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ABSTRACT 

Resource managers rely on long-term monitoring 
surveys conducted in the San Francisco Estuary 
to evaluate the status and trends of resident fish 
populations in this important region. These surveys 
are potentially confounded because of the incomplete 
detection of individuals and species, the magnitude 
of which is often related to the same factors that 
affect fish populations. We used multistate occupancy 
estimators to evaluate the distribution, abundance, 
and detection probability of four fish species 
collected during 1995–2015 with three long-term 
surveys. Detection probabilities varied positively with 
fish abundance and negatively with Secchi depth. 
Detection varied among species and was greatest 
for the 20-mm Survey and least for the midwater 
trawl used for the midwater trawl used in the San 

Francisco Bay Study. Incomplete detection resulted in 
underestimates of occupancy and abundance across 
species and surveys and were greatest for the Bay 
Study. However, trends in occupancy and abundance 
of the study period appeared to be unbiased. Fish 
occupancy and abundance were generally related to 
salinity or specific conductance, day-of-the year, and 
water temperature, but the nature of the relations 
varied among surveys and species. There also was 
strong spatial and temporal dependence in species-
specific occupancy and abundance that changed 
through time and were unrelated to the covariates 
considered. Our results suggest that managers 
consider incorporating methods for estimating 
detection and adjusting data to ensure data quality. 
Additionally, the strong spatio-temporal patterns in 
the monitoring data suggest that existing protocols 
may need to be modified to ensure that data and 
inferences reflect system-wide changes rather than 
changes at a specific set of non-randomly selected 
locations. 
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INTRODUCTION 

Changes to habitats, water quality, and hydrologic 
regimes that are associated with anthropogenic 
development and climate change have been identified 
as some of the foremost threats to fishes and other 
aquatic biota in estuarine ecosystems. Natural 
resource managers can be effective at mitigating 
or minimizing such threats to fishes only if they 
are informed as to the current status and recent 
trends in fish populations as well as the nature and 
extent of potential detrimental impacts (e.g., climate 
change). The ability to determine the population 
status and trends and the effectiveness of fish 
conservation strategies depends upon the quality of 
the fish monitoring data (Peterson and Rabeni 1995). 
Sampling bias and variance are the primary factors 
that influence the quality of these data and hence, 
the ability of managers to make informed decisions.

When sampling fish populations, individuals and 
species within a sample unit are generally not all 
captured or detected (Peterson and Paukert 2009). 
The ability to capture fishes is reportedly related 
to factors such as sampling method; fish size, 
morphology and behavior; and the physical and 
chemical characteristics of sample units. Failure 
to account for incomplete capture introduces a 
systematic error or negative bias into the data. 
As noted by Hurlbert (1984), systematic error can 
significantly affect the validity of inferences from 
experiments or observational studies. While many 
fishery biologists acknowledge the presence of 
sampling bias and its potential to substantially 
affect point estimates of population abundance, it 
is often believed that biased data are still useful 
for examining “trends” in the resource. Despite 
this paradigm, rigorous evaluations of population 
abundance indices uncorrected for incomplete 
detection indicate that analyses of time trends can 
be biased (Thompson 2002). Indeed, systematic bias 
related to fish capture is particularly problematic 
when the factors affecting fish capture are the same 
factors affecting fish population processes or are 
factors that change systematically in space and time 
(Peterson and Paukert 2009). For example, Thurow et 
al. (2006) found that the ability to detect salmonids 
during snorkel surveys depended on turbidity and 
water temperature, two factors that co-vary with 
discharge. They further showed that trends in annual 

discharge across the Intermountain West potentially 
induced a systematic bias in salmonid snorkel 
survey data. Thus, reliance on biased estimates of 
fish population size to infer population status and 
trends, and to parameterize models of fish population 
response to management actions or environmental 
variation could lead to poor resource management 
decisions and the development of ineffectual policies 
and regulations for conserving aquatic species. 

Studies performed in the San Francisco Estuary 
give typical examples of the potential influence 
that data quality can have on perceived changes to 
fish communities. Fish population monitoring has 
been conducted throughout the estuary since the 
late 1950s using a variety of active sampling gear. 
These surveys were originally developed to assess the 
status and trends in economically and recreationally 
important species, such as juvenile salmon and 
Striped Bass Morone saxatilis. However, evaluations 
of trends in population indices calculated using 
these data suggest strong decreases in abundance of 
target and non-target species over time, particularly 
pelagic fishes that include the federally listed Delta 
Smelt Hypomesus transpacificus and Longfin Smelt 
Spirinchus thaleichthys and Striped Bass (Sommer 
et al. 2007; Cloern and Jassby 2012). These reported 
declines have been attributed to widespread changes 
in the estuary during the monitoring period, 
including: changes in water quality (Thompson et 
al. 2000); invasion by exotic species (Kimmerer and 
Orsi 1996); habitat alteration (Baxter et al. 2010); 
and changes associated with human water use and 
diversion (Kimmerer 2008; Sommer et al. 2011). The 
indices of abundance used by these studies are not 
adjusted to account for incomplete capture and are 
likely negatively biased to some extent. It remains 
to been seen if these sample biases are also related 
to changes in the estuary such that inferences about 
trends in population dynamics are confounded by 
trends in capture probability. For example, systematic 
trends in water clarity (Barnard et al. 2013) and 
temperature (Jassby 2008) have been observed in 
the estuary and both factors have also been shown 
to affect the ability of researchers to capture fishes 
(Bayley and Peterson 2001; Peterson et al. 2004; 
Price and Peterson 2010). Similarly, changes in gear 
and sampling procedures that presumably resulted 
from personnel rotation and equipment upgrade/
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repair across the decades-long monitoring also 
can impose a systematic bias in the data (Peterson 
and Paukert 2009). Thus, there remains a need to 
evaluate the potential biases in existing monitoring 
protocols and sample designs used in the estuary 
and if necessary, develop alternative approaches and 
estimators. 

An evaluation of potential sample biases requires 
an unbiased estimate of the known number of fish 
within a sample unit. Previous evaluations have used 
three basic approaches to obtain these estimates: 
(1) by introducing a known number of fish into 
a sample unit; (2) by collecting fish within a site, 
marking, and returning them; and (3) using an 
unbiased population estimator (Peterson and Paukert 
2009). Of these, the last approach is the most feasible 
for evaluating the reliability of the population 
status and trends information derived from long-
term estuary studies. A variety of estimators are 
available for estimating the abundance, distribution, 
and capture (or detection) probability of unmarked 
fishes, but these estimators require the collection of 
replicate samples from study sites that are assumed 
to contain closed populations (i.e., no births, deaths, 
emigration, and immigration). Of the 16 surveys 
currently conducted in the estuary, only three— the 
20 mm Survey, San Francisco Bay Study (Bay Study), 
and Summer Townet Survey — consistently collect 
multiple samples (tows) during each survey. All three 
of these studies have been conducted for more than 
two decades. Despite the significant expenditure of 
time and resources to collect these data, there has 
been no comprehensive evaluation of the efficiency 
or effectiveness of long-term monitoring protocols 
for assessing the abundance and distribution of 
fishes of concern (see however Mahardja et al. 2017). 
Therefore, our objectives were threefold: (1) evaluate 
the efficiency of the sampling methods used and 
identify factors that affect fish capture, (2) estimate 
the historical distribution and abundance of fishes, 
and (3) evaluate potential systematic biases in 
historic estimates of abundance and distribution and 
identify the likely sources of the biases. 

MATERIALS AND METHODS 

Study Area 

The San Francisco Estuary is the largest estuary 
on the Pacific Coast and supports more than 500 
fish, wildlife and plant species, including several 
threatened and endangered species. The eastern end 
of the estuary historically consisted of extensive 
marsh-wetland complexes at the confluence of 
the Sacramento and San Joaquin rivers, but was 
converted to agricultural land uses beginning in 
the mid-19th century. During this time, levees were 
constructed along stream channels and islands to 
help protect water exports from saltwater intrusion 
(Galloway et al. 1999). Water from the Sacramento–
San Joaquin Delta flows westerly through San Pablo 
Bay and San Francisco Bay into the Pacific Ocean 
(Figure 1). There are additional freshwater inputs to 
the estuary from several tributaries including the 
Petaluma, Napa, and Guadalupe rivers.

Data 

Since 1995, the 20-mm Survey has been conducted 
from early spring (March and April) to mid-summer 
(July and August). The objective of the survey is to 
evaluate the distribution and abundance of Delta 
Smelt and their prey and assist in the estimation 
of fish losses because of entrainment at of the 
State Water Project and the Central Valley Project. 
Samples are collected every other week resulting in 
typically 8–10 surveys at each station per year. Up 
to 55 stations per year have been sampled, but only 
41 stations, referred to as index stations, have been 
consistently sampled since 1995 and were the only 
20-mm Survey stations included in our analysis. 
Larval and juvenile fish are sampled using a 5.5 m 
long conical plankton net with 1.59 mm mesh, and 
1.51 m2 mouth opening (Honey et al. 2004). A flow 
meter is mounted in the mouth of the net to estimate 
the volume of water sampled. Each station is sampled 
using three consecutive 10-min stepped oblique tows. 
The contents of each tow are transferred to a sample 
jar and brought to a laboratory for fish identification 
and quantification.

