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ABSTRACT OF THE THESIS

The Geography of Long Term Exposure to Particulate Matter2.5 and COVID-19 Mortality

An Assessment of the Sensitivity and Spatial Processes of a Significant Finding

by

Jennifer Beth Badger

Master of Arts In Geography

University of California, Los Angeles, 2022

Professor Michael E. Shin, Chair

Air pollution is directly linked to death. In December 2020, a UK coroner ruled that air

pollution was the cause of a fatal asthma attack that led to the 2013 death of nine-year-old Ella

Adoo-Kissi Debrah who lived adjacent to a busy motorway (BBC News, 2022). The assignment

of air pollution as the official cause of death on a death certificate was the first of its kind in the

world (Reynolds, 2020). Though this was the first official assignment of air pollution as a cause

of death, there are numerous studies linking air pollution exposure with mortality all over the

world. Before the COVID-19 pandemic, the air pollutant PM2.5 was identified as the “largest

environmental risk factor in the United States” (Goodkind et al. 2019, p. 8780) and the cause of

more annual premature deaths than traffic accidents and homicides combined (Goodkind et al.

2019).

With the onset of the COVID-19 pandemic, researchers began assessing the impact of

air pollution exposure on COVID-19 incidence and death. In a widely received, nationwide study

linking air pollution exposure to COVID-19 mortality, Harvard T.H. Chan School of Public Health

researchers, Wu et al., produced significant findings linking the impact of long term
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exposure to PM2.5 to COVID-19 mortality across the contiguous United States. This 2020 study,

published in ScienceAdvances, has been cited over 600 times, covered by 131 news outlets

and downloaded over 15,000 times. Georeferenced data is routinely used in public health

research such as this, however, the substantive influence of geography in the relationship

between the treatment and outcome variable is often not considered in the model specifications,

research design, nor the sampling strategy (Goldhagen et al., 2005; Matisziw, Grubesic, and

Wei 2008). Additionally, the mechanism of data aggregation to an administrative unit may

spatially misrepresent the data (Delmelle et al., 2022). As air pollution is a local, regional, and

transboundary phenomenon (Nordenstam et. al, 1998; Goodkind, 2019), spatial autocorrelation,

or spatially similar values, in the long term exposure to PM2.5 among U.S. counties is likely.

Despite the inclusion of maps indicating strong spatial trends in the long term exposure to PM2.5

and COVID-19 mortality, the possible presence of spatial autocorrelation at the local level or

spatial heterogeneity at the regional level was not investigated by the authors.

Epidemiological studies invoking large, areal units may misrepresent the underlying,

spatial processes of environmental health-hazards and produce unreliable treatment effect

estimates when relating air pollution exposure to disease (Fotheringham and Wong, 1991; Kolak

and Anselin, 2019). In this thesis, the fragility of the Wu et al. treatment effect estimate to

unobserved confounding is assessed utilizing an alternative sensitivity analysis framework. This

framework revealed that the estimate derived by Wu et al. (2020) is much more fragile to

confounding than reported by the authors. Spatial analysis was then applied to investigate the

possibility of spatial regimes (e.g. hotspots) in the treatment and outcome variables which may

contribute to biased or inefficient treatment effect estimates. Strong levels of spatial

autocorrelation and regional spatial heterogeneity in the long term exposure to PM2.5, and to a

lesser extent in the COVID-19 mortality rate, were confirmed by both computational and
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exploratory spatial data analysis. The highly variable associations between long term exposure

to PM2.5 and COVID-19 Mortality per U.S. Census Region or EPA Climatically Consistent Region

delivered the expected result that the relationship between the treatment and outcome variable

changes with changes in the sub-National definition of place. An understanding of the

geography of the ubiquitous, locally variable and far-reaching PM2.5, and its related

health-hazard risks can contribute to an uncovering of the politics, power relations, and

socioenvironments that coproduce differential access to clean air and the resulting uneven

health burdens experienced by Black, LatinX, Asian-American, and immigrant communities.

This is an essential step towards disentangling the relationships rendering clean air no longer

an “open-access good” (Véron, 2006).
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1. Introduction

1.1 Air Pollution and Mortality

Air pollution is directly linked to death. In December 2020, a UK coroner ruled that air

pollution was the cause of a fatal asthma attack that led to the 2013 death of nine-year-old Ella

Adoo-Kissi Debrah who lived adjacent to a busy motorway: “[t]he inquest into Ella's death found

levels of nitrogen dioxide near her [South London] home exceeded World Health Organization

and European Union guidelines” (BBC News, 2022). The assignment of air pollution as the

official cause of death on a death certificate was the first of its kind in the world (Reynolds,

2020). Though this was the first official assignment of air pollution as a cause of death, there are

numerous studies linking air pollution exposure with mortality all over the world. A meta-analytic

summary across North America, Europe, and Asia of twenty-five years of cohort studies on the

effects of long term exposure to PM2.5 by Pope et al. found substantial evidence of “adverse

PM2.5-mortality associations for all-cause mortality, cardiopulmonary mortality, and lung-cancer

mortality” (2020, p. 7). PM2.5 , also referred to as fine particulate matter, refers to a broad

category of inhalable, microfine solids and liquids that are 2.5 µm in diameter or smaller (US

EPA, 2016b). Before the onset of the COVID-19 pandemic, PM2.5 was identified as the “largest

environmental risk factor in the United States” (Goodkind et al. 2019, p. 8780) and the cause of

more annual premature deaths than traffic accidents and homicides combined (Goodkind et al.

2019).

With the onset of the COVID-19 pandemic, researchers began assessing the impact of

air pollution exposure on COVID-19 incidence and death. An individual level study focused on

Mexico City, by López-Feldman, Heres and Marquez-Padilla (2021) found that exposure to

PM2.5 increases the probability of dying from COVID-19 and that this effect is most likely driven

by long-term exposure while results are robust to the “inclusion of confounders at the municipal
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and individual-level” (p.8) including individual characteristics such as age and comorbidities

(López-Feldman, Heres and Marquez-Padilla, 2021). Researchers Zhu et al. observing ‘[d]aily

confirmed cases, air pollution concentration and meteorological variables in 120 cities

throughout China found “a significant relationship between air pollution and COVID-19 infection

including “[p]ositive associations of PM2.5, PM10, CO, NO2 and O3” (2020, p. 3). A UCLA Fielding

School of Public Health spatial analysis of COVID-19 and traffic related air pollution found that

chronic exposure to nitrogen dioxide is “associated with COVID-19 incidence and mortality in

Los Angeles County neighborhoods'' (Lipsitt et al., 2021, p. 5) and that neighborhoods occupied

by higher levels of Latinx and Black people experience higher levels of pollution (Lipsitt et al.,

2021). Similarly, studies from Italy, England, and the United States found associations between

air pollution exposure and COVID-19 incidence and death (Lipsitt et al., 2021).

1.2 PM2.5 and COVID-19 Mortality: A Widely Received Study

Epidemiological studies rely on observational data in order to formulate critical public

health interventions; research on the developing, worldwide COVID-19 pandemic is no

exception. Especially in the case of a pandemic in progress, observational studies are published

before the event is over, while the data is incomplete, and the mechanisms for spread and

vulnerability are still being understood. In a widely received, nationwide study linking air

pollution exposure to COVID-19 mortality, Harvard T.H. Chan School of Public Health

researchers, Wu et al., produced significant findings linking the impact of long term exposure to

PM2.5 to COVID-19 mortality across the contiguous United States. This study was published in a

November 2020 edition of ScienceAdvances. Almost two years after its publication, it has been

cited over 600 times, covered by 131 news outlets and downloaded over 15,000 times.

The research in question by Wu et al. found that “higher historical PM2.5 exposures are

positively associated with higher county-level COVID-19 mortality rates after accounting for

many area-level confounders” (2020, p. 1). The study specifically conducted a U.S.-wide
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ecological regression analysis, where data is aggregated to an areal administrative unit to infer

individual-level health outcomes, on county-level COVID-19 mortality and historical PM2.5

concentrations between 2000 - 2016. Their causal story regarding the linkages between long

term exposure to PM2.5 and COVID-19 is as follows: “[i]t has been hypothesized that because

long term exposure to PM2.5 adversely affects the respiratory and cardiovascular systems and

increases mortality risk, it may also exacerbate the severity of COVID-19 symptoms and worsen

the prognosis of this disease” (Wu et al., 2020, p. 1). They found “an increase of 1 µg/m3 in the

long term average PM2.5 is associated with a statistically significant 11% (95% CI, 6 to 17%)

increase in the county’s COVID-19 mortality rate” (Wu et al., 2020, p. 1). They also found

statistical significance when evaluating predictor variables such as population density, median

household income, educational attainment, age distribution, and percent Black residents (Wu et

al., 2020).

Importantly, Wu et al. highlight the limitations of an ecological regression analysis

throughout the study but argue that area level conclusions can still be used to inform public

health policy actions (Wu et al., 2020, p.3). Given the tentative nature of the Wu et al. findings

and their potential influence on public health policy, this thesis employs two strategies for

evaluating the reliability of their treatment effect estimate: sensitivity analysis and spatial

analysis within a geographic framework. The purpose is to first assess the fragility of the Wu et

al. estimate to unobserved confounding using a sensitivity framework alternative to the

approaches used by the authors, and next to utilize spatial analysis to investigate the possibility

of spatial regimes (e.g. hotspots) in the treatment and outcome variables. Finally, the influence

of geography on the health-hazard relationship is explored by varying model covariates

representing the delineation of space into alternate socioeconomic and climatic units (e.g.

substituting a state covariate for a U.S. Census region) to assess whether differing treatment

effect estimates emerge with differing definitions of place.

3



1.3 Sensitivity Analysis: Assessing Fragility in a Treatment Effect Estimate

The most popular strategy across disciplines for identifying causal relationships using

observational data is linear regression with a set of “observed covariates deemed sufficient to

control for confounding” (Cinelli, Ferwerda, and Hazelett, 2020, p.1). In order to defend their

conclusions, researchers must argue that no unobserved confounders interfere with the causal

relationship that is represented by a regression coefficient (Cinelli, Ferwerda, and Hazelett,

2020; Reich et al. 2021), an “impossible assumption to defend in most applied settings” (Cinelli,

Ferwerda, and Hazelett, 2020, p.2). In response, Hazlett and Parente (2020) advocate for a

sensitivity based approach that quantifies and explicitly states the degree of confounding that

would be required to meaningfully alter research conclusions alongside treatment effect

estimates and harnesses domain knowledge to determine whether this degree of confounding is

plausible.

Broadly, sensitivity analysis can be described as the study of how the inputs of a system,

often expressed as one or more mathematical models, affect the outputs (Razavi et al., 2021,

p.2) and provides a framework for assessing whether unmeasured confounding is strong

enough to alter causal conclusions (Ding and VanderWeele 2016). The application of sensitivity

analysis to health-hazard studies can be traced back to its inception in 1959 by Cornfield et al.

in the linking of cigarette smoking to lung cancer (Ding and VanderWeele 2016). The suite of

tools, methods, and deliverables used in sensitivity vary across disciplines and approaches

(Razavi et al., 2021), with epidemiological studies favoring use of the E-value.

In this thesis, a sensitivity analysis framework, as developed by Cinelli and Hazlett

(2019), is applied to the Wu et al. data as an alternative to the E-value. It is used to quantify

and explicitly state their treatment effect estimate’s sensitivity to unobserved confounding and
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consider whether or not this degree of confounding is plausible. Cinelli and Hazlett’s (2020)

sensitivity analysis framework is used to assess the strength of the Wu et al. causal claim using

a readily interpretable statistic without requiring assumptions regarding the “functional form of

the treatment effect assignment mechanism nor the distribution of the unobserved confounder”

(p. 40). Employing an alternate measure to assess the strength of a causal claim made by a

widely received study is especially useful given the study’s potential influence on COVID-19

pandemic policy response. Bounding procedures are used in order to consider the plausibility

of such an unobserved confounder by comparing its relative strength with known, influential

covariates. Once sensitivity statistics were estimated for the Wu et al. treatment effect,

background knowledge was then applied in order to propose and explore the plausibility of the

air pollutant and unexplored confounder, ozone.

1.4 Spatial Analysis: The Effect of Place on a Treatment Effect Estimate

At its core, Geography concerns itself with phenomena defined by space and/or place

(Tuan, 1979). Though there are variable definitions of each, space can generally be defined by

locational attributes such as latitude and longitude or euclidean measures of area and distance

(Yang, Ye, and Sui, 2016) while place refers to a unique spatial entity often characterized by a

locational definition of any size and a matrix of sociocultural, political, economic and historical

contexts (Cresswell, 2004; Tuan, 1979). Place has been described by Lukermann (1964) as an

emergent ‘special ensemble’ (p. 170) and by Agnew (1987) as consisting of three essential

elements that comprise these ‘meaningful locations’: location, locale and sense of place. The

subdiscipline of Health Geography examines human environment interactions and

acknowledges that “geography and health are intrinsically linked” (Dummer, 2008, p. 1177)

while acknowledging that space and place are not merely “containers for epidemiological

processes” (Curtis, 2016, p.6) but rather substantially contribute to the processes governing

health variation among individuals and populations (Curtis, 2016; Cutchin, 2007; Morello-Frosch
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and Lopez, 2006). In contrast to epidemiology which focuses on the spread of disease in a

biomedical context (Dummer, 2008), Health Geography examines health, well-being, and

exposure to environmental hazards as shaped by the spatial, climatic, social, political and

cultural contexts of the places that we live, work, and recreate in (Dummer, 2008; Sittner 2021).

Spatial analysis in epidemiology and public health have a long history most commonly

traced back to 1854 with the story of Dr. John Snow and the dot-map he used to identify a

London water pump as the source of a Cholera outbreak (Tulchinsky, 2018). Although

georeferenced data is now ubiquitously deployed in modern public health research, the

substantive influence of geography is often not considered in the model specifications nor the

sampling strategy (Goldhagen et al., 2005; Matisziw, Grubesic, and Wei 2008) or is masked by

the mechanism of data aggregation to an administrative, geographic unit which, in turn, spatially

misrepresents the data (Delmelle et al., 2022). Jones and Moon (1993) critique aggregate

analysis in medical geography, the sub-disciplinary antecedent to health geography, as

“incapable of distinguishing the contextual- the difference a place makes- from the

compositional- what is in a place” (p. 519). They argue that aggregate studies may also

overlook important within-area variability and call for the mutual consideration of macro and

micro scales as one component to a more comprehensive medical geography (Jones and

Moon, 1993).

Though there is a strong geographical component to the Wu at. al study with national

maps of historical PM2.5 concentrations and COVID-19 mortality rates at the forefront and

demographic, socioeconomic, climatic and political factors accounted for in their primary and

secondary analysis, a deeper consideration of the spatial distribution of the treatment and

outcome variables as well as the geographic context for their production is missing. The Wu et

al. study relies heavily on the aggregation of data to a spatial unit, the U.S. County, in order to
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make inferences at the National level. With the U.S. county as the unit of analysis and the

contiguous U.S. as the macro-level political entity, important sub-County variation is lost and the

potential for detecting differences in regional-level long term exposure to PM2.5 is overlooked.

According to their data, there is clear evidence of spatial clustering of PM2.5 and COVID-19

mortality at the regional level, which is left uninvestigated.

While a sensitivity analysis framework can be used to consider the strength of

confounding required to alter a research conclusion, spatial analysis can complement the

investigation of unobserved confounders by potentially revealing spatial structure in the

treatment-outcome relationship. For example, “the treatment at one location may influence the

outcomes at nearby locations, a phenomenon known as spillover or interference” (Reich et al.

2021, p. 605). When spatial effects are not explicitly included in model specifications, standard

statistical measures of fit may become biased or unreliable (Kolak and Anselin 2019).

Exploratory Spatial Data Analysis (ESDA) can be used to identify disease and environmental

hazard patterns in a geographic context. ESDA is utilized in studies where the data is

geolocated in order to visually probe the geographic distribution of the health-hazard

relationship and identify spatial patterns, such as the clustering of like values, and can motivate

the inclusion of a spatially lagged variable in a modeling approach. In this thesis, significant

clustering among counties with high levels of PM2.5 and moderate clustering among counties

with COVID-19 mortality was discovered. A variety of spatial lag models were then estimated to

account for these spatial regimes and compare the effects of the inclusion of these spatial

processes in the treatment effect estimate.

An understanding of the geographic context producing the health-hazard relationship

can be used to help explain the spatial patterns identified (Cutchin, 2007). For instance,

geographically characterizing the accessibility of health services as well as variability in the
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location and regulation of pollutant emitting facilities is one way in which geography can inform

the “interrelations inherent in many health related exposures” (Dummer, 2008). This can bolster

treatment effect estimates against confounding through the analysis and integration of the

effects of space and place into model specifications (e.g., spatial econometrics), sampling

strategies (e.g. identifying high-risk populations and environmental riskscapes), or research

hypotheses (e.g. using spatially located development histories to form place specific inquiries).

Spatial pattern identification in the health-hazard relationship can also inform future model

iterations or study design by, for example, constraining model coverage to a geographic extent

that captures important regional or local variability influenced by specific place-based histories

of residential segregation or other political and economic forces governing the distribution of

health hazards.

Air pollution exposure is both a local and transboundary health hazard (Goodkind, 2019)

with economic, climatic and political drivers. The health risks associated with PM2.5 “vary widely

depending on where emissions are released” (Goodkind et al. 2019, p. 8775). The largest share

of the health burden occurs in or near densely populated areas in close proximity to emission

sources with “large spatial gradients in damages, including within county and within urban”

(Goodkind et al. 2019, p. 8780) yet a stunning twenty-five percent of the health burden from

emissions can “occur more than 256 km away” (Goodkind et al. 2019, p. 8775). According to

Sergi et al. (2020) “[a]round 30% of all US counties receive 90% of their health damages from

emissions in other counties, and these damage-importing counties also tend to have lower

median incomes” (p.1). An exception to this observation is Fairfield County, Connecticut which

records the highest ozone pollution in the eastern half of the U.S., in part due ozone and ozone

precursors transported from the Midwest (American Lung Association, 2021). Differential access

to clean air may also be exacerbated along the U.S. border. In an analysis of transboundary air

pollution in the U.S., Konisky and Woods found that “states perform fewer enforcement actions
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in counties adjacent to international borders” (2009). Acknowledging that “air pollution is a

transboundary problem” Nordenstam et. al, suggest that boundary dependent air pollution policy

regimes do not accurately address the resulting environmental issues that do not constrain their

manifestation to “human designated jurisdictions” (1998, p. 231).

