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Abstract

We introduce IMPUTOR, software for phylogenetically aware imputation of missing haploid nonrecombining genomic data.

Targeted for next-generation sequencing data, IMPUTOR uses the principle of parsimony to impute data marked as missing due

to low coverage. Along withefficiently imputingmissingvariant genotypes, IMPUTOR is capable of reliably andaccurately correcting

manynonmissingsites that representspurious sequencingerrors.Testsonsimulateddatashowthat IMPUTOR iscapableofdetecting

many induced mutations without making erroneous imputations/corrections, with as many as 95% of missing sites imputed and

81% of errors corrected under optimal conditions. We tested IMPUTOR with human Y-chromosomes from pairs of close relatives

and demonstrate IMPUTOR’s efficacy in imputing missing and correcting erroneous calls.

Key words: next-generation sequencing, parsimony, sequencing errors, imputation, phylogenetic tree.

Introduction

Advances in next-generation sequencing (NGS) have provided

researchers with an unprecedented wealth of data, but short-

read data have proven variable in its fidelity to the original

sample sequence. Recent research has revealed evidence of

mutagenic damage extant in commonly used online resources

(Chen et al. 2017). A major difficulty for NGS is the separation

of actual variation from spurious errors that arise from PCR

amplification, library preparation, or even low-level cross-con-

tamination among samples (DePristo et al. 2011). Numerous

software pipelines have been constructed in order to process

NGS data, with one important step being the assessment and

filtering of mutational errors introduced by the NGS process.

Both due to these filtering criteria and stochastic variation in

read coverage, genomic data sets often contain missing var-

iant calls for numerous sites (Wall et al. 2014; Bobo et al.

2016).

Missing variant calls are typically handled in two different

ways. Population genomic data sets may merge samples un-

der the assumption that missing calls represent the reference

allele, leading to a reference bias. Alternatively, genomic

“imputation” aims to fill-in missing variant calls by comparing

a variant call-set to that of a set of reference genomes using

haplotypic (i.e., linkage disequilibrium) information to identify

similar haplotypes between the two data sets (Marchini and

Howie 2010). This is a form of single imputation, that is,

where an imputed site may then be used to make further

imputations (Zhang 2016). Imputation with the 1000

Genomes Project (1000 Genomes Project Consortium et al.

2015) or other large human population genomic data sets is

now standard practice (O’Connell et al. 2014). However, im-

putation may perform poorly in many diverse human data sets

when the reference panel does not contain genetically similar

populations (Huang et al. 2013), or imputation within a given

experiment may be limited to the small number of genomes

sequenced (Okada et al. 2015; Chou et al. 2016).

We recently developed an alternative imputation approach

by leveraging the phylogenetic nature of DNA sequences

(Wang et al. 2012; Poznik et al. 2013; Bobo et al. 2016). By

creating a high confidence phylogenetic tree for a given locus,

individual sequences assigned to a tip of the tree should carry

all of the derived variant alleles up to the common root. If the

sample sequence is missing a variant call, the call can be im-

puted by assuming the sequence carries the derived variant.
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This approach can additionally take into account the possibil-

ity of reversions, which are assigned independent locations

across the phylogeny. One major advantage to our approach

is that the imputation of variants does not require access to an

external reference panel of sequences, as long as the sample

data set contains more than a handful of individuals.

We implement this approach in IMPUTOR, a software pro-

gram that imputes mutations for a set of haploid nonrecom-

bining samples via comparison of variants amongst

phylogenetic near neighbors. IMPUTOR operates via the prin-

ciple of parsimony, wherein neighboring sites on a phyloge-

netic tree that are identical by descent (IBD) for a derived allele

are unlikely to experience a reversion to the ancestral allele

amongst one of their members. Under the principle of parsi-

mony, originally introduced as the “principle of minimum

evolution,” the course taken in evolutionary history is most

likely to match the course that requires the fewest changes

(Edwards and Cavalli-Sforza 1964). In addition to performing

this function for variant calls marked as missing, IMPUTOR

also searches for variants that are likely erroneous, which

can appear on a phylogenetic tree as reversions. Previous

studies imputing missing mutations have avoided introducing

the possibilities for reversions due to their rarity (Wei et al.

