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Abstract

We developed methods for the preparation of hyperpolarized (HP) sterile [2-13C]pyruvate to test 

its feasibility in first-ever human NMR studies following FDA-IND & IRB approval. Spectral 

results using this MR stable-isotope imaging approach demonstrated the feasibility of investigating 

human cerebral energy metabolism by measuring the dynamic conversion of HP [2-13C]pyruvate 

to [2-13C]lactate and [5-13C]glutamate in the brain of four healthy volunteers. Metabolite kinetics, 

signal-to-noise (SNR) and area-undercurve (AUC) ratios, and calculated [2-13C]pyruvate to 

[2-13C]lactate conversion rates (kPL) were measured and showed similar but not identical inter-

subject values. The kPL measurements were equivalent with prior human HP [1-13C]pyruvate 

measurements.
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1. Introduction

Dissolution Dynamic Nuclear Polarization (dDNP) provides over 10,000 fold signal 

enhancement for hyperpolarized carbon-13 (HP-13C) MRI, enabling a novel stable-isotope 
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molecular imaging approach for preclinical and recently clinical research studies 

demonstrating both safety and translational potential for human HP-13C molecular imaging 

[1–4]. HP [1-13C]pyruvate MR metabolic imaging has been applied to identify tumor 

metabolism [5], assess aggressiveness [6], evaluate treatment response [7], and probe organ 

function [4,8].

MR detection of the conversion of HP [1-13C]pyruvate to [1-13C] lactate catalyzed by lactate 

dehydrogenase (LDH) has shown research value and clinical potential in Phase I trials of 

cancer patients reflecting the Warburg Effect [3] with greatly upregulated LDH activity 

[9,10]. In approaching the tricarboxylic acid (TCA) cycle, [1-13C]pyruvate is enzymatically 

metabolized via pyruvate dehydrogenase (PDH) and converted to 13CO2, thereby preventing 

direct detection of downstream TCA cycle metabolites. Prior animal studies using HP 

pyruvate with the 13C isotope enriched in the 2-position ([2-13C]pyruvate) have successfully 

shown direct detection as the HP 13C labeled atoms are carried over into acetyl-CoA, a 

precursor to the TCA cycle, and on to [5-13C]glutamate, acetyl-carnitine and other 

metabolites as shown in Fig. 1 [11,12]. Therefore, HP [2-13C]pyruvate provides novel 

metabolic information different from HP [1-13C]pyruvate due to its unique positioning atop 

multiple anaplerotic and cataplerotic metabolic cascades in the TCA cycle with known fast 

conversions [13]. Prior preclinical studies have shown differences in [2-13C]pyruvate to 

[5-13C]glutamate metabolism with isocitrate dehydrogenase (IDH) mutations in brain tumor 

models that are not detected by HP [1-13C]pyruvate MR [14].

The goal of this study was to develop methods for the hyperpolarization and preparation of 

sterile [2-13C]pyruvate with FDA-IND and IRB approval for first-ever human studies. We 

sought to investigate HP [2-13C]pyruvate conversion to [2-13C]lactate and [5-13C] glutamate 

in the normal brain in four volunteers, demonstrating a significant first step for HP metabolic 

imaging to diagnose neurological disorders potentially at an early stage and monitor 

treatment response. Unlike animal studies, these human experiments were performed 

without anesthesia that significantly reduces brain pyruvate metabolism [15] and therefore 

are more relevant to future patient studies.

2. Methods

2.1. [2-13C]Pyruvate: FDA-IND, IRB, human volunteers

[2-13C]pyruvate was produced by MilliporeSigma Isotec Stable Isotopes (Miamisburg, OH) 

following Good Manufacturing Practices (GMP) for first-ever use in human HP MR studies. 

All human studies followed an IRB and FDA IND-approved protocol with informed 

consent. Proton T2-FLAIR anatomical reference imaging scans showed volunteers had no 

acute abnormalities.

2.2. Preclinical quality control: T1, polarization, purity, animal studies

T1 relaxation times and liquid-state polarization levels of [2-13C]pyruvate were measured 

with independent characterization experiments in solution and murine models. 

[2-13C]pyruvate T1 measurements of 47 sec and polarization levels of 15.61% reaffirmed 

literature values [16]. Pyruvic acid solution NMR testing was performed using a Varian 
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VNMRS 500 MHz (Varian Medical Systems, Palo Alto, CA) to confirm the absence of 

impurities.

In-vivo spectroscopic animal studies were performed on a 3 T GE MR scanner following 

IACUC approval, prior to human volunteer studies to test in vivo performance. Non-

localized dynamic 13C NMR spectra were acquired with hard-pulsed excitation (TR/TE = 3 

sec/35 msec) in Sprague-Dawley rats for detection of [5-13C]glutamate, [2-13C]lactate and 

other metabolite resonances such as acetylcarnitine and acetoacetate [17].

