
UC San Diego
Technical Reports

Title
Translating Between PEGs and CFGs

Permalink
https://escholarship.org/uc/item/1pw0d38g

Authors
Tate, Ross
Stepp, Michael
Tatlock, Zachary
et al.

Publication Date
2008-11-02

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pw0d38g
https://escholarship.org/uc/item/1pw0d38g#author
https://escholarship.org
http://www.cdlib.org/

Translating Between PEGs and CFGs

Ross Tate Michael Stepp Zachary Tatlock Sorin Lerner

Department of Computer Science and Engineering

University of California, San Diego

{rtate, mstepp, ztatlock, lerner} @cs.ucsd.edu

1 Introduction

In recent research, we have developed a new approach to structuring optimizers, and to make this
approach effective, we have designed a new IR called Program Expression Graphs (PEG). The details of
the PEG representation can be found elsewhere. In this technical report, we only present the algorithms
for translating from CFGs to a PEGs (Section 2) and from PEGs to CFGs (Section 3).

2 Transforming a CFG into a PEG

We transform a CFG into a PEG in two steps. First, we transform the CFG into an Abstract PEG
(A-PEG). Conceptually, an A-PEG is a PEG that operates over programs stores rather than individual
variables, and whose nodes represent the basic blocks of the CFG. Figure 1(b) shows a sample A-PEG,
derived from the CFG in Figure 1(a). The A-PEG captures the structure of the original CFG using θ,
pass and eval nodes, but does not capture the flow of individual variables, nor the details of how each
basic block operates.

For each basic block n in the CFG, there is a node SEn in the corresponding A-PEG that represents
the execution of the basic block (SE stands for Symbolic Evaluator): given a store at the input of the
basic block, SEn returns the store at the output. For basic blocks that have multiple CFG successors,
meaning that the last instruction in the block is a branch, we assume that the store returned by SE

contains a specially named boolean variable whose value indicates which way the branch will go. The
function cond takes a program store, and selects this specially named variable from it. As a result, for
a basic block n that ends in a branch, cond(SEn) is a boolean stating which way the branch should go.

Once we have an A-PEG, the translation from A-PEG to PEG is simple – all that is left to do
is expand the A-PEG to the level of individual variables by replacing each SEn node with a dataflow
representation of the instructions in block n. For example, in Figure 1, if there were two variables being
assigned in all the basic blocks, then the PEG would essentially contain two structural copies of the
A-PEG, one copy for each variable.

Our algorithm for converting a CFG into an A-PEG starts with a reducible CFG (all CFGs produced
from valid Java code are reducible, and furthermore, if a CFG is not reducible, it can be transformed

(a) (b)

43

2

5

1

e
1

e
2 e

3

SE
1

cond SE
3

SE
4

cond

SE
2

SE
5

Figure 1: Sample CFG and corresponding A-PEG

1

to an equivalent reducible one at the cost of some node duplication [1]). Using standard techniques,
we identify loops, and for each loop we identify (1) the loop header node, which is the first node that
executes when the loop begins (this node is guaranteed to be unique because the graph is reducible), (2)
back edges, which are edges that connect a node inside the loop to the loop header node and (3) break
edges, which are edges that connect a node inside the loop to a node that is not in the loop.

From the CFG we build what is called a Forward Flow Graph (FFG), which is an acyclic version
of the CFG. In particular, the FFG contains all the nodes from the CFG, plus a node n′ for each loop
header node n; it also contains all the edges from the CFG, except that any back edge connected to a
loop header n is instead connected to n′.

We use N to denote the set of nodes in the FFG, and E the set of edges. For any n ∈ N , in(n)
and out(n) are the set of incoming and outgoing edges of n. If n is a basic block that ends in a branch

statement, we use outtrue(n) and outfalse(n) for the true and false outgoing edge of n. We use a
∗
−→ b

to represent that there is a path in the FFG from the node (or edge) a to the node (or edge) b. We
identify a loop by its loop header node l, and for any n ∈ N , we use loops(n) ⊆ N to denote the set of

loops that n belongs to (precisely, l ∈ loops(n) ⇔ (l
∗
−→ n ∧ n

∗
−→ l′)). Finally, we use overbars to denote

constructors of A-PEG nodes – in particular, for any mathematical operator g, the function g constructs
an A-PEG node labeled with “g”.