Researchers Clay, Muller, and Wang found that after a steady decline in PM2.5 across the

U.S. between 2008 and 2016, a sharp increase occurred over the next two years (2021).

Further examination of PM2.5 across U.S. Census regions uncovered a different story. Though

the overall National trend was positive, two of the four U.S. Census Regions had actually

stopped declining while vast increases in PM2.5 pollution across the West and Midwest regions

were the source of the positive Nationwide trend (Clay, Muller, and Wang, 2021). The increase

in these two regions were likely stimulated by place-based economic activity, wildfires and Clean

Air Act enforcement actions (Clay, Muller, and Wang, 2021). The American Lung Association’s

multi-year State of the Air publication reports that the geographic distribution of ozone has also

moved west since 2016 where increased temperatures, climate change, and an increase in oil

and gas extraction in the Southwest have all led to more Western cities experiencing ozone

exceedances (2021). In the Eastern U.S., ozone exceedances are attributed to ozone and

ozone precursors transported upwind from the Midwest (American Lung Association, 2021).

Much like the spatial distribution of air pollution is linked to climatic, political, economic,

and sociocultural factors, COVID-19 incidence and death has also been linked to such factors

by numerous studies. Grekousis et al. (2022) identified regional differences in eight local risk

factors in the COVID-19 death rate, half of which were socioeconomic. The leading local risk

factor identified was lack of health insurance, mostly concentrated within the Midwest and South

regions while counties throughout California, Oregon, Washington and parts of the South region

were distinguished by lack of physical activity as the primary local risk factor. Romano et al.
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(2021) found that the “racial/ethnic distribution of hospitalized COVID-19 patients differed

among U.S. Census regions” (p.561) with Hispanic patients representing the highest cumulative

proportion across all regions. Likely contributors to these geographic and temporal disparities

include differential access to healthcare, occupational safety, safe transit and housing stability

(Romano et al., 2021). Other studies have shown that one’s occupational status designation as

essential worker is associated with a disproportionate risk of COVID-19 incidence and mortality

and that these workers are more likely to identify as racial and ethnic minorities or immigrants

(Fielding-Miller, Sundaram, and Brouwer, 2020). Garcia et al. (2022) found differential treatment

effects in a statewide Calfornian study when evaluating long term exposure to PM2.5 and

COVID-19 mortality across different seasons with the highest positive associations occurring

during the spring and summer months.

One of the factors that have shaped the course of the COVID-19 pandemic has been the

timing, uptake, and politicization of public health interventions such as statewide stay-at-home

orders, social distancing guidelines and public masking policies (Neelon et al., 2021). The

political affiliation of a state’s governor was found by Adolph et al. to be the primary determinant

of the timing of statewide mask mandates with Republican governors, on average, delaying the

low-cost public health intervention for an estimated 98 days (2021). States with Democratic

governors were found to have lower test positivity rates in the second half of 2020 suggesting

that state leaders with these party affiliations imposed stricter containment strategies (Neelon et

al., 2021) and that gubernatorial political affiliation is associated with the likelihood of exposure.

The landmass defining the contiguous U.S. is more than a backdrop: “geographers know

well….that culture is written on the landscape and that the landscape reflexively affects people”

(Cutchin, 2007, p. 4). Its area is conceptually divided into sub-national administrative units such

as states, counties, census tracts and neighborhoods that provide a bounded definition of place
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for representative government, the implementation of laws, economic development, creation of

livelihoods, and sociocultural identities. The widespread use of large, aggregate administrative

units such as counties and states to examine health-hazard relationships in epidemiology

speaks to both the availability of data and the convenience of their use for modeling. When

health-hazard studies exclude important local variability, they may miss the complex relationship

between air pollution and the excessive burden borne by communities of color, for instance, in

the contribution of “diverse legacies of discrimination [that] shape current spatial distributions of

pollution sources” (Morello-Frosch and Lopez, 2006). While states and counties represent

sub-national administrative units with shared governance, another set of commonly used

conceptual boundaries used in statistical analyses to capture larger scale health-hazard

relationships are U.S. Census regions and divisions.

U.S. Census regions and divisions are sub-national geographic entities that provide a

framework for defining our large and diverse Nation with units that share common attributes

such as “historical development, population characteristics, and economy” (U.S. Dept. of

Commerce, 1994, p. 6-1). In addition to U.S. Census regions, Environmental Protection Agency

(EPA) Climatically Consistent Regions provide another framework for considering the definition

of place. They are sub-national geographic entities organized on the basis of temperature and

precipitation and are considered by the EPA (2016a) to be a relevant way to assess regional

trends in air quality. They are commensurate with National Oceanic and Atmospheric

Administration (NOAA) climatically consistent regions which align with “areas containing similar

emissions source types” (Simon et al., 2015) which suggest that these regions may also share

similar histories of development.

The consideration of the geographic context for the production of PM2.5, as well as

COVID-19 mortality can be used to better understand the health-hazard relationship and the
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defining role of place in shaping exposures and outcomes. In this thesis, the Wu et al. data is

used to iterate through model specifications utilizing varying sub-national boundaries in order to

evaluate the effects of these varying definitions of place on the treatment effect estimates. State

fixed effects are substituted with U.S. Census regions in order to evaluate the effect of regional

histories of development, economic and demographic factors on the distribution on PM2.5 and

COVID-19 mortality. The influence of climatic parameters governing the PM2.5 and COVID-19

mortality health-hazard relationship is considered by substituting state fixed effects with EPA

Climatically Consistent Regions. By redefining the contiguous U.S. landscape into alternate,

socioeconomically and climatically defined sub-national, space-place entities, the difference in

the framing of the health-hazard relationship is expected to yield differing treatment effect

estimates.

The goal of this thesis is to illustrate that place makes a difference when estimating the

effects of PM2.5 on COVID-19 mortality and should be considered when estimating air pollution

health-hazard risks. As expected, when the sub-national definitions of place applied to the Wu et

al. study data were changed, so did the treatment effect estimates. When researchers adjust the

apertures of their study to include spatial extents and definitions of place that capture important

variability in health-hazard relationships, this can produce more locally accurate and relevant

treatment effect estimates. With a deeper understanding of the context producing the

health-hazard relationship, more effective, place-specific policy interventions can then be

deployed.
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2. Research Questions

My research questions for examination in this thesis are as follows:

a. Is there a geography to PM2.5? If so, can geography meaningfully be accounted for when
estimating National models of air pollution exposure risks?

H1: Long term exposure to PM2.5 and associated health risks are spatially heterogeneous
across the contiguous U.S. and are the result of diverse histories of development,
political, socioeconomic, and climatic forces defining place and operating at various
scales. Treatment effect estimates made at the National level may be sensitive to
confounding due to misalignment of process and scale.

H0 : Long term exposure to PM2.5 estimates and associated health risks are
homogeneous across the contiguous U.S. Treatment effect estimates at the National
level are not subject to spatial regimes and are not affected by alternate definitions of
sub-national place.

b. Can an understanding of the geographic context producing the health-hazard
relationship help to inform public health research questions and modeling strategies?

Why are these questions important? Because clean air is no longer an “open-access good”

(Véron, 2006). An understanding of the geographies of air pollutants, including the ubiquitous,

locally variable and far-reaching PM2.5, can contribute to an uncovering of the politics, power

relations, management strategies and socioenvironments that coproduce differential access to

clean air and the resulting uneven health burdens due to both direct exposure and related

illnesses experienced by Black, LatinX, immigrant, and communities of color.

3. Literature Review

3.1 Health and Place

Health Geography is a subdiscipline of Human Geography focusing on the spatial,

temporal, and place-based processes that shape interactions between human health and the

environment (Dummer, 2008; Sittner, 2021). It is the sub-disciplinary descendant of Medical

Geography and differs from Epidemiology in that it also considers the influence of the social,
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cultural, and political contexts that define place, unique entities with history and meaning

(Lukermann, 1964), on human health (Glass, 2000; Cutchin, 2007; Curtis, 2016). Health

Geography offers a more holistic view of human health hazards, well-being, and disease by

exploring how both space and place contribute to health variation among individuals and

populations (Glass, 2000; Dummer, 2008; Curtis, 2016; Sittner, 2021). The incorporation of

geographic context to interactions between human health and the environment is essential to

the creation of effective public health policy and the identification of environmental riskscapes

rooted in inequality (Jones and Moon, 1993; Dyck, 1995; Morello-Frosch and Lopez, 2006;

Cutchin, 2007; Curtis, 2016).

Though there are a multitude of studies exploring the relationship between COVID-19

and air pollution exposure, most rely on large, aggregate data units to make inferences. Studies

exploring health hazard risks using large, spatial units of analysis may be subject to ecological

fallacy that makes incorrect assumptions about individuals based on aggregate data about their

communities, resulting in misaligned health policy (Dummer, 2008). Few studies utilize the

geography of PM2.5 to functionally inform their research design or sampling strategy nor do they

explore the potentially confounding effects of scale or explicitly express the fragility of their

findings in the face of unobserved confounders. The goal of this thesis is to address the dearth

of studies exploring the effects of space and place on the relationship between COVID-19 and

air pollution exposure by first quantifying the fragility of a widely received treatment effect

estimate identified by Wu et al. (2020), then using spatial analysis and alternate definitions of

subnational place to explore the influence of space and place on the treatment effect of the long

term exposure to PM2.5 on COVID-19 mortality. Through the lens of Health Geography, a better

understanding of the spatial and place-based contexts governing PM2.5 pollution production and

exposure can be used to guide more effective health policy interventions.
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3.2 The Geography of PM2.5

PM2.5 is the chimera of pollutants. Unlike most other prominent air pollutants, it is

variable in its composition (Hinojosa-Baliño, Vásquez, and Vallejo 2019) with common

constituents including elemental carbon, organic carbon, ammonium, sulfate, and nitrate (Amini

et al., 2022). The presence of PM2.5 is spatially, temporally and climatically dependent (Cheng et

al., 2015; Zalakeviciute, López-Villada and Rybarczyk, 2018; Amini et al., 2022) thus

complicating its role in the connections between health and place and the environmental

riskscapes it shapes. It can penetrate lung tissues and enter the bloodstream imparting

numerous and well documented adverse human health impacts (Bell 2012; Makar et al. 2107;

Chen et al. 2018; Zhang, Rui, and Fang, 2018; Hinojosa-Baliño, Vásquez, and Vallejo 2019; US

EPA, 2016) including, but not limited to, cardiopulmonary disease (Garcia et al., 2016), lung

cancer (Thind et al., 2019) and premature mortality (Goodkind et al., 2019). It is considered the

“largest environmental risk factor in the United States” (Goodkind et al. 2019, p. 8780) and can

originate from a variety of sources such as fuel combustion, wildfires, cooking, heating, fugitive

dust (US EPA 2018, NY State Dept. of Health 2018), electricity generation and agricultural

activities (Goodkind et al., 2019). Individual particles themselves are not visible, though a critical

mass of particulate matter contributes to a reduction in visibility (Kumar, Chu and Foster, 2007).

Over fifty-four million Americans live in areas subject to unhealthy spikes in particle pollution, a

number that has substantially risen since 2017, while over twenty million experience year-round

particle pollution that exceeds national air quality limits (American Lung Association, 2021).

The spatial distribution of the air pollutant PM2.5 and its toll on human health varies

geographically due to differential vectors of production, population density, its regulation, and

the climatic and geophysical conditions affecting its spread (Colmer, 2020). It is a complicated

pollutant given its variability in its constituents, its ability to be emitted directly or formed in the
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atmosphere from precursors (US EPA, 2018; Amini et al., 2022), and its tendency to be

deposited both locally and hundreds of miles away (US EPA, 2018; Goodkind et al., 2019).

Tobler’s First Law of Geography states that “everything is related to everything else, but near

things are more related than distant things” (1970, p. 236); it can be reasonably applied to PM2.5

but doesn’t fully relate the more complicated picture of its spread. PM2.5 is capable of traveling

hundreds of miles (US EPA, 2018) yet also, in the case of traffic emissions, exists in

concentrations harmful to human health as a function of distance to highway (Pierce et. al,

2019). Goodkind et al. (2019), found that over one third of marginal damages from premature

mortality related to PM 2.5 exposure occurred within “8km of emission sources” (p. 8775) with

marginal damages varying by “over an order of magnitude within a single county” (p. 8775) and

another twenty-five percent of marginal damages occurring over 256 km away, indicating the

need to consider both fine-scale and multi-scalar impacts.

Figure i : U.S. Census Regions. From Census.gov; Public Domain.

The geography of PM2.5 differs among U.S. Census regions and divisions. U.S. Census
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regions and divisions are commonly used constructs of the U.S. Census Bureau in order to

“provide a larger geographic framework for comparative statistical analysis” (U.S. Dept. of

Commerce 1994 p. 6-1) of the same groups of states over time and are organized on the basis

of “historical development, population characteristics, and economy” (1994 p. 6-1). Between

1981 and 2016, substantial and absolute reductions in PM2.5 concentrations have occurred in

the U.S. though these reductions are not isotropic across the country (Colmer et al., 2020). The

absolute reductions and increases in PM2.5 concentrations across the Nation are in large part

spatially contiguous (Colmer et al., 2020). Over this time period, portions of the East Coast and

the East North Central, East South Central and South Atlantic U.S. Census divisions have all

experienced a relative reduction in PM2.5 concentrations while California, Arizona, and portions

of the West South Central, East South Central and the southernmost portion of the South

Atlantic U.S. Census divisions became relatively more polluted (Colmer et al., 2020). Strikingly,

the disparities in absolute PM2.5 concentrations have largely been maintained with many of the

most burdened census tracts in 1981 remaining the most burdened in 2016 (Colmer et al.,

2020). Improved air quality was associated with whiter, higher income, more populated and less

Hispanic census tracts (Colmer et al., 2020). In all regions but the West, Clay, Muller, and Wang

(2021) observed a reduction in the PM2.5 precursor, sulfate, between 2009 - 2018, likely linked to

a decline in coal-fired power generation. Meanwhile the West region has also experienced

recent, elevated exposures to PM2.5 related to wildfires and extreme heat, linking particle

pollution exposure risks to a changing climate (American Lung Association, 2021; Clay, Muller,

and Wang, 2021).

In addition to between region variability, within region variability in PM2.5 concentrations

have been found. Lee et al. (2012) utilized a combination of remotely sensed and ground based

monitoring station data to derive PM2.5 mass concentrations across a nine year period in the

New England region. They identified “heterogeneous PM2.5 spatial patterns in the study region”
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(Lee et al., 2012, p.1) despite previous studies indicating low spatial variability across the same

study area (Lee et al., 2012). The distribution of these concentrations “clearly exhibited densely

populated and high traffic areas” (Lee et al., 2012, p. 1) and may speak to the increase in the

ability to observe fine-scale variability as measurement and estimation methods improve their

resolution. In another within region study, Garcia et al. (2016) found larger treatment effects in

rural areas than urban areas when analyzing the impacts of long term exposure to PM2.5 on

cardiovascular disease, cardiopulmonary disease and all-cause mortality within California.

Bravo et al. (2016) found that PM2.5 concentrations were consistently higher in urban census

tracts than rural census tracts and that tracts with high degrees of racial isolation also

experienced higher average PM2.5 concentrations regardless of their urbanicity. This trend held

in all regions with the exception of rural census tracts in the West (Bravo et al., 2016). When

characterizing geographies of health, Jones and Moon (1993) argue that the inclusion of

multiple scales of analysis and the place-based sets of relations shaping human health hazards

can move geographic inquiry into human health patterns beyond location as a “mere container

of measurable events” (p. 515). Strategies such as this can help to uncover the difference a

place makes by, for instance, revealing important within-area sociospatial inequalities, such as

community-level stressors that augment vulnerability to an environmental health hazard

(Morello-Frosch and Lopez, 2006), or health hazard patterns tied to regional histories of

development. By uncovering the nature of these spatial and place-based relations, more locally

precise and equitable public health interventions can be developed.
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Figure ii : County-level decrease in ambient PM2.5 concentrations from the independent removal of PM2.5, SO2, and
NOx emissions in each of the six energy-related sectors (Mailloux et al., 2022)

Licensed under Creative Commons CC-BY-NC

The heterogenous geography of PM2.5 is, in part, due to differential governance. 1963

marks the initiation of the Federal Clean Air Act (CAA) which, along with its many amendments,

standards, and programs regulates the levels of air pollution that can be present in U.S. air (US

EPA, 2021d). Since 1970, the enforcement of the CAA has been enacted through the

Environmental Protection Agency (Currie and Walker, 2019). The National Ambient Air Quality

Standards (NAAQS) of the CAA sets thresholds for the ground level concentrations of six

common pollutants associated with adverse human health effects commonly referred to as

criteria pollutants including PM2.5 (US EPA, 2021c). Additionally, a constellation of other

regulatory mechanisms aimed at industrial and transportation related pollution including

interstate air pollution transport (US EPA, 2022) and the Regional Haze Program (US EPA,

2021b) operate in tandem.
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Particulate matter, including PM2.5, are regulated with primary and secondary National

Ambient Air Quality Standards which correspond to thresholds for health and welfare

respectively (US EPA, 2021a). The primary annual average PM2.5 of 12.0 µg/m3, secondary

annual (15.0 µg/m3) and 24-hour PM2.5 (35 µg/m3 ) standards of 15.0 µg/m3 were established

(primary annual) or maintained (secondary annual, 24-hour) in 2013 (US EPA, 2013). The most

recent review of the primary and secondary National Ambient Air Quality Standards for

particulate matter occurred in December of 2020, during the final months of the Trump

administration’s aggressive rollback of federal environmental protections (Baker, 2020) and

resulted in the maintenance of primary and secondary standards (US EPA, 2021a). After

President Biden took office, reconsideration of this ruling was announced in June of 2021

resulting in an October 2021 Draft Policy Assessment of the Particulate Matter National Ambient

Air Quality Standards (Tsirigotis, 2021) opening the door to a reevaluation of the health and

welfare thresholds. When analyzing the health benefits of removing energy-related emissions

across the contiguous U.S, Mailloux et al. (2022) found that nationwide clean energy policies

targeting energy-related sectors could prevent over 50,000 premature deaths each year.

