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Abstract 
We investigated neural networks’ ability to generalize during 
visual object recognition. In three experiments, we show that 
while basic multilayer neural networks easily learn to classify the 
objects on which they are trained, they show serious difficulties 
transferring that knowledge to novel items. However, our 
experiments also show that when the previously trained networks 
are then trained on the novel items, they learn to respond correctly 
to the novel items much faster than untrained networks. This 
shows that these networks are learning abstract representations 
that go beyond the simple items on which they were trained. We 
argue that this demonstrates that regarding abstract rule learning, 
the problem with neural networks is not their inability to learn 
abstractions, but their ability to apply that knowledge when 
classifying new objects. 
 
Keywords: neural networks, transfer learning, object 
recognition, knowledge representation 
 

Introduction 
Excitement about artificial neural networks, both as a 

theory of cognition, and as a form of artificial intelligence, 
has waxed and waned over time. Recently, new architectures, 
training algorithms, and increased computational power have 
led to neural networks that are increasingly successful at a 
wide range of tasks (Krizhevsky et al., 2012, Devlin et al., 
2018). However, behavioral research has shown that human 
behavior is sometimes qualitatively different than the 
performance of state-of-the-art deep learning models 
(Geirhos et al., 2018, Linzen et al., 2016), and questions still 
exist about the fundamental representational capabilities of 
these models (Marcus, 1998; Martin & Doumas, 2020). 

For example, Marcus argued that neural networks are 
incapable of generalizing “outside of their training set”, in a 
way that seems so effortless for humans. Marcus cites many 
examples, but perhaps the most demonstrative is a model 
based on 7-month-old infants in a rule-learning experiment 
(Marcus et al., 1999). In the experiment, infants heard 
sequences of phonemes that followed one of three rule-based 
structures: ABA sequences (where the first and third syllable 
were the same), ABB sequences (where the second and third 
were the same), and AAB sequences (where the first and 

second were the same). In this experiment, infants who heard 
sequences following one rule for two minutes showed 
subsequent discrimination between sequences that did and 
did not follow the rule, even when the novel sequences used 
a completely novel set of phonemes. Marcus et al. concluded 
that infants learn generalizable rules independent of the items 
that they use as the basis of induction for those rules. 

Marcus used a simple recurrent network (SRN, Elman, 
1990) to simulate this experiment, demonstrating that the 
network did not show similar generalization. In Marcus’s 
model, each phoneme was represented as both an input and 
output unit, and the model was trained to predict the 
sequences of phonemes, where success was defined as 
learning which of the three rules (ABB/AAB/ABA) the 
sequences followed. Marcus showed that while SRNs learned 
to predict the sequences for phonemes occurring in the 
training sequence, they failed to show generalization to 
phonemes that didn’t occur during training. Marcus argued 
that the only thing the neural network could do was learn 
associations between specific syllables. Abstract rules exist 
at the level of relations between variables, and neural 
networks cannot represent variables in this manner. 

In contrast, Willits (2013) argued that ABA-style 
transition rules were encoded in the SRN’s recurrent weights 
but could not be used during testing because the network was 
inhibited against ever predicting the novel sounds – a sensible 
outcome given that these sounds never occurred during 
training. Analyses of the network’s representations 
demonstrated that alternation and/or repetition rules were 
encoded in the network’s recurrent weights, but that strong 
inhibitory weights to the novel output units prevented this 
from being expressed. Willits further showed that if the 
network was given just a little bit of training on the new test 
items, it learned rule-consistent test items much more quickly 
than rule-inconsistent items. Willits argued that the network 
had learned that there were items belonging to an ‘A’ 
category, and items belonging to a ‘B’ category, and had 
learned the sequential relationships of A and B items. In the 
transfer learning scenario, if the new sequence was rule 
consistent, all the network needed to learn was to categorize 
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the novel items as either an A or B, and the sequences would 
be predicted correctly. In contrast, to learn rule-inconsistent 
items the network needed to re-learn input, output, and new 
recurrent weights reflecting the new sequential rule. 

