
UC Davis
UC Davis Previously Published Works

Title
Large Comparative Analyses of Primate Body Site Microbiomes Indicate that the Oral 
Microbiome Is Unique among All Body Sites and Conserved among Nonhuman Primates

Permalink
https://escholarship.org/uc/item/1pw8s99q

Journal
Microbiology Spectrum, 10(3)

ISSN
2165-0497

Authors
Asangba, Abigail E
Mugisha, Lawrence
Rukundo, Joshua
et al.

Publication Date
2022-06-29

DOI
10.1128/spectrum.01643-21
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1pw8s99q
https://escholarship.org/uc/item/1pw8s99q#author
https://escholarship.org
http://www.cdlib.org/


Large Comparative Analyses of Primate Body Site Microbiomes
Indicate that the Oral Microbiome Is Unique among All Body
Sites and Conserved among Nonhuman Primates

Abigail E. Asangba,a,b* Lawrence Mugisha,c,d Joshua Rukundo,e Rebecca J. Lewis,f Ali Halajian,g Liliana Cortés-Ortiz,h

Randall E. Junge,i Mitchell T. Irwin,j Johan Karlson,k Andrew Perkin,k Mrinalini Watsa,l,m Gideon Erkenswick,m,n Karen L. Bales,o

Dorothy L. Patton,p Anna J. Jasinska,q,r Eduardo Fernandez-Duque,s Steven R. Leigh,b,t Rebecca M. Stumpfa,u,v,w

aDepartment of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
bCarl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
cEcohealth Research Group, Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
dDepartment of Wildlife & Aquatic Animal Resources, College of Veterinary Medicine, Animal Resources & Biosecurity (COVAB), Makerere University, Kampala, Uganda
eChimpanzee Sanctuary and Wildlife Conservation (Chimpanzee Trust), Ngamba Island, Uganda
fDepartment of Anthropology, University of Texas at Austin, Austin, Texas, USA
gResearch Administration and Development, University of Limpopo, Sovenga, South Africa
hDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
iColumbus Zoo and Aquarium, Powell, Ohio, USA
jDepartment of Anthropology, Northern Illinois University, DeKalb, Illinois, USA
kTanzania Forest Conservation Group and Nocturnal Primate Research Group, Dar es Salaam, Tanzania
lSan Diego Zoo Wildlife Alliance, San Diego, California, USA
mField Projects International, Escondido, California, USA
nDivision of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
oDepartment of Psychology, University of California Davis, Davis, California, USA
pDepartment of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
qDivision of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
rDepartment of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
sDepartment of Anthropology, Yale University, New Haven, Connecticut, USA
tDepartment of Anthropology, University of Colorado—Boulder, Boulder, Colorado, USA
uKanyanchu River Chimpanzee Project and Research Collaborative, Bigodi, Uganda
vProgram in Ecology, Evolution and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
wNotre Dame Institute for Advanced Study, University of Notre Dame, Notre Dame, Indiana, USA

ABSTRACT The study of the mammalian microbiome serves as a critical tool for under-
standing host-microbial diversity and coevolution and the impact of bacterial commun-
ities on host health. While studies of specific microbial systems (e.g., in the human gut)
have rapidly increased, large knowledge gaps remain, hindering our understanding of
the determinants and levels of variation in microbiomes across multiple body sites and
host species. Here, we compare microbiome community compositions from eight distinct
body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), rep-
resenting the largest comparative study of microbial diversity across primate host species
and body sites. Analysis of 898 samples predominantly acquired in the wild demon-
strated that oral microbiomes were unique in their clustering, with distinctive divergence
from all other body site microbiomes. In contrast, all other body site microbiomes clus-
tered principally by host species and differentiated by body site within host species.
These results highlight two key findings: (i) the oral microbiome is unique compared to
all other body site microbiomes and conserved among diverse nonhuman primates, de-
spite their considerable dietary and phylogenetic differences, and (ii) assessments of the
determinants of host-microbial diversity are relative to the level of the comparison (i.e.,
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intra-/inter-body site, -host species, and -individual), emphasizing the need for broader
comparative microbial analyses across diverse hosts to further elucidate host-microbial
dynamics, evolutionary and biological patterns of variation, and implications for human-
microbial coevolution.

IMPORTANCE The microbiome is critical to host health and disease, but much remains
unknown about the determinants, levels, and evolution of host-microbial diversity. The
relationship between hosts and their associated microbes is complex. Most studies to
date have focused on the gut microbiome; however, large gaps remain in our under-
standing of host-microbial diversity, coevolution, and levels of variation in microbiomes
across multiple body sites and host species. To better understand the patterns of varia-
tion and evolutionary context of host-microbial communities, we conducted one of the
largest comparative studies to date, which indicated that the oral microbiome was dis-
tinct from the microbiomes of all other body sites and convergent across host species,
suggesting conserved niche specialization within the Primates order. We also show the
importance of host species differences in shaping the microbiome within specific body
sites. This large, comparative study contributes valuable information on key patterns of
variation among hosts and body sites, with implications for understanding host-microbial
dynamics and human-microbial coevolution.

KEYWORDS microbiome, nonhuman primates, variation

The primate body is home to diverse microbial communities, collectively known as
the microbiome. While microbial communities inhabit multiple body sites, most of

our understanding of microbes and their interactions with the host is based on work
focused on the gastrointestinal tract (gut). In nonhuman primates (NHPs), factors like
host phylogeny (1–4), host physiology (5), diet (6, 7), habitat quality (8, 9), and social
interactions (10–12) have been shown to be associated with the composition and
structure of the gut microbiome. The impacts of these factors result in substantial var-
iations in microbial communities both within and between individuals and species,
with significant impacts on the hosts (1–14). For instance, wild black howler monkeys
reportedly obtain increased energy production from microbes during periods of con-
sumption of low-energy foods (7). In humans, microbial variations are also linked to
several metabolic, autoimmune, and infectious diseases. Examples include the associa-
tion between low gut microbial diversity and obesity (15) and inflammatory bowel dis-
ease (16), high vaginal diversity and bacterial vaginosis (17), and disruption in native
microbiota and susceptibility to pathogens like Clostridium difficile (18).

