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1. Introduction
The El Niño—Southern Oscillation (ENSO) is the dominant mode of interannual atmosphere-ocean variability. 
ENSO is characterized by sea-surface temperature (SST) variations in the eastern-to-central equatorial Pacific, 
with warm SST anomalies (SSTAs) during the positive phase, El Niño, and cool SSTAs during the negative phase, 
La Niña. ENSO peaks in boreal winter and has a periodicity of approximately 2–7 years (e.g., Philander, 1983; 
Rasmusson & Carpenter, 1982). Advanced knowledge about ENSO is useful for seasonal climate prediction and 
future climate projection, as ENSO drives teleconnections with many weather and climate extremes globally, 
including tropical cyclones and precipitation (e.g., Dai & Wigley, 2000; Gray, 1984; Hoerling, 2000; Kiladis & 
Diaz, 1989; Lin et al., 2020; McPhaden et al., 2006; Ropelewski & Halpert, 1987). The physical mechanism that 
drives ENSO's teleconnections is a zonal shift in tropical Pacific deep convection, which shifts eastward during 
El Niño and westward during La Niña. Such shifts in tropical deep convection can initiate tropical teleconnections 
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via a Walker Circulation response and mid-latitude teleconnections via a Rossby wave train response (Hoerling 
& Kumar, 2002; Horel & Wallace, 1981).

It is well known that not all El Niño events are alike, as the spatial patterns of SST warming can vary between 
events, often referred to as ENSO diversity (review papers by Capotondi, Wittenberg, et al., 2015; Timmermann 
et al., 2018). These spatial patterns are often referred to as “types” or “flavors” of ENSO; the two primary types 
are canonical and non-canonical El Niño events. In particular, canonical El Niño events are characterized by SST 
warming in the eastern tropical Pacific, often called “East Pacific El Niño” or “cold tongue El Niño,” whereas 
non-canonical El Niño events are characterized by SST warming in the central tropical Pacific, often called 
“Central Pacific El Niño,” “El Niño Modoki,” or “warm pool El Niño” (Ashok et al., 2007). An increase in the 
frequency of Central Pacific El Niño events has been observed in recent decades (Lee & McPhaden, 2010). In 
addition to differences in spatial patterns of SSTAs, another notable difference between the two “types” of El 
Niño is that La Niña events tend to follow East Pacific El Niño events, but not Central Pacific El Niño events 
(Kug et  al.,  2009). Although the two primary El Niño SSTA patterns are often referred to as “types,” some 
studies highlight that they are not distinct modes of variability, but are instead part of the same phenomenon 
(Takahashi et al., 2011). Regardless of possible differences in ENSO genesis mechanisms, a growing number of 
studies reveal the importance of ENSO diversity in modulating ENSO's teleconnections with extremes, including 
tropical cyclones and western US precipitation (e.g., Ashok et al., 2007; Patricola et al., 2016, 2018, 2020; Weng 
et  al., 2007). The primary physical mechanism by which ENSO diversity modulates ENSO's teleconnections 
with extremes is related to the non-linear response in tropical Pacific deep convection to SST warming during 
El Niño. Differences in the location of SST warming, superimposed on the mean background state of the west 
Pacific warm pool and east Pacific cold tongue, can impact which tropical Pacific regions become favorable for 
deep convection, and therefore the extent to which deep convection shifts zonally. This then impacts the strength 
of the Walker Circulation response and the location of the Rossby wave train response (Johnson & Kosaka, 2016; 
Patricola et al., 2016, 2020) that makes remote conditions more or less favorable for weather and climate extremes 
regionally.

Despite the importance of ENSO for global extremes, it can be difficult to detect recent trends in ENSO and to 
project future changes in ENSO under global warming. One challenge in detecting trends in observations is that 
the record is short relative to the frequency of ENSO events. However, there is some evidence to support changes 
in ENSO in the recent historical period. For example, paleo-proxies of ENSO based on coral fossils suggest 
that ENSO variability is 25% stronger during the last 50 years compared with the pre-industrial period (Grothe 
et al., 2019). In addition, Linear Inverse Model simulations suggest that ENSO dynamics changed significantly 
in the late 1970's (Capotondi & Sardeshmukh, 2017).

Many studies have been performed attempting to project ENSO into the future, however, there is an overall lack 
of consensus. A review paper by Yeh et al. (2014) highlights substantial uncertainty in future changes in ENSO 
amplitude and spatial pattern. The difficulty in projecting future changes in ENSO amplitude and frequency has 
been attributed in part to the complexity of the processes that lead to ENSO growth and decay, including multiple 
positive and negative feedbacks (Collins et al., 2010). Even considering relatively recent climate model simula-
tions from the Coupled Model Intercomparison Project, Phase 5 (CMIP5), some studies find no consensus on 
projections of future changes in ENSO (C. Chen et al., 2017), with a major source of uncertainty coming from the 
spatial pattern of tropical Pacific warming (Zheng et al., 2016). In particular, ENSO amplitude tends to increase 
(decrease) in models with enhanced (reduced) warming in the eastern equatorial Pacific (Zheng et al., 2016). 
Adding further complication to projecting ENSO is the possibility that future changes in ENSO amplitude may 
vary in time (Kim et al., 2014).

Despite much uncertainty around future ENSO projections, there are a few areas in which multiple studies find 
similar results. First, several studies indicate a possible increase in Central Pacific El Niño events relative to 
East Pacific El Niño events in the future, based on both the CMIP3 and CMIP5 models (Kim & Yu, 2012; Yeh 
et al., 2009). In addition, climate models tend to agree on future changes in the equatorial Pacific zonal SST 
gradient, with preferential warming in the eastern equatorial Pacific, representing a weakening of the equatorial 
Pacific zonal SST gradient (review paper by Cai, Santoso, et al. (2015), Fredriksen et al. (2020)). Finally, some 
studies find an increase in the frequency of ENSO events. Cai, Wang, et al. (2015) found almost a doubling in the 
frequency of La Niña events in the future, based on the Niño 4 index in the CMIP5 models, and Cai et al. (2014) 
found a doubling of extreme El Niño event frequency, based on rainfall in the eastern equatorial Pacific in the 
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CMIP3 and CMIP5 models. Similarly, a future increase in East Pacific SST variability was found in the CMIP5 
models that capture the two types of ENSO (Cai et al., 2018), and among a subset of 11 CMIP6 models, 10 
models project an increase in SST variance in the Niño 3.4 region (Fredriksen et al., 2020). El Niño and La Niña 
events are projected to become more frequent at the expense of neutral ENSO conditions in the Community Earth 
System Model-Large Ensemble (CESM-LENS) based on the ENSO Longitude Index (ELI); however, the Niño 
3.4 index does not capture this response (Williams & Patricola, 2018).

