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H I V / A I D S B R I E F R E P O R T

Combined Effect of CYP2B6 and
NAT2 Genotype on Plasma
Efavirenz Exposure During
Rifampin-based Antituberculosis
Therapy in the STRIDE Study

Anne F. Luetkemeyer,1 Susan L. Rosenkranz,2 Darlene Lu,2

Beatriz Grinsztejn,3 Jorge Sanchez,4 Michael Ssemmanda,5 Ian Sanne,6

Helen McIlleron,7 Diane V. Havlir,1 and David W. Haas8; for the Adult
AIDS Clinical Trials Group A5221 and A5243 Study Teams
1HIV/AIDS Division, San Francisco General Hospital, University of California,
San Francisco; 2Center for Biostatistics in AIDS Research, Harvard School of
Public Health, Boston, Massachusetts; 3Fundacao Oswaldo Cruz, Instituto de Pesquisa
Clinica Evandro Chagas, Rio de Janeiro, Brazil; 4IMPACTA, Lima, Peru; 5Joint Clinical
Research Center, Kampala, Uganda; 6Faculty of Health Sciences, University of the
Witwatersrand, Johannesburg, and 7Division of Clinical Pharmacology, Department of
Medicine, University of Cape Town, South Africa; and 8Department of Medicine,
Vanderbilt University School of Medicine, Nashville, Tennessee

In STRIDE, slow metabolizer CYP2B6 and NAT2 genotypes
were each associated with increased plasma efavirenz con-
centrations during antituberculosis therapy. Concentrations
were greater on therapy than off therapy in 58% with CYP2B6
and 93% with NAT2 slow metabolizer genotypes. Individuals
with slow metabolizer genotypes in both genes had markedly
elevated concentrations.

Keywords. HIV/AIDS; tuberculosis; efavirenz; rifampin;
pharmacogenetic.

Efavirenz is recommended in first-line regimens for human im-
munodeficiency virus (HIV)-infected patients with tuberculosis
[1, 2], in whom concurrent treatment of both infections reduces
risk of HIV disease progression [3, 4] and death in patients with
advanced HIV disease [5].Efavirenz is primarily metabolized by
cytochrome P450 (CYP) 2B6, with minor contributions by
CYP2A6 and CYP3A isoforms. Rifampin, a potent CYP inducer

and a key antituberculosis drug, reduced plasma efavirenz expo-
sure in HIV-negative volunteers [6]. However, STRIDE and
several other studies showed that multidrug antituberculosis
regimens that included rifampin were associated with paradox-
ically increased efavirenz concentrations [7–9].This paradoxical
increase appears to be influenced by CYP2B6 loss-of-function
polymorphisms that predict increased plasma efavirenz expo-
sure [10–13]. In addition, isoniazid appears to contribute to
increased efavirenz concentrations by inhibiting CYP2A6,
which may be a particularly important elimination pathway
in CYP2B6 slow metabolizers [14–17]. Isoniazid is metabolized
by N-acetyl transferase 2 (NAT2), and NAT2 loss-of-function
polymorphisms are associated with increased plasma isoniazid
exposure. Thus, NAT2 genotype may also contribute to in-
creased plasma efavirenz exposure with antituberculosis thera-
py, as seen in HIV-infected South African pregnant women
with slow NAT2 genotypes, who demonstrated elevated efavir-
enz concentrations during treatment with isoniazid [9].

In the CAMELIA study, among Cambodians with CYP2B6
slow metabolizer genotypes (ie, 516 TT) treated for HIV-1 and
tuberculosis, concomitant NAT2 slow metabolizer genotype was
associated with decreased plasma efavirenz clearance [8]. Data
are limited regarding the combined influence of CYP2B6 and
NAT2 polymorphisms in populations representing other race/
ethnicities. Frequencies of CYP2B6 loss-of-function polymor-
phisms vary by ancestry, with 516G→T (rs3745274) more fre-
quent with African or Asian ancestry, 983T→C (rs28399499)
found only with African ancestry, and 15582C→T (rs4803419)
more frequent with Asian or European ancestry [11–13, 18].

We previously reported paradoxically elevated efavirenz con-
centrations during combination tuberculosis treatment in the
STRIDE study, which prospectively evaluated earlier vs later
ART in HIV-infected individuals with <250 CD4+ cells/mm3

and initiating tuberculosis treatment [3, 19]. The present study
examined the extent to which CYP2B6 and NAT2 polymor-
phisms were associated these increased efavirenz concentrations
in black and Hispanic patients enrolled from sub-Saharan Afri-
ca and South America.