To date, most host-microbiome studies focus on a single body site within a single
host species (7, 8, 19). Some studies incorporate multiple host species (4, 5, 9, 14, 20,
21), and a few extend their scope to multiple body sites within a single host species
(22–26). Rare are investigations of multiple body sites among multiple host species
(but see reference 27). Intra- and interhost species microbiome comparisons have
helped to elucidate factors impacting microbial variation, niche differentiation, and mi-
crobial function but have also led to contrasting and confounding conclusions regard-
ing factors (e.g., host genetics, environment, and diet) influencing the composition of
the host microbiome within and between hosts and to what extent they exert their
influence. For example, some studies conclude that diet is the major determinant
impacting gut microbial community composition (7, 15, 19), while other studies sup-
port host-specific factors (1–5) or the environment (19) as the predominant factor.
While a study’s conclusions regarding the determinants of microbial composition may
hold within a particular body site or host, contrasting findings among studies can
obfuscate and hinder our understanding of host-microbiome dynamics and patterns of
variation. For example, the main determinants (e.g., diet) found in one study may apply
on a granular level to that site and system and lead to conclusions regarding the pri-
mary driver of microbial variation, but such conclusions are not applicable to other
hosts, body sites, or larger-scale comparisons, thus confounding our ability to draw
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clear conclusions and to apply this knowledge to enhance our evolutionary, ecological,
and/or health perspectives. By focusing on larger-scale comparative host-microbial dy-
namics, we may discern more of this complicated picture.

Important gaps in our knowledge include what factors influence microbial commu-
nity compositions within and among multiple body sites and host species and to what
extent. For example, do host microbiomes group more by host species (suggesting
host-specific/genetic factors) or by the composition and/or function of the body site?
Do body site microbiomes share similar patterns of diversity and richness across host
species despite extensive variation in host genetics, sociality, diet, and environment?

To characterize hierarchical levels of microbial variation and their potential determi-
nants and assess how niche specialization and host species differences are related to
microbial communities, this study compares 898 samples from eight distinct body sites
(stool, rectum, mouth, ear, nose, vagina, penis, and axilla) among 17 phylogenetically
diverse wild (n = 12), semicaptive (n = 1), and captive (n = 4) nonhuman primate spe-
cies, representing, to our knowledge, the largest comparative study of microbial diver-
sity across primate host species and body sites. Our objective was to describe patterns
of microbiome variation among multiple body sites and host species within the order
Primates. Specifically, we aimed to assess (i) microbiome variations within and among
different body sites across multiple host species and (ii) microbiome variations within
and among different body sites of individuals within the same host species. If niche
specialization is substantially related to the observed differences, then (i) microbial
communities would be expected to cluster more by body site than by host species and
(ii) microbial communities sampled at the same body site within the same host species
would be expected to cluster more closely together than microbial communities
sampled from different body sites of the same individual. Alternatively, host-specific
differences may better explain observed differences in microbial communities than
body site, such that microbial communities cluster predominantly by host and by host
species. Importantly, patterns of variation among microbial communities may be
expressed differently depending on the body site and/or host species, such that these
cross-site, cross-host species comparisons may yield a mosaic of potential determi-
nants of variation. Such large, diverse comparisons offer the potential for novel insight
into patterns and levels of microbial variation and the factors influencing microbial
communities to increase our understanding of the magnitude of these effects across
diverse body sites and host species and provide new insights into host-microbial dy-
namics and patterns of host-microbial coevolution.

RESULTS
Sequencing result summary. To characterize the microbiome-based distinctions

among multiple body sites and hosts, we analyzed 925 samples from 17 nonhuman
primate species (Table 1; Table S1 in the supplemental material). After filtering, denois-
ing, and chimera removal from all reads, we obtained 15,933,763 reads (mean number
of reads per sample 6 standard deviation [SD], 17,226 6 7,986) (Table S2, All Samples).
We also present further breakdowns of the sequencing results by host species (Table
S2, Host Species) and sample type (Table S2, Sample Type). The results of our rarefac-
tion analysis informed the selection of a sampling depth of 1,500 reads per sample,
leading to the filtering of samples with fewer reads (Fig. S1), with 898 samples
remaining.

Primate microbiome variation. (i) All host species, all body sites. We first ana-
lyzed microbial communities based on all 898 samples. At the phylum level of classifica-
tion, samples from the various body sites were dominated, to various degrees, by relatively
high levels of Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria (Fig. 1A). There
were also specific phyla that showed relatively high levels in some of the body sites
(Fig. 1A). For example, the oral, nasal, otic, and penile samples were made up of relatively
large amounts of Proteobacteria, whereas the oral, axillary, fecal, rectal, and vaginal sam-
ples also showed relatively high levels of Bacteroidetes. Other examples included large
amounts of Fusobacteria in the oral and vaginal samples, Actinobacteria in otic and penile

A Distinct Oral Microbiome in Nonhuman Primates Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.01643-21 3

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01643-21


TA
B
LE

1
Su

m
m
ar
y
of

sa
m
p
le
s
us
ed

in
th
is
st
ud

y

Pr
im

at
e

Sp
ec
ie
s

Lo
ca
ti
on

Y
r
co

lle
ct
ed

Sa
m
p
le
ty
p
es

a
N
o.