The Summer Townet Survey began in 1959 with 
the objective of indexing the relative abundance of 
Striped Bass, but has since been used to evaluate 
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status and trends in Delta Smelt. Before 2003, 2–5 
surveys were conducted at 32 stations annually 
from approximately June to August. The number of 
surveys was standardized to 6 per year in 2003. An 
additional 8 stations were added in 2011, resulting 
in 40 stations (Figure 1) that were included in our 
analysis. Fishes were sampled during the Summer 
Townet Survey using a “D” frame with a 1.49 m2 
opening that consisted of an outside 12.7 mm mesh 
section approximately 15 m long and a woven nylon 
fyke inside of the netting (Honey et al. 2004). The 
volume of each tow from 1970–2002 was calculated 
based on mouth area, net speed, and distance towed. 
Beginning in 2003, a flow meter, mounted at the 
mouth of the net, was used to estimate the volume 
sampled. A minimum of two oblique tows are made 
against the current, if present, with an additional 

third tow if fish are detected in at least one of the 
first two tows at each station.

The Bay Study began in 1980. The purpose of the 
study was to evaluate the effects of freshwater 
outflow on fish and invertebrates in the estuary. 
Surveys are generally conducted monthly throughout 
the year at (currently) 52 stations (Figure 1) and 
employ two different gears, a midwater trawl and 
otter trawl. The midwater trawl is intended to 
primarily sample pelagic fishes, while the otter 
trawl is primarily intended to sample demersal 
fishes, shrimp, and crabs. The midwater trawl 
consists of a 3.7 m2 mouth with 20.5 cm mesh that 
gradually reduces to 1.3 cm mesh codend (Armor 
and Herrgesell 1985). It is towed obliquely with 
the current for approximately 12 min. The volume 

Figure 1 Map of the San Francisco Estuary and the long-term study sites used in the analysis of fish abundance, distribution, and detection
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of the water filtered is calculated using the mouth 
area and distance towed relative to the current as 
measured by a flow meter that is suspended off the 
side of the boat. The otter trawl consists of a 4.9 m 
head rope with 2.5 m mesh body and 1.3 cm mesh 
codend (Armor and Herrgesell 1985). The otter trawl 
is towed after sampling with the midwater trawl. It 
is towed on the bottom and against the current for 
approximately 5 min. The distance towed with the 
otter trawl was estimated with Loran C or GPS.

In conjunction with sampling, crews took several 
physiochemical measurements, in addition to tow 
distance, duration, volume of water sampled, and 
time of sampling. Many of the same measurements 
were consistently collected across all surveys. Specific 
conductivity (μs cm-1) and water temperature (°C) 
within 0.3 m of the surface and within 0.3 m of the 
bottom were made with calibrated meters. The top 
and bottom values also were averaged. Secchi depth 
(cm) and bottom depth (m) also were measured 
and recorded. Tides were recorded as: high (slack), 
ebb, low (slack), and flood and wave conditions as: 
calm, waves with no whitecaps, and waves with 
whitecaps. Salinity (ppt) was consistently collected at 
the surface and bottom for the Bay Study only and 
surface turbidity (NTU) for Summer Townet Survey 
only. These data were compiled to evaluate the effect 
of habitat and water quality characteristics on fish 
distribution and abundance. We also calculated the 
position of the X2 isohaline using the methods in 
Hutton et al. (2015). For each survey, we calculated 
the amount of time (h) after sunrise that a sample 
(tow) was collected using the sunrise times at Rio 
Vista CA (NOAA 2016). Finally, we calculated the 
order in which samples were collected each day to 
allow an evaluation of changes in gear effectiveness 
through time during each sample day.

One of our objectives was to evaluate potential 
biases in fish abundance and distribution trends 
across methods. Therefore, we analyzed survey data 
collected over two decades, 1995–2015, because these 
are the earliest dates when data were available for 
all three surveys. We also restricted our analyses to 
four fish taxa that are of considerable interest in the 
estuary: Delta Smelt, Longfin Smelt, Striped Bass, and 
Sacramento Splittail (Pogonichthys macrolepidotus). 
These species exhibit life histories and behaviors 
that may affect their vulnerability to the sampling 

gears. Delta Smelt is a resident estuarine species 
that is believed to be pelagic, using primarily open 
water habitats (Sommer et al. 2007) and are likely 
vulnerable to trawls towed through the water column. 
Longfin Smelt are also believe to be pelagic (Sommer 
et al. 2007), but they have greater saltwater tolerance 
than Delta Smelt and are considered a facultative 
anadromous species (Rosenfield and Baxter 2007). 
Age-0 striped bass also use open water habitats 
until they metamorphose in the summer (Turner 
and Chadwick 1972) and adults are classified as 
facultative anadromous species (Moyle 2002). We 
restricted our Striped Bass analysis to age-0 fish to 
minimize the potential effects of ontogenetic changes 
in habitat use and distribution and because older 
age classes are likely much less vulnerable to these 
sampling methods. In contrast with the other focal 
species, Sacramento Splittail is a littoral species 
(Feyrer et al. 2005, 2015) and likely not as vulnerable 
as the pelagic species to the sampling methods used 
in the three surveys.

Evaluation of System-Wide Trends 

System-wide changes in the physiochemical factors 
that affect fish detection could potentially impose a 
pattern in the fish sampling data and obfuscate true 
trends or suggest false trends. To evaluate system-
wide changes through time, we used linear mixed 
models to relate physiochemical measurements to 
year sampled. We allowed the relationship between 
year and each physiochemical measurement to vary 
among stations by including a randomly varying 
slope. We calculated 95% confidence intervals for 
the fixed effects and interpreted these as the average 
change in the covariate variable per year. All models 
were fit using R package lme4 (Bates et al. 2017).

Fish Distribution and Abundance Modeling 

We considered a variety of population estimators 
for modeling the abundance and distribution of 
unmarked fishes, including N-mixture models (Royle 
2004) and occupancy models (McKenzie et al. 2006). 
We chose occupancy models because we believed 
they were more robust than N-mixture estimators in 
the face of unexplained variation and low capture 
probabilities (< 0.3; McIntyre et al., 2012; Couturier 
et al., 2013; Yamaura, 2013). Furthermore, pseudo 

https://doi.org/10.15447/sfews.2018v16iss4art2
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CV values (Duarte et al. 2018) calculated for each 
species and survey were greater than 3 indicating 
that N-mixture models were inappropriate. However, 
we also wanted to evaluate trends and biases in 
fish abundance. Thus, we chose to use multistate 
occupancy models (MacKenzie et al. 2009) to evaluate 
the relationship between habitat and water quality 
characteristics, tide and sampling conditions, effort, 
and method on the distribution, abundance, and 
detection of fishes. The multistate occupancy model 
differs from a more familiar two-state (i.e., presence 
and absence) occupancy model in that the presence 
and detection of three or more states are estimated 
simultaneously. The fundamental assumption of 
occupancy models is that the populations are closed. 
That is, the occupancy state cannot change between 
replicate samples. This means that fish could enter 
and leave a station so long as the occupancy state 
did not change. Here, we considered three states: 
absent, present, and present and abundant. Thus, our 
model estimated the following parameters: 

	 Ψ1
i,j,k = probability that a station is occupied 

during a survey regardless of abundance;

	 Ψ2
i,j,k = probability that the station is occupied by 

a large number of fish (abundant), given that the 
station is occupied during a survey;

 p1
i,j,k,t = probability that a species is detected at a 

station on tow t, given that true state is present, 
but not abundant;

 p2
i,j,k,t = probability that a species is detected at 

station on tow t, given that true state is present 
and abundant; and

	 δ i,j,k,t = probability that evidence of the abundant 
state is collected at a station on tow t, given that 
true state is present and abundant,

where i, j, and k denote survey, station, and year, 
respectively. Given the conditional nature of 
the probabilities, the probability that a station 
contains a large number of fish (i.e., the abundant 
state is present) is Ψ1 ∗Ψ2 and the probability of 
detecting the abundant state is p2∗δ. We defined 
the abundant state using the raw catch data for 
each survey from the period 1995–2015. Using 
the maximum catch at a station for each survey 
and year, we calculated the 80th percentile 
of the catch for each species and defined the 

abundant state as catches that exceeded the 80th 
percentile. If the 80th percentile was less than or 
equal to one fish, we set the threshold defining 
the abundant state at two fish. Although the 
number of animals caught that is used to define 
the abundant state is arbitrary (MacKenzie et 
al. 2017), a simulation of various cutoff values 
across a range of known abundances and 
capture probabilities used in Duarte et al. (2018) 
indicated that this cutoff rule resulted in the 
lowest misclassification error (i.e., mistaking 
low abundant for high abundant; J. Peterson 
unpublished data).

Each parameter in the multistate occupancy model 
can be estimated as a logit-linear function of 
covariates: 

 ηi,j,k = β0 +	β1X1,i,j,k + ...βQXQ,i,j,k, (1)

where η is the log-odds of the response (e.g., 
occupancy), and X1i…XQi are the Q (total) 
predictor variables for survey (i), station ( j), 
and year (k), β0 is the intercept, β1… βQ are the 
coefficients. The detection models included an 
additional subscript to denote each tow (t). 

Multiple surveys were conducted at a station or 
within a year and samples collected at a station or 
within a year were likely to be more similar to one 
another and thus, statistically dependent. Some of 
the differences between years and stations can be 
accounted for using covariates, but any unexplained 
variation has the potential to induce lack of fit, 
biased standard errors, and flawed inferences. In 
addition, the variance in model parameters that 
remains unexplained may vary among stations or 
years. To account for the dependence, we examined 
the relations among habitat and water quality 
characteristics, tide, sampling conditions, effort, 
and method on species-specific distribution and 
abundance by incorporating random effects (Royle 
and Dorazio 2008):

 ηi,j,k = β0,j,k  +	β1,j,k X1,i,j,k + ...βQ,j,kXQ,i,j,k, (2)

where the variables are defined above. The intercept 
and coefficients (i.e., the βQ) can be treated as 
fixed, in which their value is assumed equal 
across stations and years or alternatively, as 
randomly varying in which their values differ 
among stations and years. Unexplained variation 
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in occupancy and abundant states among stations 
and years was incorporated by including a 
randomly varying intercept:

 β0,j,k  =	γ0,0 + u0,k + u0,j,k, (3)

where γ0,0 is the grand mean intercept, the u are 
random effects that are normally distributed 
with mean of zero and variance τ corresponding 
to station (j), year (k), and station by year 
interaction (j : k). The year random effect τ0,k 
is a temporal component that represents a 
synchronous change through time at all locations, 
across years. The station random effect, τ0,j is 
a spatial component that represents predictable 
unevenness between locations, independent of 
year. The spatialtemporal interaction component, 
τ0,j : k represents a change in the magnitude of 
the difference between locations from year to 
year. We also evaluated the incorporation of 
random effects for survey nested within year 
in the occupancy and detection models during 
preliminary model fitting, but there was no 
support for these effects (see “Model Selection”).

