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1 Princeton Neuroscience Institute, 2 NYU Center for Data Science,
3 Princeton University Dept of Psychology, 4 Princeton University Dept of Computer Science

Abstract

Humans possess a remarkable capacity to recognize and ma-
nipulate abstract structure, which is especially apparent in the
domain of geometry. Recent research in cognitive science sug-
gests neural networks do not share this capacity, concluding
that human geometric abilities come from discrete symbolic
structure in human mental representations. However, progress
in artificial intelligence (AI) suggests that neural networks be-
gin to demonstrate more human-like reasoning after scaling up
standard architectures in both model size and amount of train-
ing data. In this study, we revisit empirical results in cognitive
science on geometric visual processing and identify three key
biases in geometric visual processing: a sensitivity towards
complexity, regularity, and the perception of parts and rela-
tions. We test tasks from the literature that probe these biases
in humans and find that large pre-trained neural network mod-
els used in AI demonstrate more human-like abstract geomet-
ric processing.
Keywords: geometric reasoning, multimodal models, abstrac-
tion

Introduction
Humans have an amazing capability to build useful abstrac-
tions that can capture regularities in the external world. By
forming abstractions that can generalize to future experience,
humans are able to exhibit efficient learning and strong gen-
eralization across domains (Lake, Salakhutdinov, & Tenen-
baum, 2015; Hull, 1920). One domain in which this has
been observed by cognitive scientists is geometric reason-
ing (Dehaene, Al Roumi, Lakretz, Planton, & Sablé-Meyer,
2022), where people consistently extract abstract concepts,
such as parallelism, symmetry, and convexity, that generalize
across many visual instances.

These observations, together with rigorous empirical work
examining visual perception of geometric forms (Sablé-
Meyer et al., 2021; Sablé-Meyer, Ellis, Tenenbaum, & De-
haene, 2022) have led some cognitive scientists to hypothe-
size that human abstractions arise from symbols that are used
recursively and compositionally to produce abstractions nec-
essary for geometric reasoning. Such hypotheses recapitulate
the “Language of Thought” hypothesis of Fodor (1975): that
higher-order cognition in humans is the product of recursive
combinations of pre-existing, conceptual primitives, analo-
gous to the way in which sentences in a language are con-
structed from simpler elements, such as words and phrases.
It has sometimes been assumed that, as a consequence of this

* equally contributing co-first authors

hypothesis, artificial neural networks cannot produce such ab-
stractions without the exogenous addition of symbolic primi-
tives and/or processing machinery (Fodor & Pylyshyn, 1988;
Marcus, 2018). Indeed, empirical work in this domain has
shown that explicitly symbolic models fit human behavior
better than standard neural networks (Sablé-Meyer et al.,
2021; Bowers et al., 2023) without such additions.

A recent paradigm shift in the field of artificial intelligence
has begun to offer a challenge to the LoT hypothesis. Large
neural networks, trained on massive datasets, are starting to
demonstrate reasoning abilities similar to those of humans in
linguistic and analogical reasoning tasks (Bubeck et al., 2023;
Webb, Holyoak, & Lu, 2023; Wei et al., 2022). These models
rely on continuous vector space representations rather than
discrete symbols, and lack any explicit symbolic machinery
(McCoy, Linzen, Dunbar, & Smolensky, 2018).

In this article, we test whether such large pre-trained neural
network models demonstrate a similar capacity for abstract
reasoning in the domain of geometry. Specifically, we apply
neural network models to behavioral tasks from recent em-
pirical work (Sablé-Meyer et al., 2021, 2022; Hsu, Wu, &
Goodman, 2022) that catalogue three effects indicative of ab-
straction in human geometric reasoning. First, humans are
sensitive to geometric complexity, such that they are slower
to recall complex images as compared to simpler ones (Sablé-
Meyer et al., 2022). Second, humans are sensitive to geomet-
ric regularity (based on features such as right angles, parallel
sides, and symmetry) such that they are able to classify reg-
ular shapes (such as squares) more easily than less regular
ones (such as trapezoids) (Sablé-Meyer et al., 2021). Third,
humans decompose geometric objects into geometric parts
and relations when learning new geometric categories, and
generalize these to unseen stimuli (Hsu et al., 2022).