of
sa
m
p
le
s

C
la
d
e

H
ab

it
at

C
hi
m
p
an

ze
e

Pa
n
tr
og

lo
dy
te
s
sc
hw

ei
nf
ur
th
ii

N
ga

m
b
a
Is
la
nd

,U
ga

nd
a

20
11

E,
O
,P
,R
,V

14
2

H
om

in
oi
d

Se
m
ic
ap

ti
ve

G
ib
b
on

H
oo

lo
ck

le
uc
on

ed
ys

G
ib
b
on

C
on

se
rv
at
io
n
C
en

te
r,
C
A
,

U
SA

20
16

E,
N
,O

,P
,R
,a

10
C
ap

ti
ve

M
ac
aq

ue
M
ac
ac
a
ne
m
es
tr
in
a

W
as
hi
ng

to
n
N
at
io
na

lP
rim

at
e

Re
se
ar
ch

C
en

te
r,
W
A
,U

SA
20

11
F,
R,
V

11
2

C
er
co
p
it
he

co
id

C
ap

ti
ve

So
ot
y
m
an

ga
b
ey

Ce
rc
oc
eb
us

at
ys

Ye
rk
es

N
at
io
na

lP
rim

at
e
Re

se
ar
ch

C
en

te
ra

tE
m
or
y
U
ni
ve
rs
it
y,
G
A
,

U
SA

20
07

–2
00

8
A
,O

,R
,V

96
C
ap

ti
ve

Ve
rv
et

M
on

ke
y

Ch
lo
ro
ce
bu

s
ae
th
io
ps

sa
ba

eu
s

W
ak
e
Fo

re
st
U
ni
ve
rs
it
y
Pr
im

at
e

C
en

te
r,
N
C
,U

SA
20

09
R,
V

74
C
ap

ti
ve

St
.K
it
ts
Is
la
nd

20
10

R,
V

37
W
ild

Ch
lo
ro
ce
bu

s
py
ge
ry
th
ru
s

M
og

al
a,
So

ut
h
A
fr
ic
a

20
15

to
20

16
O
,N

,P
,R
,V

40
W
ild

Sa
m
an

go
m
on

ke
y

Ce
rc
op

ith
ec
us

al
bo

gu
la
ris

Lo
ui
s
Tr
ic
ha

rd
t,
So

ut
h
A
fr
ic
a

20
16

E,
N
,O

,R
,V

7
W
ild

G
al
ag

o
O
to
le
m
ur

cr
as
si
ca
ud

at
us

M
ok

op
ar
e,
So

ut
h
A
fr
ic
a

20
16

E,
N
,O

,P
,R

5
St
re
p
si
rr
hi
ni

W
ild

G
al
ag

o
m
oh

ol
i

E,
O
,R

3
W
ild

O
to
le
m
ur

ga
rn
et
tii

Ki
w
en

gw
a
Za

nz
ib
ar
,F
R,
Ta
nz
an

ia
20

11
O
,P
,R
,V

22
W
ild

Si
fa
ka

Pr
op

ith
ec
us

ve
rr
ea
ux
i

Ki
rin

dy
M
it
ea

N
at
io
na

lP
ar
k,

M
ad

ag
as
ca
r

20
10

to
20

12
O
,P
,R
,V

79
W
ild

Pr
op

ith
ec
us

di
ad

em
a

Ts
in
jo
ar
iv
o-
A
m
b
al
ao

m
b
y

Pr
ot
ec
te
d
A
re
a

E,
O
,R

34
W
ild

O
w
lm

on
ke
y

A
ot
us

az
ar
ae

G
ua

yc
ol
ec
,F
or
m
os
a
Pr
ov

in
ce
,

A
rg
en

ti
na

20
11

R,
V

9
Pl
at
yr
rh
in
i

W
ild

H
ow

le
rm

on
ke
y

A
lo
ua

tt
a
pi
gr
a

El
C
ha

l,
D
ol
or
es
,P
et
en

,G
ua

te
m
al
a

20
08

E,
N
,O

,P
22

W
ild

Ta
m
ar
in

Le
on

to
ce
bu

s
w
ed
de
lli

M
ad

re
de

D
io
s,
Pe

ru
20

10
to

20
11

R,
V

39
W
ild

Sa
gu

in
us

im
pe
ra
to
r

20
11

36
W
ild

Ti
ti
m
on

ke
y

Pl
ec
tu
ro
ce
bu

s
cu
pr
eu
s

C
al
ifo

rn
ia
N
at
io
na

lP
rim

at
e
Re

se
ar
ch

C
en

te
r,
C
A
,U

SA
20

07
O
,R
,V

13
1

C
ap

ti
ve

a
Sa
m
p
le
ty
p
es

ar
e
as

fo
llo

w
s:
R,
re
ct
al
;F
,f
ec
al
;O

,o
ra
l;
N
,n
as
al
;E
,e
ar
;V
,v
ag

in
al
;P
,p

en
ile
;A

,a
xi
lla
ry
.

A Distinct Oral Microbiome in Nonhuman Primates Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.01643-21 4

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01643-21


samples, Spirochaetes in fecal samples, and Epsilonbacteraeota in the rectal samples. These
results showed clear differences in the relative abundances of microbial taxa from the dif-
ferent body sites.

Differences in the microbiota compositions among samples from the different body
sites were summarized with various alpha diversity measures, including observed
amplicon sequence variants (ASVs), Shannon index, Faith’s phylogenetic diversity (PD),
and Pielou’s evenness (Fig. 1B; Fig. S2A and B). The body sites with the lowest alpha
diversities included nasal, oral, penile, and otic, whereas the axillary, vaginal, and rectal
samples had the highest alpha diversities (Fig. 1B; Fig. S2A and B). Kruskal-Wallis tests
showed statistically significant differences among the alpha diversities of the various
body sites (P , 0.0001 for all measures of alpha diversity) (Table S3). Pairwise compari-
sons also showed these significant differences, except for the following body site pairs:
fecal versus rectal, nasal versus penile, oral versus vaginal, and otic versus nasal, oral,
penile, or vaginal (Table S3). We have also reported the effect sizes, which ranged from
small to large (Table S3). In almost all cases, pairwise comparisons with statistically sig-
nificant P values were also associated with moderate to large effect sizes (Table S3).