2013), but a higher than expected rate of apparent reversions

may indicate sequencing errors. This method of imputation

does not require the use of a separate reference data set and

can operate on any given haploid data.

Materials and Methods

IMPUTOR takes as input FASTA or VCF files, which are then

processed so that only SNP data are handled (Pearson and

Lipman 1988; Danecek et al. 2011). For VCF input files, the

optional Genotype fields must be used with the GT format

symbols to indicate a sample’s allelic status. As per the VCF

standard, a “.” represents missing data, whereas a “0” indi-

cates possession of the reference allele and a numeral of 1 or

higher an ALT allele. A phylogenetic tree (either strictly bifur-

cating or allowing multifurcations) is also necessary for the

parsimony-based imputation performed by the software.

Users can either import a tree from an external source or

generate such a tree from their own data. IMPUTOR provides

four options for input: phyloXML import (Han and Zmasek

2009), tree construction by parsimony using Biopython (Cock

et al. 2009), or tree construction using maximum likelihood

methods via the software packages PhyML and RAxML

(Guindon et al. 2010; Stamatakis 2014). Output consists of

imputed sequence in FASTA or VCF format, along with a log

of attempted imputations and ancillary information including

the phylogenetic tree used in the process.

For each site in a set of variant data, IMPUTOR attempts to

find the nearest neighbors on the given or constructed tree in

order to determine whether an imputation should occur. The

default mode of the software is to search a maximum of two

steps rootward, and from there search a maximum of three

steps leafward. These constraints, which tend to be on the

conservative side in making imputations, were derived from

tests for sensitivity and accuracy in imputing manually placed

code changes, and serve to avoid finding neighbors from too

far outside an isolated clade (see supplementary material,

Supplementary Material online).

For missing data, an imputation is made if the target sam-

ple site’s two nearest neighbors match one another and are

non-missing, a method successfully used previously in human

Y-chromosome data (Poznik et al. 2013). Multiple passes over

the data can be performed in order to impute sites based on

previous imputations. This last parameter is of use in cases

where, for example, missing data can be confidently imputed

and subsequently used to allow further imputations.

Imputation can also be required if the genotype does not

meet allelic depth (AD) and/or Phred-scaled genotype quality

(GQ) thresholds. In both such options, the user may set a

threshold below which an imputation is made, provided

that the other instituted checks have been passed.

For other variable sites in a sample, if the three nearest

neighbors carry an identical allele then the sample variant is

changed to match the consensus, provided that the sample

variant is also found elsewhere on the tree and it thus appears

to be a reversion. If, on the other hand, no such other instance

of the target site is found outside the near neighbors, the site

is assumed to be a singleton mutation and is not imputed or

corrected under the default settings. On a phylogenetic tree a

reversion will appear when, from a target site, we find

nonmatching neighbors, and then, continuing past those

neighbors rootward, we encounter the ancestral allele

again (Requeno and Colom 2016). The reversion check

is active by default, forcing IMPUTOR to be conservative

in its corrections of such sites, reflecting a choice to favor

leaving some errors which appear to be singletons unal-

tered over erroneously imputing or correcting large num-

bers of singletons.

We provide three methods for gathering nearest neighbors

in IMPUTOR. The first, rootward (see figs. 1 and 2), ascends

toward the root from the target site up to a specified number

of steps, whereas at each step descending leafward searching

for potential neighbors to the target site. This method exits if it

finds a threshold number of neighbors or if it exhausts the

available branches. The second method, hops, counts the

number of steps rootward and leafward needed to reach a

neighbor from the target site. It returns a collection of neigh-

bors should it find a sufficient number of them under a

threshold number of steps rootward and/or leafward. The

last method, distance, returns a collection of neighbors or-

dered by distance traversed along the branches from the tar-

get site. In order not to include more distant neighbors of

isolated targets, a cutoff value is used to stop the search if

the next branch length traversed is too high compared with

the previous branch.
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For each target site during each pass, IMPUTOR attempts,

given the constraints imposed by the user, to determine

whether it can find a sufficient number of near neighbors

who share the same state but differ from that of the target.