There are multiple sources of uncertainty in future ENSO projections, including biases in climate models, for 
example, in the mean-state SST and trends in SST. Many generations of coupled global climate models (GCMs) 
have suffered from substantial biases in mean-state SST in the eastern tropical-subtropical Pacific (Richter, 2015; 
Zuidema et al., 2016), which overlaps with the region in which ENSO occurs. These SST biases can have contri-
butions from the atmosphere (e.g., through errors in representing marine stratocumulus cloud decks and/or 
low-level coastal jets) and from the ocean (e.g., through errors in representing coastal upwelling, ocean eddies, 
and the thermocline). In addition to contributing to overall uncertainty in the projected climate of the tropical 
Pacific, biases in the mean-state SST and the thermocline can directly impact the representation of ENSO vari-
ability (e.g., Capotondi, Ham, et al., 2015) and have the potential to impact future projections of ENSO (Tang 
et al., 2021). In particular, Tang et al. (2021) found that removing common model biases in simulated Pacific 
SST results in a projected future Pacific SST change that is more La Niña-like, rather than El Niño-like. On top 
of mean-state SST biases, many models fail to reproduce observed trends in equatorial Pacific SST. In particular, 
Seager et al. (2019) found that although the equatorial Pacific zonal SST gradient has strengthened from 1958 
to 2017, coupled models fail to capture this observed trend. Note that there is dependence on the time period 
considered for the trend, as some observational data sets for SST indicate a statistically significant cooling trend 
in eastern equatorial Pacific SST from 1900 to 2010, whereas the different products agree on a significant warm-
ing trend in the western equatorial Pacific (Deser et al., 2010).

In addition to model biases in representing the observed mean-state and trends in SST, biases have been docu-
mented in climate model representation of ENSO variability. One issue is that many climate models (CMIP3 
and CMIP5) have biases in the spatial pattern of El Nino's warming, with warming maxima too far to the west 
(Bellenger et al., 2014; Capotondi, 2010; Capotondi et al., 2006; Guilyardi et al., 2009; Yang & Giese, 2013). 
Another problem related to the spatial pattern of ENSO is that most of the CMIP3 models fail to simulate the two 
primary observed types of El Niño, instead simulating only one type of El Niño (Ham & Kug, 2012). In addition, 
less than half of the CMIP3 models realistically simulate the observed intensity of the two types of ENSO (Yu 
& Kim, 2010). There have been some modest improvements in model representation of ENSO from CMIP3 to 
CMIP5, including better representation of ENSO's spatial patterns, amplitude, and lifecycle; however, the models 
still struggle to reproduce the observed intensity of East Pacific El Niño events (Bellenger et al., 2014; Kim & 
Yu, 2012). Several studies highlight the need for further improvements in climate model representation of ENSO, 
as realistic simulations of ENSO depend on both atmospheric and oceanic model components and their coupled 
feedbacks (Capotondi, Ham, et al., 2015; Guilyardi et al., 2009). Furthermore, there is great complexity to ENSO 
in terms of its spatial patterns, seasonal cycle, and genesis mechanisms. Indeed, it is difficult not only to simulate 
the climatology of observed ENSO characteristics, but also to predict ENSO events, such as the 2015/2016 El 
Niño (L’Heureux et al., 2017).

A second major source of uncertainty in future ENSO projections derives from the use of multiple ENSO indi-
ces (review paper by Capotondi, Wittenberg, et al. (2015)), many of which fail to characterize ENSO diversity. 
Among the most commonly used ENSO indices are those based on SSTAs averaged over various boxes within the 
equatorial Pacific, such as the Niño 3.4, Niño 3, Niño 4, and Niño 1 + 2 indices (Trenberth, 1997). Such indices 
can work well for a given climate state; however, it is challenging to apply them in a changing climate, which 
requires that the baseline SST climatology be re-defined over time, introducing artifacts into the time series. 
Furthermore, Niño 3.4 and related indices do not capture ENSO diversity, since they consider a fixed box; as a 
result, they do not capture the response of deep convection, which depends on SST rather than SSTA. To try to 
capture ENSO diversity, several indices have been developed to measure differences or gradients in SSTAs within 
the equatorial Pacific, including the Trans-Niño index (Trenberth & Stepaniak, 2001) and the El Niño Modoki 
Index (Ashok et al., 2007). In addition, there are several ENSO indices based on atmospheric variables, includ-
ing the Southern Oscillation Index, which measures sea-level pressure differences between Tahiti and Darwin, 
Australia (Trenberth, 1984), an index based on outgoing longwave radiation anomalies in the eastern-central trop-
ical Pacific (Chiodi & Harrison, 2013, 2015), and a precipitation-based index that measures rainfall averaged in 
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the Niño 3 region for El Niño (Cai et al., 2014). However, precipitation-based 
ENSO indices can overestimate future changes in El Niño due to precipita-
tion change associated with global warming rather than ENSO; indeed, future 
ENSO projections depend strongly on the type of ENSO metric used, that is, 
SSTA-based or precipitation-based (Marjani et al., 2019). Similarly, future 
changes in El Niño events depend on whether the event is associated with 
extreme precipitation in the Niño 3 region or eastern equatorial Pacific SST 
warming, based on CMIP5 models (Wang et al., 2020). To address the vari-
ous limitations of existing ENSO indices, the physically based ENSO Longi-
tude Index (ELI) was developed (Williams & Patricola,  2018), which has 
several strengths including: it measures zonal shifts in tropical Pacific deep 
convection associated with ENSO, it captures ENSO diversity in a single 
metric, it accounts for changes in the background state SST associated with 
the seasonal cycle and climate change, and it explains teleconnections with 
tropical cyclone activity and global precipitation at least as well as Niño3.4 
(Patricola et al., 2020, 2022; Williams & Patricola, 2018).