Willits’s demonstration is an example of what has since 
become a very popular neural network training technique: 
transfer learning (Pan & Yang, 2009). In recent years, deep 
learning systems are rarely trained “from scratch”. Instead, 
an existing network that already performs well at one task is 
used as a base model and trained to do a second task. If the 
source and target task share underlying structure, this speeds 
the model’s learning of the target task. Willits (2013) showed 
this principle applies to abstract relational rules (like ABA 
sequence rules) applying to entirely novel items participating 
in those sequences. This demonstration suggests that the 
criticism of a neural network’s ability to show rule-based 
transfer is not a problem with learning or representing 
abstract rules, but instead with applying a rule to novel input. 

The goal of this paper is to show that this principle can 
be used to better understand the representational capabilities 
and limitations of neural networks in a much wider range of 
situations, particularly visual object recognition. We used a 
simple artificial visual world (Polyomino World) to carefully 
control the structure and statistics of visual images. Using this 
framework, we then investigated the basic capabilities of 
simple artificial neural networks regarding their ability to 
successfully classify the objects in these visual images. Next, 
we employed transfer learning (providing additional training 
for new items to a previously trained network), investigating 
the ways in which pre-trained networks showed facilitated 
learning for novel items. If pre-trained networks show faster 
learning than untrained networks, then this shows the 
network did have useful representations that could have been 
applied to the novel object, and that immediate failure to 
show transfer was a problem with associating that 
representation with the novel item, not with learning the 
representation in the first place. 
 

Polyomino World 
In the current study, we wanted a perfectly controlled 

dataset to simplify analysis and understanding of the neural 
network’s behavior. To this end, we created the artificial 
world “Polyomino World”. Polyomino World is a world 
consisting of scenes of objects, objects defined in terms the 
set of pixels the objects occupy. In this paper, we created a 
very simple set of scenes consisting of an 8x8 grid of grey 
pixels (the background), with each scene containing a single 
object. In the following experiments, we defined all our 
objects to be simple polyominoes (plane geometric figures 
formed by joining one or more equal squares edge to edge) 
of size 1 (monomino), size 2 (domino), size 3 (tromino), and 
size 4 (tetromino), with examples shown in Figure 1. 

There are certain properties of the polyominoes worth 
noting. Considering all polyominoes of size 1-4, there are 9 
distinct orientation-independent shape types, shown in Figure 
2. Some of the shapes can be placed in different orientations. 

 
Figure 1. Example images from Polyomino World, with one 
colored shape on an 8x8 grid with a grey background. 

  
Figure 2. The full set of nine polyomino shapes. 
 

A domino and tetromino2 can be either horizontal or vertical. 
A tromino2 and tetromino4 can be placed in four different 
orientations, and a tetromino3 and tetromino5 can be placed 
in eight different orientations. This allows us to test a neural 
network’s ability to learning representations of the objects 
independent of their orientation. 

In Polyomino World we can specify the color of each 
pixel of each object. In this paper, all the pixels of each object 
were the same color, and came from the set of 8 colors 
making up the corners of the RGB cube: red (+1,-1,-1), blue 
(-1,+1,-1), green (-1,+1,-1), cyan (-1,+1,+1), magenta (+1,- 
1,+1), yellow (+1,+1,-1), white (+1,+1,+1), black (-1,-1,-1). 
Each shape occurred against a grey background, the center of 
the RGB cube (0,0,0). Thus, each input scene was represented 
as a 192-element vector (8x8x3) containing 0’s where each 
cell was empty/grey, and the color-appropriate RGB-values 
of +1 and -1 where a colored shape was present. 
 

Network Architecture and Training 
The main goal of this paper was to obtain a better 

understanding of how neural networks work, and so the 
architecture used was a simple, fully interconnected network 
with a single hidden layer, as shown in Figure 3. All models 
were initialized with weights chosen from a random uniform 
distribution ranging from -0.01 to 0.01. 

Each network was trained in the following manner. First, 
it was presented with a set of input vectors representing each 
image in the training set. For each input, activation was 
propagated along the weighted connections to the hidden 
layer, put through a sigmoid activation function, and then 
propagated along the weighted connections to the output 
layer, also put through a sigmoid activation function. 

These output activations were compared to the correct 
output activation, which constituted three 1’s (one each for 
the correct color, shape, and size labels), and a zero for all 
other units. The binary cross entropy was used as an error 
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Figure 3. Network architecture for all experiments: an input layer 
with 192 units (8x8 units for each R, B, and G color pixel); a 32-unit 
hidden layer; and an output layer with 22 units, one unit for each of 
the 9 shape labels, 4 sizes, and 8 colors. The model was trained to 
simultaneously classify all three features (label, color, and size). 
 
function that was used to train the weights using stochastic 
gradient descent with a learning rate of 0.40. 
 

