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ABSTRACT 

On the Inference of Convergence, Selection, and 

Coevolution of Rapidly Evolving Populations 

 

Nicolas Strauli 

 

Genetics is currently undergoing a ‘big-data’ revolution, where the advent of 

deep-sequencing has enabled researchers to routinely create massive datasets, yet the 

statistical analyses of these data remain challenging. Deep-sequencing has proved 

particularly useful in the field of evolution, where researchers can sequence rapidly 

adapting populations to observe evolution taking place in real-time. In this dissertation, I 

design and implement statistical tools to answer relatively simple evolutionary questions 

about complex, large, and rapidly adapting populations. Specifically, I develop methods 

to infer convergence in the antibodies of in vivo human B cells, selection in in vitro viral 

populations, and coevolution between in vivo populations of human antibodies and 

autologous human immunodeficiency virus (HIV). I show that the antibodies of human B 

cells will converge towards similar genetic sequence characteristics when presented 

with identical influenza vaccines, and that HIV and antibodies can exhibit genetic 

signatures of coevolution, although this is quite rare. I also show that genetic drift plays 

a significant role in an experimental population of HIV, and that this needs to be taken 

into account when inferring selection. Together, I hope that the analyses described in 

this work prove useful to other investigators with similar evolutionary questions. 
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Chapter 1: Introduction 
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Biology as a discipline of science is currently undergoing a revolution as to how it 

is practiced. Historically, a biologist could conduct an experiment and visually look at the 

data or use a simple statistical test to determine if her hypothesis was confirmed or 

rejected. Today, a variety of technological advances have enabled each experiment to 

generate massive amounts of biological data. While these high-throughput 

technologies—collectively referred to as ‘omics’—have allowed us to answer questions 

in biology that have previously been unapproachable [1], they have also made the 

analysis of such data orders of magnitude more complicated. The collective biologist 

has bid a fond farewell to the days of simple bar-charts and t-tests, and has instead 

embraced complex visualizations and statistical analyses in order to ‘see’ what the data 

is telling her. This thesis is broadly a story about how to design custom statistical tests 

when one is using large genetic datasets in order to answer relatively simple questions 

in evolutionary biology. 

In no discipline of biology has the ‘omics’ revolution been more prevalent than in 

genetics. The advent of ‘deep-sequencing’ [2]—where billions of short DNA fragments 

can be simultaneously sequenced—has resulted in genetic data to be available at a 

scale, speed, and affordability that is an orders of magnitude improvement over 

previous technologies. This has allowed for studies to publish 1,000’s of human 

genomes at once [3], the ability to characterize entire transcriptomes of different tissues 

[4], and the ability to survey entire populations of microorganisms [5–7] (to name a few).  

One small, yet growing field that has been made possible by the advent of deep-

sequencing technologies is the study of immune repertoires. In 1987 Susumu 

Tonegawa won the Nobel Prize in physiology or medicine for his discovery of how 



 3 

antibody (Ab) diversity within an organism is generated via somatic mutational 

processes in the genomes of B cells [8]—the cells that express antibodies. However, it 

was not until the advent of deep-sequencing that we could actually witness the vast 

complexity and diversity of antibodies that is generated through this process [9]. This 

population of antibodies is collectively referred to as the antibody repertoire (AbR), and 

its vast diversity plays a large role in how humans generate (and maintain) humoral 

immunity. Interestingly, the way in which Abs develop the ability to bind to a specific 

antigenic target—which is to say, immunity—is strikingly similar (if not identical) to 

evolution by natural selection, as laid out by Charles Darwin [10], and the modern 

synthesis, as compiled by Julian Huxley [11]. Through the processes of V(D)J 

recombination and somatic hypermutation, B cells will impart a smattering of mutations 

upon their genetic locus that encodes for Abs. This in turn creates a massive amount of 

phenotypic diversity in the organism’s AbR. Then, the B cells that succeed in tightly 

binding an antigenic target are instructed to proliferate, while those that don’t are 

instructed to die [12]. Thus, completing the evolutionary process.  

This process of mutagenesis followed by selection during Ab development is 

often described in rather dry biomolecular terms. However, being primarily interested in 

evolution, it is important to point out the higher-level profundity of this evolutionary 

process. It is essentially a type of ‘meta-evolution’, where we have evolved the ability to 

evolve a subset of our tissues. This ability is unique to adaptive immune systems, and is 

conserved across all jawed vertebrates [13]. Indeed, it seems to be an essential 

component of metazoan success. A fundamental dilemma for metazoans is how to 

defend against parasites that have orders of magnitude shorter generation times and 
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thus can evolve infection strategies vastly quicker than metazoans can evolve defenses 

to them. It’s possible that one answer to this dilemma is that metazoans have evolved 

an adaptive immune system that itself can evolve at a rate on par with many pathogens. 

The ability to survey the AbR using deep-sequencing based methods has 

allowed researchers for the first time to be able to see this evolutionary process take 

place at a whole-population scale, which has in turn enabled us to learn a great deal 

about how adaptive immunity is acquired following an immune insult [14]. One 

persistent question about immunity (particularly pertaining to B cell mediated immunity) 

is how idiosyncratic each individual’s immune response is. Each person has a unique 

AbR through the collective action of random mutation events in the Ab locus of 

developing B cells. However, if people are given a similar antigenic stimulus, are Abs 

with similar sequence characteristics selected to proliferate across independent 

individuals? This is essentially a question of convergent evolution taking place across 

independent AbRs, and we test for this in Chapter 2 by looking at the AbRs of a handful 

of individuals who all were given the same influenza vaccine. In this chapter we show 

that establishing convergence across AbRs is more complicated than previously 

appreciated, and we develop a proper statistical framework that uses time-series AbR 

sequence data to answer it.  

One particularly gratifying result of the massive influx of genetic data has been to 

catapult the previously data-light, theory-heavy field of population genetics into the 

realm of empirical science. For example, in the past, population geneticists used 

mathematical models of hypothetical populations to predict how a given positively 

selected allele might logistically rise in frequency; whereas now, one can use genetic 
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data generated from deep sequencers to actually observe this in the real world—or 

frequently, in controlled experimental conditions. This has opened up the field of 

experimental evolution, where researchers can observe the evolution of populations of 

microorganisms in real-time, and under different conditions. When experimental 

evolution is used in concert with deep-sequencing, one can simultaneously track the 

relative frequencies of thousands of alleles overtime [15]. In Chapter 3, we develop a 

method that combines time-series genetic data from experimental evolution studies with 

population genetics theory in order to estimate the level of selection (selection 

coefficient), and to statistically test if an allele is under significant selection. This allows 

researchers to i) identify alleles/loci of importance in their study, and ii) build fitness 

landscapes, where the relative fitness of each allele in their data can be mapped. 

The main drawback of the experimental evolution approach is that the studies 

typically occur in highly controlled, and artificial laboratory settings. While this gives 

researchers the unique ability to control parameters such as initial genetic diversity, 

population size, and demography of a given experiment, it also means that researchers 

cannot be sure that any adaptations they observe are not the result of organisms 

adapting to a strange laboratory environment that would not otherwise occur in the 

natural world. An obvious remedy to this is to use deep sequencing to study natural 

populations [16,17], however, this approach comes with the drawback that, in the 

infinitely complicated natural world, it is difficult to identify which of the many known 

(and unknown) environmental parameters are responsible for causing a given 

adaptation. It seems that there is a tradeoff with studying experimental vs. natural 

populations. Experimental populations afford one with exquisite control over 
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experimental parameters, allowing researchers to more easily assign causality, yet lose 

applicability to the natural world. Whereas findings from natural populations are 

pertinent to the real, natural world, yet occur in such complicated environments that 

assigning causality is often challenging. Because of this seemingly insurmountable 

tradeoff, it is important to perform both types of studies. Chapter 3 deals with two 

experimental evolution studies, but the methods outlined therein could be applied to 

time-series studies of either experimental or natural populations. 

An important feature of memory B cells—a particular type of B cell that tends to 

be long lived—is that they can undergo iterative rounds of selection. Which is to say that 

if a memory B cell that has undergone previous rounds of selection, encounters a new 

antigen that is similar to what it had previously bound, it can undergo further rounds of 

selection to once again bind the new antigen. The possibility for iterative rounds of 

selection occurring on the same B cell lineage, raises the possibility for antagonistic 

coevolution between Abs and a chronic infection. The idea here is that upon infection, 

neutralizing Abs gradually develop, then the pathogen evolves escape mutations, then 

the previously neutralizing Abs evolve innovations that allow them once again to bind to 

their antigen, and then the pathogen once again escapes, and the process repeats until 

either the infection is cleared, or the host succumbs to the disease. There have been 

many accounts of this coevolutionary ‘arms-race’ occurring between HIV and HIV-

neutralizing Ab lineages [18]. However, the overall AbR response to chronic infections 

remains not well characterized. For example, it is not known if these long-term 

putatively coevolutionary interactions between Ab lineages and HIV are the exception or 

the rule when it comes to chronic infections. Further, the examples of Ab/HIV 
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coevolution to date have been qualitative in nature. In Chapter 4, we describe a study 

where we deeply sequence both the HIV population and the AbR in several chronically 

infected patients over 10-20 time-points per patient. We use this data to characterize 

the overall genetic interaction between the HIV and the AbR populations, and then 

search for long-term coevolutionary interactions between HIV and Ab lineages. 

The current age of biological research is presented with a unique problem, where 

it is far easier to create information rich data, than it is to meaningfully examine it. In this 

thesis I present three approaches for using large genetic datasets to arrive at 

statistically informed conclusions for relatively simple evolutionary questions: i) How to 

test for convergence across immune repertoires. ii) How to test for selection in 

experimental populations. And iii) how to test for coevolution between Abs and chronic 

infections. I hope that these examples prove useful to other researchers with similar 

questions, and more importantly, that this provides motivation for others to create their 

own innovative approaches to answering their unique questions with big data.  
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Introduction 

Since the administration of the first designed vaccine by Edward Jenner in 1796 

[1], vaccines have proven indispensable for both medicine and medical research. 

Jenner’s work on vaccines are among the rare achievements of science that have 

fundamentally changed modern life. Perhaps less well known, vaccines also provide a 

standardized, safe, and ethical way to directly study human adaptive immunity [2]. Most 

vaccines confer resistance to a given pathogen by stimulating the patient’s population of 

B cells to produce antibodies (Abs) against the inoculated antigens. Each clonal lineage 

is composed of B cells that are related by a single common naïve B cell ancestor, and 

the conglomerate of B cells within an individual make up their antibody repertoire (AbR).  

Interestingly, the process by which Abs are adapted to more specifically target an 

insulting antigen is an example of evolution by natural selection. To wit, during B cell 

development a vast amount of genetic diversity is generated by a series of somatic 

mutagenic steps, after which, variants that are able to bind an antigen strongly will be 

positively selected to proliferate [3,4]. The first diversity-generating step in B cell 

development is a process of somatic recombination that takes place in the bone 

marrow. The mature Ab protein is composed of two identical light chains and two 

identical heavy chains. A light chain can be of either the lambda (IGL) or kappa (IGK) 

variety, whereas the heavy chain has only one possibility (IGH), and the loci encoding 

these three chains reside in distinct regions of the genome. Here, the Variable (V), 

Diversity (D), and Joining (J) gene segments in the IGH locus, and V and J gene 

segments in the light chain loci will recombine [5–7]. Diversity is generated both by 

selecting one combination out of all the possible combinations of V, (D) and J genes, as 



 13 

well as by the random insertion and deletion of genetic information at the junctions of 

these gene segments [8]. Further, once a mature B cell binds an antigen, it will be 

recruited to a lymph follicle and enter a structure known as the germinal center where a 

process of somatic hyper-mutation (SHM) takes place [3,4]. Random point mutations 

are smattered onto the variable region of the Ab locus—the area that is responsible for 

binding antigen—and if these mutations result in high binding affinity, that B cell clone 

will receive signals to proliferate. This process generates lineages of B cells specific for 

a given antigen. These mutagenic steps together result in a high concentration of 

mutations occurring in a region of the Ab called the complementary determining region 

3 (CDR3), which is also the region of the Ab that tends to physically interact with 

antigen. Because of this, the sequence encoding the CDR3 is often used for clonal 

analysis of Abs, where Abs with the same CDR3 sequence are assumed to be clones. 

The net effect of this evolutionary process produces extreme temporal dynamism within 

the AbR, as different lineages grow and shrink in response to different antigenic stimuli 

[9].  

Advancements in next-generation sequencing (NGS) methods have led to recent 

work in characterizing the AbR’s response to a variety of stimuli [9–21] (see Galson et al 

[2] for a review). However, most of this work has focused on methods development, and 

there has been comparatively little work focusing on what can actually be learned from 

these data. Contrary to this trend, Greiff et al. [22] recently employed a machine 

learning approach to classify patients’ immune status using their AbR sequence data. 

Much work remains to be done in this relatively new area of research. For example, the 

overall changes in a patient’s AbR could be used to quantitatively assess the response 
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to vaccination. Of particular interest is the ability to use changes in the frequency of 

individual Abs over time to identify which specific monoclonal Abs (mAbs) respond to a 

given antigen [23]. For example, if a particular Ab mRNA sequence exhibits a spike in 

expression in a time-series RNA-seq dataset from peripheral blood then this could be 

indicative of a vaccine response for that Ab. To address this gap in knowledge, we here 

seek to leverage time-series information of five patients’ AbRs in order to infer the 

elements that are responding to a trivalent influenza vaccine (TIV). 

A particularly useful and intuitive way to model time-series data is to use 

methods within the greater discipline of functional data analysis (FDA) [24,25]. As 

opposed to multivariate data analysis (MDA)—which treats each datum as a finite 

dimensional vector of observations—FDA treats each datum as a continuous function 

over some dimension, which is often (as in our case) time. FDA-based methods have a 

rich history of being used for identifying differentially expressed genes over time [26–

29], and have the advantage of easily incorporating uneven time-point sampling, and 

measurement error into each gene’s functional model. FDA is also an intuitive way to 

model gene expression, as each gene’s expression level in a tissue is indeed 

continuously fluctuating over continuous time. Here, we use an FDA-based method 

presented by Wu and Wu [28], and apply it to time-series AbR data [30] to identify the 

components of patients’ AbR that are responding to a standard TIV. 

There is a plethora of time-series gene expression data that have been used to 

identify genes involved in pathogen defense [31], autoimmunity [31], and vaccine 

response [30,32]. The longitudinal and cross-sectional nature of these studies allowed 

the authors to identify the genes that were consistently differentially expressed in 
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response to the given antigenic stimulus across patients. One could perform a similar 

analysis using a time-series AbR dataset to help identify the determinants of immunity. 

However, with the exception of Liao et al. [33],  Laserson et al. [9], and more recently 

Hoehn et al. [34], few detailed time-series datasets on the AbR exist. If RNA-seq were 

performed on an antibody expressing tissue (for example peripheral blood mononuclear 

cells, or PBMCs), theoretically, many of the RNA transcripts in the data would originate 

from Ab loci. Should this be the case, there will exist much AbR information within the 

data that simply need to be bioinformatically mined out. This approach has been used in 

the context of cancer research to identify the Ab sequence of the cancerous B cell 

lineage in Chronic Lymphocytic Leukemia patients [35], and to characterize both the 

AbR and T cell receptor diversity in solid tumor samples [36,37]. In this study, we 

developed and implemented such a pipeline on the Henn et al. 2013 transcriptomic 

dataset [30] in order to probe the AbR’s response to a standard TIV. 

There have been several reports of convergent evolutionary signals between 

independent AbRs that were exposed to a similar antigenic stimulus (recently reviewed 

by [38]). While there exist relatively precise definitions for convergence in evolutionary 

biology [39,40], we define convergent AbRs more loosely as those that develop similar 

characteristics as a response to similar antigens. These characteristics could include 

similar Ab DNA sequences, similar sets of Ab genes, or similar structural 

characteristics, among others. In this manuscript we focus on convergence by way of 

independent AbRs utilizing similar sets of Ab genes, and similar sequences of CDR3s to 

target the same vaccine. AbR convergence has been shown in a variety of contexts, 

including dengue virus infections [21], broadly neutralizing Abs against Human 
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Immunodeficiency Virus [15,18], and influenza vaccination [23,41,42]. With the 

exception of Parameswaran et al. [21] and Cortina-Ceballos et al. [23], these studies 

relied largely on qualitative evidence for convergence, where Ab sequences from 

independent patients either cluster closely together on a dendogram [15], or have 

strikingly similar sequence and/or structural characteristics [18,41,42]. While these 

examples of AbR convergence may be intuitively convincing, few methods have been 

developed to statistically test for a convergent AbR response across patients. The 

importance of statistical analyses can be illustrated by the high correlation of Ab gene 

expression in different individuals [43,44]. That is, if an Ab gene is expressed highly in 

one individual, it will tend to also be highly expressed in another individual. In order to 

soundly establish a convergent signal between patients’ AbRs, this correlation in 

background gene expression must be taken into account. Indeed, Childs et al. [45] have 

used a computational modeling approach to show that a large determinant of AbR 

diversity post inoculation is its diversity state prior to inoculation. To resolve this, we 

developed and implemented a statistical methodology that incorporates the baseline 

similarity between individual AbRs when testing for a convergent signal. 

In this study, we first present a bioinformatic pipeline for extracting AbR 

information from RNA-seq data. We then go on to use FDA-based methods to 

characterize the Ab response of several patients to a standard TIV. Finally, we present 

and implement statistical tests for a convergent Ab response between patients to the 

same TIV. We find that a detailed time-series dataset can be used to identify Abs that 

are putatively targeting a vaccine, and that—after controlling for background AbR 



 17 

similarities—these vaccine responding Abs can exhibit similar sequence characteristics 

across patients. 

Methods 

Data creation: 

The RNA-seq dataset for this study was generated by Henn et al. [30] 

[GEO:GSE45764],[46]. The experimental design was as follows: 5 patients were 

vaccinated with the 2010 seasonal TIV, and peripheral blood was drawn from each 

patient for 11 days, from day 0 (the day of the vaccination) to day 10 post vaccination. 

Each patient/time-point sample was divided into 2 sample-types: PBMCs, and sorted B 

cells. RNA-seq was performed on both the PBMC and B cell sample-types from each 

time point for all patients. Importantly, the two different sample-types from each sample 

provide relatively independent technical replicates to gauge the accuracy of our 

bioinformatic pipeline, described below. 

For a detailed description of sample processing and RNA sequencing see [30]. 

Briefly, PBMCs were isolated using a discontinuous Ficoll gradient centrifugation, and B 

cells were enriched from heparinized whole blood with RosetteSep Immunodensity 

separation (Stemcell Technologies, Vancouver, BC, Canada). RNA was extracted with 

the Qiagen RNeasy micro kit. Barcodes were assigned to each patient/time-

point/sample-type, and sequencing libraries were prepared with Illumina TruSeq RNA 

kits as recommended by Illumina, using 100 ng total RNA as input. The read length was 

65 bases, and the mean read depth across patient/time-point/sample-types was 

13,724,354.04 reads, with a range of 8,262,317-17,777,695 reads. 
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Computational pipeline: 

State-of-the-art tools for aligning RNA-seq reads to a reference genome, such as 

TopHat2 [47], were not designed, and are ill-equipped, to handle the various 

eccentricities of Ab RNA (such as VDJ gene segment recombination, as well as the high 

number of mutations expected from both VDJ recombination and SHM). Similar to 

others [35,36], we therefore developed a bioinformatic pipeline that will harvest the Ab 

transcripts buried in the multitude of reads from an RNA-seq dataset. Conceptually, the 

pipeline consists of a negative selection step to weed out all non-Ab encoding 

transcripts, followed by a positive selection step to identify Ab encoding reads (Fig. 

2.1A). For the negative selection step, we first created a whole genome reference 

sequence where all Ab encoding loci in the genome were masked out. We then used 

TopHat2 to map all reads to this masked-reference genome. Reads that successfully 

mapped to the masked genome were discarded. We hypothesized that some fraction of 

the unmapped reads are true Ab sequences.  To identify them, we used IgBLAST [48] 

to positively select for Ab encoding transcripts. We used a stringent threshold (e-value £ 

10-20) to select the best aligning germline Ab gene (including V, D, and J genes). We 

also selected the CDR3 sequence in the alignment (if present) using a less stringent e-

value threshold of 10-6 in order to retrieve a sufficient number of CDR3 sequences. 