The purpose of our study is to better understand the behavior of ENSO and 
the tropical Pacific mean-state SST in a warming climate, in the context of 
climate model biases. We analyzed two ENSO indices, namely the ELI and 
Niño 3.4 index, in simulations from the multi-model ensemble of CMIP6 to 
address the following questions:

1.  To what extent are CMIP6 models impacted by biases in tropical Pacific 
SST and ENSO representation?

2.  What are the future projections of ENSO in the CMIP6 multi-model 
ensemble, based on ELI and the Niño 3.4 index?

3.  What is the relationship between historical climate model biases and 
future projections of ENSO and the tropical Pacific mean-state SST?

This study is novel in evaluating future ENSO conditions using a physically 
based ENSO index that is capable of capturing ENSO diversity. In addition, 
we investigate the potential influence of climate model biases on future 
projections of ENSO and the Pacific mean state, which provides a better 
understanding of uncertainty.

2. Data
We used data from the CMIP6 multi-model ensemble (Eyring et al., 2016), 
which is organized under the World Climate Research Programme (WCRP). 
Using a multi-model ensemble accounts for a wide range of potential climate 
outcomes associated with the different climate sensitivities of each model. 
In total, we used SST data from 173 individual simulations from 29 CMIP6 
climate models, and cloud cover data from 29 individual simulations from 14 
CMIP6 climate models, which is all data available at the time of the study. 

Many of these models include multiple ensemble members, based on different physics schemes and initial condi-
tions. We used the maximum number of ensemble members available, as large ensembles (consisting of 15–30 or 
more members) are best suited to quantify future changes in ENSO, given the substantial internal variability of 
the climate system (Maher et al., 2018; Zheng et al., 2018). A full list of the CMIP6 models used, including the 
number of ensemble members analyzed for each, can be found in Table 1.

For each model, we analyzed SST data from January 1850 through December 2100. For this data set, data from 1850 
to 2014 was from the historical simulations, and data from 2015 to 2100 was from the future simulations based on the 
Shared Socioeconomic Pathway 5–8.5, which is generally considered to be a “worst-case scenario” for climate change 
and anthropogenic greenhouse gas emissions. Our analysis uses monthly SST data to calculate the ENSO indices 
described in the next section. Cloud cover data was similarly available from January 1850 through December 2100.

Model

Number of ensemble 
members with SST data 

available

Number of ensemble 
members with cloud 
cover data available

ACCESS-CM2 3 3

ACCESS-ESM1-5 10 0

AWI-CM-1-1-MR 1 0

BCC-CSM2-MR 1 1

CAMS-CSM1-0 2 0

CanESM5 50 1

CMCC-CM2-SR5 1 1

CNRM-CM6-1 6 0

CNRM-CM6-1-HR 1 0

CNRM-ESM2-1 5 0

EC-Earth3 2 0

EC-Earth3-Veg 3 0

FGOALS-f3-L 1 1

FGOALS-g3 4 1

GFDL-CM4 1 0

GFDL-ESM4 1 1

GISS-E2-1-G 7 0

HadGEM3-GC31-LL 4 0

HadGEM3-GC31-MM 4 0

INM-CM4-8 1 0

INM-CM5-0 1 0

IPSL-CM6A-LR 6 6

MIROC6 50 9

MIROC-ES2L 1 0

MPI-ESM1-HR 2 1

NESM3 2 1

NorESM2-LM 1 1

NorESM2-MM 1 1

TaiESM1 1 1

Note. The total number of simulations with available SST data is 173 and the 
number with available cloud cover data is 29.

Table 1 
List of the 29 Coupled Model Intercomparison Project, Version 6 Models 
Analyzed, With the Number of Ensemble Members for Each Model

 21698996, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037563, W
iley O

nline L
ibrary on [16/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

ERICKSON AND PATRICOLA

10.1029/2022JD037563

5 of 18

For observed SST data, we used the National Oceanic and Atmospheric Administration (NOAA) Extended 
Reconstructed SST Version 5 (ERSSTv5) monthly 2°  ×  2° SST (Huang et  al.,  2017a,  2017b), which covers 
January 1854 through the present. Observational cloud cover data was taken from the European Center for 
Medium-Range Weather Forecast Reanalysis, version 5 (ERA5) data set (ECMWF, 2019). The ERA5 reanalysis 
is on a 0.25° × 0.25° latitude-longitude grid and contains 37 vertical pressure levels. ERA5 cloud cover data is 
available from January 1980 through the present.

3. Methods
We used two indices to characterize ENSO in the ERSSTv5 observations and the CMIP6 simulations, namely, 
the Niño 3.4 index and ELI (Williams & Patricola, 2018). We use ELI because it is a physically based index that 
captures ENSO diversity in one metric and measures the zonal shifts in tropical Pacific deep convection that initiate 
teleconnections. Furthermore, ELI is well-suited for climate change studies, as it accounts for changes in back-
ground SST. We use ELI to measure the zonal shifts in average deep convection, rather than precipitation directly, 
as precipitation-based ENSO indices can overestimate future changes in El Niño due to precipitation change asso-
ciated with global warming and the Clausius-Clapeyron relation (Marjani et al., 2019). The calculation of ELI 
follows  a three-step process, with monthly SST as the sole input. First, the tropics-wide average SST is calculated in 
order to approximate a threshold for the presence of deep convection (Williams et al., 2009). This threshold temper-
ature is calculated over the entire global tropics, defined as 5°N–5°S, with results insensitive to using this range or 
20°N–20°S (Williams & Patricola, 2018). The second step involves applying a binary spatial mask to the tropics 
based on the threshold temperature. Grid points with SSTs equal to or warmer than the convective threshold are 
assumed to experience deep convection and are assigned a value of 1, whereas grid points with SSTs cooler than the 
threshold are assumed to have no deep convection and are assigned a value of 0. The final step in calculating ELI 
estimates the average longitude that experiences tropical Pacific deep convection, that is, the average longitude at 
which the local SST meets or exceeds the convective threshold SST. This step of the calculation is done in the tropics 
for the Pacific basin only. The monthly ELI is thus defined as this average longitude at which SSTs are greater than 
the threshold temperature for deep convection. We note that the calculation of ELI considers whether the convective 
threshold is exceeded, and ELI is not weighted by how much the convective threshold is exceeded; nevertheless, 
ELI explains the global responses of precipitation, temperature, and tropical cyclones at least as well as the Niño3.4 
index (Balaguru et al., 2020; Magee & Kiem, 2020; Patricola et al., 2020, 2022; Williams & Patricola, 2018). There 
is a high correlation between the Niño3.4 index and ELI (R = 0.86 for the December–February (DJF) averages over 
1870–2021), which is due to a strong relationship between the two indices for La Niña, neutral ENSO, and weak 
El Niño events (Figure 1a of Williams & Patricola, 2018); however, the correlation breaks down for strong El Niño 
events, which ELI is particularly well-suited to capture. In interpreting ELI, we note that ELI accounts for changes 
in ENSO associated with changes in ENSO variability and in the mean background SST state.