We apply existing pre-trained neural network models
trained on large databases of images and text to three tasks
corresponding to each of these effects (Fig. 1). We then eval-
uate how well the models reproduce human behavior and ex-
amine the extent to which the models’ embeddings (last layer)
support abstract geometric reasoning. The results demon-
strate that large neural networks, when trained on sufficiently
rich data, can in some situations show preferences for abstrac-
tion similar to those observed in humans, providing a connec-
tionist alternative to symbolic models of geometric reasoning.
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Figure 1: Tasks. (A). Delayed-match to sample task in-
volving hierarchically structured shapes generated using the
Dreamcoder DSL. (B). Quadrilateral oddball task in which
humans and machines are evaluated on their sensitivity to
geometric regularity and symmetry. (C). Category judgment
task involving geometric figures with hierarchical shapes.

Neural Network Models
To test our hypothesis, we used two self-supervised
transformer-based neural network models (DINOv2 and
CLIP) that had been pre-trained on massive datasets of im-
ages and text. DINOv2 (Oquab et al., 2023) is a large Vi-
sion Transformer (Dosovitskiy et al., 2020) with 1B parame-
ters trained with a self-supervised objective on a large scale
dataset containing 142 billion images.

DINOv2 has two main losses — an image level loss, where
embeddings of affine augmentations of the same image are
trained to have maximal similarity using a student-teacher
network configuration (Caron et al., 2021) and a patch-level
loss, in which random patches of images are masked out and
the network has to fill them in (Zhou et al., 2021).

CLIP is a similar transformer-based architecture that is
trained on a joint vision-language objective by maximizing
the cosine similarity between image embeddings and their

corresponding language embeddings. CLIP, similar to DI-
NOv2, is a visual foundation model trained on the WebImage-
Text dataset, an internet scale computer vision dataset con-
taining over 400 million image caption pairs.

We also used a standard convolutional neural network
(ResNet-50; He, Zhang, Ren, & Sun, 2016), which is pre-
trained on a basic image classification task on the ImageNet
dataset (Deng et al., 2009). Both DINOv2 and CLIP are
trained on datasets that are orders of magnitude larger than
the ImageNet dataset on which the ResNet model was trained
(e.g., DINOv2’s dataset LVD-142M contains 142 million ex-
amples, whereas ImageNet contains 1.2M examples). We
hypothesized that these larger models would have a greater
opportunity to discover more general and systematic geomet-
ric features as a consequence of the size and scope of the
datasets on which they are trained. Thus, they would exhibit
more human-like sensitivity to geometric regularities in vi-
sual processing tasks than models trained on less data (such
as ResNet).

In each section below we consider the performance of these
models with respect to each of the three types of systematicity
observed for humans in processing geometric figures: geo-
metric complexity, geometric regularity, and geometric parts
and relations.

Geometric Complexity
Background
Sablé-Meyer et al. (2022) formalized the concept of subjec-
tive complexity of geometric shapes using program induction,
as implemented in the DreamCoder framework (Ellis et al.,
2021). This broadly follows the Language of Thought (LoT)
schema (Quilty-Dunn, Porot, & Mandelbaum, 2023), model-
ing a geometric shape through a generative drawing program
consisting of a set of motor commands that trace an object
using a virtual pen. The motor commands come from a range
of motor primitives specified by a domain-specific language
(such as tracing a curve or changing direction) and combi-
natory primitives (such as Concat, which concatenates two
subprograms; or Repeat, which repeats a subprogram a spec-
ified number of times). These symbolic programs are then
rendered into images like the ones shown in Fig. 1a. Sablé-
Meyer et al. (2022) quantified the complexity of each image
using the length of the program (the Minimum Description
Length; MDL), that was used to draw it.