Projected regional reductions in ambient PM2.5 differed depending on the energy-related sector

analyzed (e.g. on-road vehicles vs electricity fuel use) (Mailloux et al., 2022; see Figure ii) thus

highlighting how place-based regional histories of development can inform regional air pollution

policy.

Though the NAAQS for particulate matter operates as a baseline for their regulation in

the U.S., state governments can elect to impose stricter standards, including the 2022

restoration of California’s rights to set its own standards for tailpipe emissions temporarily

revoked under the Trump administration (Davenport, 2022). There is some evidence that

differential enforcement of clean air standards across the Nation unsurprisingly follows the

political affiliations of state elected officials. Utilizing a regression discontinuity design,
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researchers Beland and Boucher found that air pollution levels were lower in states with

Democratic governors (2015). Similarly, researchers Farzin and Bond substantiated intrastate

variability in California air quality as associated with political leadership, however, a significant

effect was only identifiable in the pollutants NO2 and O3 (2013).

Differential histories of development and current economic activity also contribute to the

heterogenous geography of PM2.5 (Colmer et al., 2020). In the West region, a 2016-2018

increase in elemental carbon, a precursor to PM2.5 is likely attributed to an increase in diesel

miles traveled (Clay, Muller, and Wang, 2021), an indicator of economic activity and sprawl.

Cities throughout the Nation with high power plant emissions such as New York, Houston, and

Detroit consistently log the worst year-round particle pollution (American Lung Association,

2021) while an increase in oil and gas extraction in the Southwest is associated with an

increase in ozone (American Lung Association, 2021), a heat-driven PM2.5 co-pollutant (Schnell

and Prather, 2017; Zhu et al., 2019). Inter-state air pollution also constitutes regional variability

in human health. PM2.5 pollution and precursor emissions from out of state electricity generation

makes a substantial contribution to health risks including premature mortality with some states

considered net importers of harm from this sector while others are considered net exporters of

harm (Thind et al., 2019). Again, highlighting the need for an understanding of regional air

pollution patterns in order to direct regionally specific policy targeting transboundary interstate

pollution.

Access to clean air in the U.S. is unevenly distributed and, in the context of PM2.5, is

disproportionately allocated to disadvantaged communities (Morello-Frosch and Lopez, 2006;

Miranda et. al 2011; Bravo et al. 2016; Nardone et al., 2018) in particular non-Hispanic black

communities (Miranda et. al 2011; Thind et al., 2019). Geographer René Véron argues that “air

quality with its complex sociospatial patterns plays a significant part in the coproduction of urban
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socioenvironments” (2006, p. 2093); that the uneven distribution of “good air” is not merely “a

matter of proper management but equally one of power and politics” (2006, p. 2093). He

furthers that the “indirect and partial commoditization of air quality” (2006, p. 2096) through

[urban] property values has rendered clear-air no longer an “open-access good” (2006, p.

2096). Geographer Peter Adey contends that the “constellation of megacity inequality” can be

found in the “testimony of pollutants and choking effluvium” as evidenced by the analysis of air

(2013, p. 291). With regard to air pollution in the US, low-income, Black, Indigenous, LatinX,

Asian American, and immigrant communities bear a disproportionate burden of exposure and

related adverse health effects (Miranda et al., 2011; Nardone et al., 2018). Recent findings from

researchers Namin et. al (2020) have connected 1930s discriminatory neighborhood grading by

the Home Owners’ Loan Corporation across major U.S. cities with a statistically significant

increase in the likelihood of contemporary exposure to airborne carcinogens and respiratory

hazards. Structural racism refers to “the totality of ways in which societies foster racial

discrimination through mutually reinforcing systems of housing, education, employment,

earnings, benefits, credit, media, health care, and criminal justice” (Bailey et al., 2017, p. 1453)

and is evidenced in the distribution of health inequalities in the U.S., including strong

associations with racial/ethnic inequalities in COVID-19 mortality (Lundberg et al., 2022).

Through unveiling the space and place based patterns of health hazard risks, the underlying

structural inequities that produce and reinforce health inequality can be exposed and

addressed.

3.3 The Geography of COVID-19 Mortality

COVID-19 incidence and mortality across the U.S. has varied geographically and

demographically over time during the course of the pandemic (Oster et al., 2020; Murthy et al.,

2021; Lundberg et al., 2022; Nguyen et al. 2022). It is impossible to relate variation in COVID-19
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incidence and death across the United States without referring to racial and ethnic disparities as

racial and ethnic minorities bear a disproportionate burden of COVID-19 incidence and severe

outcomes including death (Chih and Ojede 2020; Rossen et al., 2020; Romano et al., 2021). For

example, Nguyen et al. (2022) found that early in the pandemic (April through August 2020), the

Middle Atlantic Census division reported the highest in-hospital mortality with overrepresentation

in hospitalization and severe outcomes in Black non-Hispanic patients. When assessing excess

deaths associated with COVID-19 by race and ethnicity, Rossen et al. (2020) found the largest

association among Hispanic persons with significant increases in excess deaths among Black,

Asian, and non-Hispanic American Indian or Alaska Natives. When analyzing the demographics

of approximately three hundred thousand unique patients diagnosed with COVID-19 between

March and December of 2020, Romano et al. (2021) found that in the early stages of the

pandemic, “the racial/ethnic distribution of hospitalized COVID-19 patients differed among U.S.

Census regions” (p. 561) with Hispanic patients representing “the highest cumulative proportion

of hospitalized patients with COVID-19” (p. 561) across all U.S. Census regions.

In a study focused on retrospective and prospective analysis of COVID-19 hotspot

counties between early March and mid-July 2020, Oster et al. (2020) found that the percentage

of counties meeting hotspot criteria differed over time and among U.S. Census regions. From

March - April, 2020 COVID-19 hotspot counties were found primarily in the Northeast while the

percentage of counties within the South and West regions meeting hotspot criteria significantly

increased from June - July (Oster et al., 2020). Pre-existing social determinants of health

(Romano et al, 2021) such as health care access, household crowding, and occupational

segregation (Lundberg et al., 2022) as well as an area’s urbanicity were early drivers of

COVID-19 transmission (Oster et al., 2020). Similarly, outbreaks in congregant settings such as

long-term care facilities and food processing facilities were also early drivers of COVID-19

transmission (Oster et al., 2020).
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As the pandemic progressed, community transmission (Oster et al., 2020) and

demographic and geographic variation in vaccine uptake (Lundberg et al., 2022) increased as

contributing factors to its spread. As the pandemic continued so did the shift in the geographic

spread of COVID-19. By September 2020 COVID-19 incidence in rural counties surpassed that

of urban counties (Murthy et al., 2021). Geographic risk patterns continued to change through

2021 as the pandemic continued to move into increasingly rural areas and white COVID-19

death rates increased (Lundberg et al., 2022).

The difference a place makes in determining health outcomes is traceable across the

COVID-19 pandemic. In the absence of federal guidelines to limit the spread of COVID-19, U.S.

states and territories individually implemented mandatory stay-at-home orders of varying

duration and enforcement (Neelon et al., 2021; Nguyen et al. 2022) contributing to geographic

variation in incidence and death (Nguyen et al., 2022). Republican state governors were found

to delay pandemic mitigation mandates longer than Democratic governors linking state

gubernatorial affiliation with COVID-19 health outcomes (Adolph et. al, 2021; Neelon et al.,

2021).

Fielding-Miller, Sundaram, and Brouwer (2020) found that larger populations, higher

density, percentage of residents living in poverty, percentage of population over 65 and higher

percentage of farmworkers were all predictive of COVID-19 mortality in counties across the

Nation, however, in a sub-analyses by U.S. Census region “distinct spatial patterns emerged”

(p. 7) and the percentage of farmworks was no longer predictive of COVID-19 mortality in the

West South Central, Mountain and Pacific States. Chih and Ojede (2020) identified a positive

relationship between the percentage of Black and Hispanic persons in a county and the rate of

COVID-19 infection. They employed a spatial model to estimate this relationship given that the
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spread of COVID-19 is not expected to exhibit spatial independence considering “the free

movement of people across US counties and states” (Chih and Ojede, 2020, p.6). Their results

showed that not all regions exhibited the same spatial dependency with counties in the

Mid-Atlantic and South Atlantic regions having the highest spatial diffusion of COVID-19

incidence and death (Chih and Ojede, 2020).

Spatial diffusion is described by Morrill, Gaile, and Thrall (1988) as “the process by

which behavior or characteristics of the landscape change as a result of what happens

elsewhere earlier” (p.7). Regionally higher concentrations of vulnerable racial/ethnic minorities

were also associated with higher risks of COVID-19 incidence and death such as African

Americans in the Deep South and Native Americans in the Mountain regions (Chih and Ojede,

2020). Chih and Ojede (2020) also cite a sub-regional and sub-county disproportionate impact

of COVID-19 on Black communities in older industrial cities such as New York, Philadelphia,

Milwaukee, Chicago and Detroit.

New York City (NYC) was considered a COVID-19 epicenter in the spring of 2020 during

the early outbreak of the virus with the highest rates of incidence in death occurring amongst

populations over seventy-five years of age, those with pre-existing conditions, high poverty

areas and communities of color (Thompson et al, 2020). Another NYC based study found that

“average temperature, minimum temperature, and air quality are significantly correlated with

COVID-19 pandemic” (Bashir et al., 2020, p.3) which could motivate the use climatically

consistent regions when investigating the relationship between exposure to air pollution and

COVID-19 mortality. A NYC zip code level analysis by Cordes and Castro (2020) found spatial

clusters of high positivity rates and that a high proportion of positive tests was associated with

public transportation use. They also found lower testing rates but higher positivity rates in the

lower-income neighborhood of Eastern Brooklyn and Flushing, Queens and point to structural
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inequalities in the city such as medical racism, residential and occupational segregation, and

racialized social networks as contributing factors to uneven rates of COVID-19 testing and

spread (Cordes and Castro, 2020).

Los Angeles was also considered one of the global epicenters of the virus (Lipsitt et al.,

2021). Even amongst widespread infection rates, certain LA County communities have bore the

burden of unevenly distributed risk of COVID-19 infection and mortality. For example, according

to the NY Times, by late winter 2021, L.A. County data showed that the primarily LatinX

neighborhood of Pacoima had one of the highest case rates in the nation; notably Pacoima’s

case rate was five times that of Santa Monica’s (Cowan and Bloch, 2021). In another NY Times

article describing the one of the “peak periods of the virus,” South L.A.’s MLK Community

Hospital was credited with “treat[ing] more Covid patients than some Los Angeles hospitals

three to four times its size” (Fink and Kosofsky, 2021). Their chief executive, Elaine Batchlor,

described “the inequities in disease and death from Covid as reflecting those long present in the

community” (Fink and Kosofsky, 2021). She furthered that “chronic shortages of primary care

doctors and other health services” helped to shape the medical desert that coincides with these

patient’s communities (Fink and Kosofsky, 2021). A 2021 UCLA Geffen School of Medicine

study by Vijayan et al. examining COVID-19 positivity rates within L.A. County, found similarly

uneven burdens in the distribution of COVID-19 incidence and death: “there are significant local

variations in test positivity” (p. 2970) and “several socio-structural determinants” (p. 2970)

including race/ethnicity, poverty and household density as underlying ongoing disparities. The

study concludes that “public health interventions, beyond shelter in place, are needed to

address and target such disparities” (Vijayan et al., 2021, p. 2970).

In response to the uncovering of racial and ethnic COVID-19 disease disparities,

Chowkwanyun and Reed (2020) stress the importance of contextualizing findings that discover
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disparities in disease distribution along racial or socioeconomic lines in order to prevent

narratives that may ensue such as territorial stigmatization or biologic explanations for racial

health disparities. They further that “one can highlight place-based risks and resource deficits

that might explain [the] spatial distribution, along racial lines, of Covid-19” (Chowkwanyun and

Reed, 2020, p. 203) including the “uneven geographic distribution of preventive care services or

the concentration of respiratory hazards and toxic sites in [such] neighborhoods”

(Chowkwanyun and Reed, 2020, p. 203). Strategies such as this can also help to avoid

paternalistic policy response to the identification of comorbidities such as obesity, which puts the

onus of responsibility for adverse health outcomes on the individual rather than the broader

context of inequities which has allowed COVID-19 to flourish in vulnerable communities.

3.4 Long Term Exposure to PM2.5 and COVID-19 Mortality

Studies specifically linking the effects of air pollution exposure on COVID-19 mortality

are still emerging all over the world. Several have established a positive association with

exposure to long term concentrations of PM2.5 and COVID-19 incidence and death while others

report a wide range of results including inverse relationships and non-significant findings (Berg,

Present and Richardson, 2021). One of the most widely received studies thus far is the

aforementioned 2020 Wu et al. study under examination in this thesis. Wu et al. specifically

conducted an Nationwide ecological analysis and found “an increase of 1 µg/m3 in the long term

average PM2.5 is associated with a statistically significant 11% (95% CI, 6 to 17%) increase in

the county’s COVID-19 mortality rate” (Wu et al., 2020, p. 1). Alternatively, a nationwide, county

level analysis by Liang et al. (2020) using both single and multi-pollutant models found a

positive association between COVID-19 mortality and long term exposure to the traffic related

pollutant NO2, but only a marginal association with PM2.5 and ozone.

Studies employing various geographic and temporal scales report differential treatment
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effect estimates of long term exposure to PM2.5 on COVID-19 incidence and mortality. In 2022,

researchers Garcia et al. published a California study on the relationship between long term

exposure to air pollution and COVID-19 mortality based on the observation that most of the

studies of these associations to date “were ecological studies at the county or regional level

which disregard important local variability” (p. 2). They “evaluated whether long-term ambient air

pollution was related to weekly COVID-19 mortality at the census tract-level during the first 12

months of the pandemic” (Garcia et al., 2022, p. 1) and found a positive association between

long term exposure to PM2.5 and COVID-19 mortality in California during the spring and summer

seasons with a more attenuated effect in the winter months (Garcia et al., 2022).

Konstantinoudis et al. (2021) conducted an even higher resolution investigation of the

relationship between air pollution and COVID-19 mortality, also as a counter to ecological

studies which “neglect the strong localized air pollution patterns'' (p.1) and the confounding

effects of large spatial units. Their study, based in England using high resolution geographic

units and a longer temporal window than previous studies, found limited evidence of a treatment

effect for long term exposure to PM2.5: “[c]ompared to the previous studies, our results are the

smallest in magnitude, likely because of the high geographical precision that allows more

accurate confounding and spatial autocorrelation adjustment” (Konstantinoudis et al., 2021, p.

6) suggesting that the effects of scale and spatial autocorrelation need to be accounted for when

modeling air pollution exposures.

An intra-state study on Texas by Xu et al. (2022) found “no consistent evidence or

significant correlations between historic county-average PM2.5 concentration and COVID-19

incidence or death” (p.1), though they did uncover a strong correlation between a given county’s

percent Black and Hispanic residents and COVID-19 incidence and death. Similarly, Berg et. al

(2021) found a positive, but non-statistically significant, increase in COVID-19 mortality in

response to increases in long term exposure to PM2.5 among Colorado census tracts. In
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contrast, Zhu et al. (2020) identified a significant, positive association between COVID-19

confirmed cases and ambient air pollution, including PM2.5 and ozone, when analyzing over 120

cities throughout China, suggesting that treatment effect estimates may be sensitive to

differential definitions of place and that more research is needed to confirm the effects of air

pollution on COVID-19 mortality.

In a 2015 study published in Environmetrics, researchers Lee and Sarran (2015) report

that the health impact of long‐term exposure to air pollution is now being “routinely estimated

using spatial ecological studies” (p. 477) thanks to the influx of georeferenced health and

pollution data. They contend that the “[a]real unit study design presents a number of statistical

challenges, which if ignored have the potential to bias the estimated pollution–health

relationship” (Lee and Sarran, 2015, p. 478). In particular, the pollution-health relationship

estimates can be biased by “spatial autocorrelation present in the data after accounting for the

known covariates” (Lee and Sarran, 2015, p. 477). By re-evaluating the Wu et al. (2020)

ecological-level study of the effect of long term exposure to PM2.5 on COVID-19 mortality in the

contiguous U.S. and accounting for spatial autocorrelation with spatial econometric methods,

this thesis attempts to address whether there is a geography to PM2.5 and if so, whether

geography can meaningfully be accounted for when estimating National models of air pollution

exposure risks? Additionally, the Wu et al. (2020) treatment effect estimate’s sensitivity to

confounding is quantified using a sensitivity based framework alternative to the methods

employed by the authors in order to offer another perspective on the reliability of this widely

received estimate. Lastly, this thesis evaluates the effects of various regional scales on the

treatment effect estimate in order to consider whether an understanding of the geographic

context producing the health-hazard relationship can help to inform future public health research

questions and modeling strategies.
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4. Data and Methods

4.1 Data

The primary data used for this analysis is the data utilized by Wu et al. in the research

study “Air pollution and COVID-19 mortality in the United States: Strengths and Limitations of an

Ecological Regression Analysis,” published in the November 2020 edition of ScienceAdvances.

The data and code were accessed via the publicly available GitHub link provided by the authors

in service to the reproduction of their analysis: https://github.com/wxwx1993/PM_COVID.

County level ozone data in parts per billion (ppb) was obtained from the EPA and TIGER/lline

shapefiles derived from U.S. Census Bureau data for the contiguous U.S. administrative

boundaries were obtained from the R package tigris. The use of this data is a unique

opportunity to illustrate the potential for the treatment effect estimates of public health studies to

change with changes in model specifications and the consideration of geographical context.

Additionally, the availability of this data provides the opportunity to reconsider the fragility of the

author’s treatment effect estimate to confounding using alternative sensitivity analysis methods.

4.2 Methods

The organization for the analysis in this section is in service to first evaluating the

reliability of Wu et al. (2020) treatment effect estimate and next utilizing various methods in an

effort to bolster this effect against confounding, reduce bias, and consider whether differing

effect estimates of the long term exposure to PM2.5 on COVID-19 mortality emerge with differing

definitions of place. This is done using a sensitivity based framework alternative to the methods

employed by the authors in order to offer another perspective on the reliability of this widely

received estimate. Once fragility to confounding is discovered, then a revised model with the

co-pollutant ozone, expressed as a model covariate, is estimated in order to evaluate the ability

of the new model specification to reduce unobserved confounding. With both models indicating
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room for explanatory improvement, exploratory spatial data analysis is then deployed in order to

uncover spatial regimes, potential sources for unmeasured confounding, in the treatment and

outcome variables. Spatial econometric models are then estimated to account for such spatial

processes, such as spatial heterogeneity, that may contribute to unobserved confounding (Baller

et al., 2001). Finally, the influence of geography on the health-hazard relationship is explored by

varying model covariates representing the delineation of sub-National space into alternate

socioeconomic and climatic regional units.

Sensitivity Analysis

Sensitivity analyses include a wide variety of methods and tools that assist researchers

in exploring how the outputs of a system are influenced by the inputs (Razavi et al., 2021). They

help to establish which assumptions must remain intact for a causal claim to be sustained

(Hazlett and Parente, 2020). In observational studies, linear regression with a set of observed

covariates believed to be sufficient to control for confounding is among the most popular

strategies for identifying a causal relationship, however, the identification of a treatment effect

often relies on the assumption of no unobserved confounders (Reich et al., 2021), a difficult to

defend claim in most applied settings (Cinelli, Ferwerda, and Hazlett, 2020; Hazlett and

Parente, 2020).

Observational studies using spatially referenced data, such as epidemiological studies

evaluating environmental human health risks, face analytic challenges due to both treatment

and outcome variables exhibiting spatial correlation and interference, “where the treatment

applied at one location affects the outcomes at other locations” (Reich, 2021, p. 606). In a

sensitivity based framework, the research emphasis moves away from definitively identifying a

treatment effect to instead considering how strong confounding would need to be in order to

alter a study’s causal claim (Hazlett and Parente, 2020). In the context of observational studies,
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sensitivity analysis can be used to quantify the strength of an unmeasured covariate necessary

to alter a research conclusion and whether this level of confounding is plausible (Rosenbaum

2005; Cinelli, Ferwerda, and Hazlett, 2020); a useful approach considering the influence of

human health research conclusions on public health policy.

There is untapped potential in the application of sensitivity analysis to research modeling

human environment interactions that are affected by confounding variables (Razavi et al., 2021).

Despite originally being developed by Cornfield et al. in the mid-20th Century and further

developed by others (Greenland, 1996), sensitivity analysis remains underutilized in many

disciplines (Cinelli and Hazlett, 2020), including Human Geography. A June 2022 search within

the archives of the International Journal of Geographic Information Science for the term

"sensitivity analysis" yielded two hundred eleven search results from a database of just under

2,700 articles dating back to 2007. A search for the terms “sensitivity analysis” and “robustness

value” from the same journal and over the same time period, yielded no results indicating that

while sensitivity analyses may be deployed in the field of Geography to some extent, this

particular framework has yet to be adopted widely. Within the field of epidemiology, the use of

the E-value has quickly become among the most popular strategies for assessing sensitivity

(VanderWeele, Martin, and Mathur, 2020).

E-value: Concerns Over Quantifying Uncertainty in Epidemiological Studies

The 2017 introduction of the E-value by VanderWeele and Ding allowed epidemiologists

to quantify the degree of confounding on the risk-ratio scale that would “fully explain away a

specific treatment-outcome association, conditional on the measured covariates” (p. 2). This

method of model assessment has experienced widespread uptake by the epidemiological

research literature, however, E-values have been prone to misinterpretation as “[n]o general rule
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can exist about what is a "small enough" E-value, and users of the biomedical literature are not

familiar with how to interpret a range of E-values” (Hamra, 2019; Ioannidis, Jones, Tan, and

Blum, 2019, p. 108; Blum, Tan and Ioannidis, 2020; Fox, Arah, and Stuart, 2020). In this context,

the sensitivity of a given treatment effect to confounding is not expressed explicitly alongside

treatment effect estimates but rather as a function of the treatment effect that is “worked into” a

reported risk ratio. Acknowledging that “confounding is a concern” in their analyses, Wu et al.

calculated an E-value which was then worked into their outcome variable, Mortality Rate Ratio,

following the conclusion that "that any unmeasured confounder would need to have a

confounding effect substantially larger than any of our observed confounders in order to explain

away the relationship between PM2.5 and COVID-19 mortality rate” (2020, “Supplementary

Materials” p. 11).

Wu et al. also conducted “over 80 sensitivity analyses to assess the robustness of the

findings to various model assumptions” (2020, “Supplementary Materials” p. 9), however, it is

important to note that their sensitivity analyses consist of a variety of model specifications and

inclusion of the E-value. I posit that sensitivity statistics would be better expressed explicitly and

should be reported alongside treatment effect estimates. Additionally, the treatment effect

estimate of a widely received, observational study with public health policy implications can

benefit from an alternative assessment of its fragility to confounding. In order to first investigate

the potentially tentative nature of findings by Harvard T. Chan School of Public Health

researchers, Wu et al., I utilize a sensitivity analysis framework developed by Cinelli and Hazlett

(2020) to test the fragility of their treatment effect estimate.
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Assessing the Sensitivity of a Treatment Effect Estimate within a  Partial R2

Sensitivity Analysis Framework

The omitted variable bias framework works within the mechanics of linear regression to

explore the change in a coefficient estimate of interest that occurs when an omitted covariate is

included (Cinelli and Hazlett, 2020). The approach to sensitivity deployed in this thesis, as

developed by Cinelli and Hazlett (2020), extends the omitted variable bias framework and

harnesses expert background knowledge to assess a research conlusion’s fragility to

unobserved confounders (Cinelli and Hazlett, 2020). While other sensitivity methods “impose

complicated and strong assumptions regarding the nature of the unobserved confounder,”

(Cinelli, Ferwerda, and Hazlett, 2020, p. 2) this approach is more flexible. It does not require

assumptions regarding the confounders’ distribution, the linearity of its effect on the treatment or

outcome, nor the “functional form of the treatment assignment mechanism” (Cinelli and Hazlett,

2020, p. 40), such as as-if random. Working within the widely used regression framework, it

addresses how much unobserved confounding it would take to substantially alter a research

conclusion by invoking two novel sensitivity measurements and a bounding procedure using

known covariates (Cheng, 2019; Cinelli and Hazlett, 2020).

The sensitivity measurements utilized within this framework include the robustness value

( ), which uses partial values to assess the overall robustness of a treatment effect

estimate to confounding, and which describes “the proportion of variation in the

outcome explained uniquely by the treatment” (Cinelli and Hazlett, 2020, p. 40). In the

sensitivity measurement, represents the outcome, represents the treatment and

represents the model covariates. The portion of the subscript, , is read as

conditional on and represents the treatment effect after accounting for model covariates.

is a commonly used summary statistic to to determine the goodness of fit of a statistical model
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and can be conceived of as variance explained (Nakagawa and Schielzeth, 2013), the

proportion of variance in an outcome variable that is explained by the model covariates

(Nagelkerke, 1991).

While variance is a measure of variability in a dataset, residual variance can be

conceived of as the unexplained variance, or the variance that cannot be explained by model

covariates. considers a confounder that has equal partial values with both the

treatment and outcome” (Cheng, 2019, p. 11) as a useful, overall benchmark to denote the

amount of residual variance in both the treatment and outcome variables that would be required

to reduce the treatment effect estimate to zero (Cinelli and Hazlett, 2020; Hazlett and Parente,

2020). Similarly, the denotes the amount of residual variance in both the

treatment and outcome variables that would be required to reduce the treatment effect estimate

to the boundary of statistical significance at the level (Cinelli, Ferwerda, and Hazlett,

2020, p.5; Hazlett and Parente, 2020). A confounder this strong would render previously

significant findings unpublishable. The subscript of the RV values specifies the fraction of the

treatment effect estimate which would need to be explained away by unobserved confounders

to be troublesome, with denoting a treatment effect estimate reduction of 100%, or rather,

a treatment effect estimate of zero (Cinelli, Ferwerda, and Hazlett, 2020). The observed

treatment effect estimate then, would be due to bias (Hazlett and Parente, 2020). For the

purposes of this thesis, a generalized version of the definition of bias, as elaborated by Hazlett

and Parente (2020), will be used: the difference in the observed treatment effect estimate and

the “true” treatment effect estimate, if unobserved confounding had instead been accounted for

with additional model covariates in an ideal, hypothetical model.
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Deploying Sensitivity Analysis

The identification strategy deployed in this analysis to determine the treatment effect of

long term exposure to PM2.5 on COVID-19 mortality is Selection on Observables (S.O.O.). The

assumptions associated with S.O.O. in this context are as follows, with an analogous definition

available in Foundations of Agnostic Statistics by Aronow and Miller (2019; pp. 247-248):

1. Conditional Ignorability: Conditional Ignorability can be described as among
units with the same covariate, , treatment is as-if random.  In this case,
treatment is continuous; every COVID-19 mortality associated with a particular
PM2.5 exposure value (d) is independent of exposure to PM2.5 (D) amongst
members of a given unit with the same covariate value (Figure 1a).

Figure 1a: Conditional Ignorability

2. Common Support:  For units with any particular value of , there is some
probability of these units having any level of exposure (Figure 1b).

Figure 1b: Common Support

In order to generate the sensitivity measurements, , , and , the Wu

et al. (2020) model was reworked into an Ordinary Least Squares (OLS) linear regression, a

common strategy for estimating unknown parameters, in order to accommodate the sensitivity

framework (Table 2). The authors’ original model specification was also re-run with the

reconstructed data (Table 1). The population covariate was shifted into the denominator of the

outcome variable and a log transformation was applied in order to account for the likely

exponential increase in the mortality rate (Figure 2a). Hereinafter, the outcome variable will be

referred to in this text as the outcome variable, COVID-19 mortality, or as the COVID-19

mortality rate, the OLS reworking of the Wu et al. main model will be referred to as the OLS

Main Model (Figure 2b), and the treatment variable is referred to as such and also
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interchangeably as mean PM2.5 , long term exposure to PM2.5 and long term average

PM2.5.Lastly, the authors’ state covariate accounting for state-specific random effects was

converted to a simplified state covariate accounting for state-specific fixed effects, such as

predominant political affiliations influencing mask and social distancing policies and attitudes.

The resulting OLS Main Model is enumerated in Figure 2b.

Figure 2a: Reworked Outcome Variable

Figure 2b: Reworked OLS Main Model

Bounding the Sensitivity Analysis

This particular sensitivity analysis framework also allows the researcher to bound the

degree of plausible confounding with existing, influential model covariates serving as

benchmarks to assist in considering whether a confounder of this strength could exist in one’s

study (Cinelli and Hazlett, 2020; Hazlett and Parente, 2020). These benchmarks allow the

researcher to consider the relative strength of an unobserved confounder using known

covariates to argue whether or not this degree of confounding is plausible (Cinelli and Hazlett,
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2020) and produce contour plots visualizing this relationship. A treatment version of the model,

with long term exposure to PM2.5 designated as the outcome variable, was run in order to

determine which covariates most strongly predict long term exposure to PM2.5 in addition to

COVID-19 mortality and would therefore be useful to bound the degree of plausible

confounding. The results of all three linear models including the negative binomial mixed model,

referred to as the Wu et al. Main Model, OLS, and treatment model were then reported in

separate tables (Tables 1, 2, 3 respectively). After identifying the benchmarking covariate,

percent Black residents, the partial sensitivity measurements and contour plots were

evaluated to explore the degree of confounding that would need to exist in order to destabilize

the OLS version of Wu et al.’s treatment effect estimate (Table and Plot Ai). Once fragility to

confounding was established, the ubiquitous pollutant ozone was explored as a potential

confounder.
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Possible Confounder: Ozone

Ozone

Ozone is presented as a potential confounder due its health implications as well as its

documented co-presence with PM2.5, however, RNA viruses such as COVID-19 are unstable in

the presence of ozone (Manjunath et al., 2021) and ozone has been used in medical studies to

treat COVID-19 with an associated effect in the reduction of days on ventilator (Hernández et al.

2021). In considering ozone as a potential confounder, it is important to note the differential

effects between tropospheric ozone exposure and exposure to ozone therapy in a medical

context. Medically administered ozone can be beneficial to COVID-19 patients (Cattel et al.,

2021) in that it is a "precise concentration and therapeutic dosage" that is "calibrated against the

antioxidant capacity of blood" (Bocci, 2007, p. 255) while tropospheric ozone is considered toxic

(Bauer, Diaz-Sanchez and Jaspers, 2012) and even deadly (American Lung Association, 2001).

Ozone’s associated public health risks are widely accepted and well documented. The
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Asthma and Allergy Foundation of America, or AAFA, (2015) states that ozone is a main

contributor to adverse respiratory effects including lung irritation and reduced function. Its

concentration is directly related to the frequency of asthma attacks and asthma related

Emergency Department visits (AAFA, 2015). As a result, it has articulated to a complex web of

regulatory compliance mechanisms and public health imperatives across the U.S. Ground level

ozone is subject to both the Federal NAAQS and California state agency regulations that

surpass national standards as administered by state agencies such as the California Air

Resources Board. It is considered one of the EPA’s six most common air pollutants (US EPA,

2015).

Ozone and PM2.5 have a relationship in space and time. In the American West, the

meteorologically dependent presence of ozone and primarily wildfire-generated PM2.5

co-occurrences have been investigated as “[t]he frequency, spatial extent, and temporal

persistence of extreme PM2.5/ozone co-occurrences have increased significantly between 2001

and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25

million person-days/year” (Kalashnikov, 2022, p. 1). Researchers David et al. question the future

of the implementation of EPA NAAQS standards in U.S. regions such as the American West

where wildfire-driven days of exceptional ozone and PM2.5 events have grown to such an extent

that it would threaten a region’s attainment status (2021). They also point to regionally specific

variations in the presence of these exceptional events: “[w]estern states appear to experience

far more wildland fires and stratospheric O3 intrusions relative to other areas” (David et al.,

2021, p. 6). The meteorological drivers, namely extreme heat, of the co-occurrences of ozone

and particulate matter in the eastern U.S. and Canada were investigated by Schnell and Prather

(2017) who concluded that “the hottest temperatures” were drivers for the “highest levels of

pollution” (p. 2854), a sobering realization in the context of a changing climate. In a 2019 study

on the correlations between PM2.5 and ozone over China, Zhu et al. found strong positive
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correlations between the presence of the two pollutants during most seasons, particularly the

warm seasons, noting that the correlations were likely due to “the promoting effect of high O3

concentration and active photochemical activity on secondary particle formation” (p.1). The

inclusion of ozone as a model covariate is expected to reduce unmeasured confounding in the

OLS Main Model therefore producing a more accurate treatment effect of the long term

exposure to PM2.5 on COVID-19 mortality.

Once the sensitivity analysis for the OLS Main Model was assessed, a model including

the potentially relevant confounder ozone (O3) was then estimated (Ozone OLS Model, Figure

2) to consider whether explicitly including ozone as a covariate strengthened the treatment

effect against confounding. County level ozone data in parts per billion (ppb) was obtained from

the EPA and the daily maximum 8-hour concentration was averaged over three years for years

2017, 2018, and 2019. The sample size was reduced from approximately 3000 observations to

approximately 800 observations in response to the availability of ozone monitored on a

continuous scale. Effectively, the ozone portion of this analysis proceeded with a different

sample, referred to as ozone subset.

Considering that counties included in the EPA’s monitoring of ozone on a continuous

scale are likely to be more populous than those that weren’t included, the population density of

the original sample was plotted against the ozone subset (Plot 1, See Appendix). The limitation

of using a subset of more populous counties excludes variation that may be present in the

treatment-outcome relationship amongst rural counties, or between rural and populous counties.

A treatment model (Table 5) was again estimated and sensitivity measurements quantified in

order to consider the degree of confounding that would need to exist in order to destabilize the

treatment effect of long term exposure to PM2.5 on COVID-19 mortality with ozone expressed as

a covariate (Tables and Plots B-C). The correlations between ozone and the treatment and

outcome variable are visualized in Plots 2 and 3, respectively (See Appendix) in order to
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consider the underlying reasons for the effect estimate of ozone on COVID-19 mortality.The

replication of the OLS Main Model with ozone as a model covariate is essential in exploring how

the inclusion of this co-pollutant can strengthen the treatment effect of the long term exposure to

PM2.5 on COVID-19 mortality against confounding. The limited spatial and temporal scales

utilized in this approach, however, provide obstacles to obtaining a full account of the

environmental health hazards these pollutants pose. Once the ozone model was assessed,

spatial analysis was then utilized to uncover underlying spatial processes as potential sources

of confounding.

Assessing the Spatial Sensitivity of a Treatment Effect Estimate with ESDA

Spatial analysis can be used as a complementary strategy to sensitivity for exposing

potential sources of confounding in epidemiological air pollution studies. Chen et al. (2017) state

that air pollutants are often linked with spatial spillover effects as “air pollutants are apt to diffuse

and migrate across different regions” (p. 917) and have a “strong negative spatial spillover

effect on public health” (Chen et al., 2017, p. 922). As the continuous rather than episodic

presence of PM2.5 (industrial and traffic related emissions vs. wildfires) is tied to places

characterized as urban centers, the distribution of long term PM2.5 exposure estimates across

geographic units, such as U.S. counties, are likely to not be independent; i.e. the PM2.5

exposure values in a given unit are likely to influence the values of neighboring units. Despite

the inclusion of maps indicating strong spatial trends in their treatment and outcome variable,

the possible presence of spatial autocorrelation at the local level or spatial heterogeneity at the

regional level was not investigated by Wu et al. in their 2020 research publication connecting the

effects of long term exposure to PM2.5 to COVID-19 mortality.
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The Case for Space

Often, despite the ubiquitous use of georeferenced data in public health research, the

substantive influence of geography in the relationship between the treatment and outcome

variable is either not considered in the model specifications nor the sampling strategy

(Goldhagen et al., 2005; Matisziw, Grubesic, and Wei 2008) or is masked by the mechanism of

data aggregation to an administrative, geographic unit which, in turn, spatially misrepresents the

data (Delmelle et al. 2022;). Anselin (1988) contends that “aggregate spatial data are

characterized by dependence (spatial autocorrelation) and heterogeneity (spatial structure)”

(p.1). Ignoring the presence of spatial dependence in model specifications can produce biased

and inconsistent estimates of classical regression models including Ordinary Least Squares

(OLS) which assumes identically and independently distributed observations (i.i.d) (Anselin and

Bera, 1998; Baller et al., 2001; LeSage 2008; Messner et al, 1999).

Spatial dependence refers to the clustering of similar values of a given variable across

space (Shin and Ward, 1999) while spatial autocorrelation is described as occurring when a

given variable at a particular location “is determined by the values of the same variable at other

locations in the system” (Anselin, 2003, p. 310). For instance, positive spatial autocorrelation

can be defined as occurring when like values of a given variable are also locationally similar

(Anselin, 1996a). The term spatial dependence is often used interchangeably with the term

spatial autocorrelation though there are disciplinary disagreements regarding whether these

terms are actually distinct or not (Anselin and Bera, 1998; Chi and Zhu, 2019). Spatial

heterogeneity is considered by Anselin and Getis to be a “special case of spatial dependence”

(1992, p. 24) where the spatial effects are not uniform across the study area (Anselin and Getis,

1992). Shin and Agnew (2011) use the term spatial heterogeneity to specify regional scale

spatial variation as opposed to spatial dependence or positive spatial autocorrelation which is
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defined by the authors as specifically pertaining to the clustering of similar values at a local

level, also known as hotspots. The identification of hotspots may assist in geographically

directing one’s research focus for further inquiry (Shin and Ward, 1999). Shin and Ward (1999)

point out that spatial dependence and heterogeneity are not necessarily mutually exclusive and

that the consideration of regional context may shed light on this particular configuration of

spatial relationships within a given study area. For the purpose of this thesis, I will use the terms

spatial dependence and spatial autocorrelation interchangeably. As spatial dependence can

cause biased and inconsistent treatment effect estimates, this can complicate a researcher’s

ability to make a causal claim.

The Rubin Causal Model (RCM) is described as a “formal mathematical framework for

causal inference” (Imbens and Rubin, 2010, p. 229). It is “part of the foundational framework for

empirical treatment effect analysis” (Kolak and Anselin, 2019, p.128) and is utilized to identify

causal effects in observational studies based on three essential concepts: units, treatments and

potential outcomes (Imbens and Rubin, 2010). A unit is a physically definable object, while the

treatment constitutes "an action that can be applied or withheld from a unit" (Imbens and Rubin,

2010, p. 231). The two potential outcomes for each unit can be conceptualized as an outcome

variable Yi where Y1i is the apriori, theoretical treatment potential outcome and Y0i is its

non-treatment potential outcome counterpart, also known as the control potential outcome

(Imbens and Rubin, 2010). One of the assumptions of the Rubin causal model is the stable unit

treatment value assumption, or SUTVA (Imbens and Rubin, 2010). SUTVA maintains that "the

potential outcomes of individuals be unaffected by changes in the treatment exposures of all

other individuals" (Morgan and Winship, 2015, p. 48). SUTVA itself contains two assumptions,

described as well-defined treatments and no-interference, the latter indicating that the treatment

status of any particular unit does not affect the treatment status of other units (Imbens and

Rubin, 2010).
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When spatial effects are not explicitly included in model specifications, standard

statistical measures of fit may become biased or unreliable (Kolak and Anselin, 2019). For

instance, “spatial interaction and heterogeneity between units at individual or group levels can

violate both components of the SUTVA" (Kolak and Anselin, 2019, p. 131) and when such

spatial effects are excluded, researchers can inappropriately allocate treatment effect estimates

(Kolak and Anselin, 2019). Researchers commonly address this violation by aggregating

observational data to macrolevel units, such as administrative or political units, so that the

SUTVA assumption can be maintained (Imbens and Rubin in Kolak and Anselin, 2019). This

presents problems when the treatment's causal effects in question work at a finer or

disaggregated spatial resolution: “spatial effects violate the so-called stable unit treatment value

assumption advanced by Rubin” (Kolak and Anselin, 2019, p. 128).

Ecological studies linking pollutant exposures to disease at large, aggregate scales may

suffer from the modifiable areal unit problem, or MAUP, where “the scale of the grid cell has an

imperfect match with the scale of the process studied, various types of misspecification may

result” (Anselin and Getis, 1992, p. 42). Treatment effect estimates obtained from multivariate

analysis may vary with the level of data aggregation or the spatial nature of the administrative

unit to which they are aggregated, suggesting that areal data may be unreliable or sensitive to a

change in geographic unit (Fotheringham and Wong, 1991). Public health research relating air

pollution exposure to disease incidence often rely on areal data aggregated to large

administrative units to infer population-level associations that force these spatially continuous

phenomena into arbitrary units (Lee et al. 2020). In a paper examining the effect of MAUP on

population-level air pollution and disease incidence associations, Lee et al. (2020), however,

found that the modifiable areal unit problem does not dramatically alter treatment effect

estimates when the pollution concentrations are spatially autocorrelated and the number of
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areal units is high.

Application of ESDA to Unveil Spatial Relationships

A commonly employed strategy for spatial pattern recognition and evaluation of the

spatial distribution of a variable of interest is a set of methods known as exploratory spatial data

analysis (ESDA) (Anselin, 1996a; Anselin and Getis, 1992; Chi and Zhu, 2019; Shin and Ward,

1999). ESDA’s strength is in its ability to reveal spatial patterns and structures to “help

determine the extent of data dependence and heterogeneity” (Anselin and Getis, 1992, p.28.).

Here, I utilize ESDA methods in order to visualize any spatial trends present in the data.

Broadly, this commonly includes the production of maps of the distribution of the outcome

variable and the OLS model residuals as well as the calculation of the global Moran’s I and

affiliated Moran Scatterplots. Once global measures of spatial autocorrelation are established,

Local Indicators of Spatial Association are typically computed and visualized in the context of a

map in order to further investigate and locate areas of spatial nonstationarity or “hotspots”

(Anselin, 1995).

Specifically, ESDA often begins with data visualizations in a geographic setting, such as

a map, in order to look for the existence or lack of spatial regimes (Chi and Zhu, 2019). Before

cartographically visualizing the data, the distribution of long term exposure to PM2.5, COVID-19

mortality, and the OLS Main Model residuals were visualized through the production of a variety

of plots. The quantile-quantile plot, which compares the distribution of the observed values with

that of a normal distribution, and the Mean Density Plot, displaying the probability density of

observed values per U.S. County, can be found in the Appendix (Plots 4a through 4f). These

data visualizations were used in tandem with ESDA methods to unveil spatial nonstationarity in

both the outcome and treatment variables, as well as the OLS model residuals.
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Visualizing Data Values Geographically

The goal of the production of data distribution maps was to first visually determine

whether their values are distributed randomly across the contiguous U.S., or if there are visually

definable spatial patterns “as human eyes are good at recognizing spatial patterns from

graphical presentations of data” (Chi and Zhu, 2019, pp. 43-44). Maps of the distribution of the

long term average PM2.5 exposure values and the COVID-19 mortality values across the

contiguous U.S. were produced using the Fisher-Jenks classification algorithm and

classes (Plots 5a-5b). For the OLS Main Model residuals, values were binned using the

classification algorithm equal-interval (5c).

Study Area and Neighborhood Construction

The study area for this portion of the analysis generally retains the same extent as the

Wu et al. (2020) study area, i.e. the contiguous, lower forty-eight U.S. states and District of

Columbia (D.C.), excluding the five New York City boroughs (the Bronx, Brooklyn, Manhattan,

Queens and Staten Island) from the study region as outliers. Some reconfiguration of the study

area was necessary for the creation of a continuous surface in order to proceed with spatial

analysis (Anselin and Getis, 1992). The Geographic Information System (GIS) open-source

software, QGIS, and the k-nearest neighbor method was used to interpolate nineteen counties’

missing values from the ten nearest counties and excluded three county-island observations

(Duke, Nantucket, and San Juan Island). Since counties that share borders and/ or vertices are

considered spatially contiguous in terms of the ability of particulate matter to be transported

through the airspace of adjacent counties, the Queen’s contiguity matrix is applied in order to

define the “neighborhood” for the dataset.
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Global Measures of Spatial Autocorrelation

Once the spatial weights matrix was established, global Moran’s I values and

scatterplots were produced for COVID-19 mortality, long term exposure to PM2.5, and the OLS

Main Model residuals (Table 6a and Plots 6a- 6c). The global Moran’s I is used in order to test

for spatial autocorrelation between the observed values, typically expressed in terms of the

outcome variable, , and the weighted average of neighboring values, , also known as the

spatial lag (Anselin 1996b). Specifically, the global Moran’s I statistic measures the degree of

linear association between a variable value at a given location and the weighted average of the

same variable at neighboring locations (Chi and Zhu 2020), producing a single statistic for the

entire study area with “a null hypothesis of spatial randomness” (Anselin, 2020). It can be

conceived of as the slope of the regression line between the unit value and neighborhood value

(Pacheco and Tyrrell 2002) and is interpreted similarly to the Pearson’s correlation coefficient

where weak correlations are represented by numbers close to zero and high positive or

negative correlations are represented by numbers close to 1 or -1, respectively (Chi and Zhu,

2019). The expected value of the Moran’s I under the null hypothesis approaches zero as the

sample size increases (Boots and Tiefelsdorf, 2000).

The global Moran’s I formula, first developed by Moran in 1948 and elaborated by Chi

and Zhu (2020, p. 44), is expressed in Figure 3 where denotes the number of areal units,

denotes the value of a variable at a given areal unit for , and index n areal

units, represents the spatial weight of areal units and and is the mean of attribute

across all areal units. In order to test the likelihood of the Moran’s I statistic randomly occurring,

p-values were computed from Monte Carlo simulations for the treatment variable, outcome

variable and Main Model OLS residuals (Table 6b, see Appendix). This computational approach,

also operating under the null hypothesis of spatial randomness, does not require assumptions of
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normality in the data values and is more robust, yet limited in its interpretability with regard to

the sample itself (Anselin, 2020), however, it serves as a complement to the Moran’s I statistic.

In addition to a dataset-wide, global measure of spatial autocorrelation, local indicators of spatial

association are useful in identifying spatial regimes.

Figure 3: Global Moran’s I Formula

Local Measures of Spatial Autocorrelation

Once spatial dependence is discovered visually across the dataset, local indicators of

spatial association (LISA) were used in order to assess the degree of statistically significant

hotspots and coldspots. Much like the Moran Scatterplot, LISA statistics such as the Local

Moran’s I allow for “the indication of pockets of spatial nonstationarity, or the suggestion of

outliers or spatial regimes” (Anselin, 1995, p. 94). As opposed to producing one statistic for the

entire dataset, the Local Moran’s I focuses one specific area at a time, the areal unit, and its

neighboring values (Boots and Tiefelsdorf, 2000; Chi and Zhu, 2019). Given that exposure to

PM2.5 is both a local, regional, and transboundary phenomenon, LISA analysis was expected to

uncover spatial dependence among adjacent units and regional spatial regimes linked to

differing histories of development and present day economic activity. Spatial dependence in

COVID-19 mortality among U.S. counties was also expected given the likely distribution of the

treatment, community spread, and regional, climatic or statewide political conditions contributing

to its expansion or abatement. The Local Moran’s I, as elaborated by Chi and Zhu (2020, p. 47),
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is expressed in Figure 4. Its output is extensive and best visualized in the context of a map (Chi

and Zhu, 2019; Plots 7a-7c). It can be thought of as a decomposition of the global Moran’s I

(Anselin, 1995) as “[t]he arithmetic mean over all Local Moran's s equals the global Moran's I”

(Boots and Tiefelsdorf, 2000, p. 325).

In order to identify hot and cold spots in the data, long term exposure to PM2.5 and

COVID-19 mortality county values were standardized to their means and the Local Moran’s I

county values to their means and then assigned each significant county value (p-value < 0.05)

to a quadrant based on their joint relationship to zero (Plots 7a-7c). For instance, when the

standardized PM2.5 county mean is greater than zero and the Local Moran’s I county value is

greater than zero, the value is assigned to the “High- High" quadrant. When counties classified

as High-High are spatially contiguous for both the treatment and outcome variable, this could

indicate spatial spillover, where long term exposure to PM2.5 in a given county results in a

COVID-19 mortality in another and may result in a biased or inefficient treatment effect estimate.

Figure 4: Local Moran’s I Formula

Spatial Econometrics

Standard linear regression models generally require that observations are independent

of one another (LeSage, 2014). Similarly, OLS requires that residuals are i.i.d (independently

and identically distributed), and normally distributed with a mean zero and constant variance in
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order for the parameter estimates to be unbiased and efficient (Chi and Zhu, 2019). If the data in

question exhibits spatial dependence, then the parameters may be unreliable (Chi and Zhu,

2019, LeSage 2008). For instance, in the context of OLS, the parameter estimate can be

inefficient if the error terms are spatially dependent (Chi and Zhu, 2019). LeSage (2008)

observes that “it is commonly observed that sample data collected for regions or points in space

are not independent but rather spatially dependent” (p. 19). In order to bolster the treatment

effect estimate of long term exposure to PM2.5 against confounding and produce more reliable

estimations of its effect on COVID-19 mortality, underlying spatial processes such as spatial

dependence must be accounted for in the model specifications.

Spatial econometrics is a field which extends traditional linear regression techniques by

allowing for the incorporation of spatial dependence among observations usually in the form of a

spatially lagged variable (LeSage 2008). Spatial autoregressive models, also known as spatial

lag models, incorporate a spatially lagged dependent variable where is a spatial

autoregressive coefficient, is a vector of dependent variable observations, is the

lagged dependent variable for weights matrix and the remaining two terms, and are

analogous to an OLS interpretation. Using Anselin and Bera’s formal expression (1998, p. 246),

the spatial lag model can be found in Figure 5. The expectation that the long term exposure to

PM2.5 and COVID-19 mortality exhibit spatial structure in their distribution motivates the inclusion

of a spatially lagged dependent variable in subsequent models.

Figure 5: Spatial Lag Formula
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Another way to incorporate spatial dependence in model specification is through

incorporating a spatial processes in the error term (Anselin and Bera, 1998) and can be found in

Figure 6 as a reproduction of the formula expression used in Anselin and Bera (1998, p. 248)

where the linear model with error vector consists of the spatial autoregressive coefficient ,

the error lag , and the homoskedastic error term . The error term represents the portion of

the relationship between the long term exposure to PM2.5 and COVID-19 mortality that cannot

be explained by model covariates, The possibility of spatial processes occurring in the error

term, for instance from the lack of inclusion of co-pollutants such as ozone, motivates the

inclusion of this model.

Figure 6: Spatial Error Formula

While “the problems of spatial heterogeneity can for the most part be solved by means of

standard econometric techniques'' (Anselin, 1988, p. 9), a spatial econometric approach must

be taken in order to address issues of spatial dependence (Anselin, 1988). OLS Main Model

residuals were investigated for heteroscedasticity, also known as unequal scatter, which could

suggest, among other possibilities, an important omitted variable. Spatial correlation in the error

term is commonly found when spatial spillover among the independent and dependent variables

in the model, such as the expected spatial spillover of the long term exposure to PM2.5. In

response, Lagrange Multiplier diagnostics for spatial dependence in the residuals and outcome

variable of the OLS Main Model were estimated (Table 8). Once substantive evidence for spatial

dependence was confirmed in the OLS Main Model residuals (weak) and outcome variable
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(stronger), Maximum Likelihood functions were then used to estimate spatial lag and spatial

error models in order to produce more reliable treatment effect estimates.

A comparison of the OLS Main Model, spatial lag and spatial error model outputs can be

found in Table 9. Model fit was compared on the basis of the goodness-of-fit Akaike Information

Criterion (AIC) values, often used for likelihood models (Chi and Zhu, 2019). As there is strong

evidence for spatial dependence in the treatment variable, the prevalence of COVID-19

mortality in a given county may also be dependent on neighboring treatment variable values due

to the negative spatial spillover effects of air pollution on public health (Chen et al. 2017). For

this reason, a spatial Durbin model is also considered (Figure 7) which allows for the inclusion

of the spatially lagged dependent variable and spatially lagged explanatory variables. The

spatial Durbin formal expression in Figure 7 is adapted from Yang, Noah and Shoff (2015, p. 24)

where denotes the spatially lagged explanatory variable and consists of a vector of

the effects of . The spatial Durbin model output includes spatially lagged COVID-19

mortality as well as long term exposure to PM2.5 (Table 10).

Figure 7: Spatial Durbin Formula
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The impact of Scale on Spatial Dependence and Treatment Effect Estimates

Figure 8: U.S. Census OLS Model

In consideration of the MAUP, the confounding effects of spatially dependent data, and

the growing critique of epidemiological air pollution studies that aggregate disease incidence

and pollution data to arbitrary area units in order to make population level public health

inferences (Lee et al., 2020), the impact of scale on the treatment effect estimate of long term

exposure to PM2.5 on COVID-19 mortality was also explored. Regional dummy variables

replaced state model covariates (Figures 8 and 10) effectively changing the definition of

subnational place as well as the scale of place-based covariates. Lagrange Multiplier tests

(Tables 11 and 14) and spatial lag models were estimated (Tables 12, 13, 15, 16) to account for

spatial regimes in the data, and offset its spatial structure. For this portion of the analysis, the

Wu et al. data was first subset into U.S. Census regions (Figure i, Intro), commonly used to

delineate space and define place in epidemiological studies. With regard to the regional

variables, Census Region West is assigned as the reference group while the Census Region

Midwest variable, takes a value of 1 when the census tract falls within the Midwest

Census Region, and 0 otherwise. Similar logic can be applied to the Census Region dummy

variables for the South Census Region and Northeast Census Region . In order to

further investigate the possibility of differing trends in the relationship between the treatment

and outcome variable among regions, long term exposure to PM2.5 vs. COVID-19 mortality was
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also plotted by county on a National scale without subnational delineations (Plot 9) and then by

Census Region against the National mean, expressed as National (Plot 10a).

Figure 9: EPA Climatically Consistent Regions. From EPA.gov (2016); Public Domain

The sub-national investigation of the impact of scale, and climatically defined place, on

the PM2.5 and COVID-19 mortality health-hazard relationship was investigated by subsetting the

Wu et al. (2020) data into EPA climatically consistent regions (Figure 9) which are delineated on

the basis of similar climatic regimes of temperature and humidity. Long term exposure to PM2.5

vs. COVID-19 mortality by EPA Climatically Consistent Region was also plotted against the

Mean values for the contiguous U.S. named National (Plot 11) in order to again investigate the

possibility for differences in trends among regions. The EPA dummy variables were similarly

structured with the EPA West region serving as the reference group, EPA Northwest

represented by and rest of the variables following a similar naming strategy (Figure

10).
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Figure 10: EPA OLS Model

In order to quantify regional differences in the relationship between COVID-19 mortality

and the long term exposure to PM2.5, I perform a one-way analysis of variance test and Tukey

Honest Significant Difference for each set of subnational delineations.. The null hypotheses for

these tests are equivalent Census Region or EPA Climatically Consistent Region means. The

differences in treatment effect estimates through the inclusion of spatial and place based

processes are discussed in the Results section.
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5. Results

5.1 Sensitivity Analysis

Tables 1 and 2: Wu et al.’s Negative Binomial “Main Model”  vs. the OLS reworking:  “OLS Main Model”
*State covariates are excluded from all tables for space considerations.

**Of note, treatment covariates mean_pm25 and mean.pm25 are equivalent.

The regression results returned from the author’s negative binomial, mixed model are

expressed in Table 1 with the Wu et al. Main Model returning a value of 10.74% (p<0.01)

increase in the COVID-19 mortality rate for every 1 increase in the long term average

PM2.5 , similar to the result reported by Wu et al. Importantly this metric was not calculated with
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an associated E-value. Also of note, upon running the Wu et al. Main Model, R generated a

return message “[m]odel is nearly unidentifiable” indicating that the result is barely identified and

therefore unreliable. Of note, state variables are excluded from all tables for space

considerations and the long term exposure to PM2.5 is expressed as mean.pm25. Interestingly,

the results returned from the OLS reworking of the Wu et al. Main Model displayed in Table 2

resulted in the estimation of a significantly lower treatment effect : a 1 increase in the

long term exposure to PM2.5 is associated with a statistically significant 7.16% (p<0.01) increase

in COVID-19 mortality, expressed as mean.pm25

The treatment model results expressed in Table 3 indicate that the pre-treatment, racial

demographic covariate percent black is strongly predictive of long term exposure to PM2.5: a one

percent increase in Black residents is associated with a 0.21 (p<0.01) increase in the

long term exposure to PM2.5. Additionally, this covariate is also strongly predictive of the

outcome, COVID-19 mortality, for every 1 increase in the long term average PM2.5 there

is a 36.2% increase in the COVID-19 mortality rate (p<0.01) making it an unfortunately useful

benchmark for bounding the plausibility of any unmeasured confounding.
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Table 3: OLS Treatment Model
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Table A and Plot A i: Sensitivity of OLS Main Model treatment effect to confounding w/ influential,
pre-treatment covariate percent Black residents (per.blk) bound.

Using works on sensitivity analysis by Hazlett (2021) and Cinelli and Hazlett (2020) for

reference, the partial and robustness values expressed in Table A show that the OLS Main

Model treatment effect estimate for the long term exposure to PM2.5 is very fragile to
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unobserved confounding. Robustness values close to 1 would describe a treatment effect

estimate that is robust to strong unobserved confounding while values close to zero would

indicate that even weak confounding could eliminate the treatment effect estimate (Cinelli and

Hazlett, 2020). The Robustness Value ( ) that would move the OLS Main Model treatment

effect estimate to zero is 7.0% (Table A), indicating that if an unobserved confounder, or group

of confounders, existed that could explain just 7% of the residual variance in both the treatment

and the outcome, they would explain away the entire estimated treatment effect. One would

then conclude that, if such a confounder, or group of confounders, existed, the observed

treatment effect estimate is entirely attributable to bias (Hazlett and Parente, 2020).

A confounder of this strength, however, isn’t necessary to undermine the relevancy of

the observed treatment effect estimate. The value of 3.6% (Table A) tests the null

hypothesis that mean.pm25 is zero. It describes the strength of confounding that would be

necessary to reduce the estimated effect to the boundary of statistical significance at the

level. While considering the possible existence of an unobserved confounder, or

group of confounders, in this study that account for 7% of the residual variation in the treatment

and outcome may prove a daunting task, considering confounding that explains only 3.6% of

this variation is likely achievable. For example, the existence of a prominent co-pollutant, such

as ozone, with health ramifications for pulmonary health (American Lung Association, 2020),

may be able to account for this much unobserved confounding. Finally, the partial value,

, describes an “extreme scenario” where the treatment variable explains only 0.5%

(Table A) of the residual variation in the outcome variable after accounting for the other model

covariates. This means that if unobserved confounding can explain 100% of the residual

variation in COVID-19 mortality, it would have to also only explain 0.5% of the residual variation

in the long term exposure to PM2.5 in order to wipe out the estimated treatment effect. Though all

61

https://www.codecogs.com/eqnedit.php?latex=RV_%7Bq%3D1%7D#0
https://www.codecogs.com/eqnedit.php?latex=RV_%7Bq%3D1%2C%20%5Calpha%20%3D%200.05%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.05#0
https://www.codecogs.com/eqnedit.php?latex=R%5E2#0
https://www.codecogs.com/eqnedit.php?latex=R%5E2_%7BY%5Csim%20D%7CX%7D#0


three measurements can be taken into account in order to consider the reliability of the

treatment effect estimate, the value of 3.6% shows that the OLS re-estimation of

the Wu et al. (2020) treatment effect is indeed fragile to the level of confounding required to

render the study findings not sufficiently significant to publish.

In addition to the partial and robustness values, accompanying plots help to visualize

the relationship between the strength of a hypothetical confounder and a known, influential

covariate. The fraction of residual variation in the treatment that is explained by hypothetical

confounding can be found on the horizontal axis while the fraction of residual variation in the

outcome that is explained by hypothetical confounding can be found on the vertical axis (Cinelli

and Hazlett, 2020).

The points in Plot Ai represent the bounds on the partial of the hypothetical

confounder if it were 1, 2 or 3 times as strong as the observed covariate percent Black

residents. The contour lines show the range of possible adjusted treatment effect estimates in

the presence of confounders of varying strengths if they had been instead expressed as model

covariates in a hypothetical, “ideal model” (Cinelli and Hazlett, 2020). The red, dashed contour

line indicates where such a confounder would be able to reduce the treatment effect to zero

(Cinelli and Hazlett, 2020). The 1 x per.blk bound shows the worst confounding that can exist if

the model assumption was that confounding is no worse than the benchmark covariate percent

Black residents in predicting treatment ( :1.9%) and no worse than percent Black

residents in predicting the outcome ( : 4.8%). If such a confounder did exist, then Plot

Ai reveals that the OLS Main Model treatment effect estimate would be robust to confounding,

however, it would be reduced by over 40%. A confounder twice as strong would nearly eliminate
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the treatment effect estimate and one three times as strong would change the sign of the

estimate.

Plot Aii: Sensitivity of OLS Main Model t-value of the treatment effect to confounding w/ influential,
pre-treatment covariate percent Black residents (per.blk) bound.

With reference to Plot Aii, the sensitivity of the t-value of the treatment effect estimate

comes into view. With the red dashed contour now referring to a t-value of approximately 1.96,

typically used for standard inferential statistics, it is clear that it would take an unobserved

confounder twice as strong as the benchmark covariate percent Black residents to move the

63



treatment effect beyond the boundary of statistical significance. However, unobserved

confounding as strong as percent Black residents brings it precariously close.

Moving on to the model inclusive of ozone expressed as covariate in an effort to bolster

the treatment effect estimate against confounding, the sample used for modeling was

necessarily reduced in size due to limitations in continuously monitored ozone data. The shift in

the population density between the original sample used by Wu et.al with over 3000 county-level

observations and the ozone subset sample with approximately 790 county level observations, is

visualized in Population Density plot (Plot 1). The mean log of the population from the original

sample to the ozone subset shifts from 11.6 to 10.3 indicating that the ozone subset is skewed

towards more populous counties.

Plot 1: Original sample vs. Ozone subset. More populous counties are monitored by the EPA for ozone.
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Table 4: Ozone subset OLS Model
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Table 5 Ozone subset OLS Treatment Model
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Table B and Plot Bi: Sensitivity of the Ozone Subset to confounding no worse than the benchmark covariate
percent Black residents (per.blk).

The OLS Results in the ozone inclusive model presented in Table 4 and Table B shows

that the inclusion of ozone in the model both bolstered the treatment effect and reduced its

sensitivity to confounding: a 1 increase in the long term average PM2.5 is associated

with a statistically significant 14.37% (p<0.00) increase in in COVID-19 mortality, almost double

the OLS estimate in the model without ozone (7.16%; p<0.01) and approximately three percent
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higher than the estimate derived from Wu et al.'s (2020) original model. The partial values in

Table B , , all indicate an increase (1.9, 7.6, 4.5%, respectively) in

the strength of confounding necessary to reduce the estimate to zero ( : 2.4%, :

14.6%), or to the boundary of statistical significance ( : 8.1%).

The percent Black residents bound, expressed as per.blk, in Table B was selected from

our OLS Treatment Model with ozone as a strong predictor of treatment (Table 5) and outcome

(Table 4). The per.blk bound is visualized in Plot Bi and shows the worst confounding that can

exist if the model assumption is that confounding is no worse than 1, 2, and 3 times the

benchmark covariate percent Black residents in predicting treatment ( :2.1%) and

outcome ( : 9%). Plot Bi reveals that in the ozone inclusive model, the treatment effect

estimate is much more robust to confounding. In this model, an unobserved confounder, or

group of confounders, that are three times as strong as the benchmark covariate percent Black

residents are still not strong enough to move the treatment effect estimate to zero. Plot Bii

reveals, however, that it would take unobserved confounding twice as strong as the benchmark

covariate percent Black residents to move the treatment effect just inside of the boundary of

statistical significance. Though the ozone subset OLS model does bolster the treatment effect

estimate against confounding, both tables indicate there is room to explore other sources of

confounding, such as spatial effects, or the differential effects of place, in order to improve the

model’s explanatory power.
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Plot Bii: Sensitivity of OLS Ozone Model t-value of the treatment effect to confounding w/ influential,
pre-treatment covariate percent Black residents(per.blk) bound.

Unexpectedly, Table 4 also shows us that ozone returned a negative relationship with

COVID-19 mortality: a one part per billion increase in ozone exposure is associated with a 2.7%

decrease (p<0.05) in COVID-19 mortality. In order to visualize this unexpected result, ozone ppb

was plotted against the COVID-19 mortality rate (Plot 2) and a weakly negative association

between ozone and Covid-19 mortality is revealed. In response, the potential correlation

between PM2.5 and ozone was further examined with the plot "Correlation Between PM2.5 and

Ozone" (Plot 3, see appendix) and its associated Pearson Correlation Coefficients of

[95% CI: -0.142, -0.003], p-value(0.04) confirming a very weakly negative

correlation between the two pollutants. This is surprising given the co-occurrences of ozone and
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PM2.5 as well as ozone’s influence over secondary particle formation and may speak to

differences in the temporal and spatial resolution of the monitoring of the two pollutants. This

unexpected result opens the door to further investigation of the potentially confounding effects of

space and place on the long term exposure to PM2.5 and COVID-19 mortality.

Plot 2: Ozone ppb vs. COVID-19 Mortality Rate
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5.2 ESDA: Visualizing Treatment, Outcome, and Main Model OLS Residual Distribution

Plot 4a: Density Distribution of Mean PM2.5 values Plot 4b: Q-Q plot of the distribution of observed PM2.5 values vs
a normal distribution

Plot 4c: Density Distribution of COVID-19 mortality values Plot 4d: Q-Q plot of the distribution of observed COVID-19
mortality values vs a normal distribution

Plot 4e: Density Distribution of  Main Model OLS residuals Plot 4f: Q-Q  plot of the distribution of observed Main Model
OLS residual values vs a normal distribution
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Although the ozone inclusive model in Section 5.1 was able to strengthen the treatment

effect estimate of long term exposure to PM2.5 on COVID-19 mortality against confounding, the

results beg further investigation as both models indicate room for explanatory improvement.

Additionally, the negative influence of ozone on COVID-19 mortality suggests that there may be

other limitations to modeling primarily populous counties or a misalignment between the scale of

the grid cell, U.S. counties, and the scale at which the negative health effects of atmospheric

ozone exposure occur, otherwise known as MAUP. Returning to the original sample and the

model parameters contained within the OLS Main Model, ESDA methods were then deployed

in order to uncover other potential sources for unmeasured confounding, such as spatial

regimes in the treatment and outcome variables.

In order to begin the spatial sensitivity portion of the analysis, it is important to gain an

initial sense of the distribution of the three OLS Main Model parameters of interest: long term

exposure to PM2.5, COVID-19 mortality and the OLS Main Model residuals. Plots 4a-4f

characterize the probability distribution of the treatment variable, long term exposure to PM2.5,

the outcome variable, COVID-19 Mortality, and the Main Model OLS residuals and compare

their distribution to a normal distribution with Density Distribution Plots and Quantile Quantile

Plots, respectively. From Plot 4a, it is apparent that long term exposure to PM2.5 has a

somewhat left skewed distribution. This is likely due to a high number of East Coast and

mid-Atlantic counties that are smaller in area and contain high long exposure to PM2.5 values.

Plot 4b indicates a deviation from a normal distribution at the lower and higher values of long

exposure to PM2.5 suggesting that there are more counties with lower long exposure to PM2.5

values than would be expected in a normal distribution and there are less counties with a higher

long exposure to PM2.5 than would be expected in a normal distribution. Since industries and

urban areas tend to be concentrated, for example, in areas of the Midwest, East and West
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Coasts, one would not expect a normal distribution of long exposure to PM2.5 values amongst

U.S. counties.

In contrast to the distribution of the long term exposure to PM2.5, COVID-19 mortality has

a slightly right skewed distribution (Plot 4c). A similar logic can be applied to the outcome

variable at this early stage in the COVID-19 pandemic, with the “cumulative number of deaths

for each county up to and including June 18, 2020” (Wu et al., 2020, “Supplementary

Materials”). There are more counties with low COVID-19 mortality rates and less counties with

high COVID-19 mortality rates than would be expected in a normal distribution (Plot 4c). Plot 4d

also reveals a similar trend aligning with the expectations of early pandemic mortality counts.

Plot 4e gives the impression that the OLS residuals are approximately normally distributed (Plot

4e), however, the Q-Q Plot 4f shows that there are more positive sample values than would be

expected. This entails slightly right skewed distribution in the OLS residuals indicating that the

model may be biased, or underestimating parameters. Once the distribution of the important

parameters is understood, the next step in ESDA methods is to geographically visualize the

distribution of these values.
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Plot 5a: Long term Exposure to PM2.5 (Mean PM2.5 ) Amongst U.S. Counties and D.C.  in the Contiguous U.S.
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Plot 5b: COVID-19 Mortality Prevalence Amongst U.S. Counties and D.C.in the Contiguous U.S.
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Plot 5c: OLS Main Model Residuals Amongst U.S. Counties and D.C. in the Contiguous U.S.
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The geographic visualization of the treatment and outcome variables and residuals help

to discern the diverse spatial patterns of these parameters across the contiguous U.S. The

distribution maps of the long term exposure to PM2.5 and COVID-19 mortality display varying

degrees of spatial autocorrelation while the map of the OLS Main Model residuals suggests

spatial randomness. Plot 5a shows strong patterns of spatial clustering of high long term

exposure to PM2.5 values with the highest values clustered in Southern California, the San

Joaquin Valley, the southeastern portion of the Midwest Census Region, the eastern portion of

the South Census Region, and the Northeast. With the exception of California, these high-high

clusters cross state boundaries and occupy areas of the U.S. Census regions that generally

track with populous areas (Plot 5d, see appendix) and areas of industry (Plot 5e, see appendix).

Two areas of high-high clusters also track quite closely with the boundaries of the EPA

Climatically Consistent Regions of the Ohio Valley and the Southeast suggesting that

considering the influence of alternate definitions of place may relate regionally differential

treatment effect estimates.

A more mild level of clustering of high and low COVID-19 Mortality values can be found

throughout the contiguous U.S. in Plot 5b. Though less distinctive patterns emerge here than

the clear patterns of clustering in county level PM2.5 exposure values, there are some areas

where COVID-19 mortality value trends transcend county borders. For instance, clustering of

high values is evident in the state of Louisiana, along the shared border areas of NE Arizona

and NW New Mexico, and along the urban, coastal areas of the Northeast Census Region. This

somewhat tracks with expectations given the early stage of the pandemic in which the morality

count was made (June 2020) and with NYC considered an early COVID-19 epicenter. Despite

the exclusion of the five NYC boroughs, it is conceivable that there would be early COVID-19

spread along the very populous port cities of the Northeast coast. Additionally, Louisiana has

one of the consistently highest poverty rates in the Nation (Roussel and Butkus, 2020), three
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major port cities and a high percentage of Black residents (U.S. Census Bureau, 2021b). All of

which could create the possibility for high COVID-19 Mortality rates early in the pandemic,

before social distancing measures were enacted and before vaccines were available.

With regard to the OLS Main Model residuals, Plot 5c mainly shows a checkerboard

pattern throughout most of the contiguous U.S. suggesting spatial randomness. Notably, some

of the areas with higher COVID-19 mortality counts also have higher residual values indicating a

further distance from the line of fit for these areas, e.g. Long Island, southern Louisiana,

southeastern Michigan, Los Angeles County and a contiguous cluster of counties spanning the

northeastern area of Arizona, southeastern area of Utah and western New Mexico. OLS

residual clusters that are close to zero (white counties, (- 0.537, 0.812]) are found throughout

the map, indicating that the line of fit closely matches the observed values for these particular

counties. Though this range of OLS residual values is peppered throughout the map, it does not

dominate the map therefore indicating that there is room for model improvement.
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5.3 ESDA: Global Measures of Spatial Autocorrelation

Plot 6a: Global Moran’s I PM2.5 (standardized).

Plot 6b: Global Moran’s I COVID-19 Mortality (standardized). Plot 6c: Global Moran’s I OLS Main Model Residuals.
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While trends in the distribution of long term exposure to to PM2.5, COVID-19 Mortality,

and residuals can be visually inferred through maps, global Moran’s I statistics and scatterplots

can next be invoked in order to quantify or visualize the degree of clustering across the dataset.

The Moran’s I scatter plot is complementary to the global Moran’s I statistic and can be used to

determine “the extent to which the linear regression line reflects the overall pattern of

association between and ” (Anselin, 1996b, p. 116). While Moran’s scatter plots cannot

be used to assess the significance of the spatial association between the spatial lag and the

variable of interest, a quantification of the degree of spatial dependence can be obtained with

the Moran’s I statistic.

Table 6a: Global Moran’s I for treatment, outcome and model residuals

In congruence with the informal map visualizations, similar patterns of spatial regimes

are revealed in Table 6a and Plots 6a-6c. Table 6a and Plot 6a shows a strong, positive spatial

autocorrelation between the standardized long term exposure to PM2.5 and the weighted

neighborhood average (spatial lag) as related by the global Moran’s I value of 0.93 (p-value<

0.001) and the distribution of points in Moran’s scatterplot. This is likely due to the

transboundary nature of PM2.5; i.e. the higher a given county’s long term exposure to PM2.5, the

higher the neighborhood’s long term exposure to PM2.5 (upper right quadrant) and vice versa

(lower right quadrant). Most observations are within two standard deviations of the mean.

Diamonds indicate points with high influence measures. The three diamonds in the upper right

quadrant represent observations with very high long term average values PM2.5, almost three
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standard deviations from the mean: Fresno (+2.8 st.dev), Los Angeles (+2.9 st. dev) and

Orange (+2.9 st. dev) counties. From Plot 6a it is also evident that there are a few observations

which represent spatial outliers, counties with high mean PM2.5 surrounded by neighbors with

low mean PM2.5 (lower right quadrant) and vice versa (upper right quadrant).

This spatial relationship weakens as one moves to the outcome variable, COVID-19

mortality rate, in Table 5 (0.41, p-value< 0.001) and Plot 6b, yet still indicates some moderate

spatial dependence with many more observations exhibiting negative spatial autocorrelation. A

prominent spatial outlier and high influence measure can be found in the lower right quadrant of

Plot 6b, which holds spatial outlier counties of high values surrounded by low values of

COVID-19 Mortality. This spatial outlier represents the COVID-19 mortality rate in Loving

County, Texas which bears the interesting distinction of the least populated county in the lower

48 and has been referred to as the “Last COVID-Free County” (Wallace, 2020). Digging further

into the data reveals that this county has zero deaths at the time of the data accumulation. Its

outlier status is then due to the addition of one death in relation to its very low population in the

calculation of the outcome variable. Section 5.4 further shows that the Local Moran’s I estimate

for this county, in terms of spatial outlier status, is statistically insignificant.

The OLS residuals show an even weaker yet statistically significant, positive spatial

autocorrelation in Table 6a (0.17, p-value< 0.001) and Plot 6c with points more evenly spread

across all quadrants. There are three prominent (+3 st. dev), high influence outliers in the upper

right quadrant with the furthest from the (0,0) point representing McKinley County in NW New

Mexico (3.5 st. dev). This county, once considered a COVID-19 hotspot, also became known as

the first county in New Mexico to have 100% of its residents get vaccinated (Norwood, 2021).

The high influence county approximating outlier status (- 3 st. dev) in the upper left quadrant

represents Mesa County, Colorado. The Monte-Carlo simulation of Moran’s I found in Table 6b
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(Appendix) shows that the observed Moran’s I for the treatment, outcome and OLS Main Model

Residuals, all rank higher than the 999 simulations (p-values: 0.001) for the null hypothesis of

spatial randomness confirming that it is unlikely that the observed value for the Moran’s I

statistic has randomly occurred.
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5.4 ESDA: Local Measures of Spatial Autocorrelation

Plot 7a: Local Moran’s I PM2.5
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Plot 7b: Local Moran’s I COVID-19 Mortality
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Plot 7c: Local Moran’s I OLS Main Model Residuals
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The Local Moran’s I (LMI) output in Plots 7a-7b reveals statistically significant hotspots,

coldspots, regional spatial regimes, as well as spatial outliers. Positive spatial autocorrelation

hotspots, where high values are surrounded by high values, are symbolized in red-orange

(High-High), and negative spatial autocorrelation coldpots, where low values are surrounded by

low values, are symbolized in dark blue (Low-Low). The long term exposure to PM2.5 LMI map

(Plot 7a) shows the strongest evidence of clustering and clearly defined, differential spatial

regimes among regions.

With reference to EPA Climatically Consistent Regions, Plot 7a shows large swaths of

statistically significant High-High long term exposure to PM2.5 hotspots in the Ohio Valley, the

Southeast, and the southern portion of the Northeast. These regions, in addition to the

High-High counties of California, track closely to the areas of high long term exposure to PM2.5

detected in Plot 5a, and again track with population centers and areas of industry. In considering

the treatment-outcome relationship, PM2.5 hotspots track with COVID-19 Mortality hotspots

among counties in a swath of the North Atlantic Coast known as the Megalopolis (Florida,

2019).

The Northeast Megalopolis extends from Northern Virginia to Southern New Hampshire

and is bounded by major cities Boston and D.C. (U.S. Census Bureau, 2021a; Figure 11, see

Appendix). It is characterized as an area with incredibly high population density (U.S. Census

Bureau, 2021a) and is considered the world’s largest megaregion, in terms of population and

economic output (Florida, 2019). Given the transboundary nature of air pollution, the

concentration of population and industry, the density of interstate transportation networks, and

the early spread of COVID-19 in this area, the overlapping of treatment and outcome hotspots is

likely evidence of spatial spillover, where long term exposure to PM2.5 in a given county, results

in a COVID-19 mortality in another. One could, for instance, imagine a scenario where a
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resident of Trenton, New Jersey travels to Philadelphia for work and is exposed to a higher level

of PM2.5 while in Philadelphia, and potentially also COVID-19 while in this more populous place,

but the associated COVID-19 mortality is attributed to their county of residence in New Jersey.

Additionally, the treatment, long term exposure to PM2.5, in a given county within the Megalopolis

is likely not independent of treatment in another county within the Megalopolis given continuum

of highly urban areas and that a large share of the health burden from PM2.5 emissions can

“occur more than 256 km away” (Goodkind et al. 2019, p. 8775). The Northeast is also where a

High-High cluster of OLS Main Model residuals can be found (Plot 7c) suggesting that there is

room for improvement in model specifications for this area.

In contrast to the northeastern Megalopolis, Low-High long term exposure to PM2.5

spatial outliers dominate the Western half of the contiguous U.S. (Plot 7a). The exception in the

West is a large High-High hotspot covering Southern California, another megalopolis among the

world’s top twenty economies (Florida, 2019) and the San Joaquin Valley, again tracking with

population centers and industry. Unsurprisingly, a perimeter of Low-Low coldspots track along

counties mainly in the Great Plains (Plot 7a) that are characterized by low population density

(Stewart and Kennelly, 2010). Interestingly, a few of these coldspot perimeter counties,

particularly in northern Texas, align with COVID-19 Mortality hotspots suggesting that in the

absence of PM2.5 emissions, perhaps there are other pollutants at play, healthcare access

issues, or perhaps attitudes towards mask mandates and social distancing that promoted a

more rapid spread of COVID-19 in this area early in the pandemic. Some of these north Texas

counties, however, also exhibit High-High clusters of OLS Main Model residuals exposing more

potential for misestimation in this area. Finally, an overlapping area of High-High clusters of OLS

Main Model residuals and High-High hotspots of COVID-19 mortality can be found in the

Southwest Region along the Arizona, New Mexico border indicating higher uncertainty in the

treatment effect estimates for these counties. Though significant clustering is generally not
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exhibited by the OLS Main Model Residuals (Plot 7c), areas of potential model misspecification

and strong spatial dependence in the long term exposure to PM2.5 suggest that the effects of

space and place should be accounted for in model specifications.

5.5 Spatial Econometrics

Plot 8: OLS Main Model Fitted Values vs. Residuals

Table 7 : OLS Main Model Test Results
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The overlap of statistically significant long term exposure to PM2.5 and COVID-19

Mortality hotspots in the northeast Megalopolis and the strong indicators of positive spatial

autocorrelation in these treatment and outcome variables, indicate that the effects of space

should be accounted for in subsequent modeling attempts. Regional spatial regimes evident in

both the treatment and outcome variables also beg an accounting for the influence of place,

other than the state variable, which cannot capture regional effects. 

Though there is evidence of only weak, positive spatial autocorrelation in the OLS Main

Model residuals, this suggests that the treatment effect estimate could be inefficient and that the

treatment effect would be better estimated with models incorporating spatial dependence (Chi

and Zhu, 2019). Additionally, one of the main assumptions of linear regression is that model

residuals have equal variance, otherwise known as homoscedasticity. Unequal variances in

OLS residuals, known as heteroscedasticity, can result in poorly estimated standard errors and

related miscalculated confidence intervals, which can complicate hypothesis tests (Astivia and

Zumbo, 2019). Fitted values from the OLS Main Model were plotted against the model residuals

(Plot 8), followed up with a Bruesch-Pagan test in order to test for the presence of

heteroscedasticity. With regard to Plot 8, there are not any clear patterns of spread. The OLS

Main Model residuals are mostly clustering between y-axis interval of [-2,2], visually indicating

no pronounced heteroskedasticity, however, the Bruesch-Pagan Test in Table 7 with
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p-value<0.001 indicates that error variances of the OLS Main Model are not equal, implying the

presence of heteroskedasticity and the possibility that confidence intervals may have been

incorrectly estimated. From here, Lagrange Multiplier tests are used to determine which type of

regression model, including spatial lag and error models, best address the spatial processes

occurring in the data.

The Lagrange Multiplier diagnostics for spatial dependence in linear models (Table 8)

show significant results for a missing, spatially lagged outcome variable, COVID-19 Mortality, for

all versions of the outcome variable tests (LMlag p-value< 0.001; RLMlag p-value< 0.001;

SARMA: LMerr + RLMlag p-value< 0.001). Spatial dependence in an outcome variable can

result in OLS estimates that are biased and inconsistent. The RLMerr test for error dependence

which is robust to the “possible presence of a missing, lagged dependent variable” (Bivand,

n.d.) falls just outside of significance (p-value: 0.06) indicating that a spatial lag model is

preferred over a spatial error model. As the null hypothesis of no spatial dependence was

rejected in all of the model tests and nearly rejected in the RLMerr test, both spatial lag and

spatial error models were estimated. Additionally, a spatial Durbin model was estimated in order

to account for the possible spatial spillover effects of long term exposure to PM2.5 on COVID-19

Mortality.

The coefficient of multiple determination, (Table 9) shows that only 43 percent of the

COVID-19 mortality rate variation can be explained by the demographic, socioeconomic, and

environmental variables in the OLS Main Model suggesting that there is room for improvement

in its ability to fit the data. The difference in treatment effect estimates between OLS Main Model

results listed in Table 9 (0.074) and the OLS Main Model results listed in Table 2 (0.069) are

likely due to the use of a continuous surface for the Table 9 estimation.
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In the spatial lag model, the spatial lag parameter estimate, Rho, is strongly positive and

highly significant (Table 9: 0.36, p-value< 0.01) as is the spatial error parameter estimate,

Lambda (Table 9: 0.42, p-value< 0.01), indicating that the spatial process needs to be

accounted for. The spatial lag effect, as captured by Rho, comes from the spatially lagged

outcome variable, meaning that the COVID-19 mortality rate in a given county is strongly

affected by the COVID-19 mortality rate of its neighbors. If each neighbor, as defined by the

Queen’s contiguity matrix, experiences a one percent increase in the COVID-19 mortality rate,

the spatial lag effect is associated with a 0.44 percent increase in the COVID-19 mortality rate of

a given county, with all of the explanatory variables held constant. This result is in line with the

expectation of COVID-19 community spread and “the free movement of people across US

counties and states” (Chih and Ojede, 2020, p.6). In addition to the spatial lag effect, the spatial

error effect is positive and statistically significant which may be the result of the absence of an

important explanatory variable such as the lagged outcome variable or a missing co-pollutant.
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Table 9: OLS Main Model (1) vs. Spatial Lag  (2) vs Spatial Error (3)

In comparing the spatial lag and error model performance (Table 9), the spatial lag

model is better fit to the data based on its AIC value (7,587.859). Differences larger than 10 in

the AIC values between the spatial regression models and the OLS Main Model indicate that the

OLS modeling approach should not be considered further for this data (Yang, Noah, and Schoff,

2015). Overall, the coefficient magnitudes for the treatment variable, long term exposure to
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PM2.5, in the spatial lag and error models retain their significance and are slightly larger than

those estimated by the OLS Main Model. In the spatial lag model, for every increase in

the long term exposure to PM2.5, there is a 8.65 percent increase (p<0.01) in the COVID-19

mortality rate with all other variables held constant. Once the effectiveness of the spatial lag

model in estimating the relationship between long term exposure to PM2.5 and COVID-19

Mortality has been established, a spatial Durbin model is then estimated to explore the

possibility of spatial spillover effects of PM2.5 exposure  on COVID-19 mortality.

Interestingly, the spatial Durbin results in Table 10 show a significant and positive effect

in the indirect and total impacts of the treatment variable on COVID-19 Mortality, however, the

direct effects differ greatly from the OLS Main Model estimates in both the magnitude of the

treatment effect estimate and its extreme lack of significance. The magnitude and significance of

the indirect impacts indicate that the long term exposure to PM2.5 has a strong spatial spillover

effect on COVID-19 mortality: for every increase in the long term exposure to PM2.5, in

a given county there is a 9.81 percent increase in the COVID-19 Mortality rate (p-value< 0.01) of

its neighboring counties. Recalling that health risks associated with exposure to PM2.5 has “large

spatial gradients in damages, including within county and within urban” (Goodkind et al. 2019, p.

8780) these results could suggest that the direct effect of long term exposure to PM2.5 is not

adequately captured at the county level and given this level of aggregation, detecting the spatial

spillover effects of PM2.5 exposure on COVID-19 mortality is more likely. Despite its ability to

detect spillover effects, the spatial Durbin model’s AIC value (7824.381) is markedly higher than

that of both the spatial lag and spatial error model and only marginally lower than the OLS Main

Model (7830.029) suggesting that a spatial Durbin model may not be the best fitting strategy for

the data. Despite this observation, the spatial spillover effect begs further consideration. With
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spatial dependence accounted for in the spatial lag model, alternate definitions of place are then

included as model covariates in an attempt to capture regional spatial regimes.

Table 10: Spatial Durbin Model Results

Spatial Econometrics: U.S. Census Regions

Plot 9: National Long Term Exposure to PM 2.5 vs COVID-19 Mortality by County
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Plot 10a: Long Term Exposure to PM 2.5 vs COVID-19 Mortality by Census Region

In order to investigate the possibility of differing trends in the relationship between the

treatment and outcome variable among Census Regions, long term exposure to PM2.5 vs.

COVID-19 mortality was first plotted by county on a National scale without subnational

delineations (Plot 9) and then by Census Region against the National mean, expressed as

National (Plot 10a). Plot 10a shows that the relationship between long term exposure to PM2.5

and COVID-19 mortality varies widely by Census region with a negative association in the

Census Region West and Census Region Midwest and a strongly positive association in the

Census Region Northeast. This is consistent with the northeast Megalopolis as an early

epicenter of the virus. Plot 10a also indicates a deviation from the National association between

long term exposure to PM2.5 and COVID-19 mortality among Census Regions South and West.

The mean value set for the contiguous U.S., expressed as National, shows that the National
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mean only approximates the Census Region mean (i.e. the centerpoint of the line of best fit) in

Census Region Midwest and Census Region Northeast.

A one-way Analysis of Variance test (ANOVA) was run in order to formally assess

whether there are statistically significant differences between the Census Region means and

assess the effect of Census Regions as the categorical definition of place on COVID-19

Mortality. Table 11a shows that the model variable Census Region explains a significant amount

(p-value < 0.001) of the variation in COVID-19 mortality. As the composition of PM2.5 is highly

variable, and dependent on a variety of factors including its source, its negative impact on

human health may be subject to regional regimes that govern its production. For instance,

wildfire generated PM2.5 in Census Region West may have a different impact on COVID-19

Mortality than PM2.5 generated from the 49% of U.S. coal-fired electric power plants located in

the Census Region Midwest (U.S. Dept. of Energy, 2015).

Table 11a: One Way ANOVA results, Census Regions

The Tukey Honest Significant Difference Test (Plot 10b) detects which Census Region

means are significant. This test reveals differences between all Census Regions means,

besides Census Region South and Census Region Midwest, as visualized in Plot 10b. The

significant difference in means between all but one region pairwise comparison suggests that a

model inclusive of the Census Region variables may be able to account for spatial regimes in

the treatment and outcome variables.
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Plot 10b: Tukey Honest Significant Difference Test Census Regions

The Lagrange Multiplier diagnostics for spatial dependence in linear models for the

contiguous U.S. divided into Census Regions (Table 11b) show significant results for a missing,

spatially lagged outcome variable and spatial error for all versions of the tests indicating that it

would be appropriate again to estimate a spatial lag, spatial error and spatial Durbin model.

Table 11b: LM Test Results: Census Region Model
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In Table 12, the spatial lag parameter estimate, Rho (0.50, p-value< 0.01) , and spatial

error estimate Lamdba (0.57, p-value< 0.01) are again strongly positive and highly significant

indicating that the spatial process needs to be accounted for when evaluating the treatment

effect of long term exposure to PM2.5 in this context. Again, the COVID-19 mortality rate in a

given county is strongly affected by the COVID-19 mortality rate of its neighbors, as captured by

Rho. Each county gains 0.64 percent in the COVID-19 mortality rate for each percentage point

of weighted increase in the COVID-19 mortality rate of its neighbors with all of the explanatory

variables held constant.
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Table 12: Census Region OLS(1)  vs. Spatial Lag (2) and Spatial Error (3) Models

This time, however, the spatial error model is better fit to the data based on its lowest

AIC value (7,711.164). The large differences between AIC values of the OLS and the spatial

models again suggest that the OLS Main Model is insufficient. The coefficient of multiple

determination, , shows that the explanatory power of the OLS Main Model in the context of

Census Regions has been reduced to 31 percent (Table 12). The positive and statistically
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significant spatial error effect indicates the need to control for spatial autocorrelation in the error

term and may again be the result of the absence of an important explanatory variable such as

the lagged outcome variable or a missing co-pollutant.

Overall, the coefficient magnitudes for treatment variable, long term exposure to PM2.5, in

the spatial lag and error models retain their significance and are larger than those estimated by

the OLS Main Model but smaller than those estimated by the OLS Census Region Model. In the

spatial error model, for every increase in the long term exposure to PM2.5, there is a

8.65 percent increase (p<0.01) in the COVID-19 mortality rate with all other variables held

constant (Table 12). All Census Region dummy variables exhibit statistically significant

explanatory power in the spatial error model (p<0.05) with varying degrees of influence,

however, unexpectedly, they all show a negative relationship with the COVID-19 Mortality rate

(Table 12).

The Census Region Northeast is the most influential with regard to the reference group,

Census Region West, with all other explanatory variables held constant. Counties in Census

Region Northeast will, on average, experience a 139% increase in the COVID-19 Mortality rate

than those in the Census Region West (spatial error model, Table 12). The positive difference in

COVID-19 Mortality between Census Region NE and Census Region West was expected given

that New York City was considered an early pandemic epicenter and the spatial and economic

contiguity of NYC and the northeast Megalopolis. However, the strongly negative effect of all

Census Regions on COVID-19 Mortality is more difficult to conceive of and is perhaps due to

the early stage in the pandemic at which county level deaths were counted, with over one third

of the counties having logged zero deaths at the time of this study.
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The negative relationship between place and COVID-19 Mortality is consistent with the

OLS re-estimation of the Wu et al. (2020) model, with every state fixed effect having a negative

association with COVID-19 Mortality (not reported). The author's use of the state-specific

floating intercept may have been an attempt to deal with this unexpected result. The state

specific coefficients in their study, however, were not reported in Science Advances nor in their

“Supplementary Materials” (Wu et al., 2020). The approximate influence of a region on a

treatment-outcome relationship for an outcome that has not yet been substantially realized in

several of the regions may therefore be difficult to quantify. The significant difference between

Census Region means, however, suggests that further investigation of this definition of place

and the interaction of place and air pollution exposure may better account for its influence on

public health in subsequent studies.

Again, the spatial Durbin results in Table 13 show a significant and positive effect in the

indirect and total impacts of the treatment variable on COVID-19 mortality while the direct

effects differ greatly from the OLS Main Model estimates in the magnitude and direction of the

coefficient, and its extreme lack of significance. The magnitude and significance of the indirect

impacts indicate that the long term exposure to PM2.5 has a strong spatial spillover effect on

COVID-19 mortality: for every increase in the long term exposure to PM2.5 in a given

county, there is a 12.3 percent increase in the COVID-19 Mortality rate (p-value< 0.001) of its

neighboring counties. The spatial Durbin Census Regions model AIC value (8,300.895) is,

however, markedly higher than that of both the spatial lag and spatial error model yet performs

better than the OLS Main Model (8,310.603) suggesting that accounting for both the spatially

lagged outcome and treatment variable in the model may not be the best fitting strategy for the

data in the Census Region spatial context.
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Spatial Econometrics: EPA Climatically Consistent Regions

Plot 11: Long Term Exposure to PM 2.5 vs COVID-19 Mortality by EPA Climatically Consistent Region

The relationship between long term exposure to PM2.5 and COVID-19 mortality varies

widely by EPA Climatically Consistent Regions (Plot 11). Negative associations are revealed in

the Regions Southwest and Northern Rocky Plain, while the strongly positive association in the
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Region Northeast still holds. Plot 11 also indicates deviations from the National association

between long term exposure to PM2.5 and COVID-19 Mortality. The mean value set for the

contiguous U.S., expressed as National, shows that the National mean only approximates the

EPA Region means in Regions South, Northeast and Upper Midwest.

A one-way ANOVA was run at this conjuncture to then assess the effect of EPA

Climatically Consistent Region as the categorical definition of place on COVID-19 Mortality. The

results of the one-way ANOVA in Table 14a shows that the model variable EPA Region explains

a significant amount (p-value < 0.001) of the variation in COVID-19 mortality. This likely speaks

to the influential role of temperature and humidity on particle formation, as well as the

relationship between particle composition and fugitive dust in more arid regions, resulting in

regional differences in the composition of PM2.5. The Tukey Honest Significant Difference Test

(not reported) results reveals a significant difference in means in 56% of pairwise comparisons

between EPA Regions. Again, where PM2.5 is formed likely has influence over what it is

comprised of, and in turn, its influence on public health.

Table 14a: One Way ANOVA results, EPA  Regions

In the case where the EPA Climatically Consistent Regions are accounted for in the

model specifications, there is a similar outcome. The Lagrange Multiplier diagnostics for spatial

dependence in linear models for the contiguous U.S. divided into EPA Climatically Consistent

Regions (Table 14b) show significant results for a missing, spatially lagged outcome variable

103



and spatial error for all versions of the tests indicating that it would be appropriate again to

estimate a spatial lag, spatial error and spatial Durbin model.

Table 14b: LM Test Results: EPA Region Model

In Table 15, the spatial lag parameter estimate, Rho (0.48, p-value< 0.01) , and spatial error

estimate Lamdba (0.56, p-value< 0.01) are again strongly positive, highly significant and very

similar to the Census Region spatial model estimates. Again, the COVID-19 mortality rate in a

given county is strongly affected by the COVID-19 mortality rate of its neighbors, as captured by

Rho. Each county gains 0.62 percent in the COVID-19 mortality rate for each percentage point

of weighted increase in the COVID-19 mortality rate of its neighbors with all of the explanatory

variables held constant. The large differences (greater than 10) between AIC values and the

spatial models again suggest that the OLS Main Model (AIC: 8245.739) is again insufficient with

the coefficient of multiple determination, , indicating that the explanatory power of the OLS

Main Model in the context of EPA Regions has been reduced to 31 percent (Table 15). The

spatial error model is better fit to the data based on its lowest AIC value (Table 15: 7,707.665).

The positive and statistically significant spatial error effect indicates the need to control for

spatial autocorrelation in the error term and may be the result of the absence of an important

explanatory variable such as the lagged treatment variable or a missing, climatically dependent

pollutant such as ozone.
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Table 15: EPA Climatically Consistent  Region OLS(1)  vs. Spatial Lag (2) and Spatial Error (3) Models
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Overall, the coefficient magnitudes for treatment variable, long term exposure to PM2.5, in

the spatial lag and error models retain their significance and are larger than those estimated by

the Census Region spatial error model. In the EPA Region spatial error model, for every

increase in the long term exposure to PM2.5, there is a 13.43 percent increase (p<0.01)

in the COVID-19 mortality rate with all other variables held constant (Table 15).

All but two EPA Climatically Consistent Regions (Ohio Valley and Southeast) exhibit

statistically significant explanatory power in the spatial error model with varying degrees of

influence with respect to the reference group, EPA Region West (Table 15). As expected, the

EPA Region Northeast, which closely tracks geographically with Census Region Northeast and

includes most of the extent of the northeast Megalopolis, is the most influential with respect to

the reference group. After the effects of all other explanatory variables are taken into account,

counties within EPA Region Northeast will experience an 151 percent average increase in

COVID-19 mortality with respect to EPA Region West. Similar to the models with Census

Regions defining place, EPA Regions also show a strongly negative relationship with COVID-19

Mortality, speaking to the difficulty of obtaining place sensitive estimates when the outcome

variable is still in the process of being realized.

Table 16: Spatial Durbin Impacts- EPA Region

The spatial Durbin EPA Regions results in Table 16 show a significant and positive effect

in the indirect and total impacts of the treatment variable on COVID-19 mortality while the direct
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effects differ greatly from the OLS Main Model estimates in the magnitude and direction of the

coefficient, and its extreme lack of significance. The magnitude and significance of the indirect

impacts indicate that with respect to the long term exposure to PM2.5 has a strong spatial

spillover effect on COVID-19 mortality: for every increase in the long term exposure to

PM2.5 of a given county, there is a 21.15 percent increase in the COVID-19 Mortality rate

(p-value< 0.001) of its neighboring counties. The spatial Durbin EPA regions model AIC value

(8,216.438) shows that this model performs better than the spatial Durbin Census Regions

model and the EPA OLS Main Model, however it doesn’t outperform either the spatial lag or

error model.

The predictive power of models accounting for space in the form of a spatial lag or

spatial error term are evident in the preceding analysis. Model specifications including the

effects of space help to uncover the Euclidean dimension of the Geography of PM2.5 and its

spatial relationship with COVID-19 Mortality, however, accounting for place has proven more

difficult. The significant difference in place based means among Census Regions and among

EPA Climatically Consistent Regions suggests that both space and place need to be accounted

for when estimating air pollution effects on public health. While the effects of space can be

accounted for econometrically, the influence of place on the relationship between air pollution

exposure and public health is likely to require a deeper consideration, beyond econometric

techniques. The substantive influence of the Geography of PM2.5, and its effect on public health,

would be best considered a priori, in the overall research design, hypotheses and sampling

strategy.
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6. Discussion

6.1 Sensitivity Analysis

A novel result was produced when the fragility of a widely received treatment effect

estimate of the long term exposure to PM2.5 on COVID-19 mortality was assessed utilizing an

alternate sensitivity analysis framework. When the robustness values and partial R2 values

produced by this framework were considered within the context of plausible confounding, it was

revealed that the estimate derived by Wu et al. (2020) is much more fragile to confounding than

reported by the authors. Though accounting for confounding between long term exposure to

PM2.5 and COVID-19 mortality had been considered by Wu et al. through the inclusion of an

E-value in their outcome variable, Mortality Rate Ratio, the strength of confounding required to

destabilize an estimated treatment effect with public health implications should be explicitly

reported alongside estimates. These differential estimates of fragility to confounding pose an

interesting debate about whether some sensitivity analysis frameworks are better suited to

public health research than others.

The inclusion of ozone as a covariate was able to unmask a bigger direct effect of long

term exposure to PM2.5 on COVID-19 mortality, as well as bolster this estimated effect against

confounding. However, the negative relationship between ozone and COVID-19 mortality, as

derived from the ozone inclusive model, suggests that there are yet more confounding

relationships to uncover. Additionally, it is likely that the occurrence of ozone and PM2.5 are

positively correlated, but not perfectly collinear due to differential vectors of production, though

this relationship was not captured in this analysis. With regard to ozone’s unexpected negative

influence on COVID-19 mortality, it is likely that areas characterized by high levels of ozone are

urban and that urbanites are more likely to have access to income opportunities, education and

healthcare that reduce the potential for COVID-19 mortality than those living in rural areas.
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6.2 Spatial Sensitivity &  Implications of scale

In addition to the potential sources of confounding by omitted variables as discovered in

the sensitivity analysis portion of this thesis, the underlying spatial structure or spatial

dependence in treatment, outcome, and model residuals can produce unreliable treatment effect

estimates. Strong levels of spatial dependence in the long term exposure to PM2.5, and to a

lesser extent in the COVID-19 mortality rate and OLS Main Model residuals, were confirmed by

both computational and exploratory spatial data analysis. The need to account for spatial

processes was clear. In the National context, where the OLS Main Model includes state fixed

effects, a positive and statistically significant spatial lag effect was produced signaling that long

term exposure to PM2.5 treatment effect estimates and their associated health risk, COVID-19

Mortality, are not homogeneous across the contiguous U.S. National ESDA maps revealed

spatial regimes in both the treatment and outcome variables indicating that there is indeed a

geography to PM2.5. The complex geography of this air pollutant can’t be captured by averaging

county values across the Nation. Instead the sub-National spatial and place based processes

governing its production, distribution and related human health consequences must be

considered.

The highly variable associations between long term exposure to PM2.5 and COVID-19

mortality per U.S. Census Region or EPA Climatically Consistent Region delivers the expected

result that the relationship between the treatment and outcome variable changes with changes

in the spatial delineation of the Nation. Three out of four Census Regions displayed treatment

effect estimate trends that diverged from the National trend of positive association while only

one-third of EPA Regions held similarly positive associations of varying strength. This shows
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that the treatment effect estimates at the National level are subject to spatial regimes and are

affected by alternate definitions of sub-national place. The null hypothesis is therefore rejected.

Though the spatial effects were best captured by the use of a spatially lagged dependent

variable in the OLS Main Model, the spatial error term, Lambda, is positive and significant in all

three spatial iterations suggesting that there is some spatial relationship in the error term. When

state fixed effects were replaced by U.S. Census Region or EPA Climatically Consistent Region

variables, the model performance was reduced and the spatial error models were now better fit

to the data than the spatial lag models. Spatial error model performance in this context may be

due to, for example, spatially correlated long term exposure to PM2.5 values among counties, or

spatially correlated omitted variables such as the co-pollutant ozone.

The very high spatial dependence in the long term exposure to PM2.5, as well as the

evidence for a strong spatial spillover effects in all three spatial Durbin models where the

administrative groupings of counties differed by state, Census Region, and EPA Climatically

Consistent Region, suggests that further investigation of regionally specific contexts for the

production and spread of PM2.5 would be useful in informing future research questions, sampling

and modeling strategies. As the OLS model specifications lost complexity - moving from

controlling for administrative boundary groupings by forty-eight state fixed effects and D.C. to

nine EPA Climatically Consistent Regions, to four Census Regions, they also lost explanatory

power, as evidenced by their AIC values. Though the regional context better captured the

spatial regimes of long term exposure to PM2.5, they may not accurately capture the spatial

dimension of the spread of COVID-19. As the prevalence of COVID-19 Mortality is likely subject

to state specific policy, such as state-wide mask mandates and stay-at-home orders, this

sub-national delineation may have greater explanatory power over the outcome, despite the

transboundary nature of air pollution.

110



The within scale variations in the estimated impact of long term exposure to PM2.5 on

COVID-19 mortality is likely from place-based variations including variations in the

socioeconomic, political and historical conditions between states or regions governing air

pollution regulation and enforcement, COVID-19 policy response, industrialization and the

distribution of wealth and healthcare facilities. There are state by state variations at play in the

governance of PM2.5 and COVID-19 including, for example, the evidence that differential

enforcement of clean air standards across the Nation and the differential timing of COVID-19

mitigation strategies, such as statewide mask mandates, follow the political affiliations of state

elected officials (Beland and Boucher, 2015; Adolph et al., 2021). Among Census regions, within

scale variation is likely tied to differential vectors of the production of PM2.5 from regionally

specific industry, e.g. Midwestern electricity production vs. Western wildfires. The resulting

variability in the chemical composition of PM2.5 and its health impacts links differential health

outcomes from PM2.5 pollution exposure to the historical development of a region, its present

economy, and climatic differences governing its production. Differences in the estimated impact

of long term exposure to PM2.5 on COVID-19 mortality among Census regions is also likely due

to population distribution, and the spatial extent of integrated economies and transit networks

such as in the northeastern Megalopolis.

Variations in EPA Climatically Consistent Regions can be attributed to a host of

environmental and climatic factors including topographical variations between regions that affect

the PM2.5 dispersal range, and climatic conditions such as temperature and relative humidity. For

example, PM2.5 produced from fugitive dust rather than anthropogenic sources, is more likely to

be prevalent in the arid West (Park et al., 2010). Additionally, extreme heat has been named a

driver of the highest levels of air pollution, including secondary particle formation in the

presence of ozone during warmer seasons (Schnell and Prather, 2017; Zhu, et al., 2019). The
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positive association between the long term exposure to PM2.5 and COVID-19 mortality in

California was found to be attenuated during the winter months (Garcia et al., 2022), further

suggesting that climatic conditions bear influence on this health hazard relationship.

Variations between counties in a given Census or EPA Region are likely to reflect a

matrix of place based factors including state policies regarding emissions limits, the

effectiveness of the enforcement of these limits, the timing and uptake of state and county

policies meant to curb the spread of COVID-19, or the differential distribution of healthcare

facilities, wealth, and industry between urban and rural counties. For instance, Colmer et. al

(2020) found that differential access to clean air is a persistent trend at the census tract level

across the U.S. and that the most burdened subpopulations 1981 remained the most burdened

in 2016. Similarly, there is an urban-rural divide in health outcomes. Larger PM2.5 exposure

effects on cardiovascular disease, cardiopulmonary disease and all-cause mortality were found

in rural California areas when compared with urban areas by Garcia et. al (2016), linking lack of

quality healthcare access and wealth to environmental risk factors for premature mortality.

Differential access to clean air has also been found to be exacerbated in counties along the U.S.

border where “states perform fewer enforcement actions” (Konisky and Woods 2009) and in

urban areas characterized by Black, LatinX, Asian American, and immigrant communities

(Miranda et al., 2011; Nardone et al., 2018, Namin et al., 2020)..

The between scale variations in the treatment effect estimates, e.g. between Census

Regions and EPA Climatically Consistent Regions, may be attributed to the modifiable areal unit

problem (MAUP) where the scale at which long term PM2.5 exposure and COVID-19 mortality

occurs does not match the scale that the phenomena have been aggregated to in order to make

inferences about their associations. While the origination of particulate matter emissions may be
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assignable to a well-defined areal unit, its pattern of spread is more complex and less likely to

be able to be assigned to a neat conglomeration of administrative boundaries. Given this and

the climatic variables that strongly influence the presence of PM2.5, controlling for the EPA

Climatically Consistent Regions yielded stronger treatment effects across OLS and spatial

models, as suspected. The negative association between regional definitions of place and

COVID-19 mortality suggest, however, that strategies beyond econometric techniques should

be deployed in order to incorporate the effects of place.

The biggest issue with the county level aggregation of PM2.5 exposure is it misses

important within-area variability. With Goodkind’s finding that marginal damages from PM2.5 vary

by “over an order of magnitude within a single county” (p. 8775), a sub-County analysis would

be required in order to uncover the pollution exposure gradients disproportionately burdening

low-income Black, LatinX, Asian-American and immigrant communities. Uncovering sociospatial

gradients of air