To accommodate a multistate occupancy model 
structure that included random effects, we used 
Markov Chain Monte Carlo (MCMC) in JAGS 
(Plummer 2003) implemented in R statistical software 
package jagsUI (Kellner 2016). We fitted all candidate 
models with 3 chains running 150,000 iterations, 
100,000 adaptation samples, 25,000 burn-in 
samples, and minimally informative priors (Gelman 
et al. 2008). We assessed the convergence of each 
model with the Brooks and Gelman diagnostic (R̂ ) 
(Brooks and Gelman 1998), and was assumed when 
R̂  < 1.05. In addition, we used parameter history and 
autocorrelation plots to confirm our assessment of 
convergence. The JAGS code for fitting the base 
model can be found in Appendix A. 

Model Selection 

Before we fit the model, we binary coded (0, 1) 
all categorical predictors: high, low, and flood 
tides were coded as 1 with ebb tide as the baseline 
(0); waves- waves with no whitecaps, waves with 
whitecaps were coded as 1 and calm as the baseline; 
and tow direction- against the current were coded 
as 1 and with or no current as 0. We also binary 

coded the otter trawl in the Bay Study as 1 and 0 
for the midwater trawl and assigned a tow number 
for each station and survey to allow us to evaluate 
the potential effect of previously executed tows 
on fish detection. To evaluate the relationship 
between detection and fish length, we calculated 
the mean total length of fish that were captured 
on each survey. If zero fish were collected during 
a survey at all stations, mean length was linearly 
interpolated from the two nearest (in time) surveys 
that captured fish. All continuous predictor variables 
were standardized with a mean of zero and standard 
deviation of one. Missing continuous predictor values 
occurred in < 10% of samples and were assigned the 
mean of all observed values and missing categorical 
predictors were assigned a zero. 

Our modeling objective was to obtain the best 
approximating multistate occupancy model, given the 
predictor variables that were available. Our first step 
was to determine the best approximating variance 
structure for the random effects. We initially fit 
global Ψ1 and Ψ2 models that contained uncorrelated 
predictors that represented day-of-year and time-of-
day, water depth, visibility, temperature, conductivity 
(Table 1), tide, and surface conditions (waves), 
and assuming constant (intercept only) detection 
probabilities. We then included random effects for 
Ψ1 and Ψ2 representing station, year, and station 
by year interaction. Random effects were retained if 
their inclusion lowered the mean deviance by more 
than 2. 

Given the best approximating variance structure, we 
used a stepwise procedure for selecting covariates 
for each model parameter. We began by fitting Ψ1 
and systematically including pairwise uncorrelated 
predictor variables (Pearson |r| < 0.7 following Moore 
and McCabe 1993). Predictor variables were retained 
when the mean deviance decreased by more than 
two and the 95% credible intervals of the coefficient 
estimate did not contain zero. In addition, we 
retained predictors with the 95% credible intervals 
containing zero when the change in deviance 
exceeded four. The fit of strongly correlated predictor 
variables, such as top and bottom conductivity, 
were evaluated individually and the predictor that 
decreased deviance the most was retained provided 
all model selection criteria were met. The process was 
repeated for Ψ2, p1, p2, and δ, respectively. However, 

https://doi.org/10.15447/sfews.2018v16iss4art2
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candidate predictors for the detection parameters 
included measures of sampling effort: tow duration, 
distance and volume (Table 1), tow number, and 
sample order. We also modeled p2 as equal to p1 
but included an additional predictor, abundant, to 
account for the potential effect of a greater number 
of fish on species detection. Once the main effects 
were selected for all multistate occupancy model 
parameters, we evaluated all two-way interactions 
and quadratic terms for these parameters, which were 
retained in the models if the model selection criteria 
were met. For models that contained X2 and day-of-
year, we evaluated evidence that these relationships 
varied by station and year, respectively, by fitting 
models with parameters (slopes) that varied randomly 
among stations and years, respectively. These 
randomly varying effects were retained in the model 
if their inclusion decreased mean deviance by more 
than two. 

All inferences were based on the final best-fitting 
species and study-specific models. To facilitate 
interpretation, we calculated scaled odds ratios for 
selected parameter estimates (Hosmer and Lemeshow 
2000). Because we had standardized continuous 
predictor variable data before we fit the model, 
the odds ratios should be interpreted as changes 
associated with a 1 standard deviation change 
in the corresponding predictor variable. To allow 
interpretation of the relative magnitude of random 
effects, we calculated median odds ratios for the year 
and station random effects following Larsen et al. 
(2000). Median odds ratios should be interpreted as 
the odds ratio between a randomly chosen station 
(or year) with highest probability of occupancy/ 
abundant and a randomly chosen station (or year) 
with the lowest probability, assuming the stations 
were identical with respect to the covariates in the 
model. 

The probability of detecting a fish depends on the 
probability of capturing (q) at least one fish, given N 
fish are present (with N > 0). Assuming independence 
among fish (but see Bayley and Peterson 2002), this 
can be expressed as:

 p = 1 − (1 − q)N, (4)

where p is the probability of detection. We can use 
the above equation and the estimates of species 
detection probabilities from the multistate 

Table 1 Mean, standard deviation (in parentheses), and upper, 
lower 95th percentile (second line) of variables used in the 
multistate occupancy models of fish abundance, distribution, and 
detection

Parameter 20-mm Survey
Summer Townet 

Survey Bay Study

Day-of-year a
132.9 (34.48)

74, 198
197.3 (23.27)

156, 238
183 (102.03)

8, 342

Time-of-day (h) a
10.5 (2.40)

7, 15
10.1 (2.25)

6, 15
10.2 (2.18)

7, 15

Time since sunrise (h)
4.4 (2.40)

1, 9
4.1 (2.12)

1, 8
3.6 (2.18)

0, 8

Depth (m) a
7.2 (3.57)

2, 15
8.0 (3.59)

2, 15
8.9 (5.11)

3, 20

Secchi depth (cm) a
53.7 (33.18)

15, 144
60.5 (36.4)

18, 159
74.3 (42.33)

15, 180

Surface turbidity (NTU)
23.4 (14.58)

4, 57

Surface water temperature 
(°C) a

17.9 (3)
12, 24

21.6 (1.83)
19, 26

15.9 (3.80)
9, 22

Average water 
temperature (°C)

15.8 (3.75)
9, 22

Bottom water temperature 
(°C)

15.8 (3.71)
9, 22

Surface conductivity  
(μs cm−1) a

4130.2 
(7329.35)

115, 27050

5246.4 
(8180.12)

122, 30541

24695.9 
(18387.28)
246, 48551

Average conductivity  
(μs cm−1)

25683.8 
(18505.17)
246, 48730

Bottom conductivity  
(μs cm−1)

4548.5 
(7822.60)

117, 27776

5844.5 
(8474.12)

124, 31754

26385.6 
(18586.66)
246, 48913

Surface salinity (ppt)
15.6 (11.95)

0, 32

Average salinity (ppt)
16.3 (12.04)

0, 32

Bottom salinity (ppt)
16.7 (12.10)

0, 32

X2 (km)*
69.9 (11.48)

50, 93
80.3 (8.41)

59, 95
75.7 (12.46)

49, 93

Tow duration (min)
9.8 (1.06)

5, 10
10 (1.00)

10,11
8.14 (3.49)

4,12

Tow volume (m3)
896.9 (122.59)

515, 1071
822.2 (105.74)

658, 1044

Tow distance (km)
0.6 (0.14)

0, 1

a. Indicates variables that were in the global ψ1 and ψ2 models.
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occupancy model to estimate the relative 
differences in true fish abundance as:

 xN =
log(1 p2 )
log(1 p1)

, (5)

where log is the natural logarithm, p1 and p2 are the 
average, species and study-specific probabilities 
of detection estimated with the best fitting 
multistate occupancy models, and xN estimates 
the ratio of the abundance, on average, of a 
species in the abundant and non-abundant states.

The spatial-temporal random effects interaction 
component could potentially reflect large-scale 
changes in the distribution and abundance of fish 
through time that are unrelated to the covariates in 
the models. To identify some of these changes, we 
used linear regression to evaluate the relationship 
between the station and year interaction random 
effects at each station, survey, and species (i.e., u0,j : k 
in Equation 3). Stations with precise slopes (i.e., 
95% confidence limits that did not contain zero) and 
with parameter estimates that were greater (absolute 
value) than 0.02 were identified as stations with 
significant trends in occupancy, unrelated to the 
model covariates. This change equates to estimated 
occupancy and abundance states in 2015 that were 
at least 1.5 times, on average, more or less likely to 
occur at a site since 1995. For example, this would 
equate to a station that was occupied on average 
50% of the time in 1995 to being occupied 75% of 
the time in 2015. Models were fit using the lmList 
function in the R package lme4 (Bates et al. 2017). 