To validate MDL as a metric for subjective geometric com-
plexity in humans, Sablé-Meyer et al. (2022) designed a
working memory task using stimuli rendered from the above
LoT model (Fig. 1a). Participants were given however much
time they needed to commit a geometric stimulus to memory
before pressing a button to end the memorization phase. Af-
ter a memorization phase, they were faced with a blank screen
for two seconds, followed by the presentation of six stimuli
comprised of the the original stimulus they had memorized
(the “target image”) and five distractors. The task was to iden-
tify the target image. Human participants performed well at
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this task, with error rates as low as 1.82%. Critically, reac-
tion times (RTs) were longer for targets with higher MDLs.
(Fig. 2b).

Results
We tested the extent to which large neural network models
(DINOv2 and CLIP), but not the smaller one (ResNet-50)
would capture these features, both by examining their embed-
dings (last layer), and by comparing their performance to that
of humans. To assess the encoding of stimulus complexity by
neural networks, we generated 1,000 stimuli using the LoT
model, mirroring the approach of (Sablé-Meyer et al., 2022).
We aimed to determine whether the embeddings in our mod-
els captured the Minimum Description Length (MDL) of the
stimuli, used as a measure of their complexity. We first ob-
tained embeddings for the stimuli and then conducted both
decoding and correlative analyses. A linear regression model
was trained to predict the MDL from the embeddings us-
ing 20-fold cross-validation and evaluate the extent to which
model embeddings varied as a function of stimulus complex-
ity. Additionally, we calculated the Euclidean distance be-
tween each stimulus embedding and the average embedding
across all stimuli. The correlation between these distances
and the MDL was computed to evaluate the alignment of our
embedding metrics with stimulus complexity.

We found that embeddings taken from all three models
contained robust information about stimulus MDL (Fig. 2a)
with slightly higher decoding performance for CLIP and DI-
NOv2 (R2 = 0.61 and R2 = 0.65, respectively) compared to
ResNet-50 (R2 = 0.59) as evaluated with 20 fold cross valida-
tion. Moreover, a simple correlation analysis found that the
distance to the average embedding for each target stimulus
was weakly, but significantly, correlated with the MDL for all
three models (p < 0.01 for all).

We then compared metrics derived from these pre-trained
neural networks on their ability to predict human perfor-
mance using the same trials presented to human participants
in the study by Sablé-Meyer et al. (2022) (Fig. 2c, signifi-
cance reported in Table 1). For each trial, we extracted em-
beddings for the target and the five distractor stimuli from
each network. Two key embedding metrics were computed to
predict human performance. The first was the Euclidean dis-
tance between the target embedding and the centroid of the
distractor embeddings, hypothesized to reflect the “confus-
ability” of the target with its distractors. This metric might
be related to the choice reaction times of participants. The
second was the Euclidean distance between the target embed-
ding and the centroid of the entire stimulus space, as intro-
duced above. This may reflect the general “confusability” of
the stimulus and potentially related to the time participants
spent encoding each image.

We fit GLM models with the same confound variables used
in Sablé-Meyer et al. (2022). For the choice condition, we
fit one GLM for each neural network model with the target-
distractor embedding distance metric derived from the neu-
ral networks and the confound variables as predictors in pre-

Table 1: DMTS Regression Significance (p-values)

