and Nick Wormald. The Random Graph Thresh-

old for k-orientiability and a Fast Algorithm for Optimal Multiple-Choice Alloca-

tion. In Proc. of ACM-SIAM SODA, 2007.

[32] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki

Hitachi, John B. Vicente, and Daniel Villela. A survey of programmable networks.

SIGCOMM Computer Communication Review, 1999.

[33] Denis Charles and Kumar Chellapilla. Bloomier Filters: A Second Look. In Proc.

of European Symposium on Algorithms, 2008.

[34] Denis Charles and Kumar Chellapilla. Bloomier Filters: A Second Look. In Proc.

of ESA, 2008.

[35] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier

Filter: An Efficient Data Structure for Static Support Lookup Tables. In Proc. of

ACM SODA, pages 30–39, 2004.

159



[36] David Chou et al. Taiji: Managing Global User Traffic for Large-Scale Internet

Services at the Edge. In Proc. of ACM SOSP, 2019.

[37] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,

Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jin-

nah Dylan Hosein. Maglev: A Fast and Reliable Software Network Load Balancer.

In Proc. of USENIX NSDI, 2016.

[38] Ulfar Erlingsson, Mark Manasse, and Frank McSherry. A cool and practical al-

ternative to traditional hash tables. In Proc. 7th Workshop on Distributed Data

and Structures (WDAS’06), 2006.

[39] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. Recsplit: Min-

imal perfect hashing via recursive splitting. Technical report, 2019.

[40] Bin Fan, Dave Andersen, and Michael Kaminsky. MemC3: Compact and Concur-

rent MemCache with Dumber Caching and Smarter Hashing. In Proc. of USENIX

NSDI, 2013.

[41] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM In-

ternational on Conference on emerging Networking Experiments and Technologies.

ACM, 2014.

[42] Bin Fan, Dong Zhou, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.

160



When cycles are cheap, some tables can be huge. In Proc. of USENIX HotOS,

2013.

[43] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache: A

Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM Transactions on

Networking, 2000.

[44] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: An intel-

lectual history of programmable networks. ACM Queue, 2013.

[45] Daniel Fernholz and Vijaya Ramachandran. The k-orientability Thresholds for

Gn,p. In Proc. of ACM/SIAM SODA, 2007.

[46] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The

multiple-orientability thresholds for random hypergraphs. In Proc. of ACM/SIAM

SODA, 2011.

[47] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Pad-

hye, Lihua Yuan, and Ming Zhang. Duet: Cloud scale load balancing with hard-

ware and software. 2014.

[48] Pu Gao and Nicholas C. Wormald. Load balancing and orientability thresholds

for random hypergraphs. In Proc. of ACM STOC, 2010.

[49] Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast Scalable Con-

struction of (Minimal Perfect Hash) Functions. In Proceedings of the International

Symposium on Experimental Algorithms, 2016.

161



[50] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. VL2: a scalable and flexible data center network. In Proceedings of

ACM SIGCOMM, 2009.

[51] Adiseshu Hari, T. V. Lakshman, and Gordon Wilfong. Path Switching: Reduced-

State Flow Handling in SDN Using Path Information. In Proc. of ACM CoNEXT,

2015.

[52] Chi-Yao Hong et al. Achieving High Utilization with Software-Driven WAN. In

Proceedings of ACM Sigcomm, 2013.

[53] Sourabh Jain, Yingying Chen, Saurabh Jain, and Zhi-Li Zhang. VIRO: A Scalable,

Robust and Name-space Independent Virtual Id ROuting for Future Networks. In

Proc. of IEEE INFOCOM, 2011.

[54] Sushant Jain et al. B4: Experience with a Globally-Deployed Software Defined

WAN. In Proceedings of ACM Sigcomm, 2013.

[55] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin.

Consistent hashing and random trees: Distributed caching protocols for relieving

hot spots on the world wide web. 1997.

[56] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: A Scalable Ethernet

Architecture for Large Enterprises. In Proc. of Sigcomm, 2008.

[57] Adam Kirsch and Michael Mitzenmacher. Using a queue to de-amortize cuckoo

162



hashing in hardware. In Proceedings of the Forty-Fifth Annual Allerton Conference

on Communication, Control, and Computing, volume 75, 2007.

[58] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hashing:

Cuckoo hashing with a stash. SIAM Journal on Computing, 2009.

[59] Eddie Kohler. The Click Modular Router. PhD thesis, Massachusetts Institute of

Technology, 2000.

[60] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and

Christo Wilson. CRLite: A Scalable System for Pushing All TLS Revocations to

All Browsers. In Proc. of IEEE S&P, 2017.

[61] Marc Lelarge. A new approach to the orientation of random hypergraphs. . In

Proc. of ACM-SIAM SODA, 2012.

[62] X. Li, D. Andersen, M. Kaminsky, and M. J. Freedman. Algorithmic improvements

for fast concurrent cuckoo hashing. In Proc. of ACM EuroSys, 2014.