The results for beta diversity among all samples showed clustering particularly by
body site (unweighted UniFrac, F7,847 = 30.84; r2 = 0.16; P = 0.001) (Fig. 1C and D; Fig.
S2C; Table S3), as well as by host species (unweighted UniFrac, F11,847 = 15.68; r2 = 0.13;
P = 0.001) (Fig. 1C and D; Fig. S2C; Table S3) and body site-host interaction on the
microbiota composition (unweighted UniFrac, F32,847 = 4.53; r2 = 0.11; P = 0.001). Most
notably, the oral microbiomes of all primate species clustered closely together and dis-
tinctly separate from all other body site microbiomes among all hosts.

(ii) Host species with oral and other samples. To further examine the observed
pronounced clustered bifurcation pattern of the oral and other body site microbiomes
more robustly, we reduced potential confounders due to differential host and body
site sampling. The subsequent analysis compared all host species for which we had
oral samples and samples from at least one other body site. This more stringent

FIG 1 (A) Relative abundances (%) of phylum-level microbial community compositions of different body sites for all host species combined. (B) Alpha
(within-sample) diversity showing the species richness and evenness of all samples. Boxplots of observed ASVs (a qualitative measure of community
richness) and Shannon’s diversity index (a quantitative measure of community richness). Results marked with the same letter are not statistically
significantly different at an alpha value of 0.05, while results with different letters are statistically significantly different at an alpha value of 0.05. (C and D)
Beta (between-sample) diversity, showing the distribution of samples. (C) PCoA plot of unweighted UniFrac distances (a qualitative measure of community
dissimilarity that incorporates phylogenetic relationships between the microbial species). (D) PCoA plot of weighted UniFrac distances (a quantitative
measure of community dissimilarity that incorporates phylogenetic relationships between the features).
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analysis revealed even clearer separation of oral samples from all other body site sam-
ples, as seen in both unweighted and weighted UniFrac distance metrics results
(Fig. 2A; Fig. S2C).

The permutational multivariate analysis of variance (PERMANOVA) results sup-
ported the statistically significant principal effects of body site (unweighted UniFrac,
F6,547 = 26.10; r2 = 0.17; P = 0.001) (Table S4) and, to a lesser extent, host species
(unweighted UniFrac, F8,547 = 11.88; r2 = 0.10; P = 0.001) (Table S4) and their interaction
(unweighted UniFrac, F29,547 = 4.18; r2 = 0.13; P = 0.001) (Table S4) on the microbiota
composition. The quantified interindividual variation between samples from each
body site seen in the boxplot showed in general a wide range of variations within
most of the body sites, including oral, rectal, and vaginal samples. The lowest interindi-
vidual variations were observed in the fecal, axillary, and nasal samples (Fig. 2B). The
pairwise body site comparisons using PERMANOVA showed statistically significant dif-
ferences between the interindividual distances of the different body sites (P = 0.001 for
all measures of beta diversity) (Fig. 2B; Table S3).

(iii) Matched samples within four host species.Whereas the previous analyses opti-
mized sample diversity across host species and body sites to elucidate patterns of variation,
the subsequent analyses tested the rigor of these results by optimizing sampling consis-
tency. These analyses controlled for host and body site sampling variation by comparing
matched samples from three body sites (oral, rectal, and genital [penile/vaginal]) of the
same individual for chimpanzees (n = 47), mangabeys (n = 23), titi monkeys (n = 47), and
sifakas (n = 19), each representing one of the four Primates clades (hominoid, cercopithe-
coid, platyrrhines, and strepsirrhines, respectively). Bolstering the results described above,
both weighted and unweighted UniFrac distances upheld the distinct oral microbiome clus-
tering pattern (Fig. 2C; Fig. S3A to C). The results of the PERMANOVA tests supported

FIG 2 (A and B) Beta (between-sample) diversity, showing the distribution of samples, for samples from all species contributing oral samples and samples
from at least one other body site. (A) PCoA plot of unweighted UniFrac distance (a qualitative measure of community dissimilarity that incorporates
phylogenetic relationships between the microbial species). (B) Boxplot of quantified interindividual distances within all body sites. Results marked with the
same letter are not significantly different at an alpha value of 0.05, while results with different letters are significantly different at an alpha value of 0.05. (C
and D) Oral, rectal, and penile/vaginal samples from chimpanzee, Verreaux’s sifaka, mangabey, and titi monkey. (C) Beta (between-sample) diversity,
showing the distribution of samples. PCoA plot of unweighted UniFrac distances (a qualitative measure of community dissimilarity that incorporates
phylogenetic relationships between the microbial species). (D) Boxplot of the quantified beta diversity distances within and between groups. (E) Rectal,
penile, and vaginal samples from chimpanzee, Verreaux’s sifaka, mangabey, and titi monkey. Beta (between-sample) diversity, showing the distribution of
samples. PCoA plot of unweighted UniFrac distances (a qualitative measure of community dissimilarity that incorporates phylogenetic relationships
between the microbial species).
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statistically significant effects of body site (unweighted UniFrac, F3,317 = 34.09; r2 = 0.188)
(Table S5) and, to a lesser degree, host species (unweighted UniFrac, F3,317 = 19.60; r2 = 0.11)
(Table S5) and their interaction on the microbiota composition (unweighted UniFrac,
F7,317 = 9.61; r2 = 0.12; P = 0.001) (Table S5).