Condition Regression Model Metric p-value R2

Choice GLM CLIP target-distractor 4.59e-06 0.91
Choice GLM DINOv2 target-distractor 2.01e-07 0.93
Choice GLM ResNet target-distractor 8.53e-05 0.89
Choice GLM LoT MDL 3.73e-04 0.88
Choice Mixed Effects CLIP target-distractor 9.72e-26 0.19
Choice Mixed Effects DINOv2 target-distractor 2.11e-29 0.19
Choice Mixed Effects ResNet target-distractor 1.77e-18 0.18
Choice Mixed Effects Symbolic MDL 7.01e-03 0.18
Encoding GLM CLIP target-centroid 7.58e-01 0.80
Encoding GLM DINOv2 target-centroid 2.70e-02 0.84
Encoding GLM ResNet target-centroid 3.42e-01 0.81
Encoding GLM Symbolic MDL 1.19e-03 0.87
Encoding Mixed Effects CLIP target-centroid 7.32e-01 0.11
Encoding Mixed Effects DINOv2 target-centroid 1.43e-02 0.11
Encoding Mixed Effects ResNet target-centroid 1.25e-01 0.11
Encoding Mixed Effects Symbolic MDL 3.31e-03 0.11

dicting the average human choice times for each stimulus.
Likewise, we followed the same approach for the encoding
times, but used the target-centroid distance metric from the
neural network embeddings instead. We also fit GLMs with
the same confounds and MDL as predictors to compare MDL
with the embedding-derived distance metrics. This allowed
us to compare the relative contribution of the metrics derived
from the neural networks to the MDL in predicting human
performance, by directly evaluating quality of model fits.

Due to concerns with model overfitting, we also fit linear
mixed effects models at the trial level with target stimulus as
a grouping variable to evaluate whether the same differences
still held in this more challenging regression setting (Table 1).

In the regression analysis, GLM fits consistently indicated
that the target-distractor distance metrics derived from the
model embeddings predicted participant choice RT just as
well or better than the MDL models (Table 1). Conversely,
the DINOv2 target-centroid distance was the only network-
derived metric that was significantly predictive of participant
encoding time (p< 0.05), although the MDL model predicted
human encoding RT better in this setting. Although the pre-
diction of encoding reaction time from the target-centroid dis-
tance metric from DINOv2 was significant, the metric fails
to capture the same shape of the trend that MDL has (in
which the MDL increases as reaction time increases). Fu-
ture work may involve searching for more appropriate met-
rics for encoding times that can be derived from DINOv2’s
embedding space. Linear mixed effects models recapitulated
the general trend that network-derived distance metrics were
just as predictive of human RT as MDL during the choice
phase but not during the encoding phase. Notably, for choice
RT modeling, the comparable performance of the network-
derived metrics’ to MDL in predicting choice RT was most
evident for the larger models compared to ResNet, although
further analysis is required to confirm this observation. Our
results underscore that it is possible to predict behavior just
as well as the symbolic model used in Sablé-Meyer et al.
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a. b. c.

Figure 2: Model embeddings predict human performance on DMTS task. a) t-SNE plot of DINOv2 model embeddings (as
an example) of 1000 stimuli generated from randomly sampled programs from the LoT model used in Sable-Meyer et al. (2022),
colored according to stimulus MDL. Stimulus embeddings implicitly represent variation in MDL, that was also evaluated with
regression analysis. b) Human choice and encoding reaction times on the task plotted with a linear regression between MDL
and reaction time. R2 values and p-values from fitting GLM model with same confounds as originally used in Sable-Meyer et
al. (2022). c) Embedding metrics for all three models plotted against choice (top) and encoding (bottom) RT. R2 values and
p-values from GLM model with same confounds as originally used in Sable-Meyer et al. (2022).

(2022) using simple metrics derived from the representations
of large pretrained neural networks. We may conclude from
this that human-like intuitions of subjective geometric com-
plexity may already be contained in the representations of
such large pretrained networks without the need for symbolic
structure.

Geometric Regularity
Background
The Quadrilateral Oddball Task, was used in Sablé-Meyer
et al. (2021) to compare the ability of diverse human
groups—differing in education, cultural background, and
age—to that of non-human primates, symbolic models, and
neural networks in their sensitivity to geometric regular-
ity. Participants were presented with a set of five reference
quadrilaterals alongside a singular “oddball” quadrilateral,
and tasked with identifying the oddball (see Fig. 1b). The
reference quadrilaterals were constructed to vary in symme-
try and regularity (such as number of parallel lines, congru-
ent sides, and equal angles), yielding a range from perfect
squares (the most regular quadrilateral) to random quadrilat-
erals (devoid of any such regularities). On each trial, partic-
ipants were presented with five variants of a reference shape
drawn from the set of quadrilaterals, that differed only in size
and orientation, while the oddball was a perturbed version of
the reference shape with the lower right vertex altered to dis-
rupt any inherent regularity in the shape (Fig. 1b).