[63] Xiaozhou Li, Dave Andersen, Michael Kaminsky, and Michael J. Freedman. Al-

gorithmic improvements for fast concurrent cuckoo hashing. In Proc. of ACM

EuroSys, 2014.

[64] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: A

Memory-Efficient, High-Performance Key-Value Store. In Proc. of ACM SOSP,

2011.

163



[65] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic Nuggets in Content

Delivery. ACM SIGCOMM Computer Communication Review, 2015.

[66] Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and Zbigniew J. Czech.

A Family of Perfect Hashing Methods. The Computer Journal, 1996.

[67] Rui Mao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.

SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-

ing ASICs. In Proc. of ACM SIGCOMM, 2017.

[68] Martn Dietzfelbinger and Christoph Weidling. Balanced allocation and dictionar-

ies with tightly packed constant size bins. Theoretical Computer Science, 2007.

[69] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-

son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling

innovation in campus networks. SIGCOMM Comput. Commun. Rev., 2008.

[70] Michael Mitzenmacher, Salvatore Pontarelli, and Pedro Reviriego. Adaptive

cuckoo filters. In 2018 Proceedings of the Twentieth Workshop on Algorithm En-

gineering and Experiments (ALENEX), pages 36–47. SIAM, 2018.

[71] M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, and M. K. Reiter. Caesar:

High-Speed and Memory-Efficient Forwarding Engine for Future Internet Archi-

tecture. In Proceedings of ACM/IEEE ANCS, 2015.

[72] Bruno Astuto A. Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia Obraczka,

and Thierry Turletti. A Survey of Software-Defined Networking: Past, Present,

164



and Future of Programmable Networks . IEEE Communications Surveys and

Tutorials, 2014.

[73] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin Raiciu. State-

less Datacenter Load-balancing with Beamer. In Proc. of USENIX NSDI, 2018.

[74] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algo-

rithms, 2004.

[75] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia

Ratnasamy, Luigi Rizzo, and Scott Shenker. E2: A Framework for NFV Appli-

cations. In Proceedings of the 25th Symposium on Operating Systems Principles,

pages 121–136. ACM, 2015.

[76] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to

flow control in integrated services networks: the single-node case. IEEE/ACM

Transactions on Networking, 1(3):344–357, 1993.

[77] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-

berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,

Changhoon Kim, and Naveen Karri. Ananta: Cloud scale load balancing. 2013.

[78] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,

and Martin Casado. The Design and Implementation of Open vSwitch. In Proc.

of USENIX NSDI, 2015.

165



[79] Salvatore Pontarelli, Pedro Reviriego, and Michael Mitzenmacher. Emoma: Ex-

act match in one memory access. IEEE Transactions on Knowledge and Data

Engineering, 2017.

[80] Chen Qian and Simon Lam. ROME: Routing On Metropolitan-scale Ethernet .

In Proceedings of IEEE ICNP, 2012.

[81] Chen Qian and Simon Lam. A Scalable and Resilient Layer-2 Network with

Ethernet Compatibility. IEEE/ACM Transactions on Networking, 2016.

[82] Martin Raab and Angelika Steger. Balls into Bins – A Simple and Tight Analysis.

In Lecture Notes in Computer Science, 1998.

[83] Dipankar Raychaudhuri, Kiran Nagaraja, and Arun Venkataramani. Mobility-

First: A Robust and Trustworthy MobilityCentric Architecture for the Future

Internet. Mobile Computer Communication Review, 2012.

[84] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-

tecture. RFC 3031, 2001.

[85] B. Schlinker et al. Engineering Egress with Edge Fabric: Steering Oceans of

Content to the World. In Proc. of ACM SIGCOMM, 2017.

[86] M. Shahbaz, S. Choi, Ben Pfaff, C. Kim, N. Feamster, N. Mckeown, and J. Rex-

ford. PISCES: A Programmable, Protocol-Independent Software Switch. In Proc.

of the ACM SIGCOMM, 2016.

166



[87] S. Shi, C. Qian, and M. Wang. Re-designing Compact-structure based Forwarding

for Programmable Networks. In Proc. of IEEE ICNP, 2019.

[88] Shouqian Shi, Chen Qian, Ye Yu, Xin Li, Ying Zhang, and Xiaozhou Li. Concury:

A Fast and Light-weighted Software Load Balancer. arXiv:1908.01889, 2019.

[89] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing:

Vision and challenges. IEEE Internet of Things Journal, 3(5), 2016.

[90] Neil Spring, Ratul Mahajan, and David Wetherall. Measuring ISP Topologies

with Rocketfuel. In Proceedings of ACM SIGCOMM, 2002.

[91] Luis M. Vaquero and Luis Rodero-Merino. Finding your Way in the Fog: Towards

a Comprehensive Definition of Fog Computing. ACM SIGCOMM CCR, 2014.

[92] M. Wang, M. Zhou, S. Shi, and C. Qian. Vacuum Filters: More Space-Efficient

and Faster Replacement for Bloom and Cuckoo Filters. In Proceedings of VLDB,

2020.