Overall Ab expression and V gene expression: 

We would like to measure the overall level of mRNA expression of Abs, as well 

as the expression level of individual V genes and CDR3 sequences in each sample. By 

‘expression’ we mean a quantitation of the number of mRNA sequences that map to a 



 19 

given Ab locus in this peripheral blood RNA-seq dataset. We first would like to estimate 

 

Figure 2.1. Computational pipeline. 
(A) Flow diagram of the steps in our bioinformatic pipeline for harvesting Ab reads from a RNA-seq 
dataset. The pipeline consists of a negative selection step using TopHat2 [47] where non-Ab reads are 
mapped to a masked reference genome, followed by a positive selection step using IgBLAST [48] where 
Ab reads are mapped to reference germline Ab sequences. (B) Fraction of reads retrieved for certain 
steps in the pipeline, in 3 different tissues, out of the number of TopHat mapped reads (red). The colors of 
the bars correspond to the colors of the steps in (A). 

the overall expression of Abs in each sample. To do this we counted the number of 

mRNA reads that mapped to any gene (V, D, or J) in the variable regions of any Ab loci 

(heavy, lambda, or kappa chains), and then normalized this by the number of reads that 

map to anything else in a given sample. We will henceforth refer to this statistic as 

‘overall Ab expression’, and it was calculated as follows. Let " be the total number of 

days in the study, with # ∈ [0, "], and ) be the total number of patients, with * ∈ [1, )]. 
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For a given patient *, and time-point #, if ,-,. is the total number of reads that map to a 

V, D, or J gene with an e-value ≤ 10-20, and /-,. is the total number of reads that map to 

anything in the Ab-masked genome (the red circle in Fig. 1A), then overall Ab 

expression, 0-,., for that patient/time-point can be calculated as, 

0-,. =
23,4

53,4623,4
. 

Because ,-,. was very small relative to /-,., we approximated overall Ab 

expression as,    

0-,. = ,-,. /-,.⁄ . 

It is important to note that we do not attempt to map reads to any of the constant 

regions of the Ab loci (IgA, IgE, IgM, IgG, etc.), so our expression level estimates are 

agnostic to this information. As such, overall Ab expression is a measure of the 

cumulative mRNA expression of all isotypes in a sample. 

Next, we would like to estimate the mRNA expression level for each individual Ab 

gene. We achieved this by counting the total number of reads that mapped to a given 

Ab gene, then normalized by both the number of reads that mapped to anything else (as 

was done for overall Ab expression), as well as by the length of the Ab gene. We will 

hereto refer to this statistic as ‘gene expression’ and it was calculated as follows. Let 9 

be the total number of unique genes that we detected belonging to a given Ab gene 

class (e.g., for IGHV, 9=68; excluding alleles). For : ∈ [1, 9], let ;< be the length of 

gene	:. If ><,-,. is the total number of reads that map to Ab gene : with an e-value ≤ 10-

20, then the gene expression level, ?<,-,., of Ab gene :, in patient * at time-point # was 

calculated as, 
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?<,-,. =
><,-,.

/-,.;<
	 ∙ 	1000. 

Lastly, we would like to estimate the mRNA expression level of a given CDR3 

sequence. This statistic is referred to as ‘CDR3 expression’, and was calculated by 

counting the number of times the CDR3 sequence was observed in patient * at time-

point #, normalized by /-,.. 

Ab diversity: 

We used the CDR3 sequences in our dataset to estimate AbR diversity. We 

calculated the mean pairwise genetic distance (commonly referred to as A in population 

genetics) as our diversity statistic. However, there were different numbers of total reads 

sequenced for each patient/time-point, and comparing diversity estimates across 

differing sample sizes is problematic, as the variance of the estimate can change 

dramatically. To account for this we down-sampled our data until the number of reads 

for each patient/time-point was equal to the time-point with the least reads. We then 

calculated diversity from this down-sampled data. To account for possible stochastic 

effects of down-sampling, we analyzed the mean of 10 independently down-sampled 

diversity estimates.  

Let B-,. be the total number of unique CDR3 sequences found in patient * at time-

point #, with C ∈ [1, B-,.]. Let D-,.,E be the number of times the CDR3 sequence C was 

found in patient 	* at time-point #, with F-,. = ∑ D-,.,E
H3,4
EIJ  being the total number of CDR3 

sequences detected. Additionally, let K-,. be a list of inferred CDR3 sequences. Antibody 

diversity, A-,., for patient * at time-point # was estimated as, 
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A-,. =
∑ ∑ D-,.,L ∙ D-,.,M ∙ N(K-,.,L, K-,.,M)

H3,4
MIL6J

H3,4QJ
LIJ

RS3,4T U
. 

Where N(V, W) gives the genetic distance between the two CDR3 sequences, V 

and W. This was accomplished using the Needleman-Wunsch algorithm encoded by 

‘needle’ in the EMBOSS package to globally align sequences V and W. We then 

calculated ‘genetic distance’ by finding the percent of mismatches in this alignment, 

including gaps. 

In words, A can be thought of as the genetic distance that would be expected if 

one were to randomly pull two CDR3 sequences from a population. Thus, if there are 

many unique CDR3 sequences, yet only a small subset of these sequences have a high 

frequency, then A will be relatively low; conversely, if there are the same set of unique 

CDR3 sequences but their frequencies are evenly distributed, A will be relatively high. 

Comparing B cell and PBMC CDR3 populations: 

We used a random sampling approach to test whether or not the CDR3 

sequences from B cell and PBMC sample-types were random samples from the same 

population. Specifically, for a given patient we randomly chose a time-point, then within 

this time-point, we randomly selected one CDR3 sequence from the B cell dataset and 

one from the PBMC dataset, where the relative frequency of the CDR3 sequences 

determined the probability of selection. We then calculated the genetic distance 

between these two sequences using N(V, W), as was done in the diversity calculation. 

This process was done 1,000 times to create a distribution of genetic distance values. 

To create null distributions we repeated this workflow, except sampled pairs of CDR3 

sequences from the same population. We used the Mann-Whitney U test to determine if 
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the B cell/PBMC distribution of genetic distances was significantly different from either 

of the nulls. This process was done for each of the patients. 

Test for identifying TIV-responding Abs: 

The following method was used to identify both TIV-responding V genes and TIV-

responding CDR3 sequences, so we shall henceforth use the notation ‘Ab-element’ to 

refer to either V gene or CDR3 sequence. For a detailed description of this FPCA based 

test see Wu and Wu [28], and associated R code [49]. Briefly, the test functions by first 

converting each of the Ab-element’s expression trajectories into a continuous function 

over the time-course, #, which we will call an ‘expression function’. This is accomplished 

by finding the linear combination of the naïve basis functions that best fit the observed 

Ab-element’s expression data. These expression functions, X(#), can be expressed as,  

X(#) = Y(#)Z[\]\(#)
^

\IJ

. 

Where Y(#) is a constant function that is equal to the mean Ab-element 

expression over the time-course, [\ is the weight given to basis function ]\(#), and _ is 

the number of basis functions in the model. 

FPCA is then performed on this set of expression functions. We then identified 

the first set of eigenfunctions that explain at least 90% of the variance in the data. Once 

this is done, X′(#) can be re-expressed as a linear combination of this set of 

eigenfunctions that best fits the observed data.  

Xa(#) = 	Y(#)Zb\c\(#)
E

\IJ

, 
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Where b\ is the weight for each eigenfunction, c\(#), which is often referred to as 

the functional principal component score, and C is the number of eigenfunctions that 

form the set of eigenfunctions that together explain at least 90% of the variance in the 

data (such that their eigenvalues are non-increasing).  

Once this is done, the task is then to determine if X′(#) is a better fit to the data 

than the null hypothesis. The null in this case is that the Ab-element’s true expression 

function is Y(#) (where the observed deviation around the mean is due to random error). 

Thus, the null hypothesis is Xd(#) = Y(#). It is then determined which of the two 

hypotheses better fit the data by measuring the residual sum of squares (eff) for the 

two models, eff′ and effd. The test statistic is given by, 

g =
effd − effa

effa + j . 

Where j is a small constant that is meant to stabilize the variance of g, and is set 

to equal the variance of the Ab-elements’ observed expression values around its 

estimated expression function. Finally, in order to produce a null distribution of the test 

statistic, a permutation-based approach is used. The time-points are shuffled and this 

process is repeated. The Ab-elements whose g statistics were significant relative to the 

null distribution were deemed TIV-responding. A Benjamini Hochberg correction for 

multiple tests was used on the p-values within a patient/gene class.  

Generation of literature-curated dataset of flu-targeting Abs: 

In order to characterize the diversity of Abs that have been reported to physically 

bind influenza, we scanned the literature and recorded the germline gene identity of all 

influenza-binding Abs that we found. The generation of this literature-curated dataset 

qualifies as a meta-analysis, so we created a separate Preferred Reporting Items for 
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Systematic Reviews and Meta-Analyses (PRISMA) [50] statement that explicitly 

addresses each item in the PRISMA checklist in order to clearly outline the criteria used 

to select the studies that contributed to this meta-analysis. See the PRISMA statement 

and PRISMA Flow Diagram in the supplemental information for details on this meta-

analysis. 

Test for a globally convergent V gene response: 

To determine if patients tend to use similar sets of genes to target TIV, we 

developed a statistic, which we refer to as ‘sum of gene significances’ (SGS), and is 

defined as the number of patients in which a given gene was found to be significant. 

Because we have 5 patients in our data, SGS is bound between 0 and 5. We computed 

the SGS value for each gene, and then compared the observed SGS distribution to its 

null. Our task was then to generate a proper null distribution that takes into account the 

baseline frequencies at which the different V genes are expressed in a given patient, 

prior to vaccination. We chose to use a simulation-based null model, where we use day 

0 gene frequencies to simulate artificial sets of TIV-responding genes.  

These null simulations are best explained by example. Say the number of TIV-

responding V genes for patients 1 through 5 were: 3, 6, 4, 7, and 4, respectively. The 

first step is to sample, without replacement, 3 genes from patient 1’s day 0 distribution 

of gene frequencies. Here, the probability of sampling a given gene for patient 1 is equal 

to that gene’s relative frequency at day 0. We then complete the same process in the 

other patients by sampling 6 genes from patient 2’s day 0 gene frequency distribution; 4 

genes from that of patient 3; 7 genes for patient 4; and 4 genes for patient 5. We now 

have ‘null sets’ of V genes from each patient, where the composition of these sets only 



 26 

reflect the gene expression levels prior to vaccination. We can then calculate SGS 

values for each V gene by counting the number of times each gene is present in a ‘null 

set’. For example if IGHV3-23 was sampled in all patients, then it would have an SGS 

value of 5, and if IGHV4-59 was sampled in patient 1 and patient 4 then it would have 

an SGS value of 2. We store these SGS values as a long list of integers. We then 

repeat the sampling process from each patient’s day 0 gene frequency distribution 

1,000 times, and after each trial we append the resulting SGS values for each gene to 

our long list of integers. Once this is done we can convert this long list of SGS values 

into a distribution, where this distribution serves as our null, and reflects the SGS values 

that one might expect to get if they were to randomly sample genes from each patient 

prior to vaccination. We can then use a multinomial G test to compare our observed 

SGS distribution to the null.  

To generate the ‘naïve’ null distribution we treated each patient independently 

and then simulated SGS statistics under this model. We did this by first estimating the 

probability that a gene will be significant (i.e. deemed TIV-responding) in each of the 

patients. This was done by dividing the number of V genes found to be TIV-responding 

in a patient by the total number of V genes found in that patient. Once the probability of 

significance was estimated in all patients, we simulated SGS values based upon these 

probabilities. This was accomplished by walking through each patient and randomly 

assigning them a ‘1’ or a ‘0’ (i.e. significant or non-significant), where the probability of 

getting a ‘1’ is equal to the probability of significance that was previously estimated for 

that patient. For example, if 3 out of 10 V genes were found to be TIV-responding in 

patient 1, then this patient would have a probability of 0.3 (3/10) of being assigned a ‘1’. 
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This assignment of either ‘0’s or ‘1’s was completed for each patient, and by taking the 

sum across patients we get a simulated SGS value. We then repeat this process 10,000 

times to arrive at the distribution of SGS values that one might expect if the probability 

that a gene is significant in one patient is independent of all the other patients. 

Test for convergent response in individual V genes: 

This test is similar in spirit to the global test for V gene usage convergence 

(above), where the day 0 V gene usage is used to generate the null distribution. 

However, instead of a simulation-based approach to generating this null distribution we 

develop a closed form solution. ) is again the total number of patients in the study (5 in 

our case), and k- is the relative proportion of a given V gene at day 0 in the *th patient 

(where * ∈ [1, )]). f is the set of identifiers for each patient, so f = {1,2, … , )}, and fM is 

the set of all subsets of f that are of size p, so fM = {V|V ⊂ f, |V| = p}, which represents 

all the different ways to choose p patients from f. If X is the random variable that 

describes the number of patients in which a given V gene is significant, then the 

probability of X under the null hypothesis is given by, 

Pr(X = V) = Z uvw(k-, x-) v 1− w(kL, xL)
L∉z|L∈{-∈z

| .
z∈{}

 

Where w(~, _) is a function that gives the probability that a gene will be found to 

be TIV-responding in a single patient, given that that patient has a day 0 gene 

frequency of ~, and _ V genes were observed to be TIV-responding in this individual. 

w(~, _) is given as, 

w(~, _) = 1 − (1 − ~)^. 
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Essentially this can be thought of as a traditional urn problem in probability, 

where each patient is an urn that contains a given proportion of red balls. The 

probability of selecting a red ball from an urn is the probability of selecting a given V 

gene from a patient at day 0. The null distribution is modeled as follows: if x- is the 

number of draws made from each urn * (the number of TIV-responding genes found for 

patient *), and k- gives the probability of drawing a red ball from urn * (the relative 

frequency of the Ab gene in question at day 0), and X describes the number of urns 

from which red balls are drawn (the number of patients in which a particular V gene is 

identified as TIV-responding); then the probability of X is the null distribution for SGS. 

Power simulations for global V gene convergence test: 

In order to assess the statistical power of our SGS based tests for convergence, 

we ran simulations of the data over different parameter values to see how often the 

simulated data were different than the corresponding null distribution. More specifically, 

we simulated SGS values for each V gene, and our simulations had two parameters 

that were varied over a range of possibilities. These parameters were: number of truly 

convergent genes, and number of patients in the study. These simulations are best 

illustrated by example. 

Say we wish to run simulations where there are 7 patients, and 2 truly 

convergent genes. The first step is to create ‘simulated’ patients. Here, since we already 

have 5 observed patients, we will only need to create 2 additional ‘simulated’ patients. 

For the purposes of the global V gene response convergence test, each patient needs 

two qualities: a distribution of day 0 gene frequencies, and a number of genes that were 

found to be TIV-responding for that individual. Both of these values are found by 
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randomly selecting from the 5 existing observed patients. That is, each gene’s day 0 

frequency for the simulated patient is found by randomly selecting from the day 0 

frequencies for that gene of the 5 observed patients. All of the randomly selected day 0 

gene frequencies in the simulated patient are then re-normalized by their sum to make 

them relative proportions. The number of TIV-responding genes is also randomly 

selected from the existing values of the observed patients. This is done independently 

for each simulated patient. The next step is to simulate convergent genes. Two V genes 

are randomly selected (regardless of their day 0 frequencies) to be truly ‘convergent’. 

This means that they are significant in all patients (i.e. their SGS value is set to equal 7). 

For each patient, the remainder of V genes are then randomly selected to be TIV-

responding based upon their day 0 frequencies, until the number of genes selected for a 

given patient equals the total number of TIV-responding genes for that patient. For 

example, if patient 1 had 5 genes that were found to be TIV-responding, then 2 of these 

genes are set to be truly convergent (i.e. significant in all patients), and the remaining 3 

are randomly drawn from patient 1’s day 0 distribution of gene frequencies, just as was 

done for our null distribution. Once this is completed for each patient, we have 

simulated SGS values for each gene, and thus can arrive at a simulated distribution of 

SGS values. We then compare this simulated distribution to a null distribution, which is 

generated the same way as described above, except no ‘truly convergent’ genes are 

assigned and genes are instead solely sampled based upon their day 0 frequencies. 

This entire process is then run 10,000 times, and power is calculated as the proportion 

of simulations that yield SGS distributions that are significantly different from the null 

distribution. 
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Power calculations for individual V gene convergence test: 

We calculated power over a range of parameter values for the convergence test 

for individual genes. The parameters that we varied for this test were: number of 

patients in the study, and day 0 gene frequency. Because we have a closed form 

solution for the null distribution of this test, it is not necessary to run simulations, and we 

can instead calculate power directly from our equation, albeit with a few simplifying 

assumptions. For this test, each patient needs two qualities: a day 0 gene frequency, 

and number of genes found to be TIV-responding. We assume the day 0 frequency for 

a gene to be the same across all patients, and we set the number of significant genes 

for each additional patient, beyond the 5 observed, to be the nearest integer to the 

mean of the 5 observed values. We then plug these values into our equation, and find 

the probability that a gene would be found to be significant in all the patients, given a 

starting frequency and a given number of patients. This provides the probability of the 

null hypothesis, and we calculate statistical power by subtracting this value from 1. 

Test for convergent CDR3 response: 

To test if two patients have sets of TIV-responding CDR3s that are more similar 

to each other than would be expected by chance, we again utilized a methodology that 

hinges on sampling from the day 0 distribution. First, we calculate A (the mean pairwise 

genetic distance) between the two patients’ observed set of TIV-responding CDR3s. If X 

is the set of TIV-responding CDR3 sequences in patient V, and w is that of patient W, 

then A�,z between patient V and W was calculated as, 

A�,z =
∑ ∑ N(X-, wL)L∈Ä-∈Å

|X| ∙ |w| . 
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We then generate the null distribution for A�,z by randomly sampling (without 

replacement) from the population of CDR3 sequences at day 0 for both patients V and 

W, where the frequency of each CDR3 sequence determines the probability that it will be 

sampled. The number of sequences that are sampled for each patient are equal to the 

number of CDR3 sequences that were found to be TIV-responding for that patient. 

These sets of CDR3 sequences form a null set, and are solely informed by the baseline 

CDR3 expression level of the sequences prior to vaccination. We then calculate A�,z 

between the two null sets from patients V and W, and repeat this sampling process 1,000 

times to get a distribution of null A�,z	values. We can then assess significance of an 

observed A�,z value between two patients by comparing it to the respective null 

distribution. 

Data and software availability: 

Data for the immunological assays performed by [30] are available at the 

ImmPort repository [ImmPort:SDY224],[51]. RNA-seq data generated by [30] are 

available at the GEO repository [GEO:GSE45764],[46]. The anonymous patients in this 

study have different naming schemes in different contexts. In this study, patient 1, 

patient 2, patient 3, patient 4, and patient 5 equates to samples T12, T13, T14, T15, and 

T16 in the GEO repository; as well as equates to patient IDs S04, S06, S02, S03, and 

S05 in the Henn et al. study, respectively. All software associated with the analyses 

herein are available on the GitHub repository 

[https://github.com/nbstrauli/influenza_vaccination_project],[52]. 
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Results 

In this study, we implemented a pipeline to extract Ab sequences from RNA-seq 

data in order to take advantage of a unique densely sampled time-series dataset 

comprising RNA-seq data from PBMCs and sorted B cells of 5 patients vaccinated with 

the 2010 seasonal TIV over a time-course of 11 days [30] (Fig. 2.2).  

 
Figure 2.2. Study design. 
Schematic representation of the vaccination study. There are 5 patients and each patient is given the 
same vaccine. Whole blood is drawn immediately prior to vaccination, and each day for 10 days post 
vaccination (11 time-points total). Each patient/time-point sample is dived into three different sample 
types: B cells, PBMCs, and serum. The B cells and PBMCs are used for RNA-seq. The serum is used for 
immunological assays. This figure shows the same information as Figure S1 from Henn et al. [29]. 
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*Patient avatars in no way reflect actual patients. 

 

We use the high-resolution temporal information in these data in order to infer the 

elements of the AbR that are putatively responding to TIV. We then go on to test if the 

patients in this dataset exhibit more similar responses to TIV than would be expected by 

chance. That is, we test if these distinct AbRs exhibit convergence in response to the 

same vaccine.  

Quality control of bioinformatic pipeline: 

First, we validated that our bioinformatic pipeline (Fig. 2.1A, see methods for a 

detailed description) extracts meaningful AbR information from RNA-seq data. We 

hypothesized that the proportion of Ab encoding reads detected should correlate with 

the expected number of B cells in a given sample-type. We arbitrarily chose the day 7 

time-point from patient 1, and applied our pipeline to the RNA-seq data from isolated B 

cells and PBMCs for this patient/time-point. As a negative control, we also applied our 

pipeline to RNA-seq data from human tissue cultured lung fibroblasts [53]. Our 

expectation was that the number of Ab sequences would decrease from B cells to 

PBMCs, and cultured lung fibroblasts would serve as a negative control with essentially 

no Ab sequences. Consistent with our expectation, we found that 1.25% of all reads 

from isolated B cells encode Ab (206,797 of 1.7×107 total reads), PBMCs yielded 0.12% 

Ab encoding reads (16,214 of 1.4×107 total reads), and cultured lung fibroblasts 

produced <0.001% Ab encoding reads (25 of 3.0×107 total reads) (Fig. 2.1B). 
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Broad AbR characteristics: 

We next sought to characterize how the AbR broadly behaves in response to 

TIV. To this end we measured overall Ab expression as the number of Ab mapped 

reads normalized by the number of non-Ab mapped reads, see methods (Fig. 2.3A).  