Sablé-Meyer et al. (2021) found that humans exhibited the
highest accuracy in identifying the oddball when generated
from (and presented among) highly regular shapes, with per-
formance progressively declining as the reference shapes be-
came more irregular (Fig. 3a). In contrast, non-human pri-

mates and simple neural network models (a ConvNet like
the ResNet used in the present work) achieved scores above
chance, but failed to demonstrate any discernible perfor-
mance biases as a function of geometric regularity. Sablé-
Meyer et al. (2021) showed that a symbolic model, built from
an explicitly symbolic feature space derived from the discrete
geometric properties of the shapes, could predict human per-
formance in the task, and in particular the trend of increasing
errors with greater geometric irregularity (Fig. 3a).

Results

To assess the correspondence between representations in the
large pre-trained neural networks and the biases exhibited in
human behavior on this task, we presented the same set of im-
ages to the models that were shown to human and non-human
primate participants in the original study, totaling approxi-
mately 60,000 trials. On each trial, the six images of quadri-
laterals used in the corresponding trial of the empirical study
were presented to the model . For each image, the model’s
embeddings (the last layer) were extracted, and the outlier (as
a proxy for the model’s identification of the oddball) was de-
termined by identifying the embedding that had the greatest
Euclidean distance from the others (note that this is the same
procedure Sablé-Meyer et al. (2021) use to evaluate the Odd-
ball task on neural network models). We computed an aver-
age error rate for each reference shape (i.e., failure to identify
the oddball embedding as the outlier in the display) across all
trials, and ordered these error rates according to the geomet-
ric regularity of the reference shapes. The error rates from
each model were then correlated with those of humans and
non-human primates to compare the model’s performance to
that of each group.
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Figure 3: Comparison of model biases to human/baboon
performance on quadrilateral oddball task. A) Human,
baboon, and symbolic model error rates on the quadrilateral
oddball task reported by Sable-Meyer et al (2021), sorted by
shape geometric regularity (most regular on the left to least
regular on the right). B) Neural network error rates as eval-
uated on the same trials shown to human and baboon partic-
ipants in the original task. C) Bar plot displaying r-values
for statistical tests evaluating correspondence of model error
rates with human and baboon error rates.

The larger, self-supervised models DINOv2 and CLIP
were better aligned with human performance biases in the
geometric oddball task (Fig. 3), and exhibited a robust pref-
erence towards geometrically regular shapes, as evidenced by
a significantly positive slope (p < 0.001) in their error rates
as a function of regularity (Fig. 3). Moreover, although the
error rates derived from the CLIP embeddings were signifi-
cantly correlated with the baboon error rates (p < 0.05), both
CLIP and DINOv2 error rates most closely matched human
error (p < 0.01). Consistent with prior work (Sablé-Meyer et
al., 2021), the smaller ResNet-50 model trained on classifi-
cation more closely matched baboon error rates, and did not
exhibit a significant positive trend as a function of geometric
regularity.

Geometric Parts & Relations
Background
The Geoclidean Task (Fig. 1c), introduced by Hsu et al.
(2022), leverages a domain specific language (DSL) designed
to encapsulate the fundamental elements of Euclidean geom-
etry. This task uses the Geoclidean DSL to define and ren-
der geometric concepts, which in turn facilitates the inves-
tigation of geometric generalization capabilities. The Geo-
clidean DSL enables the generation of diverse images that
embody the same abstract geometric concept through a set
of Euclidean construction rules. Hsu et al. (2022) developed

two datasets based on this system: Geoclidean-Elements,
which draws from the axioms and propositions found in the
first book of Euclid’s Elements, and Geoclidean-Constraints,
which offers a more streamlined examination of the relation-
ships between Euclidean primitives (see Fig. 1c).