[93] Minmei Wang et al. Collaborative Validation of Public-Key Certificates for IoT

by Distributed Caching. In Proc. of IEEE INFOCOM, 2019.

[94] Minmei Wang, Chen Qian, Xin Li, and Shouqian Shi. Collaborative Validation

of Public-Key Certificates for IoT by Distributed Caching. In Proc. of IEEE

INFOCOM, 2019.

[95] Minmei Wang, Mingxun Zhou, Shouqian Shi, and Chen Qian. Vacuum filters:

167



more space-efficient and faster replacement for bloom and cuckoo filters. Proceed-

ings of the VLDB Endowment, 2019.

[96] R. Wang, D. Butnariu, and J. Rexford. Openflow-based server load balancing

gone wild. 2011.

[97] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In Proc.

of USENIX OSDI, 2006.

[98] Udi Wieder. Hashing, Load Balancing and Multiple Choice. Now Publishers, 2017.

[99] Tong Yang et al. A shifting bloom filter framework for set queries. In Proceedings

of VLDB, 2016.

[100] Tong Yang et al. Coloring embedder: a memory efficient data structure for an-

swering multi-set query. In Proceedings of IEEE ICDE, 2019.

[101] Tong Yang, Dongsheng Yang, Jie Jiang, Siang Gao, Bin Cui, Lei Shi, and Xiaom-

ing Li. Coloring Embedder: a Memory Efficient Data Structure for Answering

Multi-set Query. In Proc. of IEEE ICDE, 2019.

[102] Kok-Kiong Yap et al. Taking the Edge off with Espresso: Scale, Reliability and

Programmability for Global Internet Peering. In Proc. of ACM SIGCOMM, 2017.

[103] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing: Platform

and Applications. In Proc. of IEEE HotWeb, 2015.

168



[104] M. Yu, A. Fabrikant, and J. Rexford. BUFFALO: Bloom filter forwarding archi-

tecture for large organizations. In Proc. of ACM CoNEXT, 2009.

[105] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. A concise forwarding

information base for scalable and fast name lookups. In Network Protocols (ICNP),

2017 IEEE 25th International Conference on, 2017.

[106] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. Othello Hashing for

Scalable and Fast Name Switching. In Proc. of IEEE ICNP, 2017.

[107] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. Memory-efficient and

Ultra-fast Network Lookup and Forwarding using Othello Hashing. IEEE/ACM

Transactions on Networking, 2018.

[108] Ye Yu, Xin Li, and Chen Qian. SDLB: A Scalable and Dynamic Software Load

Balancer for Fog and Mobile Edge Computing. In Proc. of ACM SIGCOMM

Workshop on Mobile Edge Computing (MECCOM), 2017.

[109] Ye Yu and Chen Qian. Space shuffle: A scalable, flexible, and high-bandwidth

data center network. In Proceedings of IEEE ICNP, 2014.

[110] Dong Zhou, Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky,

Michael Mitzenmacher, Ren Wang, and Ajaypal Singh. Scaling up clustered net-

work appliances with scalebricks. In SIGCOMM, 2015.

[111] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. Andersen.

169



Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In Proc. of

ACM CoNEXT, 2013.

170



Appendix A

Appendix

A.1 Appendix for Re-designing Compact-structure based

Forwarding for Programmable Networks

A.1.1 Not use the link-index design for BFW

One possible question is that whether the DP could maintain log2 d BFs rather

than d BFs. To test a key, each BF returns either 0 or 1. Hence, the replies from all log2 d

BFs can form a log2 d-bit long index representing a set of keys that should be forwarded

to each link. We call this the link-index design. After careful study, we find that this

method is very inefficient in memory cost and may cause high false positives. The key

insight is that the length of a BF grows approximately linearly with the number of

elements in the represented set, and the number of keys to be False does not contribute

to the memory footprint. More specifically, although the number of Bloom filters in the
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current design is larger, the overall memory consumption is

d
∑

b=1

−ni ·
nh

ln(1− FP
−1/nh

b )
= n ·

nh

−ln(1− FP
−1/nh

b )

where ni is the number of keys in the i-th Bloom filter. While for the link-index design,

although the number of Bloom filters is smaller, its overall memory consumption is

nb
∑

b=1

−n

2
·

nh

ln(1− FP
−1/nh

b )
=

n · nb

2
·

nh

−ln(1− FP
−1/nh

b )

As shown above, the memory consumption of the link-index design is linearly propor-

tional to nb and is nb/2 times larger than that of the current design. This problem is

significant, especially in L7 networks, where the number of links in every node could be

very large. Based on the above comparison, we use the current design in BFW.

A.1.2 OFW emptiness indicator

The expected rate of empty slots in A and B are: ǫa = (ma−1
ma

)nk ≈ e−
nk
ma ≈

0.471 and ǫb = (mb−1
mb

)nk ≈ e
−

nk
mb ≈ 0.368. So the expected possibility to detect an alien

key via emptiness test is approximately 1− (1− 0.471)(1− 0.368) ≈ 0.666 ≥ 0.5. Based

on that observation, we reserve the last bit of the fingerprint field as slot emptiness

indicator. The lookup is considered as successful only when then both statements hold:

1) two slots are both non-empty, and 2) the key fingerprint matches the value in the

calculated fingerprint.