In addition to calculating ELI, we also calculate the Niño 3.4 index, which has been used as one of the standard 
indices for measuring ENSO over the last several decades (Li et al., 2010). However, its non-responsiveness to 
convective threshold effects causes it to poorly represent ENSO diversity. Niño 3.4 is calculated by taking the 
average SST anomaly over the region 5°N–5°S and 170°E − 120°E (Trenberth, 1997). The SST anomaly for 
a given year is calculated relative to the SST climatology for the surrounding 30 years, that is, 15 years prior 
through 15 years following. By using a running climatology, we attempt to avoid step changes in the Niño 3.4 
index that can be introduced when using a climatology that is updated every decade. Calculating Niño 3.4 allows 
us to place our results within the context of many previous studies that used this index. In interpreting the Niño 
3.4 index, we note that this index accounts for change in ENSO associated with changes in ENSO variability (e.g., 
ENSO amplitude and frequency), but unlike ELI, it does not account for changes in the mean background SST 
state. For this reason, the following analysis focuses on future change in the standard deviation of the Niño 3.4 
index, which is a measure of ENSO variability, rather than future change in the mean of the Niño 3.4 index, which 
is expected to be minimal due to the construction of the index (i.e., the use of the running mean climatology).

4. Results
4.1. Validation of ENSO and Tropical Pacific Mean-State SST in Historical Climate Simulations

A primary focus of our study was to determine the prevalence and severity of biases simulated by the coupled 
climate models participating in CMIP6. We validate the historical simulations by comparing the observed and 
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simulated tropical Pacific SST climatology and ENSO distributions. Such validation gives us insight into the 
performance of the CMIP6 ensemble for simulating the historical statistics of ENSO events and allows us to 
interpret future ENSO projections in the context of model biases.

We begin by evaluating biases in the SST climatology over the tropical Pacific during ENSO's DJF peak for 
the CMIP6 models relative to the ERSSTv5 observations. Richter (2015) concluded that GCMs in the CMIP5 
multi-model ensemble typically exhibit significantly warmer-than-observed SSTs in the ENSO region. The warm 
bias in the eastern tropical Pacific acts to weaken the zonal SST gradient in the tropical Pacific, which leads to 
a background SST that is biased toward more El Niño-like conditions. Figure 1a demonstrates that the SST bias 
commonly found in the eastern tropical Pacific in previous generations of models persists in CMIP6 and is most 
pronounced directly off the northwest coast of South America. Figure 1c shows the zonal SST distribution for the 
CMIP6 ensemble relative to the observations across the equatorial Pacific. The SST biases in the eastern tropical 
Pacific are largely robust across the multi-model ensemble (Figure 1c). While DJF averaged SSTs in the western 
tropical Pacific are captured somewhat well, substantial bias is evident in the eastern tropical Pacific; nearly every 
model simulates warmer than observed SST around 270°E (just off the coast of South America), and most of 
the models are 1–3°C warmer than observations on average in the far eastern Pacific. In addition, we calculated 

Figure 1. (a) Sea-surface temperature (SST) biases (°C) from the Coupled Model Intercomparison Project, version 6 (CMIP6) multi-model ensemble, averaged 
December–February (DJF) over 1854–2021. The SST biases were produced by regridding all CMIP6 models to the horizontal grid of the Extended Reconstructed SST 
Version 5 (ERSSTv5) data set, which was used as the baseline observed SST. Each model is weighted equally to produce the multi-model ensemble average bias (i.e., 
multiple ensemble members for a given model are averaged before creating the multi-model ensemble average). (b) CMIP6 models ranked according to their root mean 
square error for tropical Pacific SST, relative to the ERSSTv5 observations. (c) The zonal tropical Pacific SST distribution (°C), averaged over 5°N – 5°S and DJF over 
1854–2021. The red line indicates the multi-model mean SST from CMIP6, with the standard deviation of modeled SSTs shaded in pink. Observed SST from ERSSTv5 
is shown in blue.
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the root mean square error (RMSE) of SST in the southeastern tropical Pacific for each CMIP6 model relative  to 
observations (Figure 1b) to determine the average degree of bias in SST over the entire region of interest. For 
this analysis, we defined the southeastern tropical Pacific from 240°E to 290°E, and from 5°N to 5°S, where the 
most prominent SST biases are evident in Figure 1a. We use the RMSE later in the analysis to investigate possible 
relationships with future ENSO projections.

We next evaluate climate model biases in ENSO representation for all years in which SST observations were 
available (January 1854–December 2021), first using ELI and then the Niño 3.4 index, with both averaged during 
ENSO's DJF peak. Many of the models produced multiple ensemble members; thus, we assigned equal weight to 
each model by creating a single ELI or Niño 3.4 distribution for each model, made up of the ENSO index values 
for all ensemble members performed by the given model. We equally weighted each model because ensemble 
members from the same model are likely to be more similar to each other than simulations from different models. 
This method enables a more effective interpretation of the ENSO indices that will avoid over-emphasizing models 
that produced many ensemble members.