2.3. Clinical preparation: SPINlab hyperpolarization

A 1.46 g sample of 14 M 99% enriched [2-13C]-labeled pyruvic acid (Millipore-Sigma, 

Miamisburg, OH) mixed with 15 mM trityl radical (GE Healthcare, Oslo, Norway) was pre-

filled in a single-use, pharma-kit polymer fluid pathway and polarized for over 2 h in a 

SPINlab polarizer (General Electric, Niskayuna, NY) operating at 5 Tesla and 0.77 Kelvin, 

with microwave irradiation frequency in the 94.0–94.1 GHz band. Following the protocol 

approved by the University of California San Francisco IRB and the FDA IND, and after 

dissolution and meeting all quality control specifications and pharmacist approval, 0.43 

mL/kg of the hyperpolarized pyruvate solution (250 mM) was injected intravenously at a 

rate of 5 mL/sec using a power injector (Medrad Inc., Warrendale, PA) followed by 20 mL 

of sterile saline.

2.4. MR protocol

Volunteers were measured using a 3 T MR scanner (MR750, 50 mT/m gradient amplitude, 

200 T/m/sec slew rate; GE Healthcare, Waukesha, WI) and scanned with a volume 

excitation and 32-channel receive 13C array coil for brain studies [18]. A 400 μsec hard 

pulse excitation provided an approximately 2.5 kHz excitation bandwidth, with a nominal 

flip angle of 40° at the center frequency of 141 ppm calibrated using a built-in urea 

phantom. The [2-13C]pyruvate, [5-13C]glutamate, and [2-13C]lactate doublet resonances 

were excited with 7°, 30°, 5° and 2.1° flip angles respectively. The acquisition used temporal 

and spectral resolutions of 2 sec and 2.4 Hz across 30 timepoints for a total scan time of 2 

min.

2.5. Data analysis

Dynamic spectroscopic data yielding kinetic rates and curves was reconstructed after zero-

filling free induction decays. The 32-channel data was combined with a phase-sensitive 

summation followed by line broadening of 5 Hz [19].

For the pyruvate-to-lactate conversion (kPL) kinetic model, the measured pyruvate 

magnetization functioned as the input for fitting the lactate magnetization. The MATLAB 

model was solved based on minimization of a constrained least-squares error computed 

across measured and estimated lactate using a trustregion-reflective algorithm. The input-

less fitting was chosen over integral ratios due to improved accuracy by accounting for 

variability in delivery times [20]. The analytical tools used are available from the 

Hyperpolarized MRI Toolbox via the Hyperpolarized Technology Resource Center: https://

doi.org/10.5281/zenodo.1198915.
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Quantitative data processing and display were performed using MATLAB (The MathWorks 

Inc., Natick, MA) and MestReNova (Mestrelab, Santiago de Compostela, Spain). Zero- and 

first-order phase corrections were performed, and baseline was subtracted by fitting a spline 

to signal-free regions of the smoothed spectrum. Metabolites of interest were quantified 

following prior assignments by selecting and integrating across peak boundaries [17]. Single 

timepoint data 16 sec following injection was further analyzed and interpreted after 

performing singular value decomposition (SVD) signal enhancement techniques [20–22,24].

3. Results

3.1. Volunteer spectra

HP [2-13C]pyruvate, [2-13C]lactate, [5-13C]glutamate and other metabolites were 

successfully observed and quantitatively measured for the first time in four volunteers. Fig. 2 

shows a representative summed spectra over the total 2 min scan time for a healthy volunteer 

using a pulse and acquire scheme with the RF profile shown in Fig. 3. Figs. 4 and 5 depict 

spectra and kinetics of measured metabolite resonances for each of the four volunteers.

3.2. SNR & metabolite ratios

Tables 1 and 2 summarize measured SNR from the single timepoint data and AUC 

metabolite ratios summed across all time-points for 4 volunteers. Measured values and 

calculated mean and standard error across volunteers were consistent within expected ranges 

[16]. The observed variations in SNR can be attributed to multiple factors including brain 

volumes, polarization values, and delivery times from the polarizer to the subject. These 

demonstrated however minimal effects on the ratios and kinetic values that showed tight 

agreement between volunteers. The third volunteer dataset showed the highest SNR with 

AUC ratios near median and was hence selected as the representative spectrum for peak 

identification in Fig. 2. The [2-13C]lactate (left and right peaks) correspond to the left and 

right resonances of the [2-13C] lactate doublet in the 13C MRS spectra. The left (downfield) 

resonance is about two-fold higher due to the excitation profile shown in Fig. 3.

3.3. [2-13C]Pyruvate kPL Model:

Fig. 6 shows a MATLAB plot of a measured [2-13C]pyruvate kPL value from the volunteer 

studies with calculated mean and standard error of 0.011 ± 0.002 sec−1. The values were 

consistent with prior [1-13C]pyruvate k values of 0.012 sec−1 acquired using a similar setup 

and non-selective pulse-acquire strategy [17,20]. Identical results of pyruvate to lactate 

kinetics across a previously processed [1-13C]pyruvate dataset and newly acquired [2-13C] 

pyruvate datasets from volunteers lends verification to the robust-ness and consistency of 

approach.