One of our objectives was to determine if the 
incomplete detection of fish resulted in biased 
estimates of fish distribution and abundance 
and affected perceived trends in occupancy and 
abundance based on indices calculated using raw 
(unadjusted) catch data. We evaluated the latter for 
each species and study by estimating the average 
proportion of stations that were occupied during 
a survey each year regardless of abundance and 
occupied by the abundant state with the best fitting 
model. The same two metrics also were estimated 
for each year using the raw catch data (henceforth, 
naïve estimates). Pearson correlations were 
calculated between the model and naïve estimates. 
We also estimated average percent bias in the naïve 
occupancy and abundant state occupancy as the 

naïve estimate minus the corresponding model 
estimate, divided by the model estimate.

RESULTS 

There was very little spatial overlap among all three 
surveys with a single station in common (Figure 1) 
because of the purposeful design of the surveys. 
The greatest spatial overlap was between the 20 mm 
Survey stations and Summer Townet Survey that had 
36 stations in common. By design, there also was 
minor temporal overlap between those two surveys 
(Table 1). The degree of spatial and temporal overlap 
affected the range of conditions observed during 
sampling. Specific conductance and Secchi depth 
were generally lowest for the 20 mm Survey and 
greatest for the Bay Study, though there was a high 
degree of overlap among all surveys (Table 1). Water 
temperatures were also greatest for the Summer 
Townet Survey, and there was less overlap in 
temperatures among surveys.

There were system-wide changes for most of the 
physiochemical characteristics measured during 
surveys (Table 2). Most notably was Secchi depth 
which increased, on average, more than 1 cm per 
year for the 20 mm Survey and Summer Townet 
Survey. There also were relatively large increases in 
X2, specific conductance, and salinity and smaller, 
but significant, decreases in temperature across all 
surveys (Table 2). 

Detection 

The best fitting multistate occupancy models 
indicated a few commonalities for the detection 
models among species and gear. Fish abundance 
(abundant) was included in all species detection 
models (Table 3) and was among the greatest factor 
affecting species detection (Figure 2). Most species 
were more than 5 times more likely to be detected 
when the station was occupied by the abundant 
state. The next most common factor influencing 
species detection was Secchi depth, which was 
strongly and negatively related to detection across 
most methods and species with the exception of the 
otter trawl, which was smaller but positively related 
to species detection for Longfin Smelt, Striped Bass, 
and Sacramento Splittail (Figure 2). The Bay Study 
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trawl also was more efficient at detecting species 
than midwater trawl for the same three species 
(Figure 2). Interestingly, sampling effort (tow volume, 
distance, duration) was only weakly related to species 
detection. The best fitting abundant state detection 
models were similar to the best species detection 
models with a few notable exceptions (Table 4). The 
otter trawl was less likely to detect the abundant 
state of Delta Smelt and Longfin Smelt, but much 
more likely to detect Striped Bass and Sacramento 
Splittail (Figure 3). Secchi depth also was negatively 
related to detection of the abundant state for most 
species and methods with the exception of Striped 
Bass and Sacramento Splittail (Figure 3). 

A comparison of the average detection probabilities 
across species and methods indicated the probability 
of detecting the species and the abundant state 
was greatest for Longfin Smelt and Striped Bass 
collected with oblique tows for the 20 mm Survey 
(Table 5). For example, the probability of detecting 
Longfin Smelt presence with the 20 mm Survey, 
given the species was not abundant, averaged 60%, 
whereas the probability of detecting the abundant 
state when it was present averaged 86%. In contrast, 

the midwater trawl used for the Bay Study was the 
worst performing gear for detecting species (low 
abundance) and the abundant state across species and 
ranged from 1–6% for detecting the non-abundant 
state and 5–35% for detecting the abundant state 
(Table 5). The ratio of abundant to non-abundant 
state fish abundances estimated using p1 and p2 
suggested that the abundance of fish in the abundant 
state were, on average, 6 times greater than the non-
abundant state across species and surveys (Table 5). 
The greatest estimated differences were for Delta 
Smelt collected during the 20 mm Survey with fish 
abundance in the abundant state more than 10 times 
greater than the non-abundant state.

The evaluation of system-wide changes in 
physiochemical characteristics indicated that Secchi 
depth was increasing through time, which suggests 
that detection may have decreased through time. 
Plots of average estimated detection probabilities 
by year suggests that detection decreased through 
time for all four species sampled during the Summer 
Townet Survey, but the magnitude varied among 
species (Figure 4). 

Table 2 Average annual change and 95% confidence intervals (in parentheses) for physiochemical measurements collected during three 
long-term surveys in the San Francisco Estuary, 1995–2015

Parameter 20-mm Survey Summer Townet Survey Bay Study

Depth
0.04

(-0.028, 0.108)
0.033

(-0.037, 0.102)
0.046

(0.024, 0.068)

Secchi depth
1.151

(0.714, 1.587)
1.799

(1.259, 2.34)
0.799

(0.487, 1.111)

Surface turbidity
-0.124

(-0.465, 0.217)

Surface water temperature
-0.071

(-0.091, -0.052)
-0.002

(-0.016, 0.011)
-0.051

(-0.064, -0.038)

Bottom water temperature
-0.047

(-0.066, -0.028)

Surface conductivity
201.063

(138.694, 263.432)
226.81

(148.835, 304.785)
286.155

(241.976, 330.334)

Bottom conductivity
206.847

(145.541, 268.152)
159.776

(66.055, 253.496)
240.014

(198.583, 281.445)

Surface salinity
0.185

(0.156, 0.213)

Bottom salinity
0.153

(0.126, 0.18)

X2
0.816

(0.774, 0.858)
1.648

(0.992, 2.303)
0.586

(0.546, 0.627)
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Parameter 20-mm Survey Summer Townet 
Survey Bay Study

Delta Smelt

Intercept
-1.976 (0.067)
-2.108, -1.849

-2.566 (0.217)
-3.013, -2.150

-2.838 (0.198)
-3.220, -2.446

Time since 
sunrise

-0.102 (0.034)
-0.169, -0.035

0.108 (0.050)
0.010, 0.206

Depth
0.104 (0.046)
0.015, 0.195

0.168 (0.084)
0.001, 0.391

Secchi depth
-0.689 (0.049)
-0.785, -0.594

-2.197 (0.146)
-2.483, -1.913

-1.002 (0.125)
-1.251, -0.759

Abundant (p2) 
detect

3.001 (0.076)
2.855, 3.149

1.489 (0.187)
1.135, 1.875

2.230 (0.223)
1.797, 2.683

Tow duration
0.167 (0.037)
0.096, 0.239

Tow volume
-0.147 (0.048)
-0.242, -0.055

Mean fish length
-0.206 (0.036)
-0.276, -0.134

Otter trawl
-1.557 (0.155)
-1.862, -1.259

Otter trawl × 
Secchi depth

0.273 (0.132)
0.016, 0.621

Otter trawl × 
Depth

-0.319 (0.134)
-0.584, -0.060

Longfin Smelt

Intercept
0.396 (0.037) 0.323, 

0.469
-2.256 (0.230)
-2.705, -1.809

-3.690 (0.132)
-3.950, -3.439

Depth
0.457 (0.050) 0.360, 

0.553

Secchi depth
-1.316 (0.175)
-1.657, -0.975

-1.727 (0.066)
-1.856, -1.597

Abundant detect
3.839 (0.148) 3.558, 

4.136
1.973 (0.207) 1.573, 

2.385
2.376 (0.108) 2.159, 

2.580

Tow duration
0.173 (0.050) 0.075, 

0.271

Tow volume
-0.122 (0.046)
-0.211, -0.031

Tow distance
0.508 (0.058) 0.389, 

0.619

High tide
0.795 (0.163) 0.476, 

1.118

Mean fish length
-0.163 (0.031)
-0.222, -0.102

Otter trawl
2.038 (0.124) 1.793, 

2.270

Otter trawl × 
Secchi depth

2.017 (0.074) 1.869, 
2.159

Otter trawl × 
Depth

-0.586 (0.057)
-0.696, -0.475

Otter trawl × 
High tide

-0.659 (0.193)
-1.040, -0.286

Parameter 20-mm Survey Summer Townet 
Survey Bay Study

Striped Bass

Intercept
0.646 (0.052) 0.544, 

0.751
-1.241 (0.085)
-1.410, -1.075

-2.857 (0.147)
-3.150, -2.568

Time since 
sunrise

-0.206 (0.039)
-0.283, -0.131

Depth
0.152 (0.029) 0.095, 

0.208
0.507 (0.060) 0.390, 

0.623

Secchi depth
-0.980 (0.077)
-1.132, -0.832

-1.545 (0.065)
-1.675, -1.420

Abundant detect
3.908 (0.172) 3.585, 

4.256
2.508 (0.103)
2.306, 2.709

1.801 (0.117) 1.569, 
2.026

Tow distance
0.258 (0.056) 0.150, 

0.369

Mean fish length
-0.484 (0.048)
-0.579, -0.392

Otter trawl
1.725 (0.124) 1.481, 

1.973

Otter trawl × 
Secchi depth

2.081 (0.077) 1.933, 
2.234

Otter trawl × 
Depth

-1.676 (0.063)
-1.801, -1.554

Sacramento Splittail

Intercept
-1.742 (0.257)
-2.233, -1.227

-2.653 (0.300)
-3.284, -2.088

-4.559 (0.357)
-5.299, -3.903

Time since 
sunrise

0.252 (0.129) 0.006, 
0.509

Secchi depth
-1.064 (0.188)
-1.433, -0.697

-2.441 (0.216)
-2.873, -2.028

Abundant detect
2.389 (0.206) 1.984, 

2.798
1.676 (0.298) 1.137, 

2.306
1.691 (0.318) 1.071, 

2.314

Otter trawl
1.122 (0.198) 0.741, 

1.520

Otter trawl × 
Secchi depth

2.500 (0.220) 2.090, 
2.953

Otter trawl × 
Depth

-0.859 (0.153)
-1.159, -0.565

Table 3 Parameter estimates, standard deviation (in parentheses) and upper, lower 95% credible intervals (second line) of detection 
probability (p1, p2) from best fitting multistate occupancy model for each species and long-term survey
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Occupancy 

The best fitting species occupancy models indicated 
that four factors: day-of-year, water temperature, 
salinity or specific conductance, and X2, were 
consistently included in the species occupancy 
models across species and surveys (Table 6). Of these, 
salinity or specific conductance generally had the 
greatest effect on occupancy across species (Figure 5). 
However, the magnitude and direction of these 
effects generally differed among surveys for a species 
(Figure 5). For instance, Longfin Smelt occupancy 
was negatively related to specific conductance for 
the 20-mm Survey but positively related for the 
Summer Townet Survey and Bay Study. The effect 

of salinity and specific conductance also differed 
by orders of magnitude among studies for the other 
three species (Figure 5). Delta Smelt and Sacramento 
Splittail occupancy were negatively related to water 
temperature for the Summer Townet Survey, but 
positively related for the Bay Study.