Our conversion algorithm from CFG to A-PEG is shown in Figure 2. We describe each function in
turn.

ComputeAPEG. Once the FFG is constructed, our conversion algorithm calls the ComputeAPEG
function. Throughout the rest of the description, we assume that the FFG and CFG are globally
accessible. ComputeAPEG starts by creating, for each node n in the CFG (line 1), a globally accessible
A-PEG node SEn (line 2), and a globally accessible A-PEG node cn (line 3). The conversion algorithm
then sets the input of each SEn node to the A-PEG expression computed by ComputeInputs(n) (lines
4-5).

ComputeInputs. The ComputeInputs function starts out by calling Decide on the incoming edges
of n (lines 7-9). Intuitively, Decide computes an A-PEG expression that, when evaluated, will decide
between different edges (we describe Decide and its arguments in more detail shortly). After calling
Decide, ComputeInputs checks if n is a loop header node (line 10). If it is not, then one can simply
return the result from Decide (line 13). On the other hand, if n is a loop header node, then its FFG
predecessors are nodes from outside the loop (since back edges originating from within the loop now go
to n′). In this case, the result computed on line 9 only accounts for values coming from outside of the
loop, and so we need lines 11-12 to adjust the result so that it also accounts for values coming from
inside the loop. In particular, we use ComputeInputs(n′) to compute the A-PEG expression for values
coming from inside the loop, and then we create the θ′i expression that combines the two (with i being
the loop nest depth of n).

Decide. The Decide function is used to create an expression that decides between a set of edges. In
particular, suppose we are given a set of FFG edges, and we already know that the program will definitely
reach one of these edges starting from the root node – then Decide returns an A-PEG expression that,
when evaluated, computes which of these edges will be reached from the beginning of the FFG. The first
parameter to Decide is the set of edges; the second parameter is a function mapping edges to A-PEG
nodes – this function is used to created an A-PEG node from each edge; and the third parameter is a
looping context, which is the set of loops that Decide is currently analyzing.

Decide starts by calling least dominator(E) to compute d, the least dominator (in the FFG) of the
given set of edges, where least means furthest away from the root (line 14). If d is in the current looping
context (line 15), then, after optimizing the case where value maps all edges to the same A-PEG node
(lines 16-17), Decide calls itself to decide between the true and false cases (lines 18-19). Decide then
creates the appropriate φ node, using the cd node created in ComputeAPEG (line 20).

For example, suppose ComputeInputs is called on node 5 from Figure 1. Since there are no loops in
Figure 1, ComputeInputs simply returns Decide({e1, e2, e3}, value fn , ∅), and Decide only executes lines
14-20. As a result, this leads to the following steps (where we’ve omitted the last two parameters to

2

Function ComputeAPEG()

1: for each CFG node n do

2: let global SEn = create A-PEG node labeled “SEn”
3: let global cn = cond(SEn)
4: for each CFG node n do

5: set child of SEn to ComputeInputs(n)
6: return resulting A-PEG

Function ComputeInputs(n : N)

7: let in edges = in(n)
8: let value fn = λe : in edges . SE src(e)

9: let result = Decide(in edges , value fn, loops(n))
10: if n is a loop header node then

11: let i = |loops(n)|
12: let result = θ′i(result , ComputeInputs(n′))
13: return result

Function Decide(E : 2E , value : E → NA-PEG, L : 2N)

14: Let d = least dominator(E)
15: if loops(d) ⊆ L then

16: if ∃v . ∀e ∈ E . value(e) = v then

17: return v
18: let t = Decide({e ∈ E | outtrue(d)

∗
−→ e}, value,L)

19: let f = Decide({e ∈ E | outfalse(d)
∗
−→ e}, value,L)

20: return φ(cd, t, f)
21: else

22: let l be the outermost loop in loops(d) that is not in L
23: let i be the nesting depth of l
24: let break edges = ComputeBreakEdges(l)
25: let break = BreakCondition(l, break edges ,L ∪ {l})
26: let val = Decide(E , value,L ∪ {l})
27: return eval i(val, pass i(break))

Function BreakCondition(l : N, break edges : 2E ,L : 2N)

28: let all edges = break edges ∪ in(l′)
29: let value fn = λe : all edges .