If that is true, and if the target appears to be a reversion and

not a singleton, then the software will alter the target site to

match the state of the neighbors, provided all other checks

(including, for example, checks for AD and GQ) also pass.

Figure 1 demonstrates a case where, using the rootward

method, sufficient near neighbors have been found, whereas

figure 2 demonstrates the opposite case, with insufficient

near neighbors to proceed to imputation.

IMPUTOR’s default settings can be altered by the user,

allowing the informed researcher to impute at genotypes

based on his or her own assessment of what might constitute

erroneous data. In addition to altering the scope of the tree

search for nearest neighbors mentioned above, the user can

defeat the reversion check for all the data or only the data

FIG. 1.—Rootward Case 1. A site found within a clearly defined clade of sufficient size to contain the threshold number of neighbors for both missing

and nonmissing data.

FIG. 2.—Rootward Case 2. A site with insufficient near neighbors to reach the threshold number for either missing or nonmissing data.

Jobin et al. GBE
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under a threshold coverage; change the neighbor-gathering

method type, shape parameters and number of compute

threads used by PhyML or RAxML; allow the possibility of

imputing a missing site with one missing neighbor and one

nonmissing; and change the number of passes IMPUTOR

takes to attempt imputation of the data.

Results

Father–Son Pairs on the Y Chromosome

Y-chromosome sequence from known father–son or male

sibling pairs provide an excellent test scenario for IMPUTOR.

Using six human duo and sib pairs Illumina sequenced to

10.1� coverage, we tested the accuracy of IMPUTOR under

different options. Assuming a mutation rate of 3.07� 10�8

mutations per base pair per generation (Helgason et al. 2015)

for 9.8 Mb of nonrecombining Y sequence, the number of

differences between any pair of father–son Y chromosomes is

expected to be �0.3/pair or twice that for male siblings.

However, before imputation, these pairs differed by a multi-

tude of both missing and nonmissing sites. We created a

phylogeny based on maximum likelihood using the RAxML

software. After iterating systematically through all possible

options, the best combination resulted in the proportion of

pairwise differences between two individuals reduced to

0.012 of the original distance, averaged across six known

pairs, with all but one case reducing the difference between

members of a pair to zero (supplementary fig. 42,

Supplementary Material online).

Simulated Data

Using simulated data generated by the forward-in-time sim-

ulation SFS_CODE (Hernandez 2008), a variety of data

configurations, error types and tree construction methods

were compared for accuracy of imputation. Missing sites

and nonmissing errors were randomly induced throughout

a data file, which was then run through IMPUTOR, after

which its output was compared with the original, error-free

data. Averaging the results of ten randomly altered data files

for missing sites can yield up to 95.8% final accuracy as

gauged by the similarity of the imputed output file to the

original (i.e., no missingness) file. A slight increase in accuracy

can result from performing ten passes through the data (see

supplementary fig. 40, Supplementary Material online).

Changes in the number of sequences in the input file, number

of neighbors used to impute/correct, and height or depth of

tree searched all affect the proportion of corrected errors (see

Supplementary Section 2, Supplementary Material online).

Similar tests using sequencing errors yielded up to 81.5%

similarity with optimal parameters. IMPUTOR can simulta-

neously impute and correct for both sequencing errors and

missing data. For missing data, tree searches to a depth of

three steps tend to result in the greatest accuracy, along with

lower requirements for the number of nearest neighbors be-

fore flagging a site for imputation (see fig. 3).