The average effect of X2 on occupancy was relatively 
small compared to day-of-year, water temperature, 
and salinity or specific conductance (Figure 5). 
However, the effect of X2 on species occupancy 
varied substantially among stations for each species 
(Table 6). On average, the effect of X2 (on a logit 

Figure 2 Estimated odds ratios for species detection probability 
(p1 and p2) from best approximating multi-state occupancy model 
by survey and species. Bars below the axis should be interpreted 
as detection is less likely, whereas bars above the axis indicate 
more likely. Odds ratios for continuous covariates correspond to 
a 1-standard deviation increase in the covariate and asterisks 
indicate values that exceed range plotted.

Figure 3 Estimated odds ratios for conditional abundant 
detection probability (d) from best approximating multi-state 
occupancy model by survey and species. Bars below the axis 
should be interpreted as detection of abundant state is less likely, 
whereas bars above the axis indicate more likely. Odds ratios 
for continuous covariates correspond to a 1-standard deviation 
increase in the covariate and asterisks indicate values that 
exceed range plotted. Behavior is estimate of effect of previous 
tows on detection.
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scale) on species occupancy varied by more than 
200% among stations, with the greatest variation in 

the X2 effect among stations occurring for Longfin 
Smelt (Table 6).

The best fitting species occupancy models also 
contained random effects corresponding to station, 
year, and station by year interaction. Median 
odds ratios suggested that the magnitude of these 
effects were generally greater than the effects of 
physiochemical characteristics (Figure 5). There 
was no clear or consistent pattern in the relative 
magnitude of spatial and temporal variation that was 
not accounted for by the predictor variables across 
species. Spatial variation greatly exceeded temporal 
variation for Longfin Smelt across surveys, but 
relative magnitude of spatial and temporal variation 
differed among surveys for the other three species 
(Figure 5). The relative magnitude of the station by 
year random effect also suggested a systematic shift 
in the distribution of species at stations through time. 

The best fitting models for the abundant state were 
similar to the species occupancy models with day-of-

year, salinity or specific conductance, and X2 having 
among the greatest effects on the presence of the 
abundant state (Table 7). The abundance occupancy 
models also contained randomly varying X2 that 
was most variable for Delta Smelt as estimated for 
the 20-mm Survey and Bay Study. The median odds 
ratios also suggested that spatial and temporal factors 
unaccounted for by the predictors had a substantial 
effect on the abundant state occupancy (Figure 6). 

The evaluation of systematic changes in distribution 
and abundance of the four fish species that was 
unrelated to the covariates included in the analysis 
revealed that all species had a greater number of 
stations where occupancy or abundance decreased 

Table 4 Parameter estimates, standard deviation (in parentheses) and upper, lower 95% credible intervals (second line) of conditional 
abundant state detection probability (d) from best fitting multistate occupancy model for each species and long-term survey

Parameter 20-mm Survey Summer 
Townet Bay Study

Delta Smelt

Intercept
0.908 (0.066)
0.779, 1.039

1.384 (0.217)
0.967, 1.814

0.506 (0.172)
0.190, 0.860

Time since sunrise
0.282 (0.096)
0.094, 0.472

Secchi depth
-0.471 (0.068)
-0.603, -0.338

-1.123 (0.270)
-1.661, -0.586

Tow volume
0.503 (0.106)
0.303, 0.717

High tide
-0.948 (0.332)
-1.611, -0.310

Otter trawl
-0.712 (0.224)
-1.159, -0.275

Longfin Smelt

Intercept
1.885 (0.126) 
1.638, 2.133

2.410 (0.161) 
2.105, 2.735

1.061 (0.093) 
0.886, 1.249

Tow volume
0.714 (0.150) 
0.426, 1.019

Flood tide
0.221 (0.094) 
0.037, 0.406

High tide
0.410 (0.159) 
0.105, 0.729

Tow number
-0.181 (0.053)
-0.283, -0.074

Otter trawl
-0.404 (0.094)
-0.591, -0.220

Parameter 20-mm Survey Summer 
Townet Bay Study

Striped Bass

Intercept
1.373 (0.075) 
1.227, 1.523

0.412 (0.089)
0.239, 0.591

-1.027 (0.105)
-1.229, -0.819

Time since sunrise
-0.153 (0.055)
-0.262, -0.047

Depth
-0.021 (0.082)
-0.182, 0.140

Secchi depth
-0.791 (0.106)
-1.001, -0.580

-1.043 (0.117)
-1.270, -0.811

Tow volume
0.215 (0.048) 
0.122, 0.309

Order for day
-0.008 (0.005)
-0.017, 0.001

Otter trawl
1.290 (0.121) 
1.047, 1.523

Otter trawl × Secchi 
depth

1.803 (0.143) 
1.524, 2.084

Otter trawl × Depth
-1.418 (0.124)
-1.669, -1.182

Sacramento Splittail

Intercept
-0.004 (0.158)
-0.308, 0.313

1.989 (0.308) 
1.430, 2.643

-1.652 (0.392)
-2.389, -0.867

Secchi depth
-1.320 (0.347)
-1.995, -0.629

Tow volume
0.635 (0.249) 
0.189, 1.159

Mean fish length
-0.595 (0.293)
-1.187, -0.028

Otter trawl
1.018 (0.429) 
0.149, 1.834

Otter trawl × Secchi 
depth

1.338 (0.411) 
0.515, 2.115
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through time with Longfin Smelt exhibiting 
decreases in the greatest number of stations (26) and 
Delta Smelt the fewest (19). The distribution and 
abundance of Delta Smelt appeared to contract in 
the Sacramento Deep Water Ship Channel and San 
Pablo and Suisun bays and increase in the North 
Delta sloughs (Figure 7). Longfin Smelt distribution 
appeared to contract to areas in Suisun, Honker, 
and South bays and around Liberty Island. Striped 
Bass exhibited a more complicated pattern with 
decreases generally occurring in the western portions 
of the estuary and increases in the eastern portions 
(Figure 7). Sacramento Splittail also exhibited a more 
complicated pattern with decreases in the western 
portion of the survey areas. 

The trends in species occupancy and the abundant 
state as estimated with the best-fitting multistate 
occupancy model and the naïve estimates indicated 
decreases in the average proportion of stations 
occupied through time (Figures 8–11). For instance, 
Delta Smelt naïve and estimated occupancy indicated 
decreasing trends through time, across surveys 

(Figure 8). However, the estimated rate of decrease 
varied among surveys. Pearson correlations between 
average naïve and estimated occupancy rates 
paired by year indicated the trends were strongly 
correlated (Table 5). The strongest correlations were 
for the abundant state (average correlation across 
species and surveys 0.97) and the weakest were for 
species occupancy as estimated with the Bay Study 
survey data (average correlation across species and 
surveys 0.68). The relative biases in proportion of 
stations occupied by the species and the abundant 
state indicated that the naïve estimates substantially 
underestimated occupancy, with underestimates 
averaging across species and surveys by 31% and 
23% for species presence and the abundant state 
presence, respectively (Table 5). Estimated occupancy 
rates by year, survey, and species can be found in 
Appendix B.

Table 5  Estimated multi-state detection probabilities under average sampling conditions, the ratio of abundant to non-abundant state fish 
abundances (xN), the correlation between estimated and naïve occupancy and abundant (in parentheses), and the estimated percent bias of 
naïve occupancy and abundant state (in parentheses) relative to model estimated values. Otter trawl estimates shown separately for the Bay 
Study. The conditional state detection estimates the probability that the abundant state is collected at a station during a tow given that true 
population state is present and abundant.