METHODS

Patient Population and Study Design
We conducted a nested pharmacogenetics analysis using data
from the larger STRIDE study. In STRIDE, 809 HIV-infected,
antiretroviral-naive patients with <250 CD4+ cells/mm3 and
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confirmed or probable tuberculosis were randomized to either
early initiation of antiretroviral therapy (within 2 weeks after
starting antituberculosis therapy) or later initiation of antiretro-
viral therapy (between 8 and 12 weeks after starting antituber-
culosis therapy). Additional eligibility criteria for the STRIDE
study are described elsewhere [3]. Participants received once-
daily efavirenz 600 mg without dose adjustment for weight,
and a coformulated tablet containing emtricitabine 200 mg
and tenofovir disoproxil fumarate 300 mg. The study protocol
was approved by institutional review board or ethics committee
at each participating site and was registered under clinicaltrials.
gov NCT00108862. The pharmacogenetic study population
comprised a subgroup of STRIDE participants who had at
least one efavirenz minimum concentration (Cmin) assayed dur-
ing rifampin-based antituberculosis therapy and at least one
efavirenz Cmin measured a minimum of 4 weeks after stopping
antituberculosis therapy, and who provided written informed
consent for genetic research under ACTG protocol A5243.

Efavirenz Assays
Efavirenz Cmin was measured by high performance liquid chro-
matography (HPLC, lower limit of quantitation 0.1 µg/mL) in
plasma samples obtained between 20 and 28 hours post-dose,
and with no missed dose by self-report in prior 3 days. For
each participant, the on antituberculosis therapy Cmin concen-
tration was the mean of available Cmin concentrations at weeks
4, 8, 16, and 24, and the off antituberculosis therapy efavirenz
Cmin concentration was the mean of available Cmin concentra-
tions at weeks 4 and 8 after antituberculosis therapy.

Genetic Testing
Three CYP2B6 polymorphisms (15582C→T, 516G→T, and
983T→C) were genotyped by MassARRAY iPLEX Gold (Seque-
nom, Inc). Based on these polymorphisms, metabolizer status
was categorized as extensive, intermediate, or slow as follows
(haplotypes correspond to positions 15582-516-983): CYP2B6
extensive, CC-GG-TT or CT-GG-TT; CYP2B6 intermediate,
TT-GG-TT, CC-GT-TT, CC-GG-TC, CT-GT-TT, or CT-GG-
TC; CYP2B6 slow, CC-TT-TT, CC-GT-TC, or CC-GG-CC
[10]. Four NAT2 polymorphisms, rs1801279 (NAT2*14),
rs1801280 (NAT2*5), rs1799930 (NAT2*6), and rs1799931
(NAT2*7), were genotyped by TaqMan (Applied Biosystems,
Inc., Foster City, California), and categorized as slow, homozy-
gous for the variant allele at any of the four loci (ie, AA,
CC, AA, AA, respectively), or heterozygous at 2 or more loci;
intermediate, heterozygous at a single locus; or extensive, not
variant allele at any locus (ie, GG, TT, GG, GG, respectively) [20].

Statistical Analysis
Efavirenz Cmin concentrations within genotype groups are sum-
marized by median, 25th and 75% percentiles (Q1 and Q3) and

range. Within-participant on- and off-antituberculosis therapy
differences in efavirenz Cmin concentrations were evaluated by
the Wilcoxon signed-rank test. Within-participant differences
by metabolizer group were compared using the Wilcoxon rank
sum test (without continuity correction). Tests comparing me-
tabolizer groups within the on- or off-antituberculosis therapy
condition were not performed.

RESULTS

Forty-two participants from the STRIDE study were included
in this pharmacogenetics analysis, of whom 52% were male;
71% black non-Hispanic, 29% Hispanic; 52% from South Afri-
ca, 29% from Peru, and 19% from Uganda. The median efavir-
enz Cmin while on antituberculosis therapy was 1.96 mg/L
(range 0.05 mg/L to 19.71 mg/L), and off antituberculosis
therapy was 1.85 mg/L (range 0.73 mg/L to 11.69 mg/L; the
median within-participant difference was 0.11 mg/L, WSR
P-value = .17).

Among the 42 participants, 11 (26%), 19 (45%), and 12
(29%) had CYP2B6 extensive, intermediate, and slow metabo-
lizer genotypes, respectively. Participants with slow metabolizer
genotypes had higher efavirenz Cmin concentrations in com-
parison to those with intermediate and extensive metabolizer
genotypes, regardless of whether on antituberculosis therapy
(median efavirenz Cmin 7.82 µg/mL (range 2.73 to 19.71) or
off antituberculosis therapy (median efavirenz Cmin 4.84 µg/
mL (range 0.89 to 11.69); see Figure 1, panel A). Among partic-
ipants with CYP2B6 extensive, intermediate and slow metabo-
lizer genotypes, 55%, 63% and 58% respectively had higher
efavirenz Cmin concentrations while on antituberculosis therapy
than off antituberculosis therapy.