To classify models into different sub-groups based on representation of the Pacific mean state, we defined three 
divisions based on the DJF-averaged ELI over the period 1854–2021: those biased toward El Niño-like conditions 
(defined as a median ELI greater than or equal to 165°E), those with a roughly similar median ELI compared with 
observations (defined as a median ELI between 158°E and 165°E), and those biased toward La Niña-like condi-
tions (defined as a median ELI less than 158°E). Divisions were created relative to the median observed ELI of 
about 158°E. Figures 2a–2c shows the DJF ELI distributions from 1854 to 2021 for each model, organized by the 
bias in median ELI. A clear pattern of bias is present within the CMIP6 ensemble. Of the 29 models analyzed, 17 
(∼59%) exhibited an El Niño-like bias, 10 (∼34%) produced a median ELI similar to observed, and only 2 (∼7%) 
demonstrated a La Niña-like bias. The strong ELI-based bias toward El Niño-like conditions is consistent with the 
typical multi-model ensemble average mean-state SST biases in the tropical Pacific (Figure 1), with an average 
bias in southeastern tropical Pacific SST of 0.56°C and −0.66°C in the El Niño-like and La Niña-like models, 
respectively (Figure 2). Recall that ELI can capture such biases, as it can represent changes in both mean-state 
SST and in ENSO variability.

We next analyzed the distribution of DJF-averaged values of the Niño 3.4 index from 1854 to 2021. As with the 
ELI analysis, boxplots for a given model contain all available ensemble members for that model. Figures 2d–2f 
shows the distributions of Niño 3.4 for each CMIP6 model using the ELI-based bias groupings (El Niño-like, 
weakly biased, and La Niña-like). The Niño 3.4 distributions from the CMIP6 models do not demonstrate a clear 
pattern of bias in the median, even when grouped according to patterns of bias evident from ELI. We expect this 
result because the Niño 3.4 index quantifies SST anomalies relative to a background climatology that is updated 
over time (i.e., as the climate warms), so the Niño 3.4 index distribution should be centered near zero given a 
sufficient sample size. Although the Niño 3.4 index does not provide information about biases in mean-state SST, 
it does provide a useful basis to compare the tails of the distribution (i.e., strength of La Niña and El Niño events) 
between observations and the models. The models tend to produce a range of Niño 3.4 values that is either close 
to observed (i.e., weak bias in amplitude of ENSO events) or smaller than the observed range (i.e., biased toward 
low amplitude of ENSO events), with only a few models simulating values of the Niño 3.4 index that are more 
extreme than observed. The biases in the simulated extremes of the Niño 3.4 index appear to be independent of 
the ELI-based biases, indicating little connection between mean-state SST biases and biases in the amplitude of 
ENSO events.

4.2. Future Projections of ENSO and Tropical Pacific Mean-State SST

Given the interconnections between the mean-state and variability in the tropical Pacific, we begin our analysis of 
future projections by considering changes in the mean-state SST. Figure 3a shows the DJF-averaged multi-model 
SST change for 2050–2100 minus 1850–1900. The greatest future increase in SSTs is off the west coast of South 
America, centered just south of the equator. The entire tropical Pacific warms to some degree, but the spatial 
pattern of warming is highly variable in both the zonal and meridional directions. Along the equator, preferential 
warming is projected in the eastern Pacific, which would support more El Niño-like background conditions. To 
further examine future changes in the zonal SST gradient in the tropical Pacific, we considered SST changes for 
2050–2100 minus 1850–1900 averaged over 5°N–5°S from each model (Figure 3b). While the detailed nature 
of warming differs between models, one consistent future climate response is stronger warming in the eastern 
tropical Pacific, which supports a future shift toward more El Niño-like conditions.
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Having shown that the zonal tropical Pacific SST gradient is generally projected to weaken in the future, consist-
ent with Fredriksen et al. (2020), we next analyze future changes in both ENSO indices. Figure 4a shows the 
simulated temporal trends in ELI from 1850 to 2100, with a clear trend toward El Niño-like conditions (increas-
ing values of ELI) in many of the simulations. This is consistent with the strong signal of a future weakening in 
the zonal SST gradient, that is, of preferential eastern Pacific SST warming from the historical period through 
the end of the 21st century.

Figure 2. Box plots of December–February (DJF) averaged ENSO Longitude Index (ELI) (°E), over 1854–2021, from Extended Reconstructed SST Version 5 
observations and from models with (a) El Niño-like ELI biases, (b) weak biases in median ELI, and (c) La Niña-like ELI biases, and (d)–(f) similar for DJF averaged 
Niño 3.4 (°C). The box plot for each model contains data between the first and third quartile of the distribution for each DJF value during 1854–2021 and for all 
ensemble members for that model. Whiskers extend to 1.5 times the interquartile range. Diamonds represent outlying points that fall outside the range of 1.5 times the 
interquartile range. The black dashed line denotes the median observed ELI/Niño 3.4, respectively. Average sea-surface temperature biases in the southeast tropical 
Pacific are indicated for each bias grouping.
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To fully grasp the significance of the trend toward more El Niño-like 
conditions, it is important to quantitatively measure the trend over time. 
We performed two-tailed T-tests to evaluate the significance of changes in 
ELI between two periods: the historical climate (1850–1900) and the future 
climate (2050–2100). We consider the changes using two approaches, first 
by considering all ensemble members of all models equally, then by consid-
ering each model equally regardless of its ensemble size. Table 2 shows the 
number of simulations that produced increases or decreases for each index, 
as well as those that produced statistically significant (p < 0.05) increases 
or decreases. Of the 173 simulations considered in our study, 134 (∼77%) 
projected a shift toward increased ELI (i.e., more El Niño-like conditions) 
from historical to future, whereas only 39 simulations (∼23%) projected an 
average decrease in ELI (i.e., more La Niña-like conditions). Additionally, 83 
simulations (∼48% of the entire data set) projected a statistically significant 
increase in ELI, whereas only one simulation indicated a statistically signif-
icant decrease in  ELI.