Study / Species p1 p2 δ*p2 p1(otter) p2(otter) δ*p2(otter) xN Pearson r Bias (%)

20-mm Survey

Delta Smelt 0.12 0.74 0.52 10.26 0.85 (0.99) -46.6 (-6.7)

Longfin Smelt 0.60 0.99 0.86 4.67 0.99 (0.99) -1.2 (-0.1)

Striped Bass 0.66 0.99 0.79 4.28 0.98 (0.99) -2.5 (-1.0)

Sacramento Splittail 0.15 0.66 0.33 6.62 0.95 (0.99) -24.5 (-24.4)

Summer Townet Survey

Delta Smelt 0.07 0.25 0.20 3.96 0.98 (0.97) -11.3 (-13.5)

Longfin Smelt 0.09 0.43 0.39 5.64 0.98 (0.99) -9.6 (-3.0)

Striped Bass 0.22 0.78 0.47 5.97 0.86 (0.99) -25 (-7.7)

Sacramento Splittail 0.07 0.27 0.24 4.69 0.96 (0.99) -34.3 (-6.3)

Bay Study

Delta Smelt 0.06 0.35 0.22 0.01 0.10 0.05 7.64 0.67 (0.93) -75.4 (-58.4)

Longfin Smelt 0.02 0.21 0.16 0.16 0.67 0.44 9.65 0.52 (0.96) -45.4 (-33.3)

Striped Bass 0.05 0.26 0.07 0.24 0.66 0.37 5.34 0.63 (0.83) -29.3 (-47.2)

Sacramento Splittail 0.01 0.05 0.01 0.03 0.15 0.05 5.30 0.87 (0.96) -71.3 (-78.7)
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DISCUSSION 

Incomplete detection is the norm when conducting 
surveys of wild animals and the modeling results 
reflect this pattern with estimated detection 
probabilities for all four species and surveys less than 
100%. The occupancy model detection probabilities 
depend on the species being present within the 
station. Thus, fish could go undetected in a tow 
because they were not in the tow path or moved out 
of the tow path. The model could not distinguish 
which of these mechanisms was responsible for 
incomplete detection. However, previous studies have 
found that fish move out of sample units in response 
to the sound and presence of research vessels (De 
Robertis and Handegard 2013), the presence of towed 
cameras (Rooker et al. 1997; Stoner et al. 2007; King 
et al. 2018), tow cables (Somerton et al. 2017), and 
towed nets (e.g., Handegard et al. 2003; Kaartvedt 
et al. 2012; Bryan et al. 2014; Kresimir et al. 2015). 

The ability to move away from towed sample gear 
is positively related to fish body size (Barkley 1972), 
which may partially explain the high detection 
probabilities for low abundance state of Longfin 
Smelt and Striped Bass for the 20-mm Survey. Fish 
movement out of the tow path would likely violate 
assumptions of perfect detection within the tow path, 
negatively biasing raw catch data and abundance 
indices calculated with the data. Clearly, there is need 
to evaluate the response of fish to the sample gear 
used in the long-term studies in the estuary.

The fundamental assumption of the multistate 
occupancy model is that stations were closed 
with respect to the occupancy state. That is, if the 
species was in the abundant state during the first 
tow it should remain in the abundant state during 
subsequent tows within a primary sampling period. 
This means that individual fish can enter and 
leave a station, so long as the state did not change 

Figure 4 Average and 95th percentiles (bars) for estimated species detection probabilities for the Summer Townet Survey by year and species
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Parameter 20-mm Survey Summer Townet Survey Bay Study

Delta Smelt

Intercept 0.404 (0.370)
-0.326, 1.136

-1.413 (0.573)
-2.549, -0.279

-3.569 (0.450)
-4.476, -2.723

Day-of-year 3.680 (0.268)
3.208, 4.268

-0.227 (0.111)
-0.448, -0.013

Surface water temperature -0.449 (0.163)
-0.769, -0.137

Average water temperature 0.567 (0.232)
0.167, 1.079

Surface conductivity -1.092 (0.256)
-1.612, -0.603

Bottom conductivity -3.540 (0.311)
-4.219, -2.981

Average salinity -4.218 (0.483)
-5.147, -3.222

X2 -0.259 (0.191)
-0.646, 0.105

1.148 (0.266)
0.609, 1.641

(Day-of-year)2 0.259 (0.130) 0.010, 0.542

(Surface water temperature)2 -0.280 (0.113)
-0.510, -0.065

Average salinity × average water temperature 0.764 (0.263)
0.280, 1.312

Surface conductivity × Day-of-year 0.627 (0.118)
0.401, 0.862

X2 0.190 (0.150)
0.007, 0.553

0.410 (0.230)
0.071, 0.957

Station 1.289 (0.233) 0.886, 1.793 3.033 (0.518)
2.175, 4.206

0.696 (0.306)
0.127, 1.393

Year 1.218 (0.258) 0.802, 1.820 1.797 (0.384)
1.192, 2.666

1.203 (0.330)
0.659, 1.959

Year × Station 1.454 (0.211) 1.064, 1.867 1.297 (0.200)
0.912, 1.715

0.341 (0.204)
0.062, 0.788

Longfin Smelt

Intercept -0.416 (0.601)
-1.591, 0.756

-2.998 (0.570)
-4.126, -1.897

0.851 (0.484)
-0.124, 1.742

Day-of-year -1.453 (0.120)
-1.690, -1.222

-0.881 (0.122)
-1.123, -0.646

Depth 0.382 (0.136) 0.120, 0.650 0.363 (0.154) 0.054, 0.672

Secchi depth -0.419 (0.086)
-0.590, -0.251

Surface water temperature -0.297 (0.111)
-0.509, -0.079

-0.755 (0.163)
-1.081, -0.440

Bottom water temperature -2.232 (0.182)
-2.615, -1.903

Bottom conductivity -1.391 (0.150)
-1.694, -1.105 0.302 (0.139) 0.290, 0.575

Bottom salinity 1.315 (0.338) 0.614, 1.939

X2 -0.076 (0.237)
-0.537, 0.395

-0.334 (0.314)
-0.974, 0.266

Depth × Secchi depth 0.141 (0.073) 0.001, 0.290

X2 0.690 (0.181) 0.383, 1.083 1.575 (0.263) 1.118, 2.150

Station 3.430 (0.440) 2.679, 4.389 2.679 (0.515) 1.835, 3.854 3.008 (0.394) 2.334, 3.861

Year 1.976 (0.356) 1.413, 2.813 1.904 (0.388) 1.299, 2.790 1.022 (0.221) 0.672, 1.538

Year × Station 1.358 (0.104) 1.158, 1.569 0.377 (0.262) 0.022, 0.891 0.618 (0.193) 0.237, 1.010

Table 6 Parameter estimates, standard deviation (in parentheses) and upper, lower 95% credible intervals (below) of species occupancy 
(Ψ1) from best fitting multistate occupancy model for each species and long-term survey. Italics indicate random effects that are expressed 
as standard deviations. 
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Parameter 20-mm Survey Summer Townet Survey Bay Study

Striped Bass

Intercept 0.880 (0.214) 0.463, 1.311 0.982 (0.617)
-0.229, 2.222 0.992 (0.458) 0.081, 1.872

Day-of-year 2.058 (0.124) 1.816, 2.300 -1.768 (0.212)
-2.199, -1.393 0.231 (0.120) 0.002, 0.471

Secchi depth -0.567 (0.073)
-0.708, -0.425

Surface turbidity 0.366 (0.115)
0.161, 0.608

Surface water temperature 0.257 (0.109) 0.044, 0.475 -0.526 (0.181)
-0.895, -0.188

Average water temperature -0.701 (0.114)
-0.937, -0.489

Surface conductivity -1.951 (0.136)
-2.225, -1.691

-0.946 (0.246)
-1.427, -0.475

Average salinity -3.127 (0.407)
-3.934, -2.303

X2 0.509 (0.160) 0.191, 0.821 0.493 (0.378)
-0.280, 1.224 0.741 (0.212) 0.321, 1.148

(Day-of-year)2 -0.319 (0.067)
-0.450, -0.186

-0.260 (0.112)
-0.486, -0.047

Surface conductivity × Day-of-year 0.917 (0.135)
0.671, 1.194

Surface conductivity × Surface water 
temperature

-0.822 (0.094)
-1.007, -0.636

X2 0.777 (0.116) 0.581, 1.032 1.129 (0.257)
0.692, 1.707 0.567 (0.203) 0.180, 0.986

Station 0.842 (0.114) 0.648, 1.090 1.856 (0.306)
1.340, 2.535 2.595 (0.464) 1.848, 3.662

Year 0.702 (0.136) 0.484, 1.013 2.431 (0.530)
1.590, 3.666 0.788 (0.197) 0.467, 1.237

Year × Station 0.426 (0.101) 0.235, 0.618 0.916 (0.290)
0.248, 1.436 0.828 (0.186) 0.471, 1.209

Sacramento Splittail

Intercept -2.683 (0.383)
-3.449, -1.937

-2.856 (0.609)
-4.029, -1.620

-3.504 (0.423)
-4.329, -2.677

Day-of-year 1.950 (0.288) 1.469, 2.618 -1.008 (0.242)
-1.508, -0.544

Secchi depth -1.215 (0.218)
-1.682, -0.829

Surface water temperature -0.689 (0.208)
-1.135, -0.323

-0.974 (0.256)
-1.526, -0.515

Average water temperature 0.293 (0.219)
-0.109, 0.754

Surface conductivity -0.564 (0.201)
-0.969, -0.187

-0.799 (0.314)
-1.434, -0.207

Average salinity -3.056 (0.351)
-3.788, -2.420

X2 -0.615 (0.213)
-1.065, -0.213

-0.188 (0.242)
-0.602, 0.285

(Day-of-year)2
-0.714 (0.119)
-0.972, -0.504

-0.622 (0.190)
-1.029, -0.276

Average salinity × Average water temperature
-0.537 (0.194)
-0.925, -0.165

X2 0.479 (0.174) 0.150, 0.857 0.201 (0.161) 0.016, 0.659

Station 0.802 (0.192) 0.445, 1.210 1.308 (0.270) 0.852, 1.910 1.093 (0.244) 0.675, 1.635

Year 1.285 (0.309) 0.805, 2.015 2.061 (0.530) 1.236, 3.287 1.179 (0.302) 0.689, 1.866

Year × Station 0.613 (0.407) 0.025, 1.394 0.721 (0.301) 0.227, 1.349 0.467 (0.206) 0.188, 1.014
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within a primary sampling period. Similarly, if the 
station is unoccupied at the start of sampling, it was 
assumed that it was unoccupied during the entire 
primary sampling period. If the fish in a location 
were transported by tides into and out of stations 
during sampling such that the closure assumption 
was systematically violated, we should have observed 
the effect of tow, time-of-day, or tide on detection-
probabilities. There was scant evidence that these 
factors played a role in detection. In addition, the 
very strong spatial effect (i.e., random effects) on 
occupancy and abundance suggests that there 
was something about the fixed stations (specific 
locations) unrelated to the covariates in the analysis 
that strongly affect fish distribution and abundance. 