Among the 42 participants, 8 (19%), 19 (45%), and 15 (36%)
had NAT2 extensive, intermediate, and slow metabolizer geno-
types, respectively. Among participants with NAT2 extensive, in-
termediate, and slow metabolizer genotypes, 25%, 47%, and 93%
of participants had higher efavirenz Cmin concentrations while on
antituberculosis therapy than off antituberculosis therapy, respec-
tively. Although 93% of slow metabolizers exhibited higher efa-
virenz Cmin concentrations while on antituberculosis therapy,
and while differences in Cmin on vs off therapy were statistically
significant, the differences were small in magnitude for most par-
ticipants (Figure 1, panel B).

We next examined whether CYP2B6 and NAT2 genotypes in
combination better explained efavirenz Cmin concentrations.
Changes in efavirenz Cmin concentrations according to CYP2B6
genotype, and further stratified by NAT2 genotype, are shown in
Figure 1, panel C. In participants with CYP2B6 extensive and in-
termediate metabolizer genotypes, only small differences between
efavirenz Cmin concentrations on antituberculosis therapy and off
antituberculosis therapy were seen for all NAT2 metabolizer
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genotypes. In contrast, among the 4 participants with both
CYP2B6 and NAT2 slow metabolizer genotypes, efavirenz Cmin

concentrations were substantially elevated on antituberculosis
therapy compared to off antituberculosis therapy, with differenc-
es exceeding 8 µg/mL in 3 of these 4 participants; this was not
statistically significant in this subset. One individual with slow
CYP2B6 and intermediate NAT2 metabolizer genotypes had a
considerably larger efavirenz Cmin concentration on vs off antitu-
berculosis treatment.

DISCUSSION

Among STRIDE participants who were included in pharmaco-
genetic analyses, the majority of participants with CYP2B6 slow
metabolizer genotypes had higher efavirenz Cmin concentrations
on antituberculosis therapy than off antituberculosis therapy.
Our data suggest that increased efavirenz Cmin concentrations
during concomitant antituberculosis therapy are driven largely
by CYP2B6 slow metabolizer genotypes. NAT2 slow metabolizer
genotypes appeared to associated with considerable further in-
creases in efavirenz Cmin concentrations on antituberculosis

therapy. This elevation in plasma efavirenz exposure likely
reflects the combined effect of several factors. Carriage of 2
major CYP2B6 loss-of-function alleles markedly reduces efavir-
enz clearance by CYP2B6, which makes clearance more depen-
dent on CYP2A6. Concomitant isoniazid interferes with the
alternative metabolic pathway, with the effect most apparent
in individuals with NAT2 slow metabolizer genotypes, who
are predicted to have higher plasma isoniazid concentrations.

The CAMELIA study, which enrolled HIV-infected patients
in Cambodia, found a similar association between NAT2 slow
metabolizer genotype and decreased plasma clearance of efavir-
enz among CYP2B6 slow metabolizers [8]. The present study
supports this association and extends these findings to STRIDE
participants that included black and Hispanic participants from
sub-Saharan Africa and South America. These data provide
further evidence for 2 pharmacogenetic pathways that may be
contributing to the elevated efavirenz levels reported during
tuberculosis therapy in several African studies [7, 21, 22]. The
cumulative data suggest that HIV-infected individuals on efa-
virenz-based therapy who carry both CYP2B6 and NAT2 slow
metabolizer genotypes may experience marked elevations

Figure 1. Efavirenz Cmin µg/mL by A, CYP2B6 genotype, B, NAT2 genotype, and C, Both CYP2B and NAT2 genotypes: Grey lines connect within-participant
efavirenz Cmin on-antituberculosis therapy and off-antituberculosis therapy. Solid black lines indicate median on-antituberculosis therapy and off-antituber-
culosis therapy Cmin. *Indicate the 10 participants with 2 intermediate (INT) NAT2 alleles (categorized in this analysis as slow metabolizers). Abbreviations:
EXT, extensive; TB, tuberculosis.
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in efavirenz plasma exposure if prescribed antituberculosis
therapy that includes isoniazid, potentially including isoniazid
preventative therapy alone. This is clinically relevant because
higher plasma efavirenz concentrations have been associated
with increased central nervous system symptoms [21, 23, 24].
The role of screening for CYP2B6 and NAT2 genotypes in clin-
ical practice is not known.
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