To determine the robustness of these future ENSO projections, we next 
consider each model equally regardless of its ensemble size. We include this 
analysis to evaluate whether the future projections in the analysis above are 
weighted heavily by a few models that have many ensemble members. If 
almost all of the significant changes are produced by only a couple of the 
CMIP6 models, then the robustness of the predictions may be decreased. 
We found that 16 of the 29 CMIP6 models we used (or 55% of models 
used) had at least 50% of their ensemble members project a statistically 
significant increase in ELI; of these 16 models, nine had multiple ensem-
ble members. On the other hand, none of the models had at least 50% of 
their ensemble members project a statistically significant decrease in ELI. 
This result strengthens the robustness of the future ENSO projections, as it 
indicates that 55% of the models, some of which contain multiple ensemble 
members, produce a consensus regarding a future shift toward more El Niño-
like conditions.

We next evaluate future changes in ENSO using the Niño 3.4 index. Since the Niño 3.4 index removes the 
running mean climatology, we do not expect to find substantial changes in the mean over time. Indeed, due to the 
construction of the index, changes in the average Niño 3.4 index are insignificant between the future and histor-
ical climates. Figure 4b shows no clear trend in the Niño 3.4 index from 1850 to 2100. T-tests were performed 
on the Niño 3.4 distributions in the same manner as they were for ELI, and no simulations produced statistically 
significant future changes in Niño 3.4 (Table 2). Instead, the Niño 3.4 index is useful for evaluating changes in 
the amplitude of ENSO events, which can be quantified using the standard deviation of the Niño 3.4 index, calcu-
lated over each 30-year period centered on the given year. Figure 4c shows the trend of the standard deviation of 
Niño 3.4 with time, and Table 2 summarizes the projected changes in the standard deviation of Niño 3.4. Overall, 
103 simulations produced a significant change in the standard deviation of Niño 3.4, with 72 (42%) projecting 
a significant increase in the standard deviation and 31 (18%) projecting a significant decrease in the standard 
deviation. Although the overall interannual variability in ENSO according to Niño 3.4 is projected to change in 
the future climate in many of the simulations, there is a lack of consensus on whether an increase or decrease in 
ENSO variability is expected.

4.3. Influence of Model Bias on Future Projections of ENSO and Tropical Pacific Mean-State

Now that we have evaluated biases in the mean-state tropical Pacific SST and in the distribution of ENSO, and 
analyzed future ENSO projections, we explore whether there is any relationship between the two. Given that no 
climate model can perfectly represent the historical climate, it is useful to understand model biases so that we 
can better gauge uncertainties in future projections. Figure 5 shows paired boxplots of ELI distributions for the 
three ELI-based bias groups introduced in Section 4.1, with the historical and future distributions side-by-side for 

Figure 3. Future change (2050–2100 minus 1850–1900) in sea-surface 
temperature (SST) (°C) averaged December–February (a) from the Coupled 
Model Intercomparison Project, version 6 multi-model ensemble and (b) in 
the tropical Pacific zonal SST distribution (°C), averaged over 5°N–5°S. (a) 
As in Figure 1a, each model is weighted equally to produce the multi-model 
ensemble average SST change. (b) Each line represents the ensemble-mean 
from one model.
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each model. Generally, a translation of the distribution suggests a changing 
tropical Pacific zonal SST gradient, whereas a stretching/compression of the 
distribution indicates an increase/decrease in ENSO events (i.e., greater or 
fewer number of extreme El Niño and La Niña events). Overall, the primary 
difference projected between the historical and future climates is a translation 
of the distribution, consistent with the substantial future decrease in the tropi-
cal Pacific zonal SST gradient presented in Section 4.2.

To further study the relationship between climate model biases and projected 
changes, we examined correlations between DJF averaged biases in the 
ENSO indices, in SST, and in cloud cover (included because it is commonly 
associated with SST biases in our region of interest), and the projected 
changes in the ENSO indices (Figure  6) using all models and ensemble 
members available at the time of this study. Biases in the ENSO metrics are 
derived from the results presented in Section 4.1. SST and cloud cover biases 
are calculated over the southeastern tropical Pacific, bounded by 5°N–5°S 
and 240°E − 290°E. Climate model biases in cloud cover in the southeast-
ern tropical Pacific are primarily associated with low-level stratocumulus 
(Richter, 2015); therefore, we analyze cloud cover at levels below 500 mb. 
Overall, the linear correlations between model biases and projected ENSO 
changes are generally weak (Figure 6), except for the relationship between 
mean SST bias in the southeast tropical Pacific and the mean projected 
change in ELI (Figure 6c; Pearson coefficient of 0.548) and the relationship 
between RMSE of tropical Pacific SST and the mean projected change in 
ELI (Figure 6g; Pearson coefficient of 0.51). This indicates that projected 
changes in ELI may be influenced by the mean-state SST bias in the histor-
ical climate. However, it is important to note that some models have many 
ensembles members, whereas others do not, leading to the possibility that 
this result is strongly influenced by a small number of models that have many 
ensemble members.

Therefore, we performed similar analysis using the ensemble mean from 
each available model to investigate whether the correlations were caused by a 
small number of models that have many ensemble members (Figure 7). This 
analysis lends further support for a portion of the results in Figure 6, includ-
ing a negligible relationship between historical ELI bias and projected future 
ELI change and a moderate negative correlation between historical Niño 
3.4 standard deviation bias and projected future Niño 3.4 standard deviation 
change, while indicating that the relationship between tropical Pacific SST 
biases and future change in ELI may be highly influenced by models with 
many ensemble members. Additionally, there is a moderate negative correla-
tion (Pearson coefficient of −0.527) between cloud bias and projected future 
ELI change (Figure 7e); however, this result should be taken with caution due 
to relatively few simulations with available cloud cover data.