3.4. Initial volunteer EPI studies

Fig. 7 shows initial data and feasibility of HP 13C imaging of the [2-13C]pyrvuate 

conversion to [5-13C]glutamate using a specialized 13C 32-channel head coil. As shown in 

Fig. 2 not only was the uptake of HP [2-13C]pyruvate in the human brain observed, but also 

its metabolic conversion to [2-13C]lactate, [5-13C]glutamate, and other metabolites, similar 

to prior animal study results [17].
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4. Discussion and conclusion

In this study we worked with the ISOTEC Stable Isotope Division of MilliporeSigma, Merck 

KGaA to develop GMP grade 99% enriched [2-13C]pyruvate meeting the purity 

specifications established for [1-13C]pyruvate used in numerous human studies following 

FDA-IND and IRB approved protocols. Prior to human studies with HP [2-13C]pyruvate, we 

first tested the purity and polarization through in vitro NMR analysis and performed a 

process qualification for testing and demonstrating the sterility of the polarized solution. The 

NMR spectra in Fig. 4 and quantitative values in Tables 1 and 2 demonstrated excellent data 

repeatability affirming the consistency of the preparation and processing methods. 

Metabolite ratios and dynamic plots in these initial studies directly reflected the excitation 

profile of the RF pulse that was optimized to capture the bandwidth encompassing metabolic 

byproducts and provided normative values for future human brain HP [2-13C]pyruvate NMR 

studies. Lastly pyruvate to lactate kinetic modeling from these [2-13C]pyruvate studies 

yielded kPL values that were consistent with results from a prior HP [1-13C]pyruvate dataset 

in healthy human brain.

4.1. Future directions

This study demonstrated feasibility and initial normative values for HP [2-13C]pyruvate 

NMR and thus serves as the groundwork for designing new studies of neurological 

disorders. These future studies would clearly benefit from an imaging approach to 

investigate HP [2-13C]pyruvate MRI variations associated with anatomy and pathology and 

examine differences using centrality metrics and connectomic analytical methods with HP 

[1-13C]pyruvate MRI [22]. HP metabolic information can also be linked with modalities 

such as functional and diffusion MRI to build increasingly comprehensive representations of 

neural function, structure and metabolism [23]. Centrality metrics processing higher-order 

descriptors of multi-valued metabolite kinetics with advances in machine learning may 

further elucidate new methods for detecting early stages of neurological disorders.
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Fig. 1. 
Diagram showing [2-13C]pyruvate metabolism investigated in this hyperpolarized NMR 

spectroscopy study of the human brain.
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Fig. 2. 
Representative Carbon-13 NMR summed spectrum from the brain of a healthy volunteer 

acquired with a 32-channel head coil following an injection of 1.43 mL/kg of 250 mM 

[2-13C]pyruvate. Peak identification was assigned following those by Park et al. from studies 

of HP [2-13C]pyruvate in the murine brain: (A) [2-13C]pyruvate, (B) [5-13C]glutamate, (C) 

[1-13C]citrate and/or [5-13C]glutamine, (D) [1-13C]pyruvate (natural abundance doublet), 

(E) [2-13C]pyruvate-hydrate, (F) [2-13C]lactate doublet [17].
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Fig. 3. 
Flip angle plot of the RF excitation pulse sequence with the parameters used for this study. 

Note the decreased excitation of the upfield [2-13C]lactate resonance versus the downfield 

by approximately one half.
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Fig. 4. 
Spectra for all four volunteers at a single timepoint 16 sec post-injection. Similar levels of 

[5-13C]glutamate and [2-13C]lactate reflect the underlying biochemistry of the healthy 

human brain of similar rates of conversion of [2-13C]pyruvate to [2-13C]lactate catalyzed by 

LDH as [2-13C]pyruvate to [5-13C]glutamate catalyzed by PDH.
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Fig. 5. 
Dynamic plots of metabolite kinetics for each of the four volunteers. Results were consistent 

noting minor differences in intensity scale. As shown in the corresponding Fig. 4, the rates 

of conversion of [2-13C]pyruvate to [2-13C]lactate and [5-13C]glutamate are similar in the 

normal human brain.
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Fig. 6. 
Plots showing kPL analysis demonstrated similar results between a previously acquired 

[1-13C]pyruvate dataset from a volunteer (left) and [2-13C]pyruvate volunteer dataset 

acquired in this study with the mean ± standard error for all 4 volunteers (right).
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Fig. 7. 
Images acquired using a metabolite-specific flip angle schedule and echo planar imaging 

(EPI) readout. From left to right 1H proton reference image, overlaid [2-13C] pyruvate, and 

[5-13C]glutamate images of a volunteer’s brain are shown. The single-shot HP 13C EPI 

images were acquired with: in-plane resolution = 2.5 × 2.5 cm2, slice thickness = 5 cm, 

bandwidth = 8.06 kHz, TR = 100 msec, temporal resolution = 3 sec, TE = 19 msec, and flip 

angles θPyr = 10°, θGlu = 60°. Average SNR of the pyruvate signal = 682 and glutamate 

signal = 31.1.
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