172



A.1.3 Derivation of η

We found the exact analytical expression of η is very hard to derive because

η = nc

nk
, where nc is the number of the keys that meet the requirement that for each

one of them, there is no other key that shares the same fingerprint with it while shares

one or two mapped buckets with it. The derivation of the analytical expression of nc is

intuitively as hard as exhaustively enumerating all possible placements of all the keys

and calculating the weighted average over all these possible placements.

We evaluate this value via experiments. We identify the most important pa-

rameter to influence η is the fingerprint length ld and the configuration of Cuckoo filter,

ns and nb. We let the ns = 4 and nb = 2 to be the normal setting and change the

digest length from 1 to 16 to observe the corresponding changes of η. The experiments

are repeated 10 times, with different randomly sampled key sets. We also repeated the

above experiment to let nk range from 10K to 10M , and the mean value, the higher

bound, and the lower bound at each digest length are shown in Fig. A.1. The key size

has neglect influence on η, as expected.

A.1.4 CFW cache line alignment

For the aligned setting, we define the function f(i, ls) as the expected memory

bus read operations in a value lookup after i slots have been tried to match, where the

slot length is ls. ls may be ld + lp or lk + lp for different levels.

f(i, ls) = ⌊i/ns⌋ · ⌈ns · ls/lc⌉+ ⌈(i mod ns) · ls/lc⌉
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The expected memory bus accesses for the aligned setting consists of three

parts: 1) loading the current input key from the memory, 2) looking up the key in

Level 1 (we are assuming here the key is located in all 8 possible slots with the same

possibility), and 3) looking up the key in Level 2 similarly if Level 1 is a miss. Note here

the valid key collisions are perfectly avoided by our design, so there is no other possible

case.

E(Cc
m) = ⌈lk/lc⌉+ Eη,ld

nb·ns
∑

i=1

f(i, ld + lp)

nb · ns
+ (1− Eη,ld)

·

(

f(nb · ns, ld + lp) +

nb·ns
∑

i=1

f(i, lk + lp)

nb · ns

)

E(Cc
m,e) = ⌈lk/lc⌉+ (f(nb · ns, ld + lp) + f(nb · ns, lk + lp))

(A.1)

For the compact setting, we assume the buckets is aligned to the cache line at

the first element, which is easily achieved. Then the Greatest Common Divider (gcd)

of the length of the cache line and the length of the bucket (both in bits) is the atomic

step between all possible relative positions. We define ls as the length of a slot and

lb = nsls as the length of a bucket, both in Level 1 or the 2nd level. Then ls = ld + lp

at Level 1 and ls = lk + lp at the 2nd level. Then we define lg = gcd(lc, lb). We always

need to access the memory at least ⌊lb/lc⌋ times both in the compact setting and in the

aligned setting. An extra memory read happens when the remainder of the must read

bits (lb mod lc bits long) is distributed in two cache lines. Two typical examples are

shown in Fig. A.2. We define a function lr(l) to denote the remainder of l bits:

lr(l) = ⌈(l mod lc)/lg⌉ · lg
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Then we can derive the expected memory loads if we only access the first i slots in a

bucket:

E(Cm,i) = ⌈(i · ls)/lc⌉+























lr(i·ls)−lg
lc

, lr(i · ls) 6= 0

0, otherwise

To determine M c under the aligned setting, two factors eb1 and eb2 are defined

as the expansion factors due to aligning buckets to cache lines for Level 1 and the 2nd

level, respectively. And for the compact setting, we just let eb1 = eb2 = 1.

ecb1 =
⌈ns · (ld + lp)/lc⌉ · lc

ns · (ld + lp)

ecb2 =
⌈ns · (lk + lp)/lc⌉ · lc

ns · (lk + lp)

The memory footprint of both the aligned and compact DP FIB is:

M c
f = M1st level = eb1 · Eη,ld · nk · el(ld + lp)

M c = M1st level +M2nd level

= M c
f + eb2(1− Eη,ld)nk · el(lk + lp)

(A.2)

A.1.5 Detailed time complexity analysis

BFW. Cm and Ch are equal for Bloom filters. As the starting index of the

Bloom filters is uniformly randomly picked, the total queried Bloom filters will be d/2.

For a hit in a single Bloom filter, evidently, we have the number of hash function

invocations to be nh because BFW checks all slots of this key to be 1. But for an alien

lookup, it may end at the first empty slot. Precisely calculating the expected number

of memory accesses is hard because we have to calculate the weighted average over all
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possible key - port distributions. Instead, we propose to derive the expected possibility

p of every single slot in the Bloom filter array being False and assume p as ground truth

to further derive other equations. Given nh and m, p is easily expressed for a single

Bloom filter.

p = (1−
1

m
)nknh ≈ e−

nknh
m (A.3)

Under this approximation, the expected number of tests of an alien lookup for

a single Bloom filter is represented by:

Ct =

(

nh−1
∑

i=1

i · (1− p) · pi−1

)

+ nhp
nh−1 (A.4)

One should note that the two above equations are for a single Bloom filter

with nk keys and m slots. BFW has the “assembly” of Bloom filters. The key point

here is that m always appears with nk in the equations, which means we can ignore the

difference between BFW and Bloom filter if we treat m
n as a whole. In addition, when

we want to meet a target false positive rate by freely adjusting m and nh for a given nk,

the optimal values of m and nh let p to be 1
2 . But it does not mean there is an optimal

m for false positive rate. We can always get a lower false positive rate by making m

larger.