(

if e ∈ break edges then true else false
)

30: return Simplify(Decide(all edges, value fn ,L))

Figure 2: CFG to A-PEG conversion algorithm

Decide because they are always the same):

Decide({e1, e2, e3}) =
φ(c1, Decide({e1}), Decide({e2, e3})) =
φ(c1, Decide({e1}), φ(c2, Decide({e2}), Decide({e3}))) =
φ(c1, value fn(e1), φ(c2, value fn(e2), value fn(e3))) =
φ(c1,SE1, φ(c2,SE3,SE4))

This is exactly the A-PEG expression used for the input to node 5 in Figure 1.
Going back to the code for Decide, if the dominator d is not in the same looping context, then

the edges that we are deciding between originate from a more deeply nested loop. We therefore need
to compute the appropriate “break” condition – the right combination of eval/pass that will convert

3

values from the more deeply nested loop into the current looping context. To do this, Decide picks the
outermost loop l of the more deeply nested loops that are not in the context (line 22); it computes the
set of edges that break out of l using ComputeBreakEdges, a straightforward function not shown here
(line 24); it computes the break condition for l using BreakCondition (line 25); it then computes an
expression that decides between the edges E , but this time adding l to the loop context (line 26); finally
Decide puts it all together in an eval/pass expression (line 27).

BreakCondition. The BreakCondition function creates a boolean A-PEG node that evaluates to
true when the given loop l breaks. Deciding whether or not a loop breaks amounts to deciding if the
loop, when started at its header node, reaches the break edges (break edges) or the back edges (in(l′)).
We can reuse our Decide function described earlier for this purpose (lines 29-30). Finally, we use the
Simplify function, not shown here, to perform basic boolean simplifications on the result of Decide (line
30).

3 Transforming a PEG into a CFG

The translation from PEG to CFG assumes that the PEG has certain properties, the most important
of which are: (1) there is a partial order ≤ on the loops L such that for every θ′ℓ node n, each ℓ′ in
variance(n) satisfies ℓ′ ≤ ℓ; (2) the second child of an eval node is a pass node – if a PEG is not in this
form, it can be transformed to an equivalent PEG by pushing eval ’s up; (3) by removing the second
outgoing edge of all θ′ nodes, the PEG becomes acyclic – this property is guaranteed to hold because it
is encoded in the constraints the Pseudo-Boolean solver uses to select a PEG.

Our translation uses the notion of a PEG block, which is a container that originally just stores
a PEG. As the algorithm progresses, each PEG block will eventually get translated to the sub-CFG
that represents the PEG it contains. There are two kinds of PEG blocks: fall-through blocks, which
eventually reduce to a single-entry single-exit sub-CFG; and branch blocks, which eventually reduce to
a single-entry two-exit CFG, with the two exits being the true and false side of a branch that occurs at
the end of the block.

To start, there is a single fall-through PEG block containing the PEG for the entire function we are
translating. TranslateBlock, shown in Figure 3, is called on this block.