We would not expect this strong spatial signal if 
fish were passive particles transported by the tides. 
Similarly, the very high detection rates for Longfin 
Smelt and Striped Bass abundant state with the 
20-mm Survey also do not support the notion that 
the closure assumption was violated. For instance, the 
probability of detecting the abundant state on at least 
2 of 3 trawls at a site averaged 0.99 for both species. 
Based on this evidence, we believe that the closure 
assumption was not substantially violated.

For all three surveys, the ability to detect species 
was strongly related to fish abundance and 
physiochemical characteristics of the sampling 
stations. These same characteristics also changed 

Figure 5 Estimated odds ratios and median odds ratios (MOR) 
for species occupancy probability (Ψ1) from best approximating 
multistate occupancy model by survey and species. Bars below 
the axis should be interpreted as occupancy is less likely, 
whereas bars above the axis indicate more likely. Odds ratios 
for continuous covariates correspond to a 1 standard deviation 
increase in the covariate and asterisks indicate values that 
exceed range plotted.

Figure 6 Estimated odds ratios and median odds ratios (MOR) 
for abundant occupancy probability (Ψ2) from best approximating 
multistate occupancy model by survey and species. Bars below 
the axis should be interpreted as occupancy is less likely, 
whereas bars above the axis indicate more likely. Odds ratios 
for continuous covariates correspond to a 1-standard deviation 
increase in the covariate and asterisks indicate values that 
exceed range plotted.
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systematically in the estuary across the two 
decades considered in this evaluation. Despite these 
systematic changes, temporal trends observed during 
this time period appeared to be largely unaffected. 
This was likely because of a combination of the use 
of replicate tows, which increased the probability 
of detecting a species during a survey, and the 
execution of multiple surveys within a year. Surveys 
that do not incorporate replicate samples (tows) are 
likely to be more susceptible to systematic changes 
in detection in time and space. This highlights the 
importance of implementing surveys with replicate 
samples that increase the ability to detect fish 

presence and can be analyzed using one or more 
population estimators that account for imperfect 
detection. 

Although trends in occupancy and abundance 
appeared to be unbiased, the estimates based of 
the raw catch were systematically lower than the 
multistate occupancy estimates. For instance, the 

Table 7 Parameter estimates, standard deviation (in parentheses) and upper, lower 95% credible intervals (below) of abundant state 
occupancy (Ψ2) from best fitting multistate occupancy model for each species and long-term survey. Italics indicate random effects that are 
expressed as standard deviations. 

Parameter 20-mm Survey
Summer Townet 

Survey Bay Study

Delta Smelt

Intercept
-1.508 (0.458)
-2.413, -0.611

1.810 (0.553)
0.758, 2.958

-1.415 (0.529)
-2.421, -0.324

Bottom 
conductivity

-0.856 (0.211)
-1.269, -0.436

X2
-0.221 (0.210)
-0.645, 0.190

0.519 (0.335)
-0.127, 1.186

X2
0.949 (0.150)
0.690, 1.278

1.186 (0.403)
0.611, 2.178

Station
1.410 (0.198)
1.078, 1.840

1.248 (0.484)
0.520, 2.400

1.648 (0.482)
0.944, 2.787

Year
1.781 (0.358)
1.215, 2.585

1.755 (0.558)
0.932, 3.087

1.154 (0.423)
0.481, 2.150

Year × Station
0.860 (0.131)
0.599, 1.117

1.170 (0.422)
0.222, 1.849

0.657 (0.329)
0.220, 1.423

Longfin Smelt

Intercept
-1.997 (0.444)
-2.887, -1.131

0.626 (0.755)
-0.827, 2.161

-0.223 (0.453)
-1.117, 0.668

Day-of-year
-1.637 (0.105)
-1.848, -1.436

-1.225 (0.352)
-2.016, -0.624

Secchi depth
-1.369 (0.149)
-1.665, -1.077

X2
0.394 (0.219)
-0.034, 0.833

0.691 (0.151) 0.403, 
0.999

(Day-of-year)2
-0.578 (0.072)
-0.721, -0.441

X2
1.006 (0.174) 0.706, 

1.385
0.583 (0.135) 0.360, 

0.885

Station
1.327 (0.247) 0.914, 

1.878
1.299 (0.574) 0.193, 

2.566
1.702 (0.262) 1.255, 

2.276

Year
1.662 (0.322) 1.158, 

2.418
2.655 (0.866) 1.327, 

4.693
1.668 (0.316) 1.171, 

2.407

Year × Station
0.885 (0.109) 0.674, 

1.103
2.202 (0.603) 1.235, 

3.608
0.508 (0.167) 0.199, 

0.902

Parameter 20-mm Survey
Summer Townet 

Survey Bay Study

Striped Bass

Intercept
-2.259 (0.269)
-2.800, -1.746

-1.530 (0.333)
-2.194, -0.890

-0.195 (0.413)
-0.922, 0.728

Day-of-year
2.394 (0.131) 2.147, 

2.661
-0.537 (0.099)
-0.733, -0.344

Secchi depth
-0.776 (0.097)
-0.968, -0.586

Surface 
conductivity

-3.233 (0.235)
-3.706, -2.782

-1.622 (0.245)
-2.107, -1.146

Average salinity
-1.450 (0.361)
-2.160, -0.706

X2
0.955 (0.201) 0.554, 

1.353

(Day-of-year)2
-1.182 (0.085)
-1.351, -1.018

X2
0.829 (0.185) 0.520, 

1.235

Station
0.887 (0.136) 0.653, 

1.186
1.708 (0.285)
1.231, 2.334

1.844 (0.458) 1.168, 
2.985

Year
0.884 (0.173) 0.607, 

1.279
0.848 (0.176)
0.567, 1.248

0.740 (0.181) 0.442, 
1.156

Year × Station
0.702 (0.095) 0.520, 

0.902
0.589 (0.177)
0.213, 0.929

0.773 (0.166) 0.447, 
1.111

Sacramento Splittail

Intercept
-3.406 (0.635)
-4.748, -2.268

-2.144 (1.027)
-4.103, -0.075

-0.392 (1.136)
-2.668, 1.769

Day-of-year
-1.647 (0.705)
-3.195, -0.457

Surface 
turbidity

1.584 (0.690) 0.529, 
3.179

X2
-0.687 (0.426)
-1.516, 0.161

-1.716 (1.040)
-3.840, 0.200

X2
0.834 (0.513) 0.031, 

1.957
3.023 (1.240) 0.888, 

5.622

Station
1.714 (0.469) 0.966, 

2.811
2.379 (0.965) 0.969, 

4.734
3.494 (1.225) 1.387, 

5.801

Year
1.485 (0.679) 0.444, 

3.122
2.609 (1.334) 0.451, 

5.554
3.838 (1.321) 0.778, 

5.875

Year × Station
0.922 (0.440) 0.311, 

2.079
2.186 (1.120) 0.601, 

4.348
2.391 (1.425) 0.369, 

5.668
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ratio of naïve occupancy to estimated occupancy for 
Delta Smelt averaged 0.51 for the 20-mm Survey, 
which indicates that the tows failed to detect Delta 
Smelt at a station when they were actually present 
half the time. The biases were particularly large for 
the Bay Study. We believe that these larger biases 
were because of the fact that each replicate tow 
sampled different populations of fishes. Occupancy 
estimators assume that all the species present 
are available for capture with the sampling gear 
(MacKenzie et al. 2017). However, the midwater 
trawl primarily samples fish in the water column, 
whereas the otter trawl is sampling fish on the 
bottom. Thus, fish available for capture with one gear 
may not be available for capture with the other. The 
probability of detecting a species or the abundant 

state with single pass with each gear would have 
been lower resulting in significant underestimates. 
These differences were accounted for in the model 
by including a covariate for method and further 
highlight the importance of collecting replicate 
samples. Additionally, the substantial differences in 
detection between the two Bay Study gears suggests 
that a single gear may not be adequate for sampling 
and characterizing the fish community. 

Occupancy is defined as the presence of at least 
one individual at a sample site or station. Once 
occupied, the detection of a species at a station 
depends on the efficiency of the method (i.e., the 
capture probability) and the number of animals 
available for capture. Thus, it was expected that the 

Figure 7 Survey stations that exhibit systematic increases and decreases in occupancy and abundance of the four study species from 
1995–2015
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probability of species detection (i.e., collecting at 
least 1 individual) was greatest when the abundant 
state was present. Similarly, 20-mm Survey detection 
probabilities were greater than the Summer Townet 
Study and Bay Study because of the greater 
number of small (larval) fish present in the system 
during sampling. This highlights the importance of 
understanding that these two factors interact when 
interpreting the detection probability models. For 
instance, previous studies reported on the negative 
relationship between Secchi depth and catch per unit 
effort (CPUE) for three of the four species included 
in this study (Sommer and Mejia 2013; Latour 
2015). The relationship between Secchi depth and 

detection probability could represent the effects of 
turbidity on fish abundance. However, there was 
weaker evidence that the abundant state occupancy 
was strongly related to Secchi depth or turbidity. 
Previous studies have also found that water clarity 
is negatively related to the efficiency of seines for 
collecting cyprinids (Bayley and Peterson 2001; 
Price and Peterson 2010), presumably because of fish 
being able to detect and avoid the gear in clearer 
water. We believe that Secchi depth affects detection 
as a result of the combined effects of turbidity on 
abundance and capture probability. If true, previously 
reported negative relationships between CPUE and 
turbidity are likely positively biased because capture 
probability was greater under turbid conditions.