Combine all equations above, the approximate expected number of memory

accesses and hash function invocations per lookup are as follows, based on the assump-

tion that the key collision rate is designed to be low such that for a valid key, we ignore
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the possibility to collide in the middle.

E(Cb
h) =

d−1
∑

i=1

1

d
((i− 1)Ct + nh) =

d− 1

2
Ct + nh

E(Cb
h,e) =

(

d−1
∑

i=1

((1− p)nh)i−1 · (1− (1− p)nh) (i · Ct)

)

+ ((1− p)nh)d (d · Ct)

(A.5)

E(Cb
m) = E(⌈lk/lc⌉+ Cb

h) = ⌈lk/lc⌉+ E(Cb
h)

E(Cb
m,e) = E(⌈lk/lc⌉+ Cb

h,e) = ⌈lk/lc⌉+ E(Cb
h,e)

(A.6)

CFW. The situation is more complex for a CFW to evaluate Cm and Ch.

The two numbers are intuitively equal, but many exceptions also exist. Furthermore,

the key locations may vary for different implementations. We just assume the simplest

and most general case: the keys are fixed in length and are directly embedded into the

slots. Assuming the key locations are uniformly random, the expected numbers of hash

function invocation for valid keys and alien keys are easily derived as follows:

E(Cc
h) = Eη,ld

(

1 +

nb·ns
∑

i=1

⌈(i− 1)/ns⌉+ 1

nb · ns

)

+ (1− Eη,ld)

(

1 + nb +

nb·ns
∑

i=1

⌈(i− 1)/ns⌉+ 1

nb · ns

)

= 2 +
nb − 1

2
+ (1− Eη,ld) (1 + nb)

E(Cc
h,e) = 1 + nb + nb = 1 + 2nb

(A.7)

To derive E(Cm) for CFW DP, we identify an important value E(Cm,i) – the

expected number of memory loads for the first i slots in any bucket. The detailed

derivation of it is in Appendix A.1.4. Therefore, the expected memory reads for a whole
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bucket E(Cb) = E(Cm,ns). So the expected number of memory bus accesses is:

E(Cc
m) = ⌈lk/lc⌉+

nb·ns
∑

i=1

⌊i/ns⌋ · E(Cb) + E(Cm,i)

nb · ns

E(Cc
m,e) = ⌈lk/lc⌉+ nb · E(Cb)

(A.8)

OFW. The number of hash function invocations for a valid key is always 3.

An alien key is detected when 1) the slots are marked empty 2) the fingerprints does

not agree.

Co
h = 3

Co
h,e = ǫa + 2 · (1− ǫa)ǫb + 3 · (1− ǫa)(1− ǫb)

(A.9)

Cm equals Ch for most of the cases in an OFW, except for cases where the slots

being read runs across a cache line border. As the slots are very short in length, the

possibility of slots existing in two consecutive cache lines are rather low. To quantify the

extra memory load possibility, we define lg = gcd(ld+ lp, lc). Similar with the derivation

in Appendix A.1.4, assuming the ld + lp is always smaller than lc, the Cm and Cm,e are

expressed as follows:

E(Co
m) = ⌈lk/lc⌉+ 2 ·

(

1 +
ld + lp − lg

lc

)

E(Co
m,e) = ⌈lk/lc⌉+ ((1− ǫa)ǫb + 2 · (1− ǫa)(1− ǫb))

·

(

1 +
ld + lp − lg

lc

)

(A.10)

A.1.6 Detailed analysis for collision and false positive rates

BFW. We continue to use the previous approximation for simplicity: the

possibility of a Bloom filter slot being False is p as shown in Equation (A.3). Then the
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false positive rate of alien keys FP is calculated as:

FPb = 1− (1− (1− p)nh)d (A.11)

Although key collisions are different from false positives, a valid key at a Bloom

filter not containing it is the same as an alien key at this Bloom filter. So the expected

valid key collision rate per lookup is calculated as:

E(CRb) =

d
∑

i=1

(

1−

(

1

2

)nh
)i−1

·

(

1

2

)nh

·
1

d

=

d
∑

i=1

(

1−
1

2nh

)i−1

·
1

d · 2nh

≈

d
∑

i=1

(

1−
i− 1

2nh

)

·
1

d · 2nh
=

1

2nh
−

d− 1

22nh+1

(A.12)

Note that the approximation in Equation (A.12) is valid only when 2nh ≫ d, which may

be true in some L2 networks where the desired false positive is low and the number of

ports at a forwarder is small. The approximations work as references, we will not use

them in the following discussions.