Checks for reversions prevent spurious imputations or cor-

rections (see table 1). This check, which is configured by de-

fault but can be defeated by the user, only allows imputation

or correction when a site appears to be a reversion, leaving

alone terminal-branch singleton mutations. The increase in

accuracy gained by this feature is especially noticeable in sim-

ulated data when the proportion of introduced errors is low

(see Supplementary Material online).

For sequencing errors and the hops neighbor-collection

method, the parameter maxhops, which constrains the num-

ber of “hops” up and down the branches of the tree may be

taken in the search for a neighbor, has the greatest effect on

FIG. 3.—Proportion of corrected errors as a function of the maxdepth parameter for missing sites and rootward neighbor collection method.
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proportion of corrected errors (see figure 4). After a steep rise

at a maxhops value of 4, accuracy nearly plateaus, moving

slowly to a maximum proportion of 0.807 at a maxhops of

20. Higher values (not shown) show a gradual decrease in

proportion of corrected errors.

The number of sequences, and thus the size of the phylo-

genetic tree, can have a significant effect on IMPUTOR’s abil-

ity to impute and/or correct. Changes to the number of

sequences demonstrate a relationship to the introduced miss-

ingness in SFS_CODE-generated files, as demonstrated be-

low. The missingness was applied as a random chance that

any particular site might be replaced with a missing site; low

numbers of sequences coupled with low missingness can cre-

ate scenarios where no actual missingness is generated. In the

case of extremely low numbers of sequences (�10), even with

a missingness rate sufficient to introduce missing sites, the

tree is not sufficient to accurately impute.

SHAPEIT is a software program for phasing from sequenc-

ing data, capable also of imputation of missing data

(Delaneau et al. 2013). To compare the behavior of

IMPUTOR and SHAPEIT for haploid data, ten files were gen-

erated with randomly introduced missing sites at two levels of

missingness, for multiple sample sizes ranging from 10 to

10,000 sequences. The samples were marked as male for

use in SHAPEIT, whose chrX function as used to enable hap-

loid imputation. For each level of missingness and each sam-

ple size, the randomly altered files were run in each program,

with the mean proportion of corrected errors shown below.

Discussion

IMPUTOR is capable of imputing missing genotypes and cor-

recting erroneous variant calls without use of an external ref-

erence panel. This makes IMPUTOR ideal for small sequencing

experiments. A phylogeny derived from an external panel is,

alternatively, an option for increasing imputation accuracy.

IMPUTOR is also capable of correcting nonmissing sites that

appear to be reversions in the sample sequence (i.e., due to

sequencing errors or reference bias). The primary factors gov-

erning the accuracy of IMPUTOR are the phylogenetic tree

(generated or input) and the optional method by which the

tree is searched for neighbors. The guide information relayed

in supplementary material, Supplementary Material online,

along with the instruction manual for the software, indicate

Table 1

Effect of the Reversion Check Feature of IMPUTOR on Accuracy

Method Reversion Check Mean Imputed Distance S.D. Imputed Distance Prop. Corrected Errors

Rootward Y 6.10 2.77 0.91

Hops Y 3.90 2.55 0.95

Distance Y 5.00 2.21 0.93

Rootward N 13.3 1.57 0.82

Hops N 12.1 2.28 0.84

Distance N 13.0 2.36 0.82

NOTE.—Simulated data generated in SFS_CODE was randomly altered to create ten new files, replacing bases with missing data. These altered files, which had a mean
number of pairwise differences of 73.7 from the original file (S.D. 10.15) were then run in IMPUTOR. The “Prop. Corrected Errors” column above is a metric of accuracy in
recovering the original sequence.

FIG. 4.—Proportion of corrected errors as a function of the maxhops parameter for nonmissing sites and hops neighbor collection method.
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the best default setting for most applications, along with a

display of speed versus accuracy trade-offs for option

selection.