This task is designed to probe the intuitive understanding
of Euclidean geometry, as evidenced by the ability to general-
ize from a limited set of examples to new instances. Hsu et al.
(2022) demonstrated that humans show a robust capacity for
such generalization across 37 different concepts, suggesting
a natural sensitivity to the hierarchical structure and part rela-
tions inherent in Euclidean geometry. Conversely, they found
that neural network models pretrained on ImageNet (which
were more similar in size to the ResNet model used in the
present work) struggle with few-shot generalization in this
context.

Results
We replicated the task conditions used by Hsu et al. (2022)
with human participants as closely as possible in our evalua-
tion neural network performance, in order to test the hypoth-
esis that larger model size and enhanced training procedures
would significantly reduce the gap between human and model
performance.

Following Hsu et al. (2022), we assessed the proficiency of
our three neural network models on the Geoclidean Task by
testing each model’s accuracy in making category judgments
under “far” and “close” conditions, analogous to the task set
presented to human participants in the original study.

DINOv2 and CLIP outperformed the ResNet model on this
task; however, their accuracy (66% and 70% respectively; see
Table 2) fell considerably short of human performance (91%).
Successful performance of this task depends on the capac-
ity to interpret the relationships and intersections among the
sub-components of each stimulus that define each category.
The complexity of the task is heightened by the necessity to
identify not only the presence of specific sub-parts in each
stimulus, but also to understand how they are arranged to cre-
ate the overall Euclidean structure. This is particularly chal-
lenging as both category members and outliers are composed
of identical components, with their relational configurations
being the sole differentiating factor. Static embeddings de-
rived from these pre-trained models may not be expressive
enough to represent these relational features, and that may
explain why their accuracy on this task lags so far behind hu-
man performance. In the Discussion below, we consider ways
in which neural networks models might be augmented to ad-
dress these challenges.

Table 2: Geoclidean Task Performance

Model Overall Close Far
CLIP 0.70 0.67 0.73
DINOv2 0.66 0.64 0.69
ResNet 0.64 0.61 0.67
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Discussion
Geometry is a domain in which humans form useful abstrac-
tions that capture regularities across stimuli. A prevailing
theory in cognitive science is that these geometric abstrac-
tions reflect symbolic structure in human mental represen-
tations (Fodor, 1975; Dehaene et al., 2022). Along similar
lines, it has been argued that, without explicitly imbuing neu-
ral networks with symbol processing capabilities, they will
not be able to exhibit the same cognitive flexibility as humans
(Marcus, 2018; Fodor & Pylyshyn, 1988). However, the fact
that human behavior, or their inductive biases, may be de-
scribed effectively with abstract symbolic processing does not
necessarily imply that their internal representations are based
on discrete symbols (Griffiths, Kumar, & McCoy, 2023). Our
results show how large neural networks pre-trained on mas-
sive numbers of images and text have the capability to re-
produce key behavioral phenomena that have been associated
with abstract geometric reasoning and symbol processing ca-
pabilities in humans (regardless of what kinds of represen-
tations they learn). Specifically, these networks produce be-
havior consistent with human biases towards complexity and
regularity, but not towards multi-part structure.

First, humans have an intrinsic notion of geometric com-
plexity that influences their perceptual behavior. Sablé-Meyer
et al. (2022) explored this using a working memory Delayed
Match to Sample Task (DMTS) in which participants had to
memorize a target image and select it among distractors after
a 2 second delay period (Fig. 1a). Behavioral metrics, such as
how long people had to make a decision (choice times), were
predicted by a shape’s Minimum Description Length (MDL),
the length of the shortest symbolic drawing program needed
to generate the shape (Fig. 2b). We show that the embedding
distances in large pre-trained models such as CLIP and DI-
NOv2 provide an equally or better predictor of human choice
times (Fig. 2c). Further, these distances appear to correlate
closely with MDL (Fig. 2a), suggesting that neural networks
can learn representations that contain information about ge-
ometric complexity that humans are sensitive to, without ex-
plicitly being imbued with symbol processing capabilities. A
limitation of the current analysis is that there may be certain
low-level confounders that correspond to MDL (e.g., lumi-
nosity).