CFW. As we are intentionally avoiding valid key collisions, the valid key

collision rate per lookup is always 0.

CRc = 0 (A.13)

As Level 2 stores full keys, false positives only happen at Level 1 because of

possible fingerprint collisions. The false positive rate per alien key lookup FP

can be analytically expressed under the assumption that each key is located in all its 8

possible slots with the same possibility.

FPc = 1− (1−
1

2ld
)rlEη,ld

·nsnb (A.14)
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OFW. As the cases for the alien key to have a return value are where both

the retrieved slots are not marked as empty, and the calculated fingerprint field matches

with the fingerprint of the alien key. The alien key false positive rate per lookup

FPo is expressed as:

FPo =
1

2ld−1
· (1− ǫa) · (1− ǫb) (A.15)

There is not valid key collisions according to the loop-free structure of Othello.

CRo = 0 (A.16)

A.1.7 Achieving minimal memory to meet target false positive rate

For BFW, we let m grow one bit by one bit until hitting the target false

positive. As the memory and false positive rate are all determined by ld in an OFW, we

grow the ld of OFW to record the first ld meeting the current target false positive. The

ld in CFW, however, is not monotonically related to memory footprint and the false

positive rate. This is because ld will influence the portion of keys located in Level 1 η,

and thus a smaller ld leads to a memory growth in the 2nd level, which may be more

than the memory footprint increment of increasing ld by 1. As the numbers of ports

d on a forwarder and the length of keys lk differ a lot in L2 networks and L7 overlay

networks, we pick lp = 5, lk = 128 to simulate the L2 networks, and lp = 14, lk = 360

for the L7 networks.
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Figure A.1: The portion of keys at Level 1 CFW FIB

A.2 Appendix for Ludo hashing

A.2.1 Pseudocode

We also show the pseudocode of the insertion algorithm on Ludo mainte-

nance program algorithm in Algorithm 2, the insertion on the Ludo lookup program

in Algorithm 3, the concurrent lookup algorithm of Ludo in Algorithm 4, and the

construct algorithm for Ludo lookup structure from the Ludo maintenance structure

in Algorithm 5. Algorithm 6 shows the subroutine in Ludo control plane to find a seed

for a bucket.

181



21 3 4

𝑐𝑎𝑐ℎ𝑒 𝑙𝑖𝑛𝑒𝑠𝑏𝑢𝑐𝑘𝑒𝑡𝑠 #1

1 2 3

𝑏𝑢𝑐𝑘𝑒𝑡𝑠 #2 2 31

Figure A.2: Extra memory loads for compact setting

1 2 3 4 5

Cuckoo path length

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

8M

4M

16M

Figure A.3: CDF of Cuckoo path length

A.2.2 Load factor for successful insertions.

From existing theoretical results of random graphs, it has been proved by both

[45] and [31] that if the average degree d of a random directed graph G of n vertices is

no higher than a threshold dk, then

lim
n→∞

Pr(G is k-orientable) = 1 if d < dk

We say G is asymptotically almost surely (a.a.s.) k-orientable. A graph is k-orientable

if every vertex has in-degree at most k. Consider that each bucket of (2,4)-Cuckoo

corresponds to a vertex of a random graph, and each key corresponds to an edge. A

key stored in a bucket can be considered as an edge contributing to an in-degree to the
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vertex. Hence, a 4-orientable graph is equivalent to a (2,4)-Cuckoo where each bucket

stores at most 4 keys. The above proved result [45, 31] is equivalent to the following

statement. If the load factor is no higher than d4/8 and the table is sufficiently large,

all inserted keys can be stored in a (2,4)-Cuckoo such that every bucket has at most 4

keys. The numerical value of d4 is 7.843, meaning the threshold of the load factor can

be as much as 0.9803, provided by both [45] and [31]. Many later studies confirm this

result [48, 46, 61, 98]. Note the extreme cases in practice that cause failed insertions

do not conflict with this theoretical result. In practice, the length of a cuckoo path

is within a small constant. We show the experimental results of the lengths of cuckoo

paths in Fig. A.3, for Ludo hashing with load factor < 95%, 4, 8, and 16 million items,

and 10 runs for each setup. We find that all lengths of the Cuckoo paths are 6 5, and

more than 95% are smaller than 3. In our design, we set the load factor threshold to

be 95% due to practical issues such as the maximum number of steps of evictions in

implementation. We have not observed a single failure among over 20 billion insertions

during our tests.

A.3 Appendix for Concury

A.3.1 Example of consistency violation by static hashing.

Consider the example shown as Fig. A.4. Suppose the LB uses static hashing

to evenly distribute traffic to four DIPs. Connection C1, whose hash value is 0.3, is

mapped to DIP2. All packets of C1 should be forwarded to DIP2 if there is no DIP pool
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change. However, if there is a change of the DIP pool, e.g., the failure of DIP4, then the

hashing-to-DIP mapping needs to be adjusted for balancing. As a result, later packets

of C1 will be forwarded to DIP1, causing a PCC violation. Other stateless hashing

algorithms, such as consistent hashing, experience similar problems. These problems

are more significant in edge networks where the state may be multi-connection and

long-term.