Since IMPUTOR relies on a phylogenetic tree and the prin-

ciple of parsimony in order to make imputations and correc-

tions, the accuracy of that tree is important for proper

functioning of the software. While accurate results can be

achieved with a small data set, the genetic diversity of the

members of that set will have an effect on the structure of

that tree and the confidence the user can place in it, and thus

accordingly the quality of the results output. In the case of a

low-diversity sample set, the structure of the tree may not be

such that IMPUTOR will be able to flag a site for imputation.

When using trees with low diversity and large numbers of

sequences, apparent multifurcations will interfere with

IMPUTOR’s ability to reliably find groups of neighbors, leading

to the decrease in accuracy seen for large sample sizes in

figure 5. This figure was generated from simulated data at

a fixed rate of mutation for all sample sizes; in general, if a tree

appears to be insufficiently resolved to the user, then

IMPUTOR’s power to make imputations and/or corrections

will be similarly reduced. While this fact can limit the kinds

of data on which IMPUTOR can fruitfully operate, the soft-

ware defaults to avoiding imputation except in the cases

outlined in the Materials and Methods section. Thus,

whereas a low-diversity data set might pose challenges

to the improvement of the output sequence, IMPUTOR

does not default to making spurious imputations or

corrections. Very low-diversity data sets will cause the

linked tree construction software such as RAxML to return

an error, thus providing information to the user about

unworkable data.

In order to illustrate the effect of diversity on imputation

accuracy in IMPUTOR, we generated ten iterations of

forward-in-time simulated data in SFS_CODE for three differ-

ent levels of H, where H¼ 2� P�Nel, where l is the mu-

tation rate per site and where P is the ploidy (see table 2). Ten

files for each value of H were randomly altered so that one in

one thousand of the sites was changed to missing data. These

randomly damaged files were then run through IMPUTOR to

evaluate the accuracy of the imputation process; the ratio of

imputed to unimputed files’ pairwise distance to the original,

undamaged file (“Prop. Corrected Err., below”), used to

gauge the accuracy. Decreasing H decreases the genetic

Table 2

Effect of H on Ratio of Imputed to Unimputed Pairwise Distances to an

Original SFS_CODE-generated File

H Prop. Corrected Err. Variance Failed/10

0.001 0.93 0.00195 0

0.0001 0.89 0.0148 2

0.00001 0.82 n/a 9

NOTE.—The unimputed file was created by randomly replacing bases with
missing codes at a frequency of 0.001, simulating damage. Ten iterations of simula-
tion were run for each value of H, with mean and variance shown. RAxML would not
run on the number of entries in the Failed/10 column.

FIG. 5.—Proportion of corrected errors as a function of the number of sequences, for a missingness of 0.01 and H¼0.01, for two software programs,

SHAPEIT and IMPUTOR.
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diversity of the sample, which results in a decrease in

mean accuracy and an increase in variance in accuracy.

At even smaller sample sizes (e.g., n¼ 10) or much lower

sequence lengths (see supplementarymaterial, Supplementary

Materialonline),VCFfilescontain levelsofgeneticdiversity that

are too low to be usable for the purposes of imputation and

correction by use of a phylogenetic tree. Thus, while IMPUTOR

can accurately impute and correct data for relatively small data

sets without use of an external reference, a combination of

adequatesamplesize, sequence length,andsequencediversity

mustbepresent inorder to construct a reliable treeonwhich to

base imputations and corrections.

The proportion of reversions that will occur on a phylo-

genetic tree will be quite small by comparison to the total

number of mutations (see supplementary material, tables

15 and 16, Supplementary Material online). Furthermore,

for a real reversion to be erroneously changed by IMPUTOR,

the site will need to pass all of the other constraints, which

default to avoiding imputation unless a number of con-

straints are satisfied such as minimal number of neighbors

which vary from that target site but match one another.

Only terminal-branch reversions are likely to satisfy these

conditions under the default parameter values.

Additionally, user-defined thresholds such as AD, GQ and

minimum coverage can be useful in screening data to dis-

tinguish between actual and erroneous reversions.

Data Availability

The source code is available at https://github.com/mjobin/

Imputor.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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