 
Figure 2.3. AbR response to TIV across patients. 
Different metrics were measured for each patient and at each time-point. Metrics are delineated by row, 
and patients are delineated by column. (A) Overall Ab expression for each patient/time-point. (B) CDR3 
diversity for each patient/time-point. B cells and PBMCs are shown in red and blue, respectively. (C and 
D) Stacked area charts showing the gene expression level for each IGHV gene for each patient/time-
point. Colors, corresponding to IGHV genes, are comparable between patients and sample-types, and 
were sorted by absolute range (max – min). (C) B cell and (D) PBMC data. Complete definitions for the y-
axis units in (A,B,C, and D) can be found in methods. (E) ELISA results giving the concentration of Abs 
that bind TIV for the A, M, and G Ab isotypes (red, blue, and green, respectively). (F) Hemagglutinin 
inhibition assay results for the three different virus stains in the administered TIV, A/C: 
A/California/7/2009; B/B: B/Brisbane/60/2008; A/P: A/Perth/16/2009. Data for (E) and (F) were generated 
by [30], and downloaded from ImmPort [51], [ImmPort:SDY224]. 
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Ab diversity was measured as mean pairwise CDR3 genetic distance (see methods) in 

each of the patients over the time-course (Fig. 2.3B). We found that each patient had a 

characteristic peak in overall Ab expression around day 7, although the timing and 

severity of this peak varied dramatically across patients. Patient 3 had the most 

dramatic response, which had entirely subsided by day 7, while the response for patient 

5 was much more gradual and less pronounced. We note that patient 3 was the only 

patient to have received the seasonal influenza vaccine for each of the prior 3 years, 

and received an additional monovalent vaccine the year prior to the study [30]. The 

monovalent, and seasonal 2009 vaccines had epitopes from two of the strains that were 

included in the TIV used in this study (Table 2.1).  

Table 2.1. Patient History. 
Top portion of table lists the demographics and vaccination history for each of the patients. If a patient 
has an ‘X’ under one of the vaccinations it means that that individual received the vaccine; a blank means 
that they did not. The lower portion of the table lists the strains used in each of the vaccines. Entries with 
thick borders highlight the strains that were used in the study TIV (Seasonal 2010). This table shows the 
same information as Table S1 from Henn et al. [30]. 

 

These results are consistent across both the B cell and the PBMC RNA-seq 

sample-types. Indeed, overall Ab expression and diversity levels for each of the patients 

and time-points are highly correlated between the two sample-types (overall Ab 

expression: Kendall’s tau = 0.639, p = 8.715e-12, Ab diversity: Kendall’s tau = 0.366, p 

Patient ID Sex Age Seasonal 2007 Seasonal 2008 Seasonal 2009 Monovalent 2009 Seasonal 2010
Patient 1 F 47 X X
Patient 2 F 36
Patient 3 F 20 X X X X
Patient 4 M 27 X X
Patient 5 M 23

A/H1N1 A/Solomon Isl. 
/3/2006

A/Brisbane/59 
/2007

A/Brisbane/59 
/2007

A/California/7 
/2009

A/California/7 
/2009

A/H3N2 A/Wisconsin/67 
/2005

A/Brisbane/10 
/2007

A/Brisbane/10 
/2007

A/Victoria/210 
/2009

B B/Malaysia/2506 
/2004

B/Florida/4   
/2006

B/Brisbane/60 
/2008

B/Brisbane/60 
/2008

Strains Used in Vaccines:

Patient Vaccine Histroy:
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= 8.083e-05; Fig. 2.4), suggesting that the overall signal represents the underlying AbR 

diversity and expression patterns. 

 
Figure 2.4. Correlation between B cell and PBMC AbR data. 
(A) Scatter plot showing the correlation between overall Ab expression in the B cell data to that of the 
PBMC data for each patient/time-point. Points are colored by time-point. (B) Same as (A) but showing 
correlation of mean pairwise diversity of CDR3 sequences between the B cell and PBMC data. See 
methods for how the diversity statistic was calculated. 

Comparing B cell and PBMC CDR3 populations: 

Because B cells are a subset of PBMCs, we can expect that the RNA-seq data 

from these two sample-types should yield similar Ab sequences. By checking to see if  

this is indeed the case in our data, we have another means to check the accuracy of our 

pipeline. In order to quantify the similarities between the B cell and PBMC sample-

types, we focused on CDR3 sequence sets. Specifically, we statistically tested whether 

the CDR3 sequences from the B cell and PBMC datasets are drawn from the same 

population. We did this by finding the distribution of genetic distances between CDR3 

sequences from different sample-types, and compared this to the same distribution from 

CDR3s in the same sample type (see methods). We found that none of these three 

distributions are significantly different in any of the patients (p > 0.07, see Fig. 2.5). We 
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thus conclude that PBMC and B cell datasets can reliably be used to extract Ab 

sequences from RNA-seq data. 

 
Figure 2.5. Comparing the B cell AbR to the PBMC AbR. 
Density plots showing the distribution of genetic distance values for randomly selected CDR3 sequences. 
Randomly selected sequences were matched by time-point. Red lines show the resulting distribution 
when comparing CDR3 sequences within the B cell data, blue lines show the same when using the 
PBMC data, and purple lines show the genetic distance distribution when comparing between datasets. 
Subtitle below the plots list the Mann Whitney U p-values when comparing the red and the blue 
distributions to the purple. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) Patient 5. 

V gene and CDR3 usage analysis: 

We next sought to analyze how each Ab gene is expressed over the time-course 

after vaccine administration. We calculated the mRNA expression level of each gene 

(as number of reads mapped to a given Ab gene normalized by the number of non-Ab 

mapped reads, see methods) in each of the patients, and at each time-point. We 

analyzed each class of Ab gene that could produce reliable alignments: V gene heavy 

chain (IGHV), V gene lambda light chain (IGLV), and V gene kappa light chain (IGKV). 

We were unable to detect an appreciable number of reads aligning to D or J genes with 

high confidence, which is likely due to their short lengths. We then generated stacked 

area charts to observe how the cumulative and individual V gene expression changes 

over time (Figs. 2.3C, and 2.3D for IGHV; Fig. 2.6 for IGLV and IGKV). We find that the 

patients with the most dramatic Ab response (patients 1 and 3) also seem to have the 

largest gene expression increases in very few V genes, and that the increase in these 

few genes seem to explain a large portion of their rise in overall Ab expression. This is 

particularly well illustrated in patient 1, where the peak in overall Ab expression is 
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Figure 2.6. Lambda and kappa Ab gene’s expression over time. 
Stacked area charts showing the cumulative as well as individual Ab gene expression over time for both 
the lambda and kappa chains. (A and B) Stacked area charts for IGLV genes from the B cell and PBMC 
data, respectively. (C and D) Same a (A and B) but for the IGKV genes. All distinct colors for plots of 
IGLV genes correspond to the same genes (i.e. colors are comparable across patients and sample-
types). The same is true for plots of IGKV genes. 

entirely explained by an increase in gene expression of 2-3 V genes. Moreover, this 

expression increase coincides with a dip in CDR3 diversity. Together, this suggests that 

patients 1 and 3 had largely a monoclonal response to TIV. We also note that the other 

patients showed signs of a predominantly polyclonal Ab response that did not 

substantially affect diversity. Though we cannot draw strong conclusions about the 

causes of a polyclonal or monoclonal response in this small sample size, future studies 

of larger cohorts could elucidate the causes behind this heterogeneity. 
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We performed an analogous analysis using CDR3 sequence data. We gathered 

all unique CDR3 sequences for each patient/time-point sample and calculated their 

mRNA expression level (see methods). We again generated stacked area charts to 

observe how the predominant sequences change in CDR3 expression over time (Fig. 

2.7). We found that these data largely recapitulate the gene expression data, where 

CDR3 expression expansions tend to occur around the same time as the increases in V 

gene expression. Patient 1 again shows a dramatic expansion in the expression of a 

single CDR3 sequence, providing further support for a largely monoclonal response.  

 
Figure 2.7. CDR3 expression over time.  
Stacked area charts showing the cumulative as well as individual expression level for the 100 most 
frequent CDR3 sequences in the data. (A) B cell data. (B) PBMC data. 

There are two factors that contribute to an Ab’s mRNA expression level: the 

number of B cells harboring the Ab, and the rate of Ab expression for each of these B 

cells. Because RNA-seq was performed on a heterogeneous population of B cells in the 

peripheral blood, we cannot distinguish between the two. Further, these two factors are 

highly dynamic over time, where B cells are constantly migrating in and out of the 

peripheral blood, in addition to dramatically varying their rate of Ab transcription. Thus, 

the population of B cells that we sample on day 7 is likely very different from that of day 

0e
+0
0
1e
−0
4
2e
−0
4
3e
−0
4
4e
−0
4
5e
−0
4

0e
+0
0

5e
−0
5

1e
−0
4

0e
+0
0

2e
−0
4

4e
−0
4

6e
−0
4

0e
+0
0

1e
−0
4

2e
−0
4

0e
+0
0

1e
−0
5

2e
−0
5

3e
−0
5

4e
−0
5

0e
+0
0

1e
−0
5

2e
−0
5

3e
−0
5

4e
−0
5

0.
0e
+0
0

9.
0e
−0
6

1.
8e
−0
5

0e
+0
0

2e
−0
5

4e
−0
5

6e
−0
5

0e
+0
0

5e
−0
6

1e
−0
5

0e
+0
0

1e
−0
6

2e
−0
6

3e
−0
6

4e
−0
6

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
Day: 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Day: 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

E
xp

re
ss

io
n 

fo
r E

ac
h 

C
D

R
3

E
xp

re
ss

io
n 

fo
r E

ac
h 

C
D

R
3

B
 C

el
l

P
B

M
C

A

B



 40 

0. However, whether due to a clonal expansion or an increase in transcription rate, if an 

Ab gene or CDR3 sequence increases in expression level, it is largely indicative that at 

least a subset of the B cells harboring this gene or CDR3 are responding to some 

antigenic stimulus. 

Immunological assays: 

Given the robust signal in our V gene and CDR3 usage analyses, we sought to 

validate that the expansions we observed in our data were indeed in response to TIV. 

Henn et al. [30] performed a variety of immunological assays using the sera from each 

patient/time-point sample. We downloaded these data from [51], [ImmPort:SDY224] to 

determine if the patients gain immunological reactivity against influenza around the 

same time as the V gene and CDR3 expression level expansions occur in our data. The 

results show that vaccine-binding immunoglobin tended to increase around the same 

time as V gene and CDR3 expansions (Fig. 2.3E). We next sought to establish that the 

V gene and CDR3 response conferred protectivity against influenza virus. Data from 

hemagglutinin inhibition (HAI) analyses using the three strains of influenza virus 

included in the TIV showed that protection to at least one of the strains was gained 

around the same time as the spike in V gene and CDR3 expression levels (Fig. 2.3F). 

Together these data suggest that the V gene and CDR3 expression level expansions 

we observe in our data are direct immunological responses to TIV.  

Identifying TIV-responding V genes: 

Given the robust signal that we saw in the V gene expression time-course data, 

we next established a methodology to systematically identify the V genes that appear to 

be responding to TIV. We utilized a method based on functional principal component 
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analysis (FPCA), which was designed to identify differentially expressed genes over a 

time-course [28] (see methods for description). We found that it was often the case that 

the 1st eigenfunction explained over 90% of the variance in the data (Fig. 2.8A and 

2.8C).  

 
Figure 2.8. Identifying putative TIV-responding V genes 
(A) First eigenfunction in the B cell data for each patient and each V gene class. The proportion of the 
total variance explained by the first eigenfunction is listed in the legend after each respective class of V 
gene. (B) The top five scoring IGHV genes from the FPCA based test to identify TIV-responding V genes; 
in the B cell data. The points show the observed data, and the solid lines show the best fitting gene 
expression function over time. V genes in legend are ordered by p-value, with lowest on top. P-values are 
based on a permutation test, see Wu and Wu [28] for details. (C and D) Same as (A and B) but from the 
PBMC data. Colors corresponding to IGHV genes in (B and D) are comparable within a patient. 
Eigenfunction plots (A and C) were generated using the “eigens” output from the FPCA-based test. IGHV 
gene expression functions (B and D) were plotted using the “fda” package for the R programming 
language, and using a smoothing parameter, “lambda” = 0.66. 

From this method we were able to identify the genes that seem to be most dramatically 

responding to TIV (Fig. 2.8B and 2.8D; Table 1). In almost all patients, the top genes 

identified in the B cell dataset (Fig. 2.8B) are replicated in the PBMC data set (Fig. 
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2.8D). We deem the V genes identified by this test to be ‘TIV-responding’. It is important 

to note that while the results of this test provide evidence that these genes are 

‘responding’ to TIV, functional validation is required to establish that they actually target 

TIV. We then assessed whether or not these sets of TIV-responding genes, are more 

similar across patients then would be expected by chance.  

Table 2.2. Top 10 TIV-responding heavy chain V genes. 
Lists the top ten scoring IGHV genes in the FPCA-based test for the B cell data. “Lit. Ab Freq.” lists the 
frequency for each of the V genes in the literature-curated dataset. “Combined” lists the p-values for each 
of the V genes after using Fisher’s method to combine the p-values from the FPCA-based test across all 
the patients. Patient 1-5 lists the p-values for each of the individual patients from the FPCA-based test. 
Genes are sorted by combined p-value. 

 

Testing for a convergent V gene response: 

Recently there have been several studies that have reported independent AbRs 

showing signals of sequence convergence when challenged with a similar antigenic 

stimulus [15,21,41,42]. This suggests that independent patients may use the same V 

genes to target similar antigens. Consistent with this, we found that V genes tend to 

have similar FPCA-based test scores across patients (Fig. 2.9). This suggests that the 

patients in our data are indeed using similar V genes to target TIV.  

However, the sets of TIV-responding V genes were statistically inferred using 

time-series data, and were not shown to physically bind TIV. To validate these findings, 

we searched the literature for Abs that have been experimentally shown to bind either  

Gene Name Lit Ab Freq. Combined Patient 1 Patient 2 Patient 3 Patient 4 Patient 5
IGHV3-23 0.1034483 1.08E-14 1.54E-05 4.55E-05 0.0052969 0.000108 0.000154
IGHV1-69 0.237069 5.04E-14 0.0004328 0.002909 0.0002813 6.15E-05 1.54E-05
IGHV3-30 0.0387931 7.19E-13 0.0015373 0.001545 0.00025 0.000692 1.54E-05
IGHV3-7 0.0431034 1.15E-12 0.000209 0.007924 1.54E-05 0.000108 0.003892
IGHV4-61 0.0021552 1.16E-12 0.0013284 7.58E-05 0.0283438 3.08E-05 0.000123
IGHV4-31 0.0043103 1.78E-12 0.0011045 0.004242 0.0015625 3.08E-05 7.69E-05
IGHV3-48 0.0193966 2.36E-12 0.0003284 0.000409 0.0001875 0.000969 0.000969
IGHV4-59 0.1530172 2.77E-12 0.0001194 0.000136 0.0192969 4.62E-05 0.001954
IGHV3-11 0.0043103 3.14E-12 0.0003731 0.000742 0.00025 0.000154 0.003062
IGHV3-30-3 0 4.71E-11 0.002194 0.011303 0.0015313 0.001154 1.54E-05
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Figure 2.9. Correlation of TIV-responding V genes across patients. 
Comparison of FPCA based test p values between all pairwise patients, for each V gene. For each 
pairwise patient comparison, these plots show the correlation of the p values from the FPCA based test 
for each of the genes. Points are colored by patient comparison. Correlation p value (Kendall’s Tau) is 
listed in the title of each plot. (A) Scatter plots for IGHV, IGKV, and IGLV genes’ p values for the B cell 
data. (B) Same as (A) but for the PBMC data. 

an influenza vaccine or the influenza virus itself. Since most publications do not provide 

sequence information for the Abs they find, our analysis is limited to the germline genes 

from which the Abs originated. Our search resulted in 464 Abs that have been shown to 

bind influenza vaccine or influenza virus (Tables 2.3 and S3). 

Table 2.3. Contributions of each publication to the literature curated flu-targeting Ab dataset. 
Lists all the publications that contributed to the literature-curated dataset. An ‘X’ under a given class of Ab 
genes means that that gene class was reported in the publication. If an entry is blank then the gene class 
was absent. “Number Abs Retrieved” lists the total number of monoclonal Abs that each publication 
contributed to the literature-curated dataset. 

 

We then compared the TIV-responding V genes identified by our FPCA based test to 

the frequency of each V gene from our literature-curated dataset. Specifically, since 
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each patient is approximately independent, we used Fisher’s method to combine FPCA-

based p-values across patients. This results in a single p-value for each gene, where 

significance is increased if a gene is inferred to target TIV in multiple patients. 

Conversely, significance is diminished if a gene is heterogeneous across patients 

(Table S4).  

We found that these combined p-values are correlated with IGHV gene 

frequency in the literature-curated dataset (Kendall’s Tau, B cell p = 3.115e-5, PBMC p 

= 2.502e-5). Moreover, we find that ~60% of all Abs in our literature-curated dataset 

were composed of V genes that were inferred to be TIV-responding across all patients 

in our analysis (Fig. 2.10A).  

In particular, we find that the genes IGHV1-69 and IGHV3-7, which have been 

shown to consistently target influenza epitopes in several independent studies [41,54–

58] have the 2nd and 4th lowest p-values in the B cell data (Table 2.2), and 1st and 2nd 

lowest p-values in the PBMC data (Table S4), respectively. One of the publications that 

contributed to our literature-curated dataset used a combinatorial phage display library 

to select for influenza-targeting Abs (Throsby et al. [54]). This is different from the in-

vivo selection process that occurs in humans, and thus could introduce unknown bias in 

the Abs from this study. We removed the data from this study and saw no qualitative 

difference in the outcome (Fig. 2.11). Together, these data show that (i) the V genes 

that we identify as TIV-responding with our pipeline are consistent with previous findings 

in the literature, and (ii) that the patients from the Henn et al. dataset, as well as those 

from several other studies, tend to use similar V genes to target the influenza vaccine. 
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Figure 2.10. Identifying a convergent V gene usage signal across patients. 
The x-axis for all plots is the sum of gene significances (SGS) statistic, which is the number of patients for 
which a given Ab gene was found to be significant. (A) Comparing our results for IGHV to the literature. 
For each SGS bin, this shows the proportion of the Abs in the literature-curated data that have V genes 
belonging to this bin. ~60% of the influenza binding Abs in the literature-curated dataset were composed 
of V genes that had an SGS value of 5. (B) Comparing observed SGS to the null distribution. Blue bars 
are a histogram showing the observed proportion of IGKV genes from the PBMC data belonging to each 
SGS bin. Red dashed line shows the ‘naïve’ null distribution of SGS if each patient were independent 
from one another (see methods). Green dashed line shows the null distribution of SGS if the baseline 
similarity in gene expression at day 0 is taken into account. The p-value in the legend shows the result of 
using a multinomial G test to compare the observed SGS distribution to that of the day 0 null. (C) 
Comparing the SGS value for each IGKV gene from the PBMC data to that of their respective null 
expectations. Color indicates the probability of the observed SGS under the null model (p-value, see 
methods for explanation of null model). 

There are two reasonable explanations for this observation. The first is that some 

V genes have properties that make them naturally better at targeting TIV than others 

and are thus more likely to show a response across patients. The second is that  
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Figure 2.11. Comparison of SGS to literature-curated dataset, excluding Throsby et al. 
For each SGS bin, this shows the proportion of the Abs in the literature-curated data that have V genes 
belonging to this bin. The genes that were significant in all 5 patients represented the largest proportion of 
the genes shown to be influenza binding in the literature. 

patients tend to have similar V gene expression levels prior to vaccination, such that the 

Abs that are selected to respond to TIV tend to have similar V genes across patients 

simply due to this prior baseline similarity. We argue that this latter explanation has 

been underappreciated, and thus merits further scrutiny.  