Second, humans have a strong bias towards geometric reg-
ularity (Sablé-Meyer et al., 2021), with particular sensitivity
to abstract features such as right angles, parallel lines, and
symmetry. Sablé-Meyer et al. (2021) designed an Oddball
task to probe this specific human bias, in which participants
had to identify an Oddball shape out of a group of six quadri-
laterals in which the Oddball violated a specific regularity in
the group of quadrilaterals (Fig. 1b). We found that, con-
sistent with findings of Sablé-Meyer et al. (2021), a ResNet
model (a standard convolutional neural network architecture
trained on object classification) failed to reproduce the geo-
metric regularity effect, in which performance improved with
the amount of geometric regularity in the trial stimuli (Fig. 3).

At the same time, we showed that CLIP and DINOv2—
transformer architectures trained on larger datasets using self-
supervised objectives—do reproduce the geometric regular-
ity bias (Fig. 3). However, one important caveat is that DI-
NOv2 and CLIP were both trained on richer, internet scale
datasets including images with rectilinear structure (espe-
cially the ”Describable Textures Dataset” in DINOv2’s train-
ing data, which has many isolated squares and rectangle pat-
terns (Oquab et al., 2023)).

Third, humans are predisposed to parse geometric shapes
into separable parts and relations among those. Hsu et al.
(2022) built the Geoclidean task to demonstrate this capa-
bility in humans, and benchmark it in artificial intelligence
systems. In the Geoclidean task, subjects have to make cate-
gory judgements based on stimuli that were generated using
a DSL that hierarchically generates geometric visual stimuli
with multiple parts and relations (Fig. 1c). From just a few
exemplars, participants have to learn the category embodied
by the set of exemplars, and then generalize this to identify
whether a novel stimulus is a member of the category. We
found that DINOv2 and CLIP outperform ResNet on the Geo-
clidean task, but fall short of human-level performance. This
suggests further work is needed to endow neural networks
with the human-like ability of decomposing an abstract geo-
metric stimulus into parts and relations. However, whether
or not this requires the explicit addition of symbolic pro-
cessing capabilities remains an open question. Recent work
has shown that object-centric representations can be learned
in visual transformers using Slot Attention (Locatello et al.,
2020), or in modifying transformer architectures to be more
sensitive to relations between objects than individual object
features (Altabaa, Webb, Cohen, & Lafferty, 2023). These ar-
chitectural augmentations do not specifically implement sym-
bolic processing capabilities, though they may serve as in-
ductive biases that may pressure neural networks to acquire
such capabilities through learning (Webb, Frankland, et al.,
2023). Incorporating these kinds of methods at scale may be
a path forward in enabling a human-like bias towards geomet-
ric parts and relations in neural network architectures.

Our work shows that DINOv2 and CLIP, which are trans-
former architectures pre-trained on large-scale data, pro-
duce more human-like patterns of geometric processing than
ResNet, a standard convolutional neural network architecture
trained on ImageNet. DINOv2 and CLIP differ from ResNet
in model architecture, scale of data distribution, model size,
and training objective. Each of these differences may be a
factor contributing to our results. There is work showing that,
like humans, transformer architectures are biased more to-
wards shapes whereas convolutional neural networks are bi-
ased more towards texture (Tuli, Dasgupta, Grant, & Grif-
fiths, 2021). Additionally, work in machine learning has
found that scaling up model and training data size can change
model capabilities (Wei et al., 2022). Future work will en-
tail disentangling the importance of each of these factors in
possibly leading to human-like visual geometric processing.
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