C1 goes 
to DIP2

DIP1: [0, 1/4)

DIP2: [1/4, 1/2)

DIP3: [1/2, 3/4)

DIP4: [3/4, 1)

LB Algorithm:
Static Hashing H()

Conn C1, 
H(C1)=0.3 

C1 goes 
to DIP1

DIP1: [0, 1/3)

DIP2: [1/3, 2/3)

DIP3: [2/3, 1)LB Algorithm:
Static Hashing H()

H(C1)=0.3 

(b) After DIP update, packets of 
connections C1 go to DIP1

(a) Packets of connections C1 go 
to DIP2 by static hashing 

Figure A.4: PCC violation of static hashing

A.3.2 Pseudocode

We also show the pseudocode of the Concury-DP lookup algorithm in Algo-

rithm 7 and the Concury-DP updating algorithm in Algorithm 8.

A.3.3 Data plane complexity analysis and comparison.

Time cost. 1) Concury. Concury-DP is very simple and fast. Each lookup

is in O(1), including at most 6 read operations from static arrays, 2 hash computations
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(32 bits for each), and an XOR computation. The 6 read operations include 1 for the

VIP array access, 1 for basic information of the Othello, 2 for Othello access, and 2

for finding the actual DIP of the Dcode. The time cost is the same for stateful and

stateless packets. 2)Cuckoo+digest. We compare Concury with the hash table plus

digest approach, which is applied by some mainstream systems [37, 67]. We assume

a (2,4) Cuckoo hash table, which has been shown as an optimized and up-to-date LB

design choice of a hash table [67]. For a stateful packet, on average Cuckoo+digest needs

3.5 hash computations, including 2 for generating the 64-bit digest and 1.5 for locating

the buckets (50% found in the first bucket and 50% found in the second bucket). It also

takes 7 memory read operations on average: 1 for basic information of the hash table

and 6 for hash table lookups (4 lookups per bucket). It takes 6 digest comparisons on

average (4 per bucket). For a stateless packet, Cuckoo+digest needs to read and compare

the key digest to all slots in the two buckets. Hence it takes 4 hash computations, 9

memory read operations, and 8 digest comparisons. Concury is faster compared to

Cuckoo hashing based solutions, as shown in Table A.1.

Space cost. 1) Concury. Let n be the number of total states, and ld is the

length of Dcode, assuming all Othellos use the same length of Dcode. The Othellos

take 2.33ld · n bits, the VIP array takes 64m bits, and the DIP array takes 2ld lvm bits

where lv is the length of the DIP index. A DIP and port take 48 bits. The total space

cost is 2.33ldn+64m+2ld lvm+48 · 2lv bits. 2) Cuckoo+digest. Assume the hash table

load factor is 90%, Cuckoo+digest takes 1.1(64 + lv) · 4n for the hash table, 2ld lvm for

the weighted load balancer [37], and 48 · 2lv for the DIP retrieval table. Hence the total
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Figure A.5: OthelloMap of 5 state-DIP mappings

is 1.1 · (64 + lv)n + 2ld lvm + 48 · 2lv bits. Since n ≫ m, to compare the space cost of

Concury and Cuckoo+digest is mainly comparing 2.33ldn and 1.1(64+lv)n. In practical

settings, 2.33ldn is much smaller than 1.1 · (64 + lv)n. For example, using ld = 12 and

lv = 12, 2.33ldn = 28n and 1.1 · (64+ lv)n = 83.6n. The experimental results show that

the Cuckoo+digest method (Maglev) needs around 3x memory compared to Concury,

which agrees with the analysis here. Note that one assumption here is that for all VIPs,

the length of Dcode is the same.

A.3.4 Example of OthelloMap.

Fig. A.5 shows an example of OthelloMap for one VIP. Array C stores all

current state-DIP mappings. OthelloMap also maintains an Othello structure to reflect

the index of each mapping in the array. For example, state c1 is stored at index 0 of

the array. Hence the lookup result of c1 in the Othello O is 111
⊕

111 = 0. Once a

new state-DIP mapping is inserted or an expired mapping is deleted from C, O should

change accordingly. If an existing mapping, say c2 to DIP1 at index 1 is deleted, the
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mapping as the last element, i.e., c5 to DIP1 should be moved to index 1.
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Input: The Ludo maintenance structure 〈OM , C〉 and the item to insert 〈k, v〉

Result: The insertion message 〈val, update seq, failed key〉 for Ludo lookup

program

begin

1 val← v

2 update seq ← new empty list

// I: Insert item and record cuckoo path

3 cuckoo path← C.Insert(k, v)

4 if cuckoo path is empty then

5 Insert to fallback table

6 failed key ← k

7 return

8 for position in cuckoo path do

9 bIdx, sIdx← position

10 b← C.buckets[bIdx]