Consistent with the results from all samples described above, we observed in gen-
eral a wide range of variations in the oral, rectal, penile, and vaginal samples from the
matched sample set analysis (Fig. 2D, All). While there were wide variations in all body
sites, the lowest beta diversity was seen in the oral samples (unweighted UniFrac,
P = 0.001) (Fig. 2D, All; Table S5). This is further evidenced by the statistically significant
lower interindividual distances in the oral samples between host species compared to
the interindividual distances in the rectal samples between host species (unweighted
UniFrac, P = 0.001) (Fig. 2D, Oral and Rectal; Table S5).

To further establish how closely related the oral samples were, we compared the
interindividual distances in the oral samples between host species to pairwise compari-
sons across body sites within host species (Fig. 2D). There were lower overall distances
within the oral samples than in the pairwise body site comparisons within each host
species (unweighted UniFrac, P = 0.001) (Fig. 2D, Oral in Chimpanzee, Sifaka,
Mangabey, and Titi monkey; Table S5). Notably, this further supported the finding that
oral microbiomes across multiple host species were more similar than samples from
different body sites within the same host (Fig. 2D).

(iv) Oral samples removed. Removing oral samples from the analyses resulted in a
pattern of clustering due to both body site and host species (Fig. 2E; Fig. S3B). The
PERMANOVA results showed statistically significant effects of both body site
(unweighted UniFrac, F2,202 = 11.53; r2 = 0.08; P = 0.001) (Table S6) and host species
(unweighted UniFrac, F3,202 = 19.44; r2 = 0.19; P = 0.001) (Table S6) and their interaction
on microbiota composition (unweighted UniFrac, F4,202 = 5.80; r2 = 0.08; P = 0.001)
(Table S6). When the oral samples were removed, however, host species, not body site,
appeared to be the main factor driving the clustering observed, as seen from the
higher r-squared values (Table S6). These results confirmed the conclusion that the oral
samples predominantly drove the divergent clustering patterns seen (e.g., Fig. 1C and
D and Fig. 2A and C; Fig. S2C and 3A), whereas without the oral samples, host species
differences accounted for most of the variation in the microbiota compositions
(Fig. 2E; Fig. S3B).

(v) Niche differentiation. In assessing niche specialization, primate samples were
found to be dominated at the phylum level of classification by Firmicutes, Bacteroidetes,
Proteobacteria, Fusobacteria, and Actinobacteria in amounts that varied depending on host
species and body site (Fig. 3A). For instance, chimpanzee and sifaka oral samples were
dominated by Proteobacteria, while mangabey oral samples were dominated by Firmicutes
and Bacteroidetes. Titi monkey vaginal samples appeared to have little to no Fusobacteria,
which is found in the other species’ vaginal samples in appreciable amounts.

These differences were further seen in the microbial community richness and even-
ness of the various body sites within each host species (Fig. 3B; Fig. S4A). We observed
the lowest and highest alpha diversities in oral and rectal samples of both chimpan-
zees and mangabeys, respectively (Fig. 3B; Fig. S4A). We also observed the lowest and
highest alpha diversities in vaginal samples of titi monkeys and sifakas, respectively
(Fig. 3B; Fig. S4A). In general, the sifakas had lower microbial species richness than the
other host species (Fig. 3B; Fig. S4A). The Kruskal-Wallis test showed an overall statisti-
cally significant difference in the alpha diversities of the various body sites within each
host species (P , 0.001 for all measures of alpha diversity except for evenness [titi
monkey]) (Table S7). These results were supported by the pairwise comparisons, which
also showed statistically significant differences between all pairs (P , 0.01 for all meas-
ures of alpha diversity) (Table S7) except the following: oral versus penile (all hosts),
oral versus vaginal (chimpanzee, mangabey, and titi monkey), penile versus vaginal
(chimpanzee and titi monkey), and rectal versus vaginal (titi monkey). These results
were further confirmed by the large effect sizes associated with statistically significant
results (Table S7).
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FIG 3 Oral, rectal, penile, and vaginal samples from chimpanzees, Verreaux’s sifakas, mangabeys, and titi monkeys. (A)
Phylum-level microbial community compositions of samples. (B) Alpha (within-sample) diversity, showing the species

(Continued on next page)
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We carried out further analyses to determine microbial community variations within
and between the body sites of each of these four host species. Principal-coordinate
analysis (PCoA) plots of all measures of beta diversity showed a general clustering by
body site, mainly driven by oral samples in all four primate species (Fig. 3C to F,
Chimpanzee, Titi Monkey, Verreaux’s sifaka, and Mangabey, respectively; Fig. S4B to E),
echoing the findings of the comprehensive data set described above. The overall and
pairwise comparisons using PERMANOVA showed statistically significant differences
between the beta diversities of the different body sites within each host species
(P = 0.001 for all measures of beta diversity) (Table S7).

DISCUSSION

This comparative survey of microbial communities among eight body sites across
17 nonhuman primate species represents, to our knowledge, the first and largest com-
parative study with such diversity in both host species and body sites. Our results
reveal that across all primates, the oral microbiome is distinct and unique in compari-
son to microbial communities at all other body sites and potentially conserved in
NHPs. We also observe that when oral samples are omitted, microbial community vari-
ation is driven more by host species differences than body site differences.