Finally, we also analyzed the relationship between historical bias in the devel-
oping ENSO seasons—boreal summer, (June, July, and August (JJA)), as well 
as boreal autumn (September, October, and November (SON)) and projected 
future change in the peak ENSO season, boreal winter. Figure 8 shows the 
relationship between mean-state SST bias in the historical climate for boreal 
summer/autumn and projected future change in ELI for boreal winter. A 
strong positive correlation (Pearson coefficient of 0.867 for JJA/0.824 for 
SON) is evident between historical climate SST bias in the developing ENSO 
seasons and future change in peak season ELI. Minimal correlation was pres-
ent between the other bias metrics evaluated and future change in peak season 
ENSO indices. Thus, while some dependence on historical bias is suggested 

Figure 4. Heatmap displaying trends in the December–February averaged (a) 
ENSO Longitude Index (°E), (b) the Niño 3.4 index (°C), and (c) the standard 
deviation of the Niño 3.4 index (°C) over time for all available climate models 
and ensemble members in the Coupled Model Intercomparison Project, 
version 6 simulations (i.e., each horizontal stripe represents one ensemble 
member of a climate model). Lower values in blues indicate (a) La Niña-like 
conditions, (b) La Niña events, and (c) a decrease in El Niño—Southern 
Oscillation (ENSO) variability; higher values in reds indicate (a) El Niño-like 
conditions, (b) El Niño events, and (c) and increase in ENSO variability. (a) 
The color bar is bounded by 150°E and 180°E; values less than 150°E indicate 
an extremely strong La Niña event, while values greater than 180°E indicate an 
extremely strong El Niño event. (b), (c) The Niño 3.4 index only runs through 
2085, as opposed to 2100, to prevent the appearance of artificial warming 
trends caused by the rolling climatology at the start and end of the data record. 
Each of these figures is visually “smoothed” to show the 7-year average value 
of each index to improve readability.
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for the future projections, further analysis must be done to clarify if the projections and bias are related quanti-
tatively; we show this analysis next. Here, we examine the proportions of simulations in each bias grouping that 
project statistically significant changes in ELI. Table 3 shows the number of simulations in each ELI-based bias 
grouping, as well as the numbers and percentages indicating statistically significant increases in future ELI from 
each grouping. The vast majority of simulations (∼83%) fell into the El Niño-like bias grouping (145 of 173 simu-
lations). Of these, ∼48% (70 of 145 simulations) projected statistically significant increases in ELI. Meanwhile, 
the weakly biased group had 21 simulations, of which 14 (66%) projected a statistically significant increase in 
future ELI. The sample size in the La Niña-like biased group is very small, with only seven simulations. The 
percent of simulations projecting a significant future increase in ELI does not vary substantially between models 
with an El Niño-like bias and models with weak ELI-based bias, suggesting little dependence of future ENSO 
projections on such biases.

5. Discussion and Conclusions
Despite ENSO's importance for driving teleconnections with weather and climate globally, there has been a lack 
of consensus regarding future ENSO projections. Two major challenges that make it difficult to project future 
ENSO conditions include model biases and, until recently, the lack of an ENSO index that can capture the diver-
sity of El Niño's spatial variations. To work toward solving this problem, we investigated three questions using 
the CMIP6 multi-model ensemble: First, what is the prevalence and severity of model biases in tropical Pacific 
mean-state SST and ENSO; second, how are ENSO and the tropical Pacific mean-state SST projected to change 
into the future; and finally, what is the relationship between climate model biases and future ENSO projections? 
We addressed these questions by analyzing 173 simulations from 29 CMIP6 models. We evaluated two ENSO 
indices: (a) ELI, which tracks the zonal shifts in tropical Pacific deep convection that drive teleconnections with 
global weather, captures ENSO diversity, and accounts for changes in background SST associated with climate 
change and (b) the Niño 3.4 index, which is based on SST anomalies in a fixed region and therefore fails to 
capture ENSO diversity.

We found that the biases typical of previous generations of climate models 
(e.g., Richter, 2015; Zuidema et al., 2016) remain prevalent in the CMIP6 
ensemble. In particular, the vast majority of models simulate a warm SST 
bias in the eastern tropical-subtropical Pacific, which results in a significant 
portion of the models (∼59%, or 17 of 29 models) biased toward El Niño-like 
conditions, based on median values of ELI. Only 10 of the 29 models (∼34%) 
were weakly biased according to median ELI, and even fewer, 2 of the 29 
models (∼7%), demonstrated La Niña-like biases. Regarding future ENSO 
projections, we found that a large majority (∼77%) of CMIP6 simulations 
projected a future shift toward more El Niño-like conditions, based on ELI, 
with roughly half of the simulations (48%) projecting a statistically signifi-
cant increase. Furthermore, 16 of the 29 CMIP6 models (∼55%) projected a 
future shift toward more El Niño-like conditions, whereas none of the models 
projected a future shift toward more La Niña-like conditions, demonstrating 
that the projections are quite robust. Importantly, these future ENSO projec-
tions did not depend on model biases in ELI. The Niño 3.4 index, which by 

ENSO index Increase Significant increase Decrease Significant decrease

ELI 134 (77%) 83 (48%) 39 (23%) 1 (1%)

Niño 3.4 152 (88%) 0 (0%) 21 (12%) 0 (0%)

Niño 3.4 Standard Deviation 116 (67%) 72 (42%) 57 (33%) 31 (18%)

Note. Numbers in parentheses indicate the percent of simulations out of the total 173 considered that projected the given 
change.

Table 2 
The Number of Simulations Indicating Increases and Statistically Significant Increases (p < 0.05), as Well as Decreases 
and Statistically Significant Decreases (p < 0.05) in Mean ENSO Longitude Index and Mean and Standard Deviation of 
the Niño 3.4 From the Historical Climate (1850–1900) to the Future Climate (2050–2100)

Group (ELI-based 
bias)

Number of simulations 
in group

Number of simulations with 
significant increase in ELI

El Niño-like 145 70 (48%)

Weakly Biased 21 14 (66%)

La Niña-like 7 0 (0%)

Note. Numbers in parentheses indicate the percent of simulations out of the 
total within a given group that projected a significant increase in ELI.

Table 3 
The Number of Simulations Projecting Increases (i.e., Shifts Toward More 
El Niño-Like Conditions) and Statistically Significant Increases (p < 0.05; 
i.e., Statistically Significant Shifts Toward More El Niño-Like Conditions) 
in ENSO Longitude Index From the Historical Climate (1850–1900) to the 
Future Climate (2050–2100)
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definition does not account for changes in background SST, unsurprisingly 
showed no coherent change into the future. However, the projected changes in 
the standard deviation of Niño 3.4 between the historical and future climates 
suggest a possible future change in ENSO variability, although there is a 
lack of consensus in the models regarding the sign of the change, with 42% 
(18%) of simulations projecting a significant increase (decrease) in ENSO 
variability in the future.