11 k ← b.keys[sIdx]

12 // II: Reverse the bucket locator record, and record the

influenced bits in Othello

13 Ochg ← O.Insert(k, 1−O.LookUp(k))

// III: Find a new seed

14 b.s← FindSeed (b)

15 vorder ← Order of the values based on b.s

16 update seq.add(〈bIdx, sIdx, b.s, vorder,Ochg〉);

end

end

Algorithm 2: insertion algorithm on Ludo maintenance program
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Input: Ludo lookup structure 〈OL, T 〉 and the insertion message

〈val, update seq, failed key〉, the version array V , a global lock L

for fallback

Result: Ludo lookup structure is updated

begin

1 if failed key is set then

2 L.lock()

3 Insert to fallback table

4 L.unlock()

5 return

6 for i = update seq size− 1, · · · , 3, 2, 1, 0 do

7 bIdx, sIdx, s, vorder,Ochg ← update seq[i]

// I: Copy current bucket

8 b← copy of T.buckets[bIdx]

// II: Update the temporary bucket

9 b.s = s

10 Order values in b according to vorder

// III: Consistency under concurrent R/W

11 V [bIdx mod 8192]← V [bIdx mod 8192] + 1

12 compiler barrier

13 Othello atomic update (Ochg)

14 C.buckets[bIdx]← b

15 compiler barrier

16 V [bIdx mod 8192]← V [bIdx mod 8192] + 1

end

end

Algorithm 3: insertion on the Ludo lookup program
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Input: Ludo lookup structure, the version array V , and the key k to

look up

Output: The query result v

begin

// Never entered in practice, under 95% load.

1 if Fallback table has entries then

2 L.lock()

3 v ← read from fallback table

4 L.unlock()

5 return

6 while true do

// Enssure bucket versions are even

7 v0, v1 ← V [h0(k) mod 8192], V [h1(k) mod 8192]

8 compiler barrier

9 if v0 or v1 is odd then continue

// Atomically query bucket locator

10 l← Othello atomic lookup (k)

// Fetch the bucket holding k

11 b← hl(k)-th bucket of the table

// Enssure versions have not changed

12 compiler barrier

13 v′0, v
′

1 ← V [h0(k) mod 8192], V [h1(k) mod 8192]

14 if v0 6= v′0 or v1 6= v′1 then continue

// Fetch the value of k

15 s← slot locator seed stored in b

16 v ← b.slots[Hs(k) mod 4]

17 break

end

end

Algorithm 4: Concurrent lookup algorithm on the Ludo lookup structure

190



Input: The Ludo maintenance structure 〈OM , C〉

Output: The Ludo lookup structure 〈OL, T 〉

begin

// I: Othello maintenance to lookup

1 OL ← OM converts to a lookup structure

// II: New empty (2,4)-Cuckoo Hash Table

2 T ← empty table of size C.size

3 for i = 1, 2, 3, · · · , C.bucket size do

4 b← C.buckets[i]

5 b′ ← T.buckets[i]

// III: Copy locator seeds

6 s← b.seed

7 b′.seed← s

// IV: Copy values to target buckets

8 for 〈k, v〉 in valid items of b do

9 sidx← Hs(k) mod 4

10 b′.values[sidx]← v

end

end

end

Algorithm 5: construct algorithm for Ludo lookup structure from the Ludo maintenance

structure
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Input: The Ludo maintenance structure bucket b

Input: The new seed s

begin

1 for s = 0, 1, 2, · · · do

2 taken← 4-element boolean array

3 success← true

4 for k in valid keys of b do

5 sid← Hs(k)

6 if taken[sid] then

7 success← false

8 break

9 taken[sid]← true

end

10 if success then

11 return s

end

end

end

Algorithm 6: Subroutine FindSeed
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Input : VIP index i, 5-tuple t, hash func. ha and hb

Output: DIP d

1 Ai ← V IPArray[i];

// Ai: memory address of arrayA of the i-th Othello

2 Bi ← Ai +ma;

// Bi: memory address of arrayB of the i-th Othello

3 Dcode← Ai[ha(t)]⊕Bi[hb(t)];

4 d← DA[i][Dcode];

Algorithm 7: Data plane lookup algorithm of Concury

Input : 〈i, A′, B′, DA′〉 from update message

// i: VIP index; A′: new array A; B′: new array B, DA′:

new DA in dimension i

1 Ai ← V IPArray[i];

2 Bi ← Ai +ma;

3 ArrayCopy(Ai, A
′); ArrayCopy(Bi, B

′);

4 ArrayCopy(DA[i][], DA′);

// ArrayCopy copies received arrays to existing ones with

concurrent control.

Algorithm 8: Data plane update algorithm of Concury

193



LB Algorithm #Hashes #Reads Other computation

Cuckoo+digest [67, 37] stateless pkts 4 9 cmpr digest 8 times

Cuckoo+digest [67, 37] stateful pkts 3.5 7 cmpr digest 6 times

Concury 2 6 1 XOR

Table A.1: Data plane time cost breakdown (per lookup)
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