Evidence suggests that the oral microbiome is conserved among nonhuman
primates. The results of the comparative analyses of all 898 primate samples, followed
by more specific comparative tests, support the idea that, particularly for the oral
microbiome, microbial niche specialization extends across host-specific boundaries.
This result is remarkable especially considering the major dietary differences among
primates, from obligate frugivores to folivores, gumnivores, faunivores, graminivores,
and omnivores. Despite these considerable differences and additional host-specific,
genetic, phylogenetic, and environmental factors, oral microbial communities across
all NHPs cluster closely together and singularly diverge distinctly from all other body
sites. These results are consistent with results from previous work comparing the oral,
anal, and vaginal microbiomes of wild macaques and humans, which reveals a rela-
tively conserved oral microbiome between the two host species (27). Dental calculus
sampled from historical remains of Alouatta, Gorilla, Pan, archeological Neanderthals,
and modern humans (21) also shows support for a core oral microbiome. Within the
cluster of the oral samples, there is subclustering by host species, consistent with previ-
ous results for host-specific impacts on oral (28), vaginal (14, 20), and fecal (1–4) micro-
biomes. These results are further supported by our PERMANOVA analysis, which shows
a significant impact of host species-body site interaction on the microbiome.

The generalized oral sampling protocol used across all samples in this study permits
comparisons across host species. As Huttenhower et al. (24) identified nine sites in the
mouth, each with a distinct microbial community, it is fair to consider that the range of
variation observed in the quantified pairwise distances in the oral microbiome may be
influenced by the general sampling protocol utilized in the mouth. Both alpha (Faith’s
PD) and beta (UniFrac distances) metrics account for phylogenetic relationships
between the microbial species and imply that the microbial taxa observed in the oral
microbiome are evolutionarily conserved among NHPs. Strong selective pressure may
explain the conserved oral microbiome among diverse NHP species. Fermentation in
the large intestine requires specific microbes corresponding to factors like host diet, di-
gestive physiology, and genetics, while microbial composition and metabolic activity
in the oral cavity are influenced mainly by the oral environment, including saliva and
host enzymes (29, 30). Saliva acts as a buffer system to protect the oral cavity by ren-

FIG 3 Legend (Continued)
richness and evenness of samples. Boxplots of observed ASVs (a qualitative measure of community richness) and
Shannon’s diversity index (a quantitative measure of community richness). Results marked with the same letter are not
significantly different at an alpha value of 0.05, while results with different letters are significantly different at an alpha
value of 0.05. (C to F) Beta (between-sample) diversity, showing the distribution of samples. PCoA plots of unweighted
UniFrac distances (a qualitative measure of community dissimilarity that incorporates phylogenetic relationships
between the microbial species) for chimpanzee (C), titi monkey (D), Verreaux’s sifaka (E), and mangabey (F).
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dering the oral environment less conducive for potentially pathogenic microbes (31–33).
Saliva also contains several proteins with antibacterial properties, such as amylases, immu-
noglobulins (Ig), lactoferrin, mucins, histatins, peroxidases, lysozymes, and cystatins, which
further impact the microbial composition of the oral cavity (31–33). Oral bacterial biofilms
also provide substantial resistance to change agents. These high selective pressures and
protective measures present in the oral environment appear to be conserved across host
species, reducing the effect of host-specific factors on the oral microbial composition.
Follow-up comparative analyses are under way to assess the functional capacities of oral
microbes across diverse host species and to assess whether the oral microbiota is also di-
vergent from all other body site microbial communities and evolutionarily conserved in
other mammalian hosts.

Host species influences the nonhuman primate microbiome. Analyses of all sam-
ples, followed by systematic analyses of subsets of samples, support the idea that primate
microbiomes differentiate not only by body site but also by host species, particularly so
when the oral microbiome is excluded. Our PERMANOVA tests show that both factors sig-
nificantly shape microbial community composition. The removal of the oral samples, how-
ever, results in clustering by host species, indicating that the clustering by body site
observed is predominantly due to the oral microbiomes. This is further supported by the
PERMANOVA results, which show that more of the microbial variation is explained by host
species differences when oral samples are omitted. These results further build on our results
of clustering by host species within the oral microbiome discussed above. Host-specific fac-
tors have been reported to be significant determinants of primate microbiome composition
in fecal (1–4), oral (28), and vaginal (14, 20) microbiomes. These results, based on samples
from multiple body sites of multiple host species, support the importance of host-specific
factors on an even larger scale.

Microbiome studies of specific body sites have shown that the associated microbial
communities are characterized by one or a few signature microbial taxa, mainly due to
niche specialization, e.g., fecal (1–5, 15, 19, 34), oral (28, 35–38), and vaginal (14, 20)
microbiomes. And yet, notably, the extent of this finding varies considerably among
body sites and within versus between host species, emphasizing the importance of
considering the relative levels of variation (within versus among hosts, species, and
body sites) for understanding the factors affecting microbial variation. The evidence
for niche specialization is even more apparent in this study of multiple body sites and
host species comparisons that show more similarities among samples from the same
body site than from different body sites within the same host species, consistent with
other studies (22–24, 27).

Another factor considered to influence patterns of microbial variation is the impact
of captivity on the microbiome composition of the different body sites and host spe-
cies. While this was not directly examined here, one can surmise from prior studies
that captivity impacts body site microbial communities differently. For example, while
the gut microbiome has been shown to be significantly influenced by captivity (8, 9),
Yildirim et al. (14) did not find an effect of captivity on the vaginal microbiomes of
diverse primate species in their comparative study. It is clear from these results that
the significance of captivity for the microbiome, like other factors, depends on the
type of sample under consideration. While captivity may not impact the vaginal or oral
microbiome significantly, it appears to be a significant factor impacting variation in the
gut microbiome and supports both the differential patterns of resilience and stability
and the selective pressures of endogenous and exogenous factors on microbial com-
munities and their hosts.

Conclusions. This large, multiple body site and host species comparative micro-
biome analysis supports that the NHP oral microbiome is wholly distinct from all other
body site microbial communities and conserved across diverse primate species despite
their considerable genetic, dietary, habitat, and phylogenetic differences. The relatively
lower interindividual distances within oral samples in comparison to other body site
samples support the conserved nature of the oral microbiota across the Primates order
and suggest that this is also the case in our own species’ evolutionary history.
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Across all body sites and host species, the differences among microbial commun-
ities are thus predominantly driven by the distinctiveness of the oral microbiome from
all other body sites.