Suppose V gene expression levels are correlated across patients, independent of 

any antigenic stimulus. If Ab lineages were randomly selected to respond to an 

antigenic stimulus (the null expectation), then we would expect to see similar V genes 

responding to said antigenic stimulus across patients purely due to the underlying 

correlation of V gene expression prior to inoculation. We tested for correlations in V 

gene expression levels prior to vaccination (day 0), and found that they are highly 

correlated across patients (Fig. 2.12). We therefore developed a statistical test that will 

take into account the underlying similarity in V gene expression prior to vaccination 

when determining if the patients in our data tend to use more similar sets of V genes to 

respond to TIV than would be expected by chance (see methods). For each gene we  
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Figure 2.12. Baseline correlation of Ab gene expression at day 0. 
Comparison of day 0 expression level between all pairwise patients, for each TIV-responding V gene. For 
each pairwise patient comparison, these plots show the correlation of the day 0 expression level for each 
of the TIV-responding V genes. (A) Scatter plots for IGHV, IGKV, and IGLV TIV-responding genes’ day 0 
expression level for the B cell data. (B) Same as (A) but for the PBMC data. 

find the number of patients in which the gene is found to be significant by our FPCA test 

(referred to as Sum of Gene Significances, or SGS, Tables S5 and S6). We then 

compare the observed SGS distribution to a null. We found that the observed SGS 

distribution was significantly different than the null for IGKV from the PBMC dataset 

(multinomial G-test, p=0.005; Fig. 2.10B; dashed green line vs. histogram) and we saw 

no evidence for convergent gene usage for other classes of V genes (Fig. 2.13). We 

then assessed the possibility that this convergent signal was driven by outlier genes that 

were deemed significant by the FPCA-based test, but do not have expression 

trajectories representative of a vaccine response (e.g. IGHV3-23 in patient 2, Fig. 2.8B). 

We performed a rather extensive outlier removal analysis to address this, where we 

removed these outliers in a variety of different ways (see Appendix for a detailed 

description). In short, our convergent signal for IGKV was robust to all outlier removal 

approaches. 
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Figure 2.13. Testing for a global gene usage convergent signal. 
Comparing observed SGS to the null distribution. Blue bars are histograms showing the observed 
proportion of V genes belonging to each SGS bin. Red dashed lines show the null distribution of SGS if 
each patient were independent from one another. Green dashed lines show the null distribution of SGS if 
the baseline similarity in gene expression at day 0 is taken into account. The p values in the legends 
show the result of using a multinomial G test to compare the observed SGS distributions to that of the day 
0 nulls. (A) Histograms of the IGHV, IGKV, and IGLV genes, for the B cell data. (B) Same as (A) but for 
the PBMC data. 

Given the mixed evidence for a global convergent signal in V gene response to 

TIV, we investigated each V gene individually (i.e., we test whether a given V gene was 

found to be TIV-responding in more patients than expected by chance). Similar to our 

global V gene analysis, we used the gene frequencies at day 0 to construct our null 

distribution (the null was solved in closed-form, as opposed to simulating; see methods). 

We found that two V genes showed a significant convergent signal after Bonferroni 

correction for multiple testing. These were IGHV3-66 on the heavy chain and IGKV3-

NL1 on the kappa light chain, using the PBMC data (Tables S7 and S8). In general, 

these significant V genes had a characteristic expression level trajectory of low 

expression prior to vaccination, and then increasing in expression post-vaccination. This 

character of trajectory made it unlikely that the V genes would be selected to respond to 

the vaccine simply because they were abundant (or highly expressed) prior to 
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vaccination, yet their increase in expression level after vaccination makes them likely 

candidates for responding to the vaccine.  

To our knowledge, neither IGHV3-66 or IGKV3-NL1 have been reported to have 

shown a convergent response to TIV before, and are absent from our literature-curated 

dataset. Conversely, the V genes IGHV1-69 and IGHV3-7 — which have been reported 

in the past as showing a convergent signal when targeting TIV — are not significant in 

our test. This means that we cannot reject the possibility that these genes were found to 

be consistently targeting TIV simply due to their tendency to be highly expressed prior 

to vaccination. While it’s possible that the reason for this initial high gene expression is 

because of prior convergences due to a similar antigenic history, it is also possible that 

these V genes are highly expressed independent of any antigenic history. We cannot 

differentiate between these two possibilities, so this baseline correlation must be 

corrected for. 

Together, the results from our tests for a convergent signal in V gene usage 

show that some patients tend to use similar sets of V genes for particular gene classes, 

and that a couple of these V genes stand out. While only a subset of our tests yielded a 

significant convergent signal, we found it notable that there was any convergent signal 

at all, given the strong baseline correlations across patients prior to vaccination. 

Testing for a convergent CDR3 response: 

We hypothesized that if the patients within this dataset are capable of using 

similar sets of V genes to target the same vaccine, then they may use similar sets of 

CDR3 sequences to target TIV as well. To answer this, we began by again using the 

FPCA-based test on our CDR3 expression data to identify the putative TIV-responding 
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CDR3 sequences. We were then left with a list of CDR3 sequences for each patient that 

appear to be responding to TIV. Our task was then to determine if these lists of TIV-

responding CDR3s were more similar between patients than would be expected by 

chance (see methods). We found that patients 1 and 4 seem to have converged on 

similar CDR3 sequences to target TIV, whereas patients 2 and 3, and patients 1 and 3 

seem to have diverged (Figs. 2.14 and 2.15).  

 
Figure 2.14. Testing for convergent CDR3 sequences across patients. 
Black points indicate the observed mean genetic distance between each pair of patients for the TIV-
responding CDR3 sequences in the B cell data. Violin plots show the null distribution of mean pairwise 
distance values for each patient comparison (see methods for how null distribution was created). A point 
below the null distribution indicates convergent TIV-responding CDR3 sequences, and above indicates 
divergent TIV-responding CDR3 sequences. Patient comparisons are sorted by observed mean pairwise 
genetic distance, and distributions are colored by their empirical p-value. P1 vs. P4 p-value = 0.001. 

Power calculations: 

In order to assess statistical power for our SGS based tests for convergence, we 

calculated power over a range of parameter values for both our global gene usage 

convergence test as well as our individual gene convergence test. See methods for a 

detailed description of how this was done 
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Figure 2.15. Testing for convergent CDR3 sequences across patients. 
Violin plots showing the null distribution of mean pairwise distance values for each pairwise patient 
comparison (see methods for how null distribution was created), for the PBMC data. Points indicate the 
observed mean genetic distance for the TIV-responding CDR3 sequences between the patient 
comparison. A point below the null distribution indicates convergent TIV-responding CDR3 sequences, 
and above indicates divergent TIV-responding CDR3 sequences. Distributions are colored by p value with 
respect to the observed value. Patient 5 is absent because he had no statistically significant TIV-
responding CDR3 sequences in the PBMC data. 

To calculate power for our global gene usage test, we designed simulations 

where we can simulate a given number of truly convergent genes, as well as simulate 

additional patients. From this we were able to determine how many truly convergent 

genes, and how many patients are necessary to give sufficient power to differentiate 

from the null distribution. For example, one can imagine that if there were only 5 V 

genes that were truly convergent then it might be difficult for the resulting distribution of 

SGS values to be statistically different from the null. However, if there were 50 patients 

in the dataset, then it would be unlikely for all 50 of these patients to ‘choose’ the 5 

convergent genes by chance, and would allow for a statistical difference from the null. 

We ran these power simulations over a range of ‘number of patients’, and ‘number of 
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convergent genes’ parameter values (Fig. 2.16A). We found that in order to have strong 

power to reject the null, if there are 5 patients (as in our observed data), there must be 

greater than 9 convergent genes. 

 
Figure 2.16. Power calculations.  
Illustrates the statistical power over a range of parameter values for each of the gene usage convergence 
tests. (A) Power over a range of simulated patients, and simulated convergent genes for the global gene 
usage convergence test. Up to 50 convergent genes were simulated but all sets of simulations with 
greater than 10 convergent genes yielded a power of 1. (B) Power over a range of patients, and day 0 
gene frequencies for the individual gene convergence test. Day 0 gene frequency was set to be equal 
across all patients for each power calculation. Tests with a starting gene frequency of up to 1.0 were run, 
however, every test with a starting gene frequency greater than 0.4 had a power of 0.0. IGHV expression 
data from the B cell dataset was used for the simulations/calculations in both (A) and (B). 

We also calculated power for our individual gene convergence test over a range 

of parameter values. Here, the parameters that we varied were ‘number of patients’ and 

‘starting gene frequency’ (frequency at day 0). In this case, if a gene were highly 

expressed at day 0 then it would be difficult for this gene to be statistically different from 

the null hypothesis, as it might be relatively easy for many patients to ‘choose’ this gene 

to respond to TIV by chance. However, if there were 100 patients in the study, then it 

may be unlikely for this gene to be selected in all patients. We found that if there are 5 
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patients in the study, a gene must have a day 0 frequency lower than 0.06 in each of 

the patients in order to reliably reject the null hypothesis (Fig. 2.16B). 

Discussion 

We have mined and characterized the global AbR response to TIV in 5 

individuals from RNA-seq data. We find that individuals exhibit a heterogeneous 

response to TIV. Some of the patients showed characteristics of a monoclonal 

response, while others responded with much more of a polyclonal character. 

Interestingly, patient 1, who demonstrated characteristics of the most dramatic 

monoclonal response, was also the oldest patient (Table 2.1). This is in line with 

previous work showing that older humans tend to have larger clonal expansions in their 

AbRs [12]. While all the individuals’ overall Ab expression increased markedly post-

vaccination, the timing and amplitude of this spike was variable. It is important to note 

that the patient with arguably the most dramatic Ab response to TIV also had a relatively 

early spike in overall Ab expression, which had almost completely subsided by day 7. 

This is the time-point that immunologists typically collect samples for vaccine response 

studies (see Galson et al. [2] Table 1 for examples), and in this individual’s case the 

dramatic signal would have been all but lost if the traditional study design of pre- and 

post-vaccination time-points were used. This is consistent with the findings of Henn et 

al. 2013 [30] and further exemplifies the utility of study designs that emphasize dense, 

longitudinal sampling rather than cross-sectional sampling, as much of the signal would 

have been missed were there sparser sampling in the time-course. Further, as one 

decreases the number of time-points, it may become increasingly difficult to distinguish 
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the signal from the noise, which would decrease the power to identify the elements 

responding to the stimulus.  

While targeted sequencing of the Ab locus is unarguably the best way to illustrate 

the AbR, we, and others [35–37], have shown that a relatively simple bioinformatic 

pipeline can be implemented to characterize the AbR from RNA-seq data. This will 

hopefully provide investigators with the ability to leverage their RNA-seq data even 

further. Sequencing costs continue to plummet each year, however they still remain 

prohibitive for performing both targeted sequencing, and RNA-seq for the average 

project budget. If one were interested in overall, population level statistics of the AbR, 

such as abundance or diversity, or if one were interested in finding/observing the Abs 

that are highly expressed in the AbR, we would argue that RNA-seq data is more than 

sufficient for these purposes. However, if one were interested in identifying rare Abs in 

the population, or needed full Ab sequences, then targeted sequencing of the Ab locus 

would be advised. In addition to prohibitive sequencing costs, targeted, deep-

sequencing of the AbR remains a highly skilled method that involves a great deal of 

optimization, whereas RNA-seq has well vetted and broadly used protocols. In short, we 

hope that our method opens up the field of AbR analysis to a broader array of 

researchers. 

The unique, densely sampled time-series dataset from Henn et al. [30] provided 

us with the ability to use functional data analysis methods to statistically identify putative 

TIV-responding V genes. We found V genes that were commonly TIV-responding 

across all patients in our dataset, and that these commonly used V genes were also 

prevalent in influenza targeting Abs collected from the literature. This finding suggests 
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that we have identified V genes that indeed function to target TIV. This also raises the 

intriguing possibility that some V genes are inherently better than others at targeting 

TIV, as independent patients seem to be selecting the same V genes to target the 

vaccine. If this were true it would have interesting implications for the natural design and 

function of the diversity of genes in the AbR. For example, it could imply that instead of 

the different V genes providing the basis for an otherwise random exploration of 

sequence space when optimizing Abs, they could perhaps have evolved as ‘specialists’ 

for particular classes of antigens, such that when an Ab is comprised of a particular V 

gene it is pushed in a particular direction of antigenic space. 

As interesting as a convergent signal may be, one must exercise great caution 

when searching for one. If correlations between individuals exist prior to the selection 

event, then these correlations must be controlled for in any convergence test. For 

example, consider a V gene that is highly expressed in many individuals prior to 

vaccination, and imagine that this V gene was found to be TIV-responding in many 

patients. As we have pointed out, one does not know if the reason that this V gene was 

found to be TIV-responding across patients is because it actually has a greater 

propensity to target TIV than other V genes, or because it was selected randomly due to 

its high prevalence in the individuals. It is certainly possible that the highly expressed V 

genes have a greater propensity to target TIV. Indeed, it is possible that the reason they 

are highly expressed is because of prior vaccinations/antigenic exposure. However, we 

argue that it is equally possible that some Ab genes have a high endogenous 

expression level independent of any antigenic stimulus. Because of this, we do not have 

the statistical ability to de-convolute these two possibilities. Increasing the number of 
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patients in these types of studies would help ameliorate this problem. However, as we 

show with our power calculations, one experiences diminishing returns in statistical 

power with adding patients to the study (Fig. 2.16). Alternatively, a synthetic AbR could 

be created that has a relatively even distribution of Ab elements, and tested for activity 

against TIV (or other antigens as well). 

Despite the strong correlations across patients in V gene expression levels prior 

to vaccination, we found statistically significant convergent signals in a subset of our 

tests. We observed global convergence for the IGKV genes, as well as convergence in 

the individual V genes, IGHV3-66 and IGKV3-NL1. As Dunand and Wilson [38] point out 

in their review, the V genes IGHV1-69 and IGHV3-7 have been implicated in convergent 

signals in a huge variety of contexts, including chronic lymphocytic leukemia [59,60], 

Sjögren's syndrome [61], and influenza [41,55–58,62–64] (for both IGHV1-69, and 

IGHV3-7), as well as human immunodeficiency virus [65–67], and hepatitus C virus [68] 

(for IGHV1-69 alone). Given that these genes were not significant in our convergence 

tests, and given the vast array of disparate antigens that these genes have been shown 

to ‘converge’ towards, it seems that perhaps the simpler explanation may in fact be that 

these genes have high endogenous expression independent of any antigenic stimulus, 

and are simply found to consistently respond to a diverse array of antigens by chance. 

This is a hypothesis that we feel deserves further scrutiny in future studies. 

Our method for testing for a convergent signal in the AbR could be easily 

extendable to other systems. For example, this approach could be applied to meta-

genomic microbiome data in order to identify taxa that are consistently responding to 

some stimulus. It could also be applied to infections in order to see which sequence 
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characteristics of a given pathogenic population are consistently responding to (or 

resisting) a drug. 
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Chapter 3: Estimating and testing for selection in 

experimentally evolving populations 
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Introduction 

The advent of deep sequencing technologies has allowed researchers to observe 

evolution taking place in controlled laboratory settings. This is done by simultaneously 

tracking thousands of allele frequencies within a large (typically microbial) population 

over time. A fundamental question when performing these evolution experiments is: 

which of these alleles are under selection? The first step to answering this question is to 

generate some quantitative statistic that reflects the fitness of each allele. This is 

calculated by comparing the frequency of a given allele at the beginning of the 

experiment, to its frequency at the end. In which case, an increase or decrease in the 

allele’s frequency would indicate positive or negative selection, respectively. Commonly 

used statistics for measuring this frequency-change are based upon taking the ratio, or 

log ratio, of the ending allele frequency over the starting allele frequency [1,2]. While 

these methods are statistically robust, they have two drawbacks: i) they do not directly 

incorporate time (or number of generations) that elapsed during the experiment, and ii) 

they are difficult to incorporate into established population genetics theory.  

The importance of time is well illustrated by the following example. An allele that 

doubles in frequency in 50 generations is under much higher selection than an allele 

that doubles in frequency in 100 generations. This is typically not an issue in evolution 

experiments because populations from the same study are generally left to evolve for 

the same amount of time. However, if this were not the case—such as when comparing 

results from different studies—then time would need to be taken into account when 

comparing fitness values.  
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Being able to integrate a fitness statistic into established theory is important 

because it can provide consistency and comparability across studies, and more 

importantly, gives one the ability to leverage the theoretical work of others to generate 

expectations. For example, if an allele rises in frequency from 1/8 to 1/4, then one could 

use population genetics theory to arrive at the range of fitness values that could 

reasonably give rise to such an observation. Moreover, one could design a test to see if 

an allele with no fitness advantage (i.e. a fitness of 0) could give rise to such an 

observation due to neutral drift, which is to say, the probability that the observation was 

due to chance. 

In this study we implement an easy, computationally fast method for estimating 

the selection coefficient [3] (i.e. fitness, or K), and also develop a statistical framework to 

test if alleles are under significant selection. Our methods require a number of 

population genetic parameters that are usually not known when studying natural 

populations, yet are typically readily available in the context of laboratory experiments. 

These parameters include: the number of generations elapsed during the experiment, 

the population size across time-points, and the starting and ending allele frequencies. 

We also incorporate experimental/sequencing error into our framework. 

We then go on to apply this method to two datasets of deeply sequenced 

evolving populations: the first consists of human immunodeficiency virus (HIV), and the 

second consists of Ebola virus (EBOV). The HIV dataset is from a study where the 

authors mutated every amino acid of the virus’s tat and rev genes to every other 

possible amino acid, and then combined each of these alleles at roughly equal 

frequencies into a highly diverse artificial population [4]. The authors then let this 



 

 71 

population evolve in tissue culture by letting the diversity of alleles compete, and 

consequently rise or fall in frequency as a function of their relative fitnesses. This was 

done for a total of two replicates. These so called ‘deep mutational scanning’ 

experiments have recently been employed in a variety of contexts, and have proven 

quite useful to elucidate the fitness landscape for numerous proteins [5]. For this 

particular study, the authors used this approach to determine the fitness advantage of 

having overlapping reading frames in the tat and rev genes of the HIV genome. The 

EBOV dataset consists of a more homogeneous wildtype population of EBOV that was 

serially passaged using either a snake cell line (JK cells) or a human cell line (HeLa 

cells). In this study, the authors sought to observe how much adaptation, if any, is 

necessary for EBOV to stably infect reptilian cells, while using the human cell line as a 

negative control. This was performed for a total of three replicates for each cell line. 

Together, we have developed a framework for easily estimating fitness for each 

allele in an experimentally evolving population, and then testing which of those alleles 

are under statistically significant selection. We then use this approach to help identify 

alleles of interest in two experimental evolution studies. 

Methods 

Point estimate of K: 

Assuming a large Wright-Fisher population, if an allele has a selection coefficient 

of K, then (by the definition) it is expected to increase in frequency in the next generation 

by a factor of 1 + K. So, if allele 0 has a frequency of k- at generation *, and a selection 

coefficient of K, then the expectation of its frequency in the following generation is, 

k-6J =
Ç3(J6É)

Ñ36Ç3(J6É)
 . 
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Here, the numerator reflects the expected amount that the allele will increase in one 

generation, and the denominator serves to normalize this new value by the total 

frequency in the next generation. This value is known as the mean fitness. The reason 

k-6J is normalized by the mean fitness is so that it remains a true frequency that has a 

range of [0,1].  

Similarly, if allele ~ has a frequency of Ö- = 1 − k- at generation *, and is not 

under selection (K = 0), then its expected frequency in the following generation is given 

by, 

Ö-6J =
Ñ3

Ñ36Ç3(J6É)
= 1 − k-6J . 

Note that the count of allele ~ is not expected to change (as it is not selected), however, 

its relative frequency will go down because of the increase in allele 0, which is reflected 

in the denominator. 

One can also easily generate an expression for the ratio of the two allele’s 

frequencies in the following generation, which we will call an allele ratio. 

Ç3Üá
Ñ3Üá

= Ç3(J6É)
Ñ3

 . 

Notice that the denominators in the previous equations cancel out, simplifying the 

equation for the allele ratio after one generation. 

We now wish to determine the expected allele ratio after # generations. After 2 

generations (assuming the selection coefficient remains constant) the allele ratio is, 

Ç3Üà
Ñ3Üà

= Ç3Üá
Ñ3Üá

(1 + K) = Ç3(J6É)
Ñ3

(1 + K) = Ç3
Ñ3
(1 + K)T , 

and after 3 generations the allele ratio is, 

Ç3Üâ
Ñ3Üâ

= Ç3Üà
Ñ3Üà

(1 + K) = Ç3
Ñ3
(1 + K)T(1 + K) = Ç3

Ñ3
(1 + K)ä . 
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It is then easy to see that after # generations the expected allele ratio will be, 

Ç3Ü4
Ñ3Ü4

= Ç3
Ñ3
(1 + K). . 

We can then rearrange this equation to solve for K and arrive at, 

K = ã
åçRé3Ü4 è3Ü4⁄ Uêåç	(é3 è⁄ 3)

4  . 

Thus, we have an expression for the expected selection coefficient when 

provided with a change in allele frequency over some period of time. Please note that 

this material was largely adapted from Joseph Felsenstein’s book, Theoretical 

Evolutionary Genetics [6]. 