Experiment 1: Novel Positions 
Experiment 1 had two goals. First, to test the neural 

network’s ability to show immediate transfer to objects 
occurring in previously unexperienced portions of the visual 
array. We tested this by training a model to classify the shape, 
size, and color of objects that were presented in only half of 
the visual array (either top half or bottom half) and tested the 
model on the same shapes presented in the omitted half. 
Second, we tested how this pre-training affected the learning 
of objects appearing in the previously omitted half. 

This experiment acts as a visual replication of the 
previously described models of Marcus et al.’s ABA 
experiment. To succeed, the model needs to learn to represent 
each shape (a set of pixels that are the same color at the same 
time) and transfer that knowledge to pixels that have never 
been any color but grey (and thus always had values of zero 
in the input). As in the ABA task, the network should fail to 
show immediate transfer. The model will never see any input 
but zero in the omitted space. Thus, weights connected to 
those inputs will never contribute to prediction error and thus 
will never be adjusted by the error-driven learning algorithm. 
When the model is tested with input to this region, the result 
should be a hidden layer activation that is effectively a 
random vector, with poor transfer performance. However, we 
also predict benefits from this prior training in the transfer 
learning phase. If the model has learned representations for 
the particular shapes, sizes, and colors that appeared in half 
of the visual array, then when it is trained on the other half, 
all it should need to do is adjust the input weights so those 
inputs instantiate the same representations, and learning to do 
so should be much faster than learning to correctly classify 
the same inputs without having already learned to classify 

those shapes in the other part of the visual array. 
 

Method 
Stimuli. We created three datasets: “Full”, “Omit top”, and 
“Omit bottom”. For the “Full” dataset, we created a training 
set of images each containing only a single object. An image 
was created for all possible orientations of each shape, in each 
color, in all possible positions in the 8x8 grid. The total 
number of scenes was 11,496 (the number of colors, times 
the number of rotational and flipping variant for each shape, 
times the number of legal positions of each shape). For the 
other two datasets, we restricted the legal positions to those 
where the shape was entirely in the bottom (“Omit top”) or 
entirely in the top (“Omit bottom”) of the 8x8 grid. 
 

Procedure. Using the general training procedure described 
above, to test the model’s immediate transfer we trained five 
models each on the “Omit top” and “Omit bottom” datasets. 
These models were trained for 2,000,000 trials, and then 
tested on the items from the omitted half of the visual array. 
To test transfer learning, we took these 10 pre-trained models 
and trained them for an additional 2,000,000 trials on the 
“Full” dataset. We then compared the performance of these 
models to 10 Control models that were trained for 2,000,000 
trials on “Full” dataset but without pre-training. Critically, 
both the Pre-trained and Control models saw the critical items 
(the items from either the top or the bottom of the visual 
array) the same number of times. 
 

Results and Discussion 
Each network was evaluated at every 50,000 training 

steps (i.e., after seeing 50,000 objects and performing 50,000 
weight updates). The networks were evaluated for their 
ability to correctly classify each object’s shape label, size, 
and color. For each of these features, the network’s guess at 
the correct choice was made by choosing the item from each 
set with the highest activation level, and if that was the 
correct feature, the guess was evaluated as correct. 

On the trained items (items appearing only in half of the 
visual array), the models achieved perfect classification 
accuracy on all three features: for color after 50k training 
instances, for size after 200k training instances, and for shape 
label after 500k training instances. 

In the test of immediate transfer, as predicted the models 
failed to show transfer. They learned to correctly classify 
items in the trained half of the visual array, but utterly failed 
to show any kind of transfer to the same objects presented in 
the omitted half of the visual array. Classification accuracy 
was 100% for objects in the trained part of the visual array 
but was at chance for all three features (shape, size, and color) 
for objects in the untrained part of the visual array. 