Excluding the oral samples reveals the importance of host species-specific effects
on microbial community composition across body sites. Within host species, niche spe-
cialization influences the microbial composition, as seen by the microbial similarities
across primates in samples from the same body site.

Interspecies and body site comparative studies such as this are imperative to better
understand factors affecting patterns of variation in host microbiomes, provide evolu-
tionary insights into host-microbe origins, and help to contextualize and put into per-
spective the relative and absolute differences in microbiome variation due to body site
and host species. Further intra- and inter-host species microbiome comparisons and
metagenomic analyses will help to elucidate comparative microbial functions and the
effects of internal (host genetics and phylogeny, digestive physiology etc.) and external
(diet, environment, geography, and social) factors impacting microbial variation, with
broader human evolutionary, biological, and health implications.

MATERIALS ANDMETHODS
Ethics statement. The methods used for noninvasive collection of microbial samples from wild and

captive primates were reviewed and approved by the Institutional Animal Care and Use Committee
(IACUC) at the University of Illinois at Urbana-Champaign and by corresponding committees of the insti-
tutions where collaborators who contributed samples work. This research adhered to the American
Society of Primatologists “Principles for the Ethical Treatment of Non-Human Primates.”

Samples. Our data set included 925 samples, including fecal samples and rectal, oral, nasal, otic/ear,
vaginal, penile, and axillary swabs collected from 17 nonhuman primate species (approximately 50 sam-
ples/species, mainly obtained from the wild), representing nine families from the four primate clades
(hominoids, cercopithecoids, platyrrhines, and strepsirrhines). Primate sample data are summarized in
Table 1. Not all body sites were sampled from every individual and host species. However, the breadth
and depth of the sampling allowed a range of analyses to (i) describe comparative variations among
and within both body sites and host species and (ii) permit more refined analyses with larger samples
sizes while controlling for host species and/or body site.

Sample collection. Sampling protocols and collection supplies were provided to all collaborators.
The protocols requested that fecal samples (2 to 5 g per animal) be collected opportunistically from the
center of the fecal bolus immediately after deposition. Sterile swabs (Copan Diagnostics, Corona, CA,
USA) were used to collect microbial samples from the oral, nasal, otic, and vaginal cavities, as well as
from the penis and axilla. For oral samples, the oral cavity was swabbed by gently rotating the swab in
the oral cavity, representing a generalized sampling instead of a site-specific sampling. Vaginal samples
were collected as described in Yildirim et al. (14). Each sample was immediately placed in a sterile 5-mL
Falcon tube containing 2 to 3 mL RNAlater and mixed well to maintain sample integrity. All samples
were frozen at the end of the day and shipped to the Carl R. Woese Institute for Genomic Biology at the
University of Illinois at Urbana-Champaign, where they were immediately transferred into 280°C freez-
ers until DNA extraction.

Genomic DNA extraction. DNA extraction and isolation from swabs was done using the QIAamp
DNA minikit (catalog number 51304; Qiagen, Inc.), following the manufacturer’s protocol. Briefly, swabs
stored at 280°C were thawed and transferred into 1.5-mL microcentrifuge tubes containing 500 mL
phosphate-buffered saline (PBS). Samples were then centrifuged for 10 min at 13,000 � g (7,500 rpm),
and the supernatant discarded. The swab and cell pellet were then resuspended in a lysis solution
(400 mL of PBS, 180 mL buffer ATL, 20 mL proteinase K, and 200 mL buffer AL, supplied in the QIAamp
DNA minikit), which was then mixed by vortexing for 15 s and incubated at 56°C for an hour. Following
incubation, 200 mL ethanol (96 to 100%) was added to the digested samples and vortexed briefly. The
digest was run through the QIAamp mini-spin columns (supplied in the QIAamp DNA minikit), where
the genomic DNA was captured on the silica membrane. The sample was then washed by adding
500 mL buffer AW1 and centrifuging at 13,000 � g (7,500 rpm) for 1 min, followed by 500 mL buffer AW2
and centrifuging at 13,000 � g (7,500 rpm) for 1 min, and eluted in a 50-mL volume of elution buffer.

DNA from the fecal samples was extracted using the QIAamp PowerFecal DNA kit (catalog number
51304; Qiagen, Inc.), following the manufacturer’s protocol, after washing samples in 500 mL 1� PBS to
remove the RNAlater in which they were stored. Briefly, approximately 0.25 g of fecal sample was added
to the PowerBead tubes with 750 mL of PowerBead solution and homogenized using the MP Bio
FastPrep-24 (MP Biomedicals, Solon, OH, USA) for 60 s at 6.0 m/s to obtain a more effective and rapid
lysis of the cells instead of vortexing. We completed the subsequent steps of the DNA extraction as out-
lined in the manufacturer’s protocol. Genomic DNA was then quantified on a Qubit fluorometer (Life
Technologies, Grand Island, NY) using the high-sensitivity double-stranded DNA (dsDNA) kit.

16S rRNA hypervariable region sequencing. We amplified the hypervariable V3-V5 region of the
16S rRNA gene using PCR primer set 357F (59-CCTACGGGAGGCAGCAG-39) and 926R (59-CCGTC
AATTCMTTTRAGT-39) from the Human Microbiome Project (39) as follows: extracted genomic DNA
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samples were sent to the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-
Champaign for amplicon library synthesis on the Fluidigm Access Array system. Using the high-sensitivity
DNA kit, the concentration of each DNA sample was measured on a Qubit fluorometer (Life Technologies)
and diluted to 2 ng/mL. A mastermix for amplification was prepared using the Roche high-fidelity fast-start
kit and 20� Access Array loading reagent according to Fluidigm protocols.