Figure 8 Annual trends in average proportion of stations 
occupied by Delta Smelt (solid lines) and the abundant state 
(broken lines) estimated using the best fitting multistate 
occupancy model and with the raw catch data (naïve) from 
1995–2015

Figure 9 Annual trends in average proportion of stations 
occupied by Longfin Smelt (solid lines) and the abundant 
state (broken lines) estimated using the best fitting multistate 
occupancy model and with the raw catch data (naïve) from 
1995–2015
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Sampling effort measured as tow duration, distance 
and volume, was weakly related to the probability 
of detection and was only consistently related to 
conditional detection of the abundant state for 
the Summer Townet Study. Greater effort during 
sampling should, in theory, expose a greater number 
of fish to capture, thereby increasing detection 
probability. This reasoning is presumably why fish 
catch data for these surveys are often expanded 
using the volume of water sampled (Honey et al. 
2004). One possible explanation for the weak effect 
was the relatively small variation in these measures 
(coefficients of variation < 15%) across surveys 
because of the use of standardized protocols. The lack 
of a consistent relation between effort and detection 
over a time span with relatively large fluctuations in 

population sizes does bring into question the practice 
of expanding catch data using measures of effort. 
If there is no relation between catch and sampling 
effort or the underlying relationship is sharply non-
linear, adjusting catch data by dividing raw counts 
by measures of effort (e.g., volume) could potentially 
introduce a false pattern in the data (Peterson and 
Paukert 2009). For example, assuming that the true 
relationship between catch and effort was asymptotic, 
dividing catch by effort would systematically 
underestimate abundance for instances where effort 
was greater. To avoid these potential biases, the 
relationship between catch and effort should be 
evaluated across a range of true abundances to 
establish whether linear assumptions are justifiable. 

Figure 10 Annual trends in average proportion of stations 
occupied by Striped Bass (solid lines) and the abundant 
state (broken lines) estimated using the best fitting multistate 
occupancy model and with the raw catch data (naïve) from 
1995–2015

Figure 11 Annual trends in average proportion of stations 
occupied by Sacramento Splittail (solid lines) and the abundant 
state (broken lines) estimated using the best fitting multistate 
occupancy model and with the raw catch data (naïve) from 
1995–2015
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Interestingly, there was little evidence that tows at 
a station affected species detection in subsequent 
replicate tows. The probability of detecting the 
abundant state became lower after the first tow 
for Longfin Smelt in the 20-mm Survey and was 
the only evidence of a behavioral response of fish 
to replicate tows. This suggests that surveys that 
employ replicate tows are appropriate for accounting 
for incomplete detection or capture of fishes in the 
estuary. Species occupancy and the presence of the 
abundant state were strongly and consistently related 
to salinity and specific conductance, which is similar 
to previous analyses of long-term monitoring data 
collected in the estuary (Sommer and Mejia. 2013; 
Latour 2015; Mahardja et al. 2017). 

The random effect median odds ratios were similar 
in magnitude to–or greater than–the salinity and 
specific conductance odds ratios, which suggested 
that a substantial portion of the variation in 
occupancy and abundance were not accounted for 
by the covariates. Our accounting for spatial and 
temporal dependence in our models for the 20-mm 
Survey is likely responsible for the differences 
between our estimates and those reported in a similar 
analysis of the 20-mm Survey catch data (Mahardja 
et al. 2017). The latter reported models that contained 
more covariates than this study and included multiple 
quadratic terms, but the authors did not account for 
violations of independence assumptions. Importantly, 
failure to account for dependence leads to biased 
low standard errors and measures of model fit and 
can result in a model with more parameters than 
can be supported by the data (Royle and Dorazio 
2008). The large spatial effect means that some 
locations are persistently more occupied than others. 
The strong spatial and temporal structuring of fish 
distribution and abundance we observed in this study 
suggests that researchers account for these factors 
when analyzing data from these and other long-term 
surveys. 

The station random effects represented the (static) 
predictable variation in occupancy or abundance 
from station to station. These spatial effects were 
unrelated to salinity, temperature, turbidity and 
the other covariates evaluated and included in the 
occupancy models. That is, these effects are above 
and beyond the effects of the covariates included 
in the analysis. For instance, assume that there 

is a collection of stations with identical values 
of covariates (e.g., salinity, temperature) and two 
are chosen at random. The median odds ratio is 
interpreted as ratio of the probabilities that two 
randomly chosen stations (or years) are occupied. 
They may represent some unknown or heretofore, 
unconsidered factor(s) that affect the abundance and 
distribution of the each species or could represent 
terms not considered in this analysis (e.g. three way 
interactions, high-order quadratic effects). These 
effects could be the result of factors such as spatial 
context and juxtaposition (e.g., distance from certain 
key features, habitat adjacent to a station) and 
unmeasured covariates that did not change across 
years. Failure to identify and incorporate these spatial 
effects could lead to improper inferences and poor 
management decision making. For instance, habitat 
suitability criteria that were developed using these 
or similar monitoring data that did not estimate 
and incorporate the influence of unknown spatial 
factors, but instead focused on many of the factors 
considered in this analysis (e.g., salinity, turbidity; 
Bever at al. 2016), are likely missing important 
(unknown) factors affecting the abundance and 
distribution of fishes in the estuary. The magnitude 
of these random effects suggests that identifying and 
understanding these unknown factors may assist in 
the management of these focal taxa.

 The station by year interaction random effect 
suggested that the distribution and abundance of the 
four species in the estuary among stations varied 
from year to year. Further analyses of the random 
effects suggested significant shifts in fish distribution 
over the last two decades. Presumably, some of these 
shifts were a response to the record drought from 
2012–2016, which is consistent with the observed 
trends in increased salinity and specific conductance 
over time. However, these systematic changes in 
occupancy through time at a station were unrelated, 
or were in addition, to the changes in the factors 
that were included in the occupancy analysis (e.g., 
salinity, temperature). Some of the shifts may be 
related to large-scale events that changed habitat 
characteristics of areas near monitoring stations, such 
as the flooding at Liberty Island in the northwest 
corner of the Delta. The distribution of animals can 
be influenced by population abundance and the 
distribution of resources (Fretwell 1972). Thus, the 

https://doi.org/10.15447/sfews.2018v16iss4art2


SAN FRANCISCO ESTUARY & WATERSHED SCIENCE

24

VOLUME 16, ISSUE 4, ARTICLE 2

distributional shift may have been due in part to the 
systematic decreases in occupancy and abundance 
of each species over time. Such changes are likely 
inevitable over the course of a long-term monitoring 
program. Using these long-term monitoring data to 
infer patterns in fish distribution and abundance 
across the entire estuary requires the fundamental 
assumption that the monitoring stations are 
representative of all the conditions across the system. 
Many of these long-term stations, however, were 
not randomly selected and only include areas within 
the channel that can be safely sampled (Barnard et 
al. 2013; Sommer and Mejia 2013). Additionally, 
the large spatial effect represented by the station 
random effect indicated that there are unknown 
station characteristics that are unrelated to the 
variables in the best fitting models but significantly 
affect fish distribution and abundance. Therefore, 
assumptions regarding the representativeness of the 
long-term stations are tenuous. These patterns stress 
the importance of implementing a proper statistically 
based sample design that includes randomization and 
equally as important, a sample protocol and estimator 
that can account for imperfect detection; the 
initiation of the Enhanced Delta Smelt Monitoring 
Program (Newman et al. 2017) is a good start. We 
encourage managers to consider modifications 
to existing long-term protocols that includes the 
incorporation of new (randomly selected) stations and 
methods to increase their inference space and data 
quality. 

CONCLUSIONS 

The multistate occupancy models used in this study 
were employed primarily to evaluate the effects of 
incomplete capture on perceived changes in fish 
distribution and abundance. Dynamic occupancy 
models have been used to inform natural resource 
management decision-support models for a variety of 
systems that range from Golden Eagle conservation 
(Martin et al. 2011) to water resource management 
(Tyre et al. 2011; Freeman et al. 2013; Shea et al. 
2015). These dynamic models incorporate the effect 
of management actions on meta-demographic rates 
to predict changes in occupancy states of focal taxa. 
The advantage of these approaches are that they 
allow for the seamless integration of monitoring 
data and management decision-support models; 

thereby facilitating adaptive management. For 
instance, Freeman et al. (2013) and Martin et al. 
(2009) incorporated alternative hypotheses of system 
dynamics affecting the occupancy of focal taxa and 
identified those that had the greatest influence on 
management decision making. These authors then 
implemented monitoring using multistate occupancy 
as a response and evaluated the evidence for their 
respective hypotheses on an annual basis (Martin et 
al. 2011; Peterson and Freeman 2016). The challenges 
faced by these studies and others that employed 
occupancy-based approaches to facilitate adaptive 
management were not unlike the challenges faced by 
managers in the estuary (e.g., broad spatial extents, 
limited budgets). Such an approach, however, will 
require the development of dynamic occupancy 
models that relate the influence of management 
actions and other external drivers on the meta-
demographic rates of fishes in the estuary. The long-
term monitoring data used in this study may prove 
useful in such an endeavor, but the interpretation 
and use of the resulting models will be limited to the 
inferential space of the data. 
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