Also as predicted, in the test of transfer learning 
facilitation the pre-trained models had significantly faster 
learning on objects presented in the previously omitted half 
of the visual field, compared to models without pretraining. 
This facilitation effect was present for learning to correctly 
classify the object’s shape label, as shown in Figure 4. Some  
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Figure 4. Accuracy at correctly activating the correct shape labels 
as a function of amount of training. The “Pre-Trained” curve shows 
the learning trajectory for items presented in the portion of the visual 
array omitted during pre-training. The curve for “No Pretraining” 
curve shows the learning trajectory for the same set of items in a 
model starting with randomly initialized weights. 
 

pre-trained models (as evidenced by the error bars shown as 
the shaded portion of the figure) reached perfect shape label 
classification performance within 100,000 trials (seeing each 
 color of each shape in each position about 10 times). In 
contrast, models without pre-training took at least 600,000 
trials to reach the same level of performance. There was also 
significant facilitation in reaching perfect performance on 
size classification (40,000 trials for pre-trained models vs. 
60,000 trials for non-pretrained models). There was no 
significant difference for learning to classify color, as both 
models achieved perfect performance within 20,000 trials. 

The failure of immediate transfer demonstrates what has 
been argued by Marcus: that neural networks do have a 
serious problem when it comes to generalizing knowledge. 
Marcus and others have argued that failures of this sort 
demonstrate that neural networks are not representing 
information in a symbolic fashion, as humans do. However, 
the transfer learning results suggest the problem is a different 
one. Critics argue that neural networks learn simple input- 
output mappings and do not represent abstract structure that 
binds together items of the same shape. But if this were true, 
then the models that were pre-trained on half of the visual 
array, and then further trained on the other half, would have 
seen no learning advantage compared to a model starting 
from scratch. But this was not the case. This facilitated 
learning strongly suggests that there was, for example, a 
learned representation for “domino”, and that new instances 
of dominoes could, with further training, be quickly 
associated with that representation. The problem with the 
neural network is not a learning or representation problem; 
the problem is providing a mechanism to automatically bind 
new instances to those representations. 
 

Experiment 2: Novel Shapes 
One potential criticism of Experiment 1 is that it is an 

unrealistic model of the situations that humans encounter. 
There is no point in development where half of the visual 
field is not exposed to stimuli. Experiment 2 explores a 

situation much more naturalistic, experiencing novel objects.  
In Experiment 2, the network should “learn to fail” to 

correctly classify the label of the unseen object. In the pre- 
training phase, the network will be trained to classify eight of 
the objects, and then tested on the untrained object. Prior to 
any training, the network’s randomly initialized weights will 
lead to it predicting that all nine shape objects are equally 
likely to be the label for the object. However, as the model 
continues to experience all objects but one, it will adjust its 
weights to never predict the unseen item. Thus, failure to 
show immediate transfer to the unseen object’s label is a 
perfectly sensible thing for the network to learn to do. 
Of more interest are two things. First, as the network is 
learning about the other eight objects, will it continue to be 
able to correctly classify the unseen object’s color and size? 
One criticism of neural networks is that, due to their 
distributed representations, they are not able to learn 
separable features of objects. However, if the network shows 
immediate transfer for color and size of the unseen object, 
this will provide evidence that the network can learn these 
properties and transfer them to new, unseen objects. Second, 
how will the network respond when, as in Experiment 1, it is 
given a second round of “transfer learning” and given the 
opportunity to learn about the object that had previously been 
omitted. If the pre-trained model that had learned about the 
other eight objects can learn to label the ninth object more 
quickly than a model without the pre-training, this will show 
that the network learned features that help it to classify, not 
just things it has seen, but as-of-yet unseen objects, evidence 
the network is learning some kind of abstract representation 
of shape that can serve as a basis of generalization. 
 

Method 
Stimuli. Experiment 2 had two classes of datasets: 1) “Full”, 
which like in Experiment 1, contained each object in all 
possible colors, orientations, and legal positions in the 8x8 
grid, and 2) “Omit a Shape”, where all examples of one of the 
nine different polyomino shapes was removed from the 
dataset. There were nine different versions of this dataset; in 
each, one of the different shapes was omitted. 
 