The first round of PCR was completed with a reaction mixture consisting of 4 mL of mastermix, 2 mL
of each primer, and 2 ng of DNA sample in 1 mL nuclease-free water using the following conditions:
50°C for 2 min, 70°C for 20 min, and 95°C for 10 min; 10 cycles of 15 s at 95°C, 30 s at 55°C, 1 min at 72°C;
2 cycles of 15 s at 95°C, 30 s at 80°C, 30 s at 60°C, 1 min at 72°C; 8 cycles of 15 s at 95°C, 30 s at 55°C,
1 min at 72°C; 2 cycles of 15 s at 95°C, 30 s at 80°C, 30 s at 60°C, 1 min at 72°C; 8 cycles of 15 s at 95°C,
30 s at 55°C, 1 min at 72°C; and 5 cycles of 15 s at 95°C, 30 s at 80°C, 30 s at 60°C, 1 min at 72°C.

The harvested primary PCR product was then transferred to a new 96-well plate and diluted 1:100 in
water, and 1 mL of diluted product was added to 15 mL of reagent mix and 4 mL of Illumina linker barco-
des for a second round of amplification. This 20-mL reaction mixture was denatured for 10 min at 95°C
and amplified with 14 cycles of 15 s at 95°C, 30 s at 60°C, and 1 min at 72°C, with a 3-min extension at
72°C. All libraries were quantified on a Qubit fluorometer and run on a Fragment Analyzer (Advanced
Analytics, Ames, IA), and amplicon regions and expected sizes were confirmed. Samples were then
pooled in equal molar amounts, size selected on a 2% agarose E-Gel (Life Technologies), and extracted
from the isolated gel slice with the Qiagen gel extraction kit (Qiagen). Cleaned size-selected products
were run on an Agilent Bioanalyzer to confirm appropriate profile and determination of average size.

The final 16S amplicon pools were quantitated using the Qubit fluorometer (Life Technologies, Grand
Island, NY), further quantitated by quantitative PCR (qPCR) on a Bio-Rad CFX Connect real-time system
(Bio-Rad Laboratories, Inc. CA), and then pooled evenly. The pool was then denatured, spiked with 20% nonin-
dexed PhiX control library provided by Illumina, and loaded onto the MiSeq version 2 flow cell at a concentra-
tion of 8 pM for cluster formation and sequencing on the MiSeq. The libraries were sequenced from both
ends of the molecules to a total read length of 250 nucleotides from each end.

Data analyses. Using the sample-specific barcodes assigned during sequencing, the sequenced
data were demultiplexed in QIIME2-2018.11 (https://qiime2.org) (40). Quality control, denoising, chimera
removal, and amplicon sequence variant (ASV) generation were completed using the Divisive Amplicon
Denoising Algorithm (DADA2) (41) for each sequence run. Taxonomy was then assigned at 99% similar-
ity based on the SILVA taxonomy and reference database (SILVA_132_QIIME_release) (42). A rooted phy-
logenetic tree was built using the “align-to-tree-mafft-fasttree” pipeline from QIIME2.

The processed sequenced data were then used to compare the microbial community composition, rich-
ness, and diversity among samples. Microbiome comparisons were based on sets of primate host species for
which we had samples from the same body sites (Table 1). We assessed the microbial community taxonomic
composition of the samples by assigning taxonomy as outlined above and generating relative-abundance bar
plots based on totals per group of samples. To select the optimal sampling depth for rarefaction purposes,
we tested several depths using the “qiime diversity alpha-rarefaction” script and selected a depth of 1,500 for
all subsequent analyses. We also completed alpha (within-sample variation) and beta (between-sample varia-
tion) diversity analyses with the “qiime diversity core-metrics-phylogenetic” script, which rarefied the different
feature tables to the specified sampling depth of 1,500 and computed various alpha (observed ASV, Pielou’s
evenness, Shannon index, and Chao1 index) and beta (weighted and unweighted UniFrac) diversity metrics
(43). Using the “qiime diversity alpha-group-significance” script, we then tested the associations between
body site and host species and alpha diversity results. In addition to P values, we also computed the effect
size for the Kruskal-Wallis test as the eta squared based on the H statistic (eta2[H]), with the following interpre-
tations: 0.01 to ,0.06, small effect; 0.06 to ,0.14, moderate effect; and $0.14, large effect. We then used the
“qiime diversity beta-group-significance” script to determine the interindividual distances within and between
groups. The pairwise option also completes pairwise tests to determine which specific pairs of groups are sim-
ilar. We then generated boxplots and principal-coordinate analysis (PCoA) plots from these results using the
QIIME2R package in R (R software, version 3.6.0).

We also tested for statistically significant differences in sample clustering patterns and microbial
community composition due to host species and body site using permutational analysis of variance
(PERMANOVA; adonis function in the vegan package, R software, version 3.0.6). This tests for the amount
of statistical variation explained by the factors and their interactions (r2 and F values, which show the
strength of the effects) and whether the differences due to these factors and/or their interactions are
statistically significant (P value) (44).

To explore how the different sampling regimens (e.g., differences in samples sizes and body sites
sampled on animals of different species) may have affected the results due to smaller sample sizes (e.g.,
nasal and otic) or uneven distribution of host species per body site, analyses were conducted at various
comparative levels (e.g., total sample set, all samples from one body site, and matched individual host-
body sites across a phylogenetically controlled subset of species from each of the major primate clades
[hominoids, cercopithecoids, platyrrhines, and strepsirrhines]).

Data availability. Raw sequencing files can be found on the SRA database (BioProject accession
number PRJNA795815).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.2 MB.
SUPPLEMENTAL FILE 2, PDF file, 0.9 MB.
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