Altogether, these results provide strong evidence of climate change's effect 
on ENSO; based on the comparisons between historical and future ELI, 
we expect a future shift toward more El Nino-like conditions to manifest 
through a change in the mean-state SST, particularly a future weakening of 
the zonal SST gradient. Regarding the connection between model biases and 
future ENSO projections, we found a moderate correlation between histor-
ical climate SST and low-level cloud cover biases in the southeastern tropi-
cal Pacific and the projected future change in ELI. This result suggests that 
there may be a relationship between historical bias and projected future shifts 
toward El Niño-like conditions; however, an important caveat is that these 
results are heavily influenced by a small number of climate models with 
many ensemble members for SST and by limited data availability for cloud 
cover. This raises the possibility that any substantial historical bias relating 
to ENSO may significantly alter our future projections of ENSO, highlight-
ing the need for further work to remedy persistent climate model biases. It 
would also be useful to consider how climate model biases during ENSO's 
development and decay stages may influence future projections of ENSO in 
future work.

Useful contributions for potential future studies include investigating the 
physical mechanisms that contribute to biases in ENSO; for example, through 
the processes that play a role in the Bjerknes feedback (Bjerknes, 1969). This 
includes exploring the models for potential systematic errors in simulating 
atmospheric factors such as trade winds, the westerly wind bursts that can 
be important for ENSO (e.g., D. Chen et al., 2015; Fedorov, 2002; Fedorov 
et al., 2015; Harrison & Giese, 1991; Harrison & Luther, 1990; Hu et al., 2014; 
Lengaigne et al., 2004; Seiki et al., 2011; Yu & Fedorov, 2020), the sensi-
tivity of the surface wind response to SSTAs (van Oldenborgh et al., 2005), 
and deep convection (e.g., Guilyardi et  al.,  2009; Lloyd et  al.,  2009; Ma 
& Jiang, 2021; Neale et al., 2008; Watanabe et al., 2011; Wu et al., 2007). 
In addition, errors can also be associated with oceanic factors, for exam-
ple, the simulated thermocline and downwelling Kelvin waves triggered 
by westerly wind bursts (e.g., Jin et al., 2006; Kim & Jin, 2011; McPhaden 
et al., 1988; Picaut & Delcroix, 1995). Given that coupled atmosphere-ocean 
feedbacks can potentially amplify errors within a given model component, 
mechanistic experiments with atmosphere-only, ocean-only, and coupled 
atmosphere-ocean models may be useful toward untangling the challenging 
problem of identifying and improving the sources of errors in simulations of 
ENSO.

A significant novel component of this study is its simultaneous usage of 
multiple indices for characterizing ENSO. We are unaware of other studies 
that compare ENSO projections from ELI with other indices such as Niño 3.4 
to gain different insights from each. This study confirms the urgent need to 
supplement traditional ENSO indices such as Niño 3.4 with more physically 
based indices such as ELI. The Niño 3.4 index is able to capture the basic 
oscillatory nature of ENSO. However, it is not designed to capture changes 

Figure 5. Box plots comparing historical (1850–1900; blue) and future 
(2050–2100; orange) climate distributions of December–February averaged 
ENSO Longitude Index (ELI) (°E) for models with (a) El Niño-like ELI 
biases, (b) weak median biases in ELI, and (c) La Niña-like ELI biases.
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Figure 6. Scatterplots showing (a) mean bias in ENSO Longitude Index (ELI) versus mean future change in ELI, (b) bias in Niño 3.4 standard deviation versus mean 
future change in Niño 3.4 standard deviation, (c) mean sea-surface temperature (SST) bias in SE tropical Pacific versus mean future change in ELI, (d) mean SST bias 
in SE tropical Pacific versus mean future change in Niño 3.4 standard deviation, (e) mean low-level cloud cover bias in SE tropical Pacific versus mean future change in 
ELI, (f) mean low-level cloud cover bias versus mean future change in Niño 3.4 standard deviation, (g) mean root mean square error (RMSE) versus mean future change 
in ELI, and (h) mean RMSE versus mean future change in Niño 3.4 standard deviation for all available climate models and all ensemble members in Coupled Model 
Intercomparison Project, version 6. All data are averaged December–February. Each point represents one ensemble member of a climate model. The linear regression, 
along with the 95% confidence interval, is also plotted for each relationship. The Pearson coefficient for each relationship is shown at top right.

 21698996, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

037563, W
iley O

nline L
ibrary on [16/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Atmospheres

ERICKSON AND PATRICOLA

10.1029/2022JD037563

14 of 18

Figure 7. Analogous to Figure 6, but instead each point represents the ensemble mean, as opposed to showing all ensemble 
members, each as one point.

in ENSO diversity between historical and future climates, and it is not able to provide information about the 
climate model SST biases important for ENSO. To most effectively interpret future ENSO projections, we need 
to simultaneously uncover climate model biases and project future ENSO changes associated with changes in 
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mean-state SST and SST variability. The Niño 3.4 index is limited in this respect, but ELI can accomplish both. 
Therefore, one significant finding from our study pertains to the appropriate usage for each of these indices. 
Niño 3.4 is effective at capturing departures in SST  from a climatological average, which works well to diagnose 
future changes in ENSO variability, whereas ELI is effective for diagnosing change in ENSO associated with both 
mean climate change and change in variability, as it can discern shifts in background conditions over time and 
illuminate biases between models and observations. The broad utility of ELI is further apparent in considering the 
physical mechanisms by which ENSO influences global weather. In particular, the projected future shift toward 
more El Niño-like conditions revealed by ELI indicates an eastward shift in tropical Pacific deep convection in 
the future. It is this zonal shift in deep convection that likewise affects the Walker circulation and the Rossby wave 
train responses to ENSO, and therefore may provide critical information for potential changes in extreme weather 
and climate events worldwide.

Data Availability Statement
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