Procedure. The procedure in this experiment was much like 
in Experiment 1. Using the general training procedure 
described above, in the “Immediate Transfer” condition we 
trained five randomly initialized models on each of the nine 
different “Omit a Shape” datasets. These models were trained 
for 2,000,000 trials, and then tested on their classification 
accuracy when presented with the shape that was omitted 
during training. The models were evaluated in the same way 
as in Experiment 1. To test transfer learning, we took these 
pre-trained models and trained them for an additional 
2,000,000 trials on the “Full” dataset. We then compared the 
performance of these models to 10 control models that were 
trained for 2,000,000 trials on “Full” dataset without pre- 
training. Critically, both the pre-trained and control models 
saw the critical items (the shape omitted during pre-Training 
for the pre-trained models) the same number of times. 
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Results and Discussion 
On trained items, the models had perfect performance for 

color (after 50k training steps), for size (after 200k training 
steps), and for shape label (after 300k training steps). In the 
test of immediate transfer, as predicted the models “learned 
to fail”, reaching 0% accuracy for choosing the correct label 
for the untrained shape within 50k trials. In contrast, they 
showed perfect accuracy classifying the color and size of the 
untrained object, with accuracy levels for these features that 
were not significantly different than accuracy for these 
features on trained objects. In the test of transfer learning 
facilitation, the pre-trained models once again outperformed 
the models without pre-training, as shown in Figure 5. 

Figure 5. Shape label learning trajectory for a previously untrained 
shape (tromino1), on a model that was pre-trained on all other 
shapes, compared to a model with no pre-training. 
 

Prior experience learning to classify the other eight 
shapes significantly speeded the learning of the new shape. 
The model without pretraining took, on average, 200k 
training steps to reach perfect shape label classification 
accuracy on a shape, whereas the pretrained models took, on 
average, 500k training steps. In addition to being 
significantly faster overall, this difference was significant for 
each individual shape except monominoes (which were at 
ceiling). The average time for the models (pre-trained and 
not) to reach 100% accuracy on each of the nine shapes is 
shown in Table 1. 
 

Table 1. Mean training trials required to reach 100% shape label 
classification, as a function of whether the model was pre-trained on 
the other 8 shapes. All numbers are thousands of training steps. 
Shape M D Tr1 Tr2 Te1 Te2 Te3 Te4 Te5 
Pre-trained 50 50 150 100 800 200 350 300 100 
Not Pre-trained 50 100 500 400 1350 750 550 650 300 

 

 

The results from Experiment 2 replicate Experiment 1. 
The faster learning of the previously unseen shape by the pre- 
trained models demonstrates that the weights being learned 
by the model help it instantiate distributed representations 
composed of features that are useful when they need to be 
applied to a new object. When the model is given additional 
training on the new object, on many objects all it needs to do 

is learn to adjust its output weights to correctly assign an 
output label to that new shape’s hidden representation. This 
is much faster than learning an entirely new representation 
from scratch. In addition, the demonstration that the model 
continues to correctly classify unseen objects’ size and color, 
while not knowing how to classify the object’s name, is 
evidence the model is learning representations of the different 
features (shape, size, and color) that are at least somewhat 
independent, a necessary pre-requisite for more advanced 
reasoning using these features. 
 

Experiment 3: Novel Orientations 
One could argue that the models in Experiment 2 suffer from 
the same problem as the models in Experiment 1. Both 
models, like Marcus’s ABA model, have either input units (in 
Experiment 1) or output units (in Experiment 2) that are never 
used during training. This property, it has been argued, makes 
them bad models of human learning, since humans don’t 
come to learning situations with inputs or outputs that have 
never occurred in previous training, and thus have been 
explicitly trained expect null input (Seidenberg & Elman, 
1999). Experiment 3 models a third situation of transfer and 
transfer learning that completely avoids this problem: the 
classification of previously experienced shapes that are occur 
in unique orientations (either rotated or flipped). In this 
experiment, all shapes are experienced during training, in all 
possible positions in the space. However, during training the 
shapes will only have occurred in half of their possible 
orientations. For example, during training the model might 
see dominos placed only horizontally, or tetromino3’s (the 
one that looks like an L), but only in four of the eight possible 
orientations that shape can occur (counting all four 90-degree 
rotations, placed both forwards and backwards. The model is 
then tested on the untrained orientations to see if it can make 
correct color, size, and shape label classifications. 
 