Estimating experimental error in EBOV data: 

A PhiX control was sequenced in the EBOV data, and we were able to use this 

information to estimate the sequencing error rate for each position. In the case of PhiX 

sequences, the expectation is that all reads will have the reference allele, and any reads 

that deviate from this expectation are the result of sequencing error. We estimate the 

error rate by counting the number of instances that we observed a mutation ‘away’ from 

a given nucleotide, and the number of times we observe a mutation ‘to’ that nucleotide. 

We then normalized these counts by the total number of reads observed for that 

nucleotide to get mutation rates. Thus, each nucleotide has an estimated ‘away’ 

mutation rate and an estimated ‘to’ mutation rate associated with it. We represent the 

rate at which nucleotide w mutates to any other nucleotide as eÄ,∙, and the rate at which 

any other nucleotide mutates to w as e∙,Ä. 

Estimating experimental error in HIV data: 

Because HIV wildtype (non-randomized) positions were also sequenced in the 

data, we were able to use this information to estimate the overall error rate for each 
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amino acid type. Similar to PhiX in the EBOV data, the expectation is that all sequenced 

wildtype positions will have the reference allele, and any instance that deviates from this 

expectation are the result of some sort of error during the course of our experimental 

protocol. The advantage of using wildtype positions relative to PhiX in the EBOV data is 

that this error includes random mutations during the experiment, PCR error, and 

sequencing error. We then estimate eÄ,∙ and e∙,Ä the same as was done in the EBOV 

data.  

Estimating population growth in EBOV data: 

Estimation of the EBOV population size at each of the sequencing time points 

was achieved by two-step reverse transcription droplet digital PCR (RT-ddPCR) [7,8]. 

These figures gave us estimates of the EBOV census population size directly at the 

time of sequencing, and just before the population was bottlenecked due to passaging. 

The severity of each bottleneck was estimated by first reducing the population by the 

volume used to start the next passage (1/40), and then incorporating an estimate of the 

proportion of viable virions in the supernatant (0.00243678, see [7] for details). We then 

modeled an exponential growth curve between each bottleneck and the following 

observed population size at the time of sequencing (Fig. 3.1). 
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Figure 3.1. Estimated population size trajectories for EBOV populations. 
Shows the observed and estimated population sizes for each of the EBOV populations over time. The 
black points give the observed population size for a given time using RT-ddPCR. The red lines show the 
estimated population size following passaging bottlenecks, and recovery. Columns of panels correspond 
to experimental trials 1-3 (from left to right), and rows of panels correspond to HeLa and JK cells (top to 
bottom). 

The form of the exponential curve we used was 

X. = Xd(1 + ë).. 

Here, Xd is set to be the population size directly after a given bottleneck. X. is set to 

equal the census population size at the following sequencing time-point, and # is always 

6, as there are about 6 generations between each bottleneck and the following 

sequencing time-point. We then simply solve for ë to get an exponential curve that 

connects the bottleneck population size to the following sequencing population size, 

over 6 generations. This gave us estimates of the population size at each of the 42 

generations over the course of the experiments. While these estimates were quite 

rough, they provided us with the general shape of the EBOV demography over the 

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

●

● ●

● ●

●

●

● observed data
estimated data

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

●

●
● ●

●
● ●

● observed data
estimated data

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

●

● ●

●
● ●

●

● observed data
estimated data

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

●

●
● ●

●

●

●

● observed data
estimated data

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

● ●

●
●

●
● ●

● observed data
estimated data

0 10 20 30 40

1e
+0

4
1e

+0
6

1e
+0

8
1e

+1
0

Ebola Demography

Time (generations)

Po
pu

la
tio

n 
Si

ze

●

●

●
● ●

●

●

● observed data
estimated data

H
el

a
Po

pu
la

tio
n 

Si
ze

Po
pu

la
tio

n 
Si

ze

JK
Trial 1 Trial 3Trial 2

Generation GenerationGeneration



 

 76 

course of the evolution experiments, which we were able to incorporate into our 

simulations. 

Estimating population growth in HIV data: 

We used data on the growth of a wildtype population of HIV under the same 

experimental protocol as in the HIV evolution experiments, to estimate the overall 

growth of the HIV population in each experiment. Specifically, the p24 concentration 

([p24] in pg/uL) was measured for several time-points during the course of the 

experiment, and this was done a total of three times (see [4] for details). We set the 

overall population size of HIV to be equal to the mean [p24] value at each time-point. 

We then fit a logistic curve to these observed values to get a population growth function 

over the time-course of the experiments (Fig. 3.2). 

 
Figure 3.2. Estimated population size trajectory for HIV populations. 
Shows the best parametric fit of a logistic population growth function (red line) to the observed data (black 
points). 

Here is the function that resulted from that fit: 

/. = í(#) = ììdîìïT.ìñä
J6óáò.ôöôõêà.úõúâùö4

 , 

where /. is the population size at generation #. 
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Neutral simulations: 

We sought to simulate, in silico, our evolution experiments in order estimate the 

range that a neutral allele’s frequency could feasibly change during the experiments. 

This simulated range served as our null distribution, and we generated a unique null 

distribution for each allele in our observed data (done separately for both EBOV and 

HIV). The neutral simulations had six parameters: the overall population growth 

function, the number of generations, the starting allele frequency, the nucleotide identity 

of the allele, and the starting and ending read depth for the experiment. Each of these 

parameters will be explained below. 

A set of 10,000 neutral simulations were run for each allele in the data, and each 

simulation was run as follows. We model the neutral allele in question as allele 0, with 

frequency k and collapsed all the other alleles in the population to be allele ~, with 

frequency Ö = 1 − k. If the population size and frequency for allele 0 at generation # is 

/. and k., respectively, then the count of 0 is ). = /.k., and the count of ~ is û. = /. −

).. The first task is to initialize a starting allele frequency, kd for the simulation. There 

exists an observed starting frequency, kda  for each allele, however, this observation has 

experimental error associated with it due to sampling the population and sequencing. 

Thus, we derived a probability distribution for the true allele frequency, given the 

observed allele frequency and sequencing depth. We model our prior expectation of the 

true allele frequency using the beta distribution with shape parameters [ and ü 

Pr(kd|[, ü) =
Çò†êáÑò

°êá

¢(£,§)
 , 

where •([, ü) is the beta function and serves as a normalizing constant. [ and ü were 

estimated using the method of moments (MOM) approach, where kda  is treated as the 
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result of a series of Bernoulli trials, and we use the mean and variance of these trials to 

estimate [ and ü. We then model the probability of observing a given allele count, )da, 

given a true starting allele frequency, kd and the sample size /da using the binomial 

distribution, 

Pr()da|/da, kd) = ¶5ò
ß

®òß
© kd

®òßÖd
5òßQ®òß , 

where /da is equal to the read depth for the allele’s position at time 0. We then use a 

Bayesian framework to model the probability of the true allele frequency, given our prior 

and observations,  

Pr(kd|)da, /da, [, ü) =
™´¶)da¨/da, kd©™´Rkd≠[, üU	

∑ ™´¶)da¨/da, 0//d©™´R0//d≠[, üUØ∞±ò
Ø∞ò

 . 

After substituting in the above equations, this simplifies to, 

Pr(kd|)da, /da, [, ü) =
Çò
†Ü≤ò

ß êáÑò
°Ü(±ò

ß ê≤ò
ß )êá

¢(£,§)
 , 

which is itself a beta distribution. We then randomly sample from this distribution to get 

a value for the starting allele frequency kd for the simulation. 

Once kd is set, we ran a Wright-Fisher simulation [9] of neutral drift over the 

number of generations that elapsed for the duration of the evolution experiment. This 

was 42 generations for EBOV [7] and 6 generations for HIV [4], and will be referred to 

as " for simplicity. Under this framework, the probability of an allele count in the next 

generation ().6J) follows the binomial distribution, 

Pr().6J) = ¶≥(.6J)®4Üá
© k.

®4ÜáÖ.
¥4Üá . 

Thus, to get a random value for ).6J in the simulation we simply randomly sample from 

the above distribution. Once the Wright-Fisher simulation is complete, we again use the 
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binomial distribution to simulate sub-sampling of the population. We do this because the 

true population size at the end of the experiment is quite large, and when we sequence 

this population, we are only observing a subset. The size of this subsample is equal to 

the number of reads that mapped to the allele’s position in the genome (i.e. read depth). 

If /µ is the final population size, let the subsample size be /µa . Similarly, if )µ is the 

count of 0 at the final generation, then )µa  is the count of 0 resulting from subsampling. 

We again use the binomial to model the probability of )µa , 

Pr()µa ) = ¶5∂
ß

®∂
ß © kµ

®∂
ß
Öµ
5∂
ßQ®∂

ß
 , 

and randomly sample from this distribution to simulate a value for )µa . In order to 

simulate random additions to and subtractions from allele 0 that occur due mutations 

from experimental error, we again use a binomial sampling approach. If the identity of 

allele 0 is w then the rate at which w is mutated to anything else is eÄ,∙, and the rate at 

which anything else mutates to w is e∙,Ä. Let the number of units that is added to )µa  due 

to experimental error be represented as X∙,Ä, and the number of units subtracted be XÄ,∙. 

The probability of these two values are again found using the binomial, 

PrRX∙,ÄU = ¶5∂
ßQ®∂

ß

Å∙,∑
© e∙,Ä

Å∙,∑(1 − e∙,Ä)5∂
ßQ®∂

ßQÅ∙,∑; and 

PrRXÄ,∙U = ¶ ®∂
ß

Å∑,∙
© eÄ,∙

Å∑,∙(1 − eÄ,∙)®∂
ßQÅ∑,∙ . 

We randomly sample from these two distributions to get discrete values for X∙,Ä and XÄ,∙. 

Finally, Let the count of allele 0, at generation ", after subsampling, and after 

introducing random experimental error be )µaa. )µaa is then given by, 

)µaa = 	)µa − XÄ,∙ + X∙,Ä . 
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)µaa is the final allele count that we use in the simulation. This process is then repeated 

10,000 times to arrive at a simulated distribution for )µaa. This distribution represents the 

range of ending allele frequencies that one could expect for a neutral allele, if this allele 

had the same starting frequency, read depth, and nucleotide identity as a given 

observed allele in our data. 

Simulations with selection: 

We ran the same simulations of our evolution experiments as described above, 

but included a selection parameter in order to test the accuracy of our selection 

coefficient estimates of observed alleles. The only component of the framework 

described above that changed in this case was the Wright-Fisher simulations. Here, the 

expected frequency of allele 0 with a selection coefficient of K at generation # + 1 is 

given by, 

?[k.6J] =
Ç4(J6É)

Ñ46Ç4(J6É)
 , 

and the probability of ).6J with selection is given by, 

Pr().6J) = ¶≥(.6J)®4Üá
©?[k.6J]	®4Üá(1 − ?[k.6J])¥4Üá . 

Results 

Estimating fitness for each allele in HIV data: 

We used a closed-form solution of the selection coefficient to get a point estimate 

of the fitness for each allele in the HIV data. This equation uses the observed beginning 

and ending allele frequencies to calculate the most probable selection coefficient, and is 

accurate in large populations [3,6] (Fig. 3.3). 
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Figure 3.3. Point estimate of ∏. 
Illustrates the parameters that contribute to the closed form estimation of the selection coefficient 
(equation at the top of the plot). 

We compared our calculation of K to the ratio of the ending over starting allele 

frequencies, which is the basis for many commonly used statistics to gauge fitness [10], 

and found that they track well with one another (Fig. 3.4). 

 
Figure 3.4. Relationship between fold-change in frequency to our fitness estimates. 
Each point is one allele in the HIV dataset. Color indicates negative (blue), neutral (grey), or positive 
(gold) selection, as determined by our simulation-based statistical test. Shape indicates the gene (tat or 
rev). 
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However, we found estimating the selection coefficient to be more interpretable than 

statistics that take the ratio (or log-ratio) of the start and end allele frequencies, as the 

selection coefficient is rooted in a mathematical model of a changing population over 

time. 

Checking the accuracy of fitness estimates in HIV data: 

Because K is rooted in a population genetics framework, We were able to run 

Wright-Fisher simulations [9] with selection (see Methods) to gauge the accuracy of our 

fitness estimates. Specifically, we ran 1,000 simulations with a randomly selected value 

of K, between -2 and 2. For each simulation, we then calculated the empirical K, using 

our closed form equation. We found that the closed-form equation for the selection 

coefficient was very accurate relative to the true value in the simulations (Fig. 3.5).  

 
Figure 3.5. Correlation between the estimated fitness and the true fitness under our simulation 
framework. 
Each point corresponds to one simulation. The red dashed line shows y=x.  
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However, we note that when the ‘true’ selection coefficient is quite low (<-0.5) then 

one’s ability to estimate it using observed data decreases. This is because a moderately 

negatively selected allele will fall to a frequency of 0 just the same as an extremely 

negatively selected allele, if the starting frequency is low. This conceptual limit to one’s 

ability to infer negative selection with low starting frequency is well illustrated by the 

plateauing of points on the left-hand side of Figure 3.5. 

Testing for significantly selected alleles in HIV data: 

There are two factors that can cause an allele to change in frequency over time: 

selection, and neutral drift. Our point estimates of K work under the asymptotic 

assumption that a population size is approaching ¥. When this happens, populations 

begin to behave deterministically, and the effects of drift become negligible. While our 

populations are large, they are not quite large enough to ignore the effects of drift. 

Because of this, we designed a statistical test to identify the alleles whose change in 

frequency cannot be accounted for by drift alone. Which is to say, to identify alleles 

under significant positive or negative selection (Fig. 3.6). 
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Figure 3.6. An illustration of the neutral simulations for a hypothetical allele. 
The allele has a starting frequency of 0.02, an ending read depth of 500 reads, and an amino acid identity 
of Arginine. The grey area depicts the range of trajectories that this allele could take if it were neutral. If 
an ending allele frequency were observed to be above or below this neutral expectation, it would be 
deemed positively or negatively selected, respectively. The black dots indicate the upper and lower 
bounds for the ending allele frequency that would still be considered neutral. These upper and lower 
bounds correspond to relative fitness values of 0.380 and -0.699, respectively, which means neutrality 
cannot be rejected for any observed fitness value that resides between this interval. 

Of the alleles that failed our test for neutrality, those that had positive point estimates for 

K were deemed under positive selection, and those that had negative K estimates were 

deemed under negative selection. We found that generally (and perhaps not 

surprisingly) alleles with large |K| were under significant selection, and alleles with small 

|K| were not. However, we also found some notable exceptions to this, where some 

alleles that had large values of |K| (i.e. large changes in allele frequency over the time-

course) were not under significant selection, and also that alleles with small |K| actually 

were under significant selection (Fig. 3.7). 
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Figure 3.7. Results of simulation-based test for significant selection.  
Shows the relationship between the observed change in allele frequency to the distance from the null 
distribution. The x-axis shows the observed absolute change in allele frequency for a given allele, and the 
y-axis reflects the distance (as squared error) that a given allele’s ending allele frequency is to its null 
distribution. (A) Tat. (B) Rev. 

This suggests that if one were to only use point estimates of fitness, and not take into 

account the effects of neutral drift, then they could encounter a high rate of false 

positives and false negatives. 

Estimating fitness for each allele in EBOV data: 

As was done for the HIV data, we estimated K for each allele in the EBOV 

dataset (Fig. 3.8).  
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Figure 3.8. Selection coefficients for each position in the EBOV genome. 
Shows the maximum estimated K (y-axis) across all alleles at a given site, and across the three trials for 
each position in the EBOV genome (x-axis). There is one circle shown for each position, and the diameter 
of each circle reflects the absolute change in frequency over the time-course. (A) JK. (B) HeLa. 

We found that alleles overall had comparably lower values of K than the HIV dataset, 

which is perhaps not surprising considering the EBOV population began as wildtype, 

and was then left to adapt (if need be) to either a human or snake cellular environment. 

These selection coefficients are on the order of what has been estimated in natural 

human populations, whereas K values in experimental evolution studies are typically 

much higher. 
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Identifying positively selected alleles in EBOV data: 

Despite the low selection regime in the EBOV data. We sought to identify the 

alleles that were under the highest selection in the EBOV populations. To do this we 

again used our simulation-based test to identify the significantly non-neutral alleles, and 

added extra criteria where alleles must be non-synonymous variants that were present 

in all three biological replicates. We found only 5 and 3 alleles that met these criteria in 

the HeLa and JK cell lines, respectively (Fig. 3.9). 

 
Figure 3.9. Most positively selected alleles in EBOV data. 
Shows the frequency trajectories of the positively selected alleles that met our criteria. Each color 
corresponds to an allele, and the number followed by a letter in the legends gives the nucleotide position 
in the reference genome, followed by the nucleotide identity of each allele, respectively. (A) JK. (B) HeLa. 

Discussion 

In this study we have presented a fitness statistic, K, that may provide some 

benefit over more commonly used statistics in experimental evolution studies. These 

benefits include: incorporating time (or number of generations in the study) to provide 

comparability across studies, and providing one with the ability to simulate populations 

in-silico to check the accuracy of fitness estimates. The drawback of this approach is 

that one needs to know the generation time of the populations in a study. However, as 

we have demonstrated in our two applications of this approach, generation time of 

A BJK HeLa
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organisms that are typically used in experimental evolution studies is generally known 

[4,7].  

As Jewett et al. have shown [3], deterministic estimates of K are accurate in large 

populations, however, when populations become sufficiently small, these estimates can 

become unstable. Because experimental evolution studies will often involve very small 

founder populations (as in our HIV data, Fig. 3.2), or complicated population size 

histories due to serial passaging (as in our EBOV data, Fig. 3.1), we found it unwise to 

disregard the possible effects of neutral drift. In addition to this, every study will have 

varying amounts of uncertainty introduced from experimental error (i.e. mutations, and 

sequencing error), and random subsampling of the population when sequencing. Thus, 

we developed a statistical framework that will take into account these sources of 

uncertainty when determining whether or not a given allele is under significant selection. 

Many methods have been developed to estimate K given time-series data [11–13], 

however these methods typically rely on a diffusion approximation of a Wright-Fisher 

process [14]. The diffusion approximation involves (among other things) a rescaling of 

the time dimension to become continuous. This is inappropriate in studies that span 

relatively few generations, such as our HIV and EBOV datasets. Thus we used a 

discrete-time Wright-Fisher process in our simulations, which allowed us to estimate the 

exact probability distribution of the ending allele frequencies of a neutral allele.  

An important caveat to our Wright-Fisher simulation-based approach is that it 

does not capture the dynamics of clonal interference, where different alleles do not act 

in isolation, but instead compete with one another to reach fixation (frequency of one) in 

the population [15]. One approach to ameliorate this would to be to simulate all alleles 
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together and jointly infer their selection coefficients. While this would be more 

computationally expensive (because a range of K values would need to be considered), 

it could potentially incorporate clonal interference into a simulation framework.  

We were able to see that alleles that were deemed neutral by our test were 

actually capable of exhibiting large changes in allele frequency over the time-course 

(Fig. 3.10). This exemplifies the importance of using a statistical approach when 

assigning selection to alleles in experimental evolution studies. For example, in the HIV 

dataset, an allele in the rev gene that had one of the highest selection coefficients in the 

data was also deemed to be neutral by our test (Fig. 3.7B).  

 
Figure 3.10. Distribution of fold change values in HIV data. 
Shows the observed distribution of fold change values for alleles found to be under negative (blue), 
neutral (grey), or positive (gold) selection, as determined by our simulation-based test. Neutral alleles 
were sometimes found to have relatively extreme changes in frequency (left and right tails of grey 
distribution). Likewise, alleles under significant positive or negative selection were sometimes found to 
have relatively small changes in frequency (right tail of blue distribution, and left tail of gold distribution). 
Any values that appear above or below 0 in the blue or gold distributions, respectively, are due to the 
density smoothing function and were not seen in our data. 

Together, we have put together a statistical framework for answering questions 

about selection in allele frequency data from experimental evolution studies. We hope 

that this will help future investigators who wish to identify sets of alleles in their data that 
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are important (i.e. under selection). While implementing a simulation-based statistical 

test can be burdensome, we have shown that it can help identify type I and type II error.  
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Chapter 4: The genetic interaction between HIV and the 

antibody repertoire 
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Introduction 

Since the beginning of the modern pandemic in 1981 [1,2], human 

immunodeficiency virus (HIV)—the virus that causes acquired immunodeficiency 

syndrome (AIDS)—has been the source of incredible scientific scrutiny. While there has 

been great progress in the development of antiretroviral therapeutics (ARTs), which can 

now manage the disease indefinitely (albeit only for those who can afford them), a cure 

remains elusive [3], and little progress has been made toward a preventative vaccine 

[4]. Prevention efforts have recently made significant headway by implementing 

preexposure prophylaxis (PrEP) to high risk individuals. However, this strategy has its 

downsides, such as a reliance on daily self-administration, significant financial burden, 

and health side effects [5]. Thus, cure and vaccine strategies remain the elusive goal for 

HIV research. Together, the distinct gains in AIDS treatment, yet relative lack of gains in 

HIV prevention, has resulted in a stalemate of sorts, where instead of HIV being 

triumphantly eradicated by modern science, it has settled into a persistent, yet treatable 

reality of human life.  

The fervent hope for progress is particularly palpable in HIV vaccine research. 

This fervor is mainly fueled by the fact that effective HIV immunity is entirely possible 

and well documented, as it occurs naturally in 10-20% of those chronically infected [6–

8]. If a vaccine (or vaccine regimen) were to be designed that could somehow 

recapitulate whatever happens during the humoral immune response of these 10-20% 

(almost) immune individuals, then triumph could be within reach! While a good deal of 

progress has been made in this avenue of research, it has not yet resulted in an 

effective vaccine. Among the promising discoveries are broadly neutralizing antibodies 
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(bnAbs), which are monoclonal antibodies (Abs) that can single-handedly neutralize up 

to 90% of heterologous HIV strains [9,10]. To study the development of these bnAbs, 

researchers have utilized a post-hoc deep-sequencing approach by which a set of 

primers are developed that will preferentially amplify a subset of the antibody repertoire 

(AbR)—the population of antibodies in an organism—that is known to contain a bnAb 

lineage [10–12]. The advantage of this approach is that one can cut through the 

incredible noise and complexity of the AbR to focus on a particular lineage of 

importance. At the same time, such approaches miss the diversity of Ab lineages 

interacting with HIV that may have important effects on immunity outcomes. To our 

knowledge, only [13] have deeply sequenced the AbR in an unbiased fashion in the 

context of HIV infection, but they did not collect paired HIV sequence data to directly 

study genetic interactions. 

The common narrative of bnAb development is that they are in a coevolutionary 

arms race [14] with the autologous HIV population [15,16]. There is good reason to 

suspect that this coevolutionary hypothesis is true: bnAbs tend to be quite derived 

relative to their inferred naïve ancestors [11], they tend to take a long time to develop 

(years), and there tends to be a time dependence on neutralization capabilities (i.e. HIV-

neutralizing Abs are more likely to neutralize autologous virus from the past, and less 

likely to neutralize contemporaneous or future autologous virus) [12,17]. However, there 

is also evidence contrary to the arms race hypothesis: bnAbs can arise relatively 

quickly, and with few mutations [18–21], and superinfections—multiple HIV infections in 

the same individual—don’t necessarily drive further evolution in existing HIV-

neutralizing Ab lineages, but rather promote the development of de novo HIV-targeting 
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Ab lineages [22,23]. Similarly, in the context of malaria infection, repeated 

immunizations with a complex malaria antigen tends to promote the activation of de 

novo naïve Ab lineages, rather than the evolution of already existing malaria-targeting 

Abs [24]. 

A better understanding of the interaction taking place between HIV and the AbR 

over time could potentially shed a good deal of light on how HIV-immunity is achieved. 

However, longitudinal sequence studies of HIV infections tend to either focus on HIV 

[25–29] or the AbR [13,30,31], but not both. To our knowledge, only three studies have 

deeply sequenced the AbR along with the autologous HIV population, but each of these 

studies consisted of a single individual with relatively few time-points [11,12,32]. In this 

study, we hope to ameliorate this dearth of data, and to also shed light on the genetic 

interaction between these putatively coevolving populations. 

Results 

Sequencing HIV env and IGH 

We collected a total of 119 cryopreserved peripheral blood samples from the 

OPTIONS cohort at the University of California, San Francisco (UCSF). The samples all 

originated from men aged 25-48 years old at the estimated time of infection in San 

Francisco, and each patient had 10-20 longitudinal samples (Table 4.1, and Figure 4.1). 

Table 4.1. Patient demographics. 
MSM – men having sex with men. * at estimated time of infection 

 

ID Age* Date* Gender Ethnicity Exposure Num. Samples
1 30 6/7/98 Male White/European American MSM 20
2 25 2/17/99 Male Asian MSM 17
3 32 7/4/01 Male Hispanic/Latino MSM 10
4 44 8/8/01 Male White/European American MSM 10
5 34 7/20/03 Male Hispanic/Latino Unknown 11
6 25 1/18/05 Male White/European American MSM 10
7 35 6/6/05 Male White/European American MSM 10
8 48 9/3/08 Male White/European American MSM 10
9 33 2/2/09 Male Asian MSM 10
10 31 4/3/09 Male White/European American MSM 10
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Figure 4.1. Schematic of study. 
There were 10 patients in our study. Peripheral blood was drawn from each patient, post HIV infection, for 
10-20 longitudinal time-points. Each blood sample was divided into PBMCs and plasma. Ab sequences 
were derived from the PBMCs and HIV sequences were derived from plasma. Note that patient avatars in 
no way reflect actual patients and instead reflect one lonely scientist. 
*Only patients 1, 2, and 5 had the final time-point with ART exposure. 

They were also all collected prior to administration of ART, with the exception of the last 

time-point of patients 1, 2, and 5. We chose to deeply sequence the C2-V3 region of the 

env gene because of its rich history of interactions with Abs, as evidenced by the HIV 

epitope map from Los Alamos National Labs (LANL) [33–35]. Of the ART naive 

samples, we were unable to successfully amplify C2-V3 from 12. In 11 of these cases,  
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low viral load was the presumed cause for lack of amplification, but the 9th time-point of 

patient 6 was unsuccessful despite high viral load (Figure 4.2, 4.3). Interestingly, 8 of 

 
Figure 4.2. Sampled time-points. 
Depicts the time since infection for each sample, in each of the patients. Open circles indicate that the 
AbR was successfully sequenced, crosses indicate that HIV was successfully sequenced, and solid 
circles indicate that the patient was on ART at this time. 

 
Figure 4.3. HIV amplification success and viral load. 
Depicts the relationship between HIV viral load and our ability to amplify HIV env prior to sequencing. All 
samples in which env could not be amplified had low to exceptionally low viral load, with the exception of 
one sample from patient 6. 

the 11 unsuccessfully amplified and low viral load samples were the first eight time-

points of patient 10. We were also unable to amplify C2-V3 from any of the ART-
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exposed samples. While viral load measurements were not available for these samples, 

the presumed cause for our inability to amplify C2-V3 was again low viral load, given 

their ART status. The initial env sequencing depth ranged from 3,771-101,831 reads per 

sample, and after cleaning the data with several quality control (QC) steps, this ranged 

from 2,276-56,914 reads per sample (Figure 4.4). 

 
Figure 4.4. Read depth and QC filtering for HIV data. 
Stacked bar charts depicting the total read depth and proportion of reads that were filtered after each QC 
step. The height of each bar shows initial read depth (directly after sequencing) for each HIV sample. The 
relative lengths of each color within a bar show how many reads were filtered out from a given QC step. 
The legend maps color to QC step, and QC steps are shown (from top to bottom) in the order that they 
were performed: “assemble” = could not assemble read pairs; “length” = too short; “Qscore” = mean Q 
score too low; “f. primer” = could not align forward primer; “r. primer” = could not align reverse primer; 
“twice” = sequence did not occur at least twice; “ref” = did not align to an HIV reference sequence; 
“contaminate” = sequence was found in other studies; “final” = the final sequences that passed all QC. 
Numeric titles for each panel give the patient ID. Insets in patients 2 and 6 show the full breadth of the y-
axes, depicting the data from two samples that did not successfully amplify env, but were included as a 
negative control. They did not pass QC. 

We also deeply sequenced the variable region of the immunoglobulin heavy 

chain locus (IGH), the product of which we refer to as the antibody repertoire (AbR). 

The AbR was successfully sequenced in all samples, with the exception of the fourth 
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time-point of patient 3. Sequence data was generated for this sample, but it exhibited an 

abrupt clonal expansion of a magnitude that was a clear outlier for patient 3, and not 

seen in any other sample, so was discarded (Figure 4.5, and 4.2). Initial AbR  

 
Figure 4.5. Anomalous time-point in patient 3. 
(A) Stacked area chart shows the unrealistic clonal expansion occurring at the 4th time-point of patient 3. 
Each unique color represents a unique AbR partition, and the width of a given color represents the 
relative frequency of that AbR partition at that time-point. (B) A line plot showing the corresponding 
dramatic drop in AbR diversity due to this anomaly. 

sequencing depth ranged from 669,331-2,669,662 reads per sample, and after QC this 

ranged from 160,291-552,479 reads per sample (Figure 4.6). 

Characterizing the HIV population and AbR over time 

In order to quantify the broad attributes of the AbR and HIV populations over 

time, we calculated a variety of summary statistics that characterized the genetic 

diversity, divergence, selection, and abundance for each of the populations. As others 
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have reported [29,36], we found that diversity, divergence, and selection all tend to 

increase with time since estimated date of HIV infection, with large perturbations over  

 
Figure 4.6. Read depth and QC filtering for AbR data. 
Stacked bar charts depicting the total read depth and proportion of reads that were filtered after each QC 
step. The height of each bar shows initial read depth (directly after sequencing) for each AbR sample. 
The relative lengths of each color within a bar show how many reads were filtered out from a given QC 
step. The legend maps a color to a QC step, and QC steps are shown (from top to bottom) in the order 
that they were performed: “assemble” = could not assemble read pairs; “length” = too short; “Qscore” = 
mean Q score too low; “twice” = sequence did not occur at least twice; “final” = the final sequences that 
passed all QC. Numeric titles for each panel give the patient ID. 

smaller time-scales (Figures 4.7, 4.8, and 4.9). Of note, the high viral load of the first 

time-point of patient 7 suggests that the acute viremia phase of early HIV infection was 

captured, and, as noted previously, patient 10 had very low viral load for the first 8 time-

points, which explains why amplification of HIV env was unsuccessful for these 

samples. Patient 6 exhibited strong evidence for a super-infection occurring between 

the 1st and 2nd time-points (Figure 4.10). Super infections are not uncommon with HIV 

[37], however they will cause a sudden injection of ‘artificial’ genetic divergence relative 
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to the initial infecting virus. Thus, we accounted for this superinfection when calculating 

divergence summary statistics for patient 6 (see Methods). 

 

Figure 4.7. HIV summary statistic trajectories foreach patient. 
Each line shows the trajectory of a given summary statistic, in a given patient over time. Each patient has 
a unique color. (A) Diversity. (B) nonsynonymous divergence. (C) synonymous divergence. (D) Selection. 
(E) Viral load. 
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Figure 4.8. Distributions of HIV divergence values. 
Each violin plot gives the distribution of HIV divergence values for a given time-point, where black points 
show the mean of the distribution. Plots on the left side of a panel show non-synonymous divergence, 
and plots on the right show synonymous divergence. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 
4. (E) Patient 5. (F) Patient 6. (G) Patient 7. (H) Patient 8. (I) Patient 9. (J) Patient 10. 
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Figure 4.9. Distributions of HIV selection values. 
Each violin plot gives the distribution of HIV selection values at a given time-point, where black points 
show the mean of the distribution. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) Patient 5. 
(F) Patient 6. (G) Patient 7. (H) Patient 8. (I) Patient 9. (J) Patient 10. 
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Figure 4.10. Super infection in patient 6. 
Each violin plot gives the distribution of HIV divergence values for a given time-point for patient 6, where 
black points show the mean of the distributions. Divergence was calculated here in the same way as 
other patients in order to illustrate super-infection. (A) Non-synonymous divergence. (B) Synonymous 
divergence. The large increases in both synonymous and non-synonymous divergence between the 1st 
and 2nd time-points are indicative of a super-infection. 

The trajectories of the AbR summary statistics did not show any obvious 

stereotyped pattern across patients (Figures 4.11, 4.12, and 4.13). However, there were 

a couple data points that suggested interactions with the HIV population: the second 

time-point of patient 7 (0.41 years post infection) showed a large increase in selection 

(in both the framework regions, FWR, and complementarity determining regions, CDR), 

which could be a response to the initial viremia in the prior time-point; and the ninth 

time-point of patient 10 (3.37 years post infection) also showed a large increase in 

selection with a concomitant drop in diversity, which could have been a response to the 

large increase in viral load at that time-point. 
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Figure 4.11. AbR summary statistic trajectories foreach patient. 
Each line shows the trajectory of a given summary statistic, in a given patient over time. Each patient has 
a unique color. (A) Diversity. (B) Divergence. (C) Selection in the FWR. (D) Selection in the CDR. 
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Figure 4.12. Distributions of antibody divergence values. 
Each violin plot gives the distribution of antibody divergence values for a given time-point, where black 
points show the mean of the distribution. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) 
Patient 5. (F) Patient 6. (G) Patient 7. (H) Patient 8. (I) Patient 9. (J) Patient 10. 
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Figure 4.13. Distributions of AbR selection values. 
Each violin plot gives the distribution of AbR selection values at a given time-point, where black points 
show the mean of the distribution. Plots on the left side of a panel show selection in the CDR, and plots 
on the right show selection in the FWR. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) 
Patient 5. (F) Patient 6. (G) Patient 7. (H) Patient 8. (I) Patient 9. (J) Patient 10. 

Testing for whole-population level interactions 

In order to understand how much of an effect HIV generally has on the AbRs of 

patients, we first pooled all the data across patients and used a regression framework to 

test if any of the AbR summary statistics were significantly correlated with that of the 

HIV population (while controlling for patient-specific effects, see Methods). We 

performed this test in a pairwise fashion on all AbR summary statistics against all HIV 

summary statistics. Similar to Hoehn’s work [13], we found no significant correlation 

between AbR diversity and viral load, yet we did find a small correlation between AbR 

and HIV diversity (p= 0.02, Figure 4.14 A). While this association was small and 

marginally significant—indeed, it ceases to be significant after controlling for multiple 
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tests—we found any association at the whole-population level surprising, and thus, 

worth reporting.  

 
Figure 4.14. Whole population level associations between AbR and HIV summary statistics. 
(A) Scatter plot showing positive correlation between HIV diversity (x-axis) and AbR diversity (y-axis). 
Each point represents a sample with diversity values from both the AbR and HIV sequence data. The 
axes show diversity values after patient specific effects have been regressed out. Dashed line shows 
positive relationship between AbR and HIV diversity, as given by our linear regression (see Methods). (B-
E) Shows associations between summary statistic trajectories in AbR (blue) and HIV (red) at the 
individual patient level. (B) HIV selection with AbR Divergence, in patient 2. (C) Viral load with AbR FWR-
selection, in patient 2. (D) Viral load with AbR FWR-selection, in patient 7. (E) HIV diversity with AbR 
divergence, in patient 7. 
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It is possible that some patients’ AbRs interact with their autologous HIV 

population more than others, thus we also tested for interactions between summary 

statistics on a patient-by-patient approach. Because the number of data-points per 

patient is relatively low, we opted to use a permutation based test in order to accurately 

estimate type 1 error [38] (see Methods). In patient 2, We found that selection and viral 

load in the HIV population were associated with divergence and selection (FWR) in the 

AbR, respectively (p=0.009 and p=0.0425, Figure 4.14 B, and C). We also found that in 

patient 7, viral load and diversity in the HIV population were associated with selection 

(FWR) and divergence in the AbR, respectively (p=0.040 and p=0.040, Figure 4.14 D, 

and E). We note that all of these associations were positive correlations, with the 

exception of HIV selection and AbR divergence in patient 2, which was anticorrelated. 

Together, these data suggest that a large proportion of the AbR may be 

responding to the HIV infection, and that this response can be detected in AbR 

sequence data. 

Identifying partitions of the AbR that interact with HIV 

The AbR is an exceedingly complex population consisting of a myriad of Ab 

lineages capable of simultaneously binding and neutralizing a countless number of 

antigenic targets. In order to reduce this complexity, and to identify specific parts of the 

AbR that may be interacting with HIV, we first partitioned the AbR across time based on 

the germline identity of each sequence’s V and J gene segments (Figure 4.15), and 

then tested each AbR partition for evidence of interactions with the autologous HIV 

population using similar summary statistics as the overall population (see Methods). 

Using an analogous permutation-based test as was used when comparing the overall  
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Figure 4.15. AbR partition frequencies over time. 
Stacked area charts of AbR partition frequencies over time. Each unique color represents a unique AbR 
partition, and the width of a given color represents the relative frequency of that AbR partition at that time-
point. Only the top 50 AbR partitions are shown, when sorted by the sum of frequencies across all time-
points. (A) Patient 1. (B) Patient 2. (C) Patient 3. (D) Patient 4. (E) Patient 5. (F) Patient 6. (G) Patient 7. 
(H) Patient 8. (I) Patient 9. (J) Patient 10. 

populations, we found significant associations between AbR-partition trajectories and 

HIV trajectories in patients 3, 7, and 8 (Figures 4.16, 4.17, and 4.18). Of these 

associations, AbR-partition frequency tended to be associated with viral load. For 

example, patient 7 had a distinct viral load trajectory—presumably due to acute 

viremia—and the frequency trajectory of IGHV4-31:IGHJ5 AbR partition was positively 

associated with the unique shape of this trajectory (while the diversity of this AbR 
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partition was negatively associated with viral load). This suggests a clonal expansion 

occurred in this AbR-partition in response to HIV, which caused an increase in the 

partition’s frequency with a concomitant drop in diversity. Similarly, the frequency 

trajectory of two AbR partitions with the same V gene segment (IGHV6-1:IGHJ5 and 

IGHV6-1:IGHJ4) were positively associated with viral load in patient 8, suggesting that 

the IGHV6-1 gene segment in this patient may have had a predisposition to targeting 

HIV. In patient 3, the frequency trajectory of the IGHV3-30:IGHJ3 partition was 

negatively associated with both non-synonymous divergence and selection in the HIV 

population, suggesting that escape mutations in HIV have caused a drop in frequency of 

the interacting AbR partition. 

 
Figure 4.16. Results of permutation-based test to identify HIV-associated AbR partitions in patient 
3. 
(A) A barplot showing the combined score from the permutation-based test (left axis), and the number of 
significant associations (right axis) for the top 10 AbR partitions. AbR partitions were sorted first by the 
number of significant associations, then by their combined score from the permutation-based test 
(ascending, left-right). (B) Heatmaps depicting the significance (-log10(p-value)) foreach test run within 
each of the top 10 AbR partitions. Columns correspond to summary statistics of the AbR partitions: 
Div=divergence, Pi=diversity, Freq=relative frequency, Sel.C=CDR selection, and Sel.F=FWR selection. 
Rows correspond to summary statistics of the HIV population: HIV pi=diversity, HIV dN=nonsynonymous 
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divergence, HIV dS=synonymous divergence, HIV dN/dS=selection, and viral load is self-explanatory. 
The color of each element in the heatmaps shows the significance of the association between a given 
AbR partition summary statistic trajectory with a given HIV population summary statistic trajectory. (C, D) 
Shows the AbR partition (blue) and HIV population (red) trajectories that were significantly associated. (C) 
Frequency trajectory of the IGHV3-30:IGHJ3 AbR partition with the divergence trajectory of the HIV 
population. (D) Frequency trajectory of the IGHV3-30:IGHJ3 AbR partition with the selection trajectory of 
the HIV population. 

 
Figure 4.17. Results of permutation-based test to identify HIV-associated AbR partitions in patient 
7. 
(A) A barplot showing the combined score from the permutation-based test (left axis), and the number of 
significant associations (right axis) for the top 10 AbR partitions. AbR partitions were sorted first by the 
number of significant associations, then by their combined score from the permutation-based test 
(ascending, left-right). (B) Heatmaps depicting the significance (-log10(p-value)) foreach test run within 
each of the top 10 AbR partitions. Columns correspond to summary statistics of the AbR partitions: 
Div=divergence, Pi=diversity, Freq=relative frequency, Sel.C=CDR selection, and Sel.F=FWR selection. 
Rows correspond to summary statistics of the HIV population: HIV pi=diversity, HIV dN=nonsynonymous 
divergence, HIV dS=synonymous divergence, HIV dN/dS=selection, and viral load is self-explanatory. 
The color of each element in the heatmaps shows the significance of the association between a given 
AbR partition summary statistic trajectory with a given HIV population summary statistic trajectory. (C-F) 
Shows the AbR partition (blue) and HIV population (red) trajectories that were significantly associated. (C) 
Diversity trajectory of the IGHV4-31:IGHJ5 AbR partition with the viral load trajectory of the HIV 
population. (D) Frequency trajectory of the IGHV2-70:IGHJ6 AbR partition with the viral load trajectory of 
the HIV population. (E) Frequency trajectory of the IGHV3-15:IGHJ4 AbR partition with the viral load 
trajectory of the HIV population. (F) Frequency trajectory of the IGHV4-31:IGHJ5 AbR partition with the 
viral load trajectory of the HIV population. 
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Figure 4.18. Results of permutation-based test to identify HIV-associated AbR partitions in patient 
8. 
(A) A barplot showing the combined score from the permutation-based test (left axis), and the number of 
significant associations (right axis) for the top 10 AbR partitions. AbR partitions were sorted first by the 
number of significant associations, then by their combined score from the permutation-based test 
(ascending, left-right). (B) Heatmaps depicting the significance (-log10(p-value)) foreach permutation test 
within each of the top 10 AbR partitions. Columns correspond to summary statistics of the AbR partitions: 
Div=divergence, Pi=diversity, Freq=relative frequency, Sel.C=CDR selection, and Sel.F=FWR selection. 
Rows correspond to summary statistics of the HIV population: HIV pi=diversity, HIV dN=nonsynonymous 
divergence, HIV dS=synonymous divergence, HIV dN/dS=selection, and viral load is self-explanatory. 
The color of each element in the heatmaps shows the significance of the association between a given 
AbR partition summary statistic trajectory with a given HIV population summary statistic trajectory. (C, D) 
Shows the AbR partition (blue) and HIV population (red) trajectories that were significantly associated. (C) 
Frequency trajectory of the IGHV6-1:IGHJ5 AbR partition with the viral load trajectory of the HIV 
population. (D) Frequency trajectory of the IGHV6-1:IGHJ4 AbR partition with the viral load trajectory of 
the HIV population. 

Validating the HIV-associated AbR partitions 

In order to establish that our permutation-based test is in fact identifying AbR 

partitions that had a biological response to the HIV infection and was not the result of 

random noise in the data, we sought to compare our results to previous findings in the 

literature. We first used Fisher’s method to compile all the results of our permutation-

based test into a single score for each V gene segment (see Methods), and then used 
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binding V gene segments in the literature, to how well these V gene segments score in 

our test (Table 4.2). We found that V gene segments that had been shown to bind HIV 

Table 4.2. Literature datasets. 

  

Gene Name V Gene Score HIV Literature Dataset Count Flu Literature Dataset Count
IGHV4-59 5.692163182 5 71
IGHV1-18 5.135748975 1 14
IGHV3-23 4.069059968 0 48
IGHV3-30-3 3.996480894 0 0
IGHV4-39 3.931435639 7 37
IGHV3-30 3.826571542 14 18
IGHV4-61 3.825996333 0 1
IGHV1-46 3.708051547 0 0
IGHV1-8 3.705576595 18 0
IGHV3-21 3.301116439 1 40
IGHV3-11 3.233458041 0 2
IGHV3-33 3.020795329 1 3
IGHV3-66 2.99037641 0 0
IGHV3-74 2.801852721 0 0
IGHV3-7 2.769498585 0 19
IGHV4-34 2.036779778 3 7
IGHV1-2 2.029337852 18 7
IGHV1-3 2.018780447 1 0
IGHV6-1 1.922879261 0 0
IGHV1-69 1.809503004 2 108
IGHV2-5 1.723749802 1 8
IGHV4-4 1.672966404 0 10
IGHV3-15 1.532535707 1 2
IGHV3-9 1.532147253 0 5
IGHV3-53 1.446589506 0 1
IGHV1-24 1.298021556 0 0
IGHV7-4-1 1.217541317 0 2
IGHV5-51 1.212203964 0 7
IGHV3-48 1.206518076 0 9
IGHV4-30-2 1.189591763 0 0
IGHV3-13 1.123988038 0 6
IGHV3-64 0.851467542 0 1
IGHV4-30-4 0.790029158 0 3
IGHV4-31 0.708777704 0 2
IGHV3-72 0.298207811 0 0
IGHV2-70D 0.220188607 0 0
IGHV3-43 0.209900779 0 0
IGHV2-70 0.115635873 0 1
IGHV4-38-2 0.103112693 0 0
Total NA 73 432
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Figure 4.19. Literature validation of HIV-associated AbR partitions. 
(A, B) Shows the overall score from our permutation-based test for each V gene segment when 
partitioned as being represented in a literature dataset (points to the left), vs. not represented in a 
literature dataset (points to the right). (A) Pertains to the HIV literature dataset, where ‘representation’ is 
defined as the V gene segment occurring at least once. (B) Pertains to the influenza literature dataset, 
where ‘representation’ is defined as the V gene segment occurring at least 10 times. (C, D) Scatter plots 
showing the relationship between the overall score from our permutation-based test for each V gene 
segment (y-axis) and the count of a given V gene segment in a literature dataset (x-axis). (C) HIV 
literature dataset. (D) Influenza literature dataset. 

in the literature dataset, tended to score higher in our permutation-based test (p=1.52e-

3, Mann-Whitney U test, Figure 4.19 A, and C). This suggests that our test is indeed 

identifying a biological response to HIV. It also suggests that some V gene segments 

may have a predisposition to bind HIV. However, a simpler—and perhaps less 

exciting—explanation is that these V gene segments have a predisposition to bind 

anything (either due to high endogenous expression, being ‘sticky’, or something else). 

In order to differentiate between these two possibilities we performed a similar test 

except instead of comparing our results to Abs known to target HIV, we compared our 

results to a literature dataset that we previously compiled of Abs that have been shown 

to bind to influenza [40] (Table 4.2). Similar to the HIV literature dataset, we found that 
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V genes that were well represented in the influenza literature dataset also tended to 

score highly in our permutation-based test (p=7.28e-4, Mann-Whitney U test, Figure 

4.19 B, and D). This suggests that, while we are likely identifying a biological response 

to HIV, the response may not be specific to HIV.  

Testing for coevolution 

Coevolution between HIV and a handful of well-known bnAbs antibodies has 

been extensively reported [12,15] and reviewed [41]. Coevolution provides an 

intellectually compelling explanation for the development of bnAbs against HIV, 

however, examples tend to be anecdotal and qualitative (likely due to small sample 

sizes). While we cannot be sure that bnAbs exist in our data, we sought to test if 

coevolution is a predominant driver of HIV-targeting Ab development generally. We 

tested for genetic signals of coevolution in our data by first dividing the AbR data of 

each patient into time-course lineages of Abs (Figure 4.20, and 4.21). We then use 

MAFFT to create a multiple sequence alignment (MSA) of each Ab lineage, and 

compare each of these Ab lineage MSAs with a representative MSA of the HIV 

population overtime using a mutual information (MI) statistic. Importantly, we reduce the 

complexity of the amino acid code to a code of ‘change’ or ‘no-change’ prior to 

calculating MI (see Methods) [42–45].  
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Figure 4.20. Muller plots of Ab lineages. 
Depicts the relative frequency of each lineage within a given HIV-associated AbR partition. Each unique 
color represents a unique lineage. If a new lineage arises within the bounds of a preexisting lineage, then 
the new lineage is a daughter of the preexisting, parent lineage. Lineages that began earlier in the time-
course have colors closer to the red side of the spectrum, while lineages that began later in the time-
course have colors closer to violet. Only lineages that exceeded 0.0001 frequency in the larger AbR for at 
least one time-point are included in the plot. (A) AbR partition IGHV3-30:IGHJ3 in patient 3. (B) AbR 
partition IGHV2-70:IGHJ6 in patient 7. (C) AbR partition IGHV3-15:IGHJ4 in patient 7. (D) AbR partition 
IGHV4-31:IGHJ5 in patient 7. (E) AbR partition IGHV6-1:IGHJ4 in patient 8. (F) AbR partition IGHV6-
1:IGHJ5 in patient 8. 
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Figure 4.21. Network plots of AbR lineages. 
Depicts the structure of each Ab lineage within a given HIV-associated AbR partition. Each node 
represents a unique sequence, and the size of a given node reflects the frequency of that sequence 
(within the AbR partition), at a given time-point. The fill color of a node reflects time-point, and if a node 
has a thicker black border then it was assigned to be a representative sequence of a sequence-cluster 
(borders are otherwise thinner and gray). Nodes of the same color (i.e. sequences in the same time-point) 
are linked with an edge if they were in the same cluster. Nodes that have different colors are linked with 
an edge if they were assigned to the same lineage. This inter-time-point linking only occurs between 
representative sequences. Taken together, each isolated grouping of nodes shows a family of related 
lineages. (A) AbR partition IGHV3-30:IGHJ3 in patient 3. (B) AbR partition IGHV4-31:IGHJ5 in patient 7. 
(C) AbR partition IGHV6-1:IGHJ5 in patient 8. 

If coevolution is a common characteristic of HIV-targeting Ab lineages, then we 

might expect that the HIV-associated AbR partitions that we previously identified will 

have abnormally high MI values. Thus, we compared the mean MI values of the 

lineages within the all of the HIV-associated AbR partitions (IGHV3-30:IGHJ3 of patient 

3, IGHV2-70:IGHJ6 of patient 7, IGHV3-15:IGHJ4 of patient 7, IGHV4-31:IGHJ5 of 

patient 7, IGHV6-1:IGHJ4 of patient 8, IGHV6-1:IGHJ5 of patient 8) to the distribution of 

mean MI values from the rest of the lineages (Figure 4.22 A). In addition to mean MI, we 

also compared the length of lineages (i.e. the number of time-points for which a lineage 

is present in the data), because coevolving lineages might be expected to persist in the 

AbR longer than non-coevolving lineages. We found no evidence of coevolution in the 

HIV-associated AbR partitions, with the exception of a single lineage in IGHV6-1:IGHJ5 

of patient 8, which had a mean MI value that was in the 99.55th percentile relative to all 

the Ab lineages in non-HIV-associated AbR partitions. We found that this result 

persisted when comparing to a simulated null distribution that controls for uncertainty 

when assigning lineages across time-points (Figure 4.22 B). 
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Figure 4.22. Coevolution test for individual lineages. 
Each black dot corresponds to a value for a specific lineage within an HIV-associated AbR partition, and 
are jittered across the x-axis. The identifying information for the specific HIV-associated partition is given 
by the column labels for the plots (ex. The values for the lineages within the IGHV3-30:IGHJ3 AbR 
partition of patient 3 are found in the left-most column). The colored violin plots behind the points 
represent a given null-comparison for the points, where color corresponds to patient. The top row of plots 
shows the values and null distributions for the length of lineages (i.e. how many time-points they were 
present). The bottom row shows the values and null distributions for the mean MI of lineages. (A) The null 
distributions are made up of the values from the lineages in AbR partitions that were not HIV-associated. 
(B) The null distributions are made up of the values from the null simulation for each given AbR partition. 

Lastly, we test for a global coevolutionary signal, agnostic to whether or not a 

lineage belongs to an HIV-associated partition. To do this we gather the mean MI 

values across all of the observed lineages within a patient, and then compare this 

distribution to that of the mean MI values from the simulated null lineages (Figure 4.23). 

If Ab/HIV coevolution were taking place on a large scale, we would expect to see a shift 

towards higher MI values in the observed distribution relative to the simulated null. 

However, we see no evidence of this, and instead see that, if anything, the simulated 

null lineages tend to have higher MI values. This suggests that, if coevolution is taking 

place at all, it is either a weak force or exceedingly rare in these patients. Alternatively, 
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we cannot rule out the possibility that our test was underpowered and as a result was 

unable to detect a coevolutionary signal in our genetic data.  

 
Figure 4.23. Gloabal tests for coevolution. 
Each line gives the distribution of mean MI values for a given patient. Salmon colored lines correspond to 
observed lineages (i.e. lineages inferred from the data), and turquoise colored lines correspond to 
lineages from the null simulations. Patient 10 is omitted because of limited HIV sequence data. 

Discussion 

In this study we have created a relatively large dataset of Ab sequences and HIV 

sequences from 119 longitudinal samples. While more samples would clearly be 

preferable, this is, to our knowledge, the largest dataset of its kind. The HIV literature 

currently encompasses an abundance of AbR sequence datasets from HIV+ individuals, 

however, these datasets primarily originate from the amplification of a particular Ab 

lineage that was known to contain an HIV-bnAb, prior to deep sequencing. These 

‘biased’ AbR datasets are quite useful to home in on the development of a particularly 

interesting Ab lineage. However, we argue that it is equally important to understand the 

humoral immune response to HIV infection on a global/systems scale for the following 
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reasons: i) It is just as important to understand why an HIV-targeting Ab lineage failed to 

develop broad neutralization ability, as it is to understand why a lineage succeeded in 

developing it. ii) It is quite possible that a significant proportion of humans that develop 

broad immunity to future HIV infections, do so in a polyclonal manner [23]. Meaning that 

broad neutralization depth against HIV is achieved via the cooperative action of many 

Ab lineages, each simultaneously targeting different epitopes, or different versions of 

the same epitope. iii) The population dynamics of HIV-bnAbs (in addition to HIV-binding 

Abs in general) are poorly understood. For example, do these Abs persist at high or low 

frequency in the greater population? How does this frequency change over time? What 

type of selection drives their development (ex: positive, negative, balancing, etc.)? 

These types of questions are difficult, if not impossible to answer without understanding 

the larger population context for which these Ab lineages exist. In this study, we have 

taken the preliminary steps towards addressing these types of questions. Specifically, 

we have developed a statistical approach to identify the partitions of the AbR that are 

likely responding to HIV. Once this has been established, questions like those 

enumerated above, can be answered. Further, we hope that the sequence datasets we 

have created here will provide a useful resource for others with similar lines of inquiry.  

While [13] found no correlation between AbR diversity and viral load in their data, 

they did not have the means to address other characteristics of the HIV population, as 

they did not have HIV sequence data at their disposal. However, they did find that AbR 

diversity was lower in HIV+ individuals than healthy controls. This suggested that HIV 

may have a broad effect on the AbR, yet the details of this effect remained unclear. We 

have presented a small positive correlation between overall AbR and HIV diversity 
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across all our samples. A possible scenario that would explain this observation is one 

where AbR diversity is decreased due to clonal expansions in Ab lineages that target 

HIV, which in turn causes a decrease in HIV diversity, due to positive selection for 

escape mutations. Once the HIV population has escaped, its diversity will return, and 

diversity in the AbR will also return because the previous clonal expansion will have 

vanished due to its target having escaped. However, we stress that this correlation had 

nominal significance and should be treated cautiously. The AbR is an especially 

complicated population that is capable of simultaneously responding to countless 

antigens, thus even a fleeting correlation with HIV at the whole-population level may be 

worthy of further follow up studies.  

A key first step towards illuminating the global interaction between the AbR and 

an HIV infection is to be able to identify the subset of the AbR that is actually 

responding to HIV. Similar to our previous work in the context of influenza vaccination 

[40], we leveraged the time-series nature of our dataset to identify partitions of the AbR 

that seem to be associated with HIV. We purposefully made no prior assumptions about 

what types of interactions we might find. For example, the common narrative of HIV-

targeting Ab lineages is that they are under intense positive selection. Thus, one might 

have the expectation that Ab selection will be positively correlated with HIV selection. 

However, it is also possible that an HIV-targeting Ab lineage is under intense negative 

selection, where there is a preference for amino acids not to change so as to not ablate 

their binding ability, or perhaps to not change a strict structural conformation that is 

required to access an epitope. In this case, one might expect Ab selection to be 

negatively correlated with HIV selection. We therefore compared all AbR summary 
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statistics to all HIV summary statistics. This was a double-edged sword, as it gave us 

the privilege of an unbiased approach, yet greatly increased the number of tests that 

were performed, and hence the severity of our multiple tests correction. As such, we 

were only able to identify a handful of AbR partitions that were significantly associated 

with HIV. This suggests that long-term interactions between Ab lineages and HIV are 

rare, and that Ab/HIV interactions may be of a more transitory nature, where an 

antibody binds to HIV, then HIV escapes, and then another unrelated Ab binds to the 

escape mutant, and so on. Another possibility is that our test was simply underpowered 

and had many false negatives. One way to ameliorate this would be to first filter AbR 

partitions based on some statistic (e.g. divergence) and then test for associations using 

a different, orthogonal statistic (e.g. diversity). Further, there remains a great deal of 

powerful analyses that could be done with the HIV sequence data. In principle, one 

could divide the HIV population into lineages and test each HIV lineage against each 

AbR partition. This would increase the number of tests, but could also illuminate 

interactions that would be otherwise hidden. 

Lastly, we tested for a coevolutionary signal in our data. Coevolution in sequence 

data is notoriously hard to establish [46], and to our knowledge, reports of HIV/Ab 

coevolution to date have been universally qualitative, with little or no statistical analyses 

[11,12,15,18,20,32,47–49]. When it comes to claims of coevolution, there are two 

sources of uncertainty that we have attempted to account for in this study. i) When both 

the Ab lineage and the putative HIV epitope are under positive selection, it is very easy 

for mutations to be correlated by chance rather than by coevolution. ii) There is a huge 

amount of uncertainty when assigning Abs to lineages, especially when trying to link a 
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given Ab sequence to other Ab sequences that existed months-years prior. AbRs are 

incredibly dynamic populations with high turnover, and high mutation rates. In a 

population such as this, where de novo lineages are continuously being added, it is 

important for one to account for the possibility that two similar Ab sequences—even if 

strikingly similar—may not be of the same lineage. By creating a simulated null dataset 

from shuffled Ab lineages, we were able to create a null distribution of MI values that 

took both of these confounders into account. After doing this we found no global signal 

for coevolution, yet we did find one isolated Ab lineage in patient 8 that showed 

compelling evidence for it. This suggests that while coevolution between Ab lineages 

and HIV is possible, it is likely exceedingly rare and/or hard to detect. Given that other 

sequence datasets of the AbR in the context of HIV infection have about the same or 

fewer time-points than the patients in our dataset, we suspect that claims of coevolution 

in these data would be equally hard to make.  

Coevolution has been responsible for some of the most remarkable phenotypes 

known (e.g. the cheetah's speed, a flower’s beauty, the strangeness of genitalia [50]), 

yet it remains unclear as to how much of a role it plays in the development of HIV-

targeting Abs. This may seem academic, but it has important implications for vaccine 

strategies. If coevolution is the predominant force in the development of HIV-bnAbs, 

then a vaccine regimen that mimics the evolution of the HIV epitope would be desired, 

as this would recapitulate the coevolutionary process. However, it is also possible that 

HIV-bnAbs occur as rare, random events, whereby a (typically diverged) Ab lineage 

‘stumbles’ upon broad neutralization breadth by chance. In this case, one might desire a 
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vaccine regimen that has a very diverse array of HIV epitopes so as to maximize the 

chances that this rare event occurs.  

It remains unknown how much of a role each of these scenarios play in the 

development of HIV neutralization breadth, however, it has been shown that 

neutralization breadth is positively correlated with viral load and HIV diversity [51–53]. 

This is suggestive (although far from conclusive) that coevolution may play less of a 

role, as high viral diversity is not a necessity for an arms race. An interesting future 

study would be to use simulations or mathematical modeling to gain a better 

understanding of which evolutionary parameters (e.g. population size, mutation rate, 

selection strength, population diversity, etc.) in the HIV and AbR populations promote 

coevolution, and which do not. This was partially done by Nourmohammad et al. [54], 

but coevolution was more of a feature of their model rather than a variable being tested. 

For example, it could be that a highly diverse AbR, with a slower mutation rate than HIV 

would be less likely to coevolve, and more likely to generate neutralizing Abs via chance 

recombination events. Whereas a less diverse AbR, with a mutation rate on par with 

HIV, may be more likely to engage in arms races. However, speculation is difficult when 

concerning two complex populations that engage in a complicated interaction, and 

simulation frameworks, such as those used by Murugan et al. [24], that include the 

introduction of novel naïve Ab lineages into the population could be used to gain insight 

into this line of inquiry. We hope that this study has provided a sound example of how to 

go about formally testing for coevolution in order to differentiate between these two 

possibilities. 
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Methods 

Patient selection and sample processing 

Samples were obtained from the OPTIONS cohort at UCSF. All patients provided 

written informed consent, and the study was approved by the UCSF Committee on 

Human Research. Our sole criterion for selecting patients from this cohort was to find 

those with the greatest number of samples available prior to the administration of ART. 

All the patients in this study were men who contracted HIV via sexual transmission, with 

the exception of patient 5, who became infected by unknown means (Table 1). Each 

peripheral blood sample was divided into plasma and peripheral blood mononuclear 

cells (PBMCs) by density gradient centrifugation using Ficoll-hypaque. After separation, 

PBMCs and plasma were aliquoted in cryopreservation media, and cryo-preserved in a 

specimen repository. Plasma viral load was measured at each patient visit. 

Viral load 

In early samples (prior to ~2009), a combination of a branched DNA assay and 

an ultra-sensitive PCR assay from Roche were used to measure HIV load. In later 

samples (post ~2009), the Abbott RealTime HIV-1 Viral Load assay was employed to 

measure load. 

Estimated time of infection 

The time of initial infection was estimated using the following criteria: i) If a 

patient first presents with detectable viral load, but negative enzyme immunoassay 

(EIA) or western blot, and then presents a positive western blot in the following visit, 

then the estimated time of infection is given by 24 days prior to the first visit. ii) If a 

patient first presents with an indeterminate western blot, and then a positive western 
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blot following repeat testing, then the estimated time of infection is given by 24 days 

prior to this first test. iii) If patient first presents with a positive western blot, and has a 

documented negative HIV test result within at most 180 days prior to first test, then the 

estimated time of infection is calculated as 24 days prior to the midpoint between the 

first positive test and prior negative test. We note that first visit here corresponds to the 

first visit in the OPTIONS study at UCSF, and not the first sample in our study. 

C2V3 amplification and ultra-deep sequencing 

HIV RNA was isolated from plasma samples using the Maxwell 16 Viral Total 

Nucleic Acid Purification Kit (Promega). cDNA was synthesized using the SuperScript III 

First-Strand Synthesis System (Invitrogen) with a gag-specific primer: 5’-

GCACTYAAGGCAAGCTTTATTGAGGCTTA-3’. The C2/V3 region (~416bp) of HIV env 

was amplified using a nested PCR approach with Phusion High-Fidelity PCR Master 

Mix (New England Biolabs). The outer primers were: 5’-

ATTACAGTAGAAAAATTCCCCT-3’ and 5’-CAAAGGTATCCTTTGAGCCAAT-3’. The 

inner primers were: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAACAGGACCAGGATCCAATGT

CAGCACAGTACAAT-3’ and 5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTTAAAGCTTCTGGGTCCC

CTCCTGAG-3’, where the underlined portions indicate the Illumina adapter sequence. 

A unique barcode was added to each amplicon using the Nextera XT Index Kit 

(Illumina) and the barcoded amplicons were mixed to generate a sequencing library. 

Paired-end sequencing (2×300 bp) was performed using the Illumina MiSeq instrument 

and the MiSeq Reagent Kit v3. 
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IGH amplification and ultra-deep sequencing 

Total RNA was extracted from PBMCs using the Qiagen RNeasy Mini Kit. To 

reverse transcribe, amplify IGH encoding RNA, and generate sequencing-ready 

libraries, we used iRepertoire’s long read iR-Profile Kit and followed the procedure as 

described in the accompanying protocol [55]. Paired-end sequencing (2×300 bp) was 

performed using the Illumina MiSeq instrument and the MiSeq Reagent Kit v3. 

HIV sequence data QC 

Sequences from different samples were de-multiplexed by barcode using the 

internal software on the Illumina machine. We used the software package pRESTO [56] 

to assemble read pairs, remove sequences shorter than 300bp, remove sequences with 

a mean quality score less than 30, mask the primer sequences, and remove sequences 

that only occur once in a given sample. We then use an in house implementation of 

BLAST [57] to check that each sequence has at least 70% identity to at least one HIV 

subtype env reference sequence, which were downloaded from LANL [58]. In order to 

check for possible contaminations from HIV sequences outside of our study, we again 

used BLAST to map each of our sequences to every env sequence within the LANL 

database. In this case, any of our sequences that had 99% identity or more to any 

sequence within the env database would be deemed a contaminant. We found that all 

the samples from patient 8 in our study had a significant amount of identity with 

sequences derived from patient ID: 9036 in the LANL database. We also found that all 

the samples from our patient 9 had significant identity with sequences in the LANL 

database derived from patient ID: 9018. There are two reasonable explanations for this: 

i) these samples had a large degree of contamination, or ii) that our patients 8 and 9 are 
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the same as patients 9036 and 9018 in the LANL database, respectively. We conclude 

that the latter is the more likely explanation because of the following rationale. This 

large degree of ‘contamination’ only occurred in patients 8 and 9, and it occurred in all 

their samples, however, the samples from these patients were processed in different 

batches. These patients’ diversity, and divergence trajectories showed a relatively 

steady increase over time, which would not be consistent with contamination (see 

results). Lastly, patients 9036 and 9018 from the LANL database both correspond to the 

study [59] which also recruited patients from San Francisco, CA. None of the other 

samples in our study had detectable contamination using this method. 

To check for cross contamination of sequences across samples in our study, we 

used a clustering approach. We first reduced the size of the dataset by grouping the 

sequences within each sample that have an edit distance less than or equal to 4 (see 

“Clustering sequences with samples” section below). We then choose the sequence 

within each group (or cluster) that has the highest count to be the ‘representative 

sequence’ for that cluster. After which we pool all the representative sequences across 

all samples and cluster these pooled representative sequences using the same 

clustering algorithm. To identify clusters of sequences that were likely cross 

contaminants we used the following criteria: the cluster had to i) have a representative 

sequence that clustered closer with sequences from a different patient than with 

sequences from the same sample, and ii) have a frequency less than 0.001 within its 

sample. All sequences within clusters that satisfied these criteria were removed. This 

effectively identified low frequency sequences that were closer in genetic distance to 

sequences from another patient. Lastly, we used a phylogenetic approach (see “Making 
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phylogenetic trees” section below) to i) make phylogenetic trees of the representative 

sequences in each sample, and ii) remove any sequence that is more closely related to 

a representative sequence that was identified as a cross contaminant (as described 

above) then to the other representative sequences in the sample (Figure 4.24).  

 
Figure 4.24. Outlier HIV sequences. 
Phylogenetic trees depicting the relationship of HIV sequences for each patient. Each leaf on a tree 
represents a cluster of sequences, and the size of the circle at the terminus of a leaf gives the relative 
frequency of that cluster at a given time-point. Leaves that are colored blue were identified as outliers 
because they were found to have a closer genetic distance to clusters from another patient then clusters 
within their assigned patient (i.e. cross-contaminants). Leaves that are green were identified as outliers 
because they group closest with leaves identified a cross-contaminants.  

Clustering sequences within samples 

We use the Needleman-Wunsch algorithm [60] as implemented in the ‘needle’ 

program from the European Molecular Biology Open Software Suite [61] to globally 

align each pair of sequences, and calculate the edit distances. Through an in-house 

algorithm, we then group sequences into a cluster that have an edit distance less than 
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some provided threshold to any other sequence in the cluster. For HIV sequences, this 

threshold was 4; for AbR sequences, this threshold was 6. 

Making phylogenetic trees 

To make a phylogenetic tree of a group of sequences, we first make multiple 

sequence alignments using MAFFT [62], and then construct phylogenetic trees using 

FastTree [63]. Visualization and analyses of newick formatted files was performed using 

the ETE toolkit [64]. 

Calculating HIV divergence 

We first assign an HIV reference sequence for each patient by finding the most 

abundant sequence at the first time-point. Because patient 6 showed extensive 

evidence of a super-infection occurring at the second time-point, we assigned two 

reference sequences to patient 6: one from the first time-point and the other from the 

second. We then translate the reference sequences as well as all other sequences in 

the data (see “Translating HIV sequences” section below). To find the number of 

synonymous and non-synonymous changes for a given query HIV sequence, we first 

codon align it to the patient’s reference. For a given codon, we first calculate the 

number of expected non-synonymous and synonymous sites as: 

π = ∑ í-ä
-IJ  , and  

K = 3 − π . 

Where í- gives the proportion of all possible nucleotide changes at codon 

position * of the reference sequence that result in an amino acid change. We denote / 

and f as the sum of π and K across all codons in a given reference sequence. We then 

count the number of observed non-synonymous and synonymous changes in a given 
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query HIV sequence as /ª and fª. If there were multiple mutations, we selected the 

order of mutations that resulted in the least amount of amino acid changes as the most 

parsimonious, and thus most likely. The proportion of non-synonymous and 

synonymous mutations in a given query sequence is then, 

k/ = 5º
5

 , and kf = {º
{

 . 

To estimate non-synonymous and synonymous divergence we then use 

D/ = −ä
î
ln ¶1 − î

ä
k/© , and Df = − ä

î
ln ¶1 − î

ä
kf© 

[65]. The notation above was heavily borrowed from Richard Orton’s blog post [66]. 

Because patient 6 had two reference sequences, the reference sequence that yielded 

the lower divergence value was used, for a given query sequence. 

Calculating HIV selection 

We estimated selection in HIV as simply  D//Df. 

Translating HIV sequences 

In order to translate a given query HIV sequence, we first use needle to globally 

align it to the reference HXB2 env sequence (downloaded from LANL). We then use this 

alignment to determine the coding frame of the query sequence. Once this is known we 

translate the query nucleotide sequence using a simple in-house python script.  

Calculating diversity 

To estimate diversity in both the HIV population and the AbR we calculated the 

statistic, A [40]. In words, A is the expected genetic distance between two randomly 

selected sequences from a given sample. Mathematically A can be expressed as  

A =
∑ ∑ E3∙Eø∙¿(É3,Éø)±

ø∞3Üá
±êá
3∞á

R¡à U
 , 
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where / gives the total number of unique sequences in the sample, C- gives the 

count of sequence *, , gives the total counts of sequences in that sample (i.e. , =

∑ C-5
-IJ ), and N(V, W) gives the genetic distance between sequences V and W. We used 

VSEARCH with the “--allpairs_global” option to globally align all pairs of sequences in a 

sample [67]. Genetic distance between a pair of sequences was then calculated as the 

percent of mismatches in the alignment.  

AbR sequence data QC 

As with the HIV data, we used pRESTO to assemble read pairs, remove reads 

less than 300bp, remove reads with a mean Q score less than 20, and remove reads 

that only occur once. We then use IgBLAST [68] to align each sequence to a database 

of germline immunoglobin genes downloaded from the IMGT website (imgt.org) [69]. 

After this, we used Change-O to annotate each sequence with its most likely V, D, and J 

germline gene-segments, identify the FWRs and CDRs, and to construct the likely naïve 

antibody sequence from the germline gene-segment alignments.  

Calculating Ab divergence 

Divergence in a given Ab sequence was calculated as the number of changes in 

the observed sequence relative to the naïve sequence, divided by the length of the 

sequence. This is excluding the junction region of the sequence, as naïve sequence 

reconstruction of this region is unreliable. 

Estimating Ab Selection 

We used the BASELINe program on each individual Ab sequence to estimate 

selection. For a detailed description of this tool see [70]. Very briefly, BASELINe 

compares the observed number of mutations in a sequence (relative to its inferred naïve 
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ancestor) to a null distribution of the expected number of mutations under no selection. 

The program takes local nucleotide motifs into account when calculating mutation 

probabilities, and returns a sigma value that indicates the distance between the 

observed number of mutations and the null distribution. A negative sigma indicates 

fewer mutations than expected (negative selection), and a positive sigma indicates 

more mutations than expected (positive selection). It does this separately for different 

regions of the Ab sequence (i.e. the FWR and CDR). 

Creating AbR lineages 

To cluster the AbR of a given patient, we first divided it into partitions by grouping 

together all sequences that use the same germline V and J gene-segments (as 

annotated by Change-O). We then cluster the sequences within a given partition/time-

point (see “Clustering sequences within samples” section above), with and edit distance 

threshold of 6 (Figure 4.25 A). Once clusters are delineated, and similar to the 

clustering of HIV sequences, we assign the most numerous sequence of each cluster, 

as the ‘representative sequence’. We then link clusters, within a given partition, across 

adjacent time-points using the following algorithm. We first find the representative 

sequence in the previous time-point that has the smallest edit distance to a given 

representative sequence in a contemporary time-point. If this edit distance is smaller 

than 30 (Figure 4.25 B), then the two representative sequences (and the clusters they 

represent) will be linked as being part of the same lineage. This process is carried out 

independently in each patient, over each representative sequence, and for each 

adjacent time-point pair (see Figure 4.26). Finally, once all lineages have been assigned 
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in this manner, any lineage that does not rise above 0.0001 frequency, in any of the 

time-points will be disregarded. 

 
Figure 4.25. Genetic distance distributions for AbR sequences. 
Histograms of edit distance values between pairs of antibody sequences in the AbR. Top label foreach 
panel and color correspond to patient. (A) Histograms of edit distance values for all sequences within a 
time-point. The within time-point distance values are pooled across all time-points to generate the shown 
histograms. The main plots give a zoomed-in view for edit distance values 0-20. Insets show the entire 
histogram. Vertical dashed lines at x=6 show the edit distance cutoff that was used to assign sequences 
to the same cluster. (B) Histograms of edit distance values between adjacent time-points. This shows the 
edit distance distributions between pairs of representative cluster sequences across adjacent time-points. 
Vertical dashed lines at x=30 show the cutoff that was used to assign sequence clusters as being 
members of the same lineage. 
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Figure 4.26. Schematic of lineage clustering algorithm.  
Each ellipse represents a cluster of sequences, and the dot in the middle is the representative sequence 
for a given cluster. The lines, or edges, linking clusters across time-points are formed by finding the 
cluster in the previous time-point that has the representative sequence with the smallest genetic distance 
to a given query representative sequence. Dashed edges represent lineage connections that fall above 
the edit distance threshold, while solid edges fall below. Clusters are colored by which lineage they 
belong to. However, the red cluster in the top left corner is simultaneously a member of the ‘red’ and 
‘purple’ lineages because there is a bifurcation at time-point 2. In these cases of multifurcations, the 
parental color is assigned to the daughter cluster that has the lowest edit distance to the parent cluster. 
However, this is only pertinent for visualizations, such as this figure and Muller plots. Grey denotes 
lineages that do not meet the minimum frequency threshold.  

Simulating null AbR lineages 

To simulate random AbR lineages, we began by using our clustered Ab 

sequences within the partitioned AbR data (see “Creating AbR lineages” section above). 

We then carry out an identical procedure as was done to create the observed lineages, 

with the exception that instead of finding the parent cluster in the previous time-point 

that has the minimum edit distance, a parent cluster is randomly chosen from the 

previous time-point. Additionally, in order to replicate the aspect of the observed data 

where each time-point brings a certain number of new lineages to the population, we 

estimate the probability of a new lineage as 

time-point 1 time-point 2 time-point 3 time-point 4
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ë-,L =
¬-,L
B-,L

 

where ¬-,L gives the number of new lineages, and B-,L gives the total number of 

clusters in patient, *, and time-point, √. For the simulated lineages, we then randomly 

assign each cluster as being a new lineage (i.e. not having any connections with the 

previous time-point) with probability ë-,L. In order to have a null dataset that is sufficiently 

large, we duplicated the observed, clustered data 100 times and then simulated 

lineages using this 100-fold larger dataset. 

Linear modeling of population level interactions 

We tested for cross-patient, population-wide interactions of summary statistics 

using a linear mixed model approach. We model the interaction of a pair of summary 

statistics as 

w-,L = ü- + üX-,L + ƒ-,L , 

where w-,L gives the value of a given HIV summary statistic for the √th time-point 

of patient *, X-,L gives the value of a given AbR summary statistic for the same 

patient/time-point, ü- is a random intercept term to correct for patient specific effects, 

and ƒ-,L is a random error term that is assumed to be normally distributed with a mean of 

0. This model was implemented in the R programming language using the ‘lmer’ 

function of the ‘lme4’ package [71]. We then use a likelihood ratio test to determine if a 

model with ü≠0 provides a significantly better fit than a model with ü=0 (p≤0.05). If it 

does, then the given pair of HIV and AbR summary statistics was deemed to be 

interacting.  
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Trajectory permutation test 

We test for associations between a set of AbR trajectories to one or more HIV 

trajectories using a permutation-based test. The AbR and HIV trajectories are loaded 

into memory as matrices where each row is a different trajectory and each column is a 

time-point in chronological order from left to right. We first standardize each trajectory 

by subtracting the mean and dividing by the standard deviation. If : is a row vector 

representing a given trajectory, then : is standardized by 

:La =
<øQ≈∆
«∆

 , 

where Y< and »< give the arithmetic mean and standard deviation of :, 

respectively. We then calculate the sum of the squared error (SSE) for a given AbR 

trajectory relative to a given HIV trajectory as 

ff?(ëa, :′) = ∑ RëLa − :LaU
T

L∈<ß  , 

where ëa is a standardized HIV trajectory vector. This gives the observed SSE 

values for each AbR/HIV trajectory pair. If either the HIV or AbR trajectories have 

missing values, then these time-points are disregarded in the SSE calculation, and a 

trajectory must have at least 75% of its values defined to be included in the test. We 

then permute the columns of the AbR trajectory matrix many times and calculate the 

SSE values for each permuted AbR trajectory after each permutation. This gives our 

permuted null distribution of SSE values. If an observed AbR/HIV trajectory pair have an 

SSE value that is significantly outside of this null distribution, then they are deemed to 

be significantly associated with one another, where significance is appropriately 

adjusted as based on the number of tests. When conducting this test on whole AbR 

population trajectories vs. whole HIV population trajectories (Figure 4.14 B-E), we 
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performed 100,000 permutations for each patient. When conducting this test on AbR 

partition trajectories vs. whole HIV population trajectories (Figures 4.16, 4.17, and 4.18) 

we performed 1,000 permutations for each patient. 

Comparing to literature datasets 

To compare the results of our trajectory permutation test to a literature dataset 

we use a Mann-Whitney U test. However, before this can be done, we first must 

combine the results of our permutation-based test across patients. When the 

permutation-based test was employed to identify HIV associated AbR partitions, the 

structure of the results was as follows: each patient had hundreds of AbR partitions, and 

each AbR partition had tens of p values associated with it (from comparing each of its 

summary statistics to each of the HIV population summary statistics). In order to 

combine p values such that there is one value associated with one V gene segment, we 

first pool the p values across all AbR partitions that have a given V gene segment, and 

across all patients. We then use Fisher’s method to arrive at an overall V gene score for 

this pool of p values. If k is a vector of p values associated with a given V gene 

segment, then we first combine the p values into one overall p value, kª<ó… \\, using 

Fisher’s method: 

C = −2∑ ln k-
|Ç|
-IJ  , and  

kª<ó… \\ = Pr	(ÀT|Ç|
T ≤ C) . 

Where ÀT|Ç|T  is the chi-squared distribution with 2|k| degrees of freedom. Strictly 

speaking, kª<ó… \\ will tend to be inflated because not all the p values in k are 

independent (ex. AbR partition trajectories that are associated with HIV selection, will 

also tend to be associated HIV non-synonymous divergence). However, because this 
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inflation should be the same across V gene segments, and because we are not 

interested in actual significance but rather need some reasonable method for combining 

p values into an overall score, Fisher’s method should be sufficient. Finally, to avoid 

kª<ó… \\ being interpreted as a significance level, we take its log transform to arrive at a 

V gene score 

9	xãπã	KCÕëã = −logJd kª<ó… \\ . 

We then used a Mann-Whitney U test to see if V gene segments that were ‘well 

represented’ in a literature dataset tended to have significantly different 9	xãπã	KCÕëã 

values then those that were not ‘well represented’. In the case of the dataset of HIV 

targeting Abs, ‘well representation’ was defined as presence/absence (i.e. count ≥ 1). 

The dataset of influenza targeting Abs was relatively large (432 entries), so ‘well 

representation’ was defined as a count ≥ 10 (Table S1). 

Calculating MI 

To measure the amount of association between two sites (columns) in a pair of 

MSAs we first reduce the complexity of the amino acid code by converting it to a code of 

‘change’ or ‘no-change’. In this case, if a site has an amino acid identity that is different 

than the previous time-point, then it is recorded as a ‘1’ and if it is the same, then it is 

recorded as a ‘0’ (the first time-point is always ‘0’). We then use MI to measure the 

amount of association (coevolution) between two columns in a ‘change’, ‘no-change’ 

alignment. MI is calculated as 

,–(X, w) = ∑ ∑ Pr	(V, W) logT ¶
™´	(�,z)

™´	(�)∙™´	(z)
©z∈Ä�∈Å  , 

where X and w are categorical random variables representing the two different 

columns being compared. V and W represent particular states of X and w, respectively 
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(i.e. ‘1’ or ‘0’ for a change/no-change alignment). Pr(~) is the probability that a given 

random variable (or MSA column) equals the state, ~. If C is a vector that represents a 

given column of an MSA, then Pr(~) can be estimated as 

Pr(~) = J
|E|
∑ —

1, 	CL = ~
0, 	CL ≠ ~L∈E . 

Pr(~, _) is the joint probability that the random variable representing one MSA 

column equals ~, and simultaneously the random variable representing the other MSA 

column equals _. If D is a vector that represents a given column of the other MSA, then 

Pr(~, _) can be estimated as 

Pr(~, _) = J
|E|
∑ —

1, 	CL = ~, DL = _
0, 	CL ≠ ~	|	DL ≠ _L∈E . 

Correcting for multiple tests 

Unless otherwise stated, p values from a given statistical test within a patient 

were corrected for multiple testing using the Benjamini-Hochberg procedure. 

Network plots 

Networks of lineages were visualized using cytoscape [72]. 
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