Ignoring line 2 for now, TranslateBlock first processes eval and φ nodes using DoEvals and DoPhis
(lines 1 and 3). Intuitively, these procedures move entire PEG sub-graphs into PEG blocks that are
then inserted as PEG nodes in lieu of the original sub-graphs. In particular, DoEvals replaces eval/pass
nodes with a new kind of loop node, and DoPhis replaces φ nodes with a new kind of branch node. The
loop and branch PEG nodes contain in them newly created PEG blocks (which in turn contain PEGs)
to be processed recursively during the call to Serialize. The next step is to perform loop fusion (line 4),
which essentially merges independent loop nodes together that have the same break condition. Finally,
the last step is to serialize (line 5). When serialization begins, θ′ nodes have already been removed. The
PEG is therefore acyclic and so nodes can be processed topologically. Serialization creates a CFG, and
each node (in topological order) is converted into CFG instructions. When a loop or branch node is
encountered, a recursive call is made to TranslateBlock in order to construct a sub-CFG just for that
loop or branch node, and this sub-CFG is spliced into the currently constructed CFG.

Returning to line 2, if the block b is a branch block that has at least one φ node in it, then it
should be split. The Split function takes a PEG branch block and returns a CFG. It splits on its branch
condition, moving the true and false computations into two new PEG blocks. TranslateBlock is then
called on these two new blocks, and the original branch-block, with whatever PEG nodes have remained
there. Split then returns a CFG that connects the 3 CFGs returned by the calls to TranslateBlock in
an if-then-else pattern.

We now describe DoEvals and DoPhis, shown in Figure 3, in more detail. We denote by Block the
set of PEG blocks, NPEG the set of PEG nodes, Var the set of CFG variables, and Select the set of
functions from NPEG to booleans (ie : Select = NPEG → B). For n ∈ NPEG , variance(n) is the set of
loops that n varies on. In particular, variance(n) = {ℓ | ¬invariant ℓ(n)}, where invariant ℓ(n) is true iff
the value of n does not vary on loop ℓ. Invariance is computed using the following four rules, where •
denotes “don’t care”:

4

Function TranslateBlock(b : Block)

1: DoEvals(b)
2: if ShouldSplit(b) then return Split(b)
3: DoPhis(b)
4: FuseLoops(b)
5: return Serialize(b)

Procedure DoEvals(b : Block)

6: while there are eval nodes in b.peg do

7: let e = eval ℓ(a, passℓ(b)) ∈ b.peg be an eval node such that there is no eval ℓ′ ∈ b.peg such that
l′ < l

8: let init = NewFallThroughBlock()
9: let body = NewBranchBlock()

10: let varies = λn . variance(n) 6= ∅
11: let varies not theta = λn . varies(n) ∧ n is not a θ′ℓ node
12: body . SetBranch(b, varies not theta)
13: for each t = θ′ℓ(c, d) ∈ Reach(e, varies) do

14: init . Modify(var(t), c, varies not theta)
15: body . Modify(var (t), φ(b, var(t), d), varies not theta)
16: body. Modify(var (e), φ(b, a, var(e)), varies not theta)
17: let inputs = init .inputs ∪ body .inputs

18: let loop node = loop(init,body,var(b))(inputs)
19: b.peg [e 7→ ρvar(e)(loop node)]

Procedure DoPhis(b : Block)

20: let G = GroupPhis(b.peg)
21: let nodes = new map of type G → NPEG

22: let blocks = new map of type G → Block

23: for each G ∈ G do

24: let block = NewBranchBlock()
25: block . SetBranch(ChooseBranch(G), λn . n ∈ G)
26: for each n ∈ G do

27: block . Copy(n, λn . n ∈ G)
28: nodes(G) = branchblock(block .inputs)
29: blocks(G) = block
30: let all =

⋃

G∈G
G

31: let S = b.significant

32: while ∃s ∈ S .∃n ∈ Border(s, λn . n /∈ all) do

33: let G ∈ G be such that n ∈ G
34: blocks(G). Modify(var (n), n, λn . n ∈ G)
35: b.peg [n 7→ ρvar(n)(nodes(G))]

Figure 3: PEG to CFG conversion algorithm

5

1. all constant and method params nodes are invariant ℓ, for all ℓ

2. if all children of an operator node op are invariantℓ and op 6= θ′ℓ, then op is invariant ℓ

3. invariant ℓ(passℓ(•)) = true

4. invariant ℓ(A) implies invariant ℓ(eval ℓ(•, A)) = true.

We associate with each n ∈ NPEG a variable denoted var (n). For b ∈ Block , b.peg refers to the PEG
in that block; b.inputs is a set for storing PEG nodes that the block b reads from outside of this block;
and b.significant is the set of PEG nodes that are outputs of the block, as well as the branch condition
if the block is a branch block. Given a PEG peg and two PEG nodes a and b, we use the notation
peg [a 7→ b] to denote destructively updating peg to replace a with b (in particular, the parents of a are
redirected to point to b).

DoEvals and DoPhis use the following helper functions:

• Reach : NPEG × Select → 2NPEG ;
Reach(n, f) returns the set of nodes reachable from n by following children links while f returns true.

• Border : NPEG × Select → 2NPEG ;
Border(n, f) returns the set of nodes reachable from n where f first becomes false. This is the border
region of Reach(n, f), that is to say, all the nodes “one beyond” Reach(n, f).

• Copy : Block × NPEG × Select → void ;
b. Copy(n, f) copies the PEG rooted at n into b.peg, replacing each node n′ ∈ Border(n, f) with
var(n′). Each time a node n′ is converted to var (n′), n′ is added to the set b.inputs.

• Modify : Block × Var × NPEG × Select → void ;
b. Modify(v, n, f) calls b. Copy(n, f) and then records that block b on exit needs to set v to the copy
of n created by Copy.

• SetBranch : Block × NPEG × Select → void ;
b. SetBranch(n, f) calls b. Copy(n, f) and then sets the branch condition for b to the copy of n created
by Copy.

DoEvals. The DoEvals procedure starts off by selecting an eval node e to convert into a loop (line
7). It then creates a fall-through block called init for the instructions before the loop, and a branch block
body for the body of the loop (lines 8-9). DoEvals then records the computations that must be performed
in init and body (lines 10-16). In copying computations to init and body , varies not theta causes invariant
nodes and θ′ℓ nodes to be replaced with their variables (line 11). DoEvals starts by stating that body

must compute the branch b (line 12). Then, for each θ′ℓ(c, d) node t in Reach(e, varies), DoEvals records
that init should set var(t) to the initial value c (line 14), and that body should set var (t) to the recursive
computation d only when the break condition b is false (line 15). DoEvals then states that body should
set var(e) to the a computation, but only when its break condition b is true (line 16). This sets the
value of e to be used after the loop. Finally, DoEvals creates the loop node (lines 17-18), and replaces e
with it (line 19). Because loop represents a block that can return many values, we need to select var (e)
from its result, which we do using a selector function ρvar(e).

DoPhis. The DoPhis procedure starts by grouping φ nodes (line 20). The φ nodes in the same
group will be branched upon in a nested way. It is always safe to group all φ nodes together, but to
avoid an exponential blowup, we want to create as many groups as possible. In particular, GroupPhis
returns a partition of a subset of the nodes in b.peg. This function is the key to performing branch
fusion. GroupPhis starts with all nodes in separate sets, and then groups nodes by iteratively applying
the following rules: (1) φ nodes whose conditions are related by simple boolean relations are grouped
together; (2) any nodes reachable by following children links from a φ node n, excluding nodes that
are always evaluated, are included in n’s group; (3) any node that is reachable from a group G, and
also reaches G is merged into G; (4) if any two groups overlap, they are merged. Once GroupPhis has
computed groups, DoPhis creates, for each group of nodes G, a branch block for the group (line 24), and
selects some branch condition for it using ChooseBranch (line 25). ChooseBranch(G) picks a φ(b, x, y)
node in G that has no parents in G, and returns its condition b. DoPhis then copies all nodes from G
into the block (lines 26-27), and creates a branch PEG node for the block (line 28). Finally, DoPhis
adjusts all nodes in the current block b to use the newly created branch PEG nodes (lines 30-35).

6

References

[1] S. Muchnick. Advanced Compiler Design And Implementation. Morgan Kaufmann Publishers, 1997.

7