Method 
Stimuli. The items in Experiment 3 were limited to those that 
could appear in multiple orientations (i.e., monominoes and 
tetromino1s were not included). There were two classes of 
datasets: 1) “Full”, which contained each of the 7 objects in 
all possible colors, orientations, and legal positions in the 8x8 
grid, and 2) “Omit Half of Orientations”, where half of the 
orientation variants of each shape were omitted. There were 
two different versions of this dataset; in each one a different 
half of the variants were omitted. 
 

Procedure. In the “Immediate Transfer” condition we 
trained five models on each of the “Omit Half” datasets. 
These models were trained for 2,000,000 trials and then 
tested on the omitted half of the variants. For the “Pre- 
trained” condition, we took these 10 pre-trained models and 
trained them an additional 2,000,000 trials on the Control 
dataset (containing all the variants). We compared the 
performance of these models to 10 “Control” models, trained 
for 2,000,000 trials on Control dataset without pre-training. 
Critically, both the Pre-trained and Control models saw the 
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critical items the same number of times. 
 

Results and Discussion 
On trained items, the models achieved perfect accuracy 

for color, size, and shape. In the test of immediate transfer 
(classification accuracy for shape, size, and color on the 
untrained variants of each shape), the models reached perfect 
accuracy for size and color, transferring knowledge of these 
features as quickly as they were learned on the training set. 
In contrast, shape accuracy plateaued at 73% after 700,000 
training steps. This was considerably above chance (14.3%, 
or one out of seven possible shape labels that could be 
guessed), but still failing to show perfect transfer to 
unobserved items. This is the kind of failure to show transfer 
discussed by Marcus, and without the issue of relying on 
input or output units trained on null data. The models were 
learning to map each observed variant to a response, but 
whatever representation they were using to do so did not lead 
to correct classification of new, unseen versions of those 
shapes. These results are shown in Figure 6. 

However, these results are also evidence against the 
notion the networks were only learning simple mappings 
between each independent variant of each shape and its 
output label. If that were the case, immediate transfer would 
have been at chance (17%), not 73%, as each shape variant’s 
representation would have provided no help with any of the 
other unseen variants. This argument is strongly supported by 
the results of the transfer learning (shown in Figure 7), which 
show that with additional training on the previously unseen 
items, the pre-trained models achieved perfect accuracy 
much more quickly (after about 350,000 training steps) than 
the untrained models (1,000,000 training steps).

 
Figure 6. Immediate transfer for shape, size, and color for untrained 
variants (rotations and flips) of trained shapes. 
 

General Discussion: 
These results demonstrate that neural networks have a 
problem transferring knowledge to new situations, even in 
situations that don’t rely on untrained input or output units. 
However, the fact that in all three experiments, the pre- 
trained models learned the new items faster that untrained 
models shows that the models are learning representations 
 

 
Figure 7. Shape label learning for a previously untrained variants of 
shapes (flips and rotations), on a model that was pre-trained on all 
other variants, compared to a model without pre-training. 
 

that provide a basis for transfer to the new items. That 
transfer is just not being immediately applied to new items. 
This strongly suggests that the problem with the neural 
networks regarding learning abstract relational 
representations is not a problem with learning or 
representation, but a problem with application of those 
representations to new items. 

Neural network enthusiasts should not, however, get too 
excited about these results, as they demonstrate several very 
serious difficulties that would need to be overcome for the 
models to show human like performance. First, even though 
the networks do show transfer benefits from previous 
knowledge, the networks still require considerable additional 
training even with this prior learning, for example of 300,000 
training steps in Experiment 3. That is equivalent to having 
experienced each new variant over 10,000 times (collapsing 
over color and position). Human learners take less than that. 
What conclusion should we draw from this? We argue that 
successful transfer learning is evidence that there is 
representation that is useful as a basis of transfer, but that 
transfer learning (or anything like it) is an unlikely candidate 
mechanism for that transfer to occur. What other options are 
there, within a neural network framework? 

Of course, before we can understand whether the 
representations being learned by neural networks can truly 
support generalization, we need to understand more about 
exactly how the neural networks are representing what they 
are learning. Truly representing a shape in a way that leads to 
successful transfer can be done, and maybe must be done by, 
representing a relational rule. Can such a rule be represented 
in a neural network? In principle, yes. But is that how these 
neural networks are learning to represent those shapes? If not, 
can they be convinced to do so? Before deciding whether 
neural networks are fundamentally incapable of learning, 
representing, and using information like humans, we have a 
lot to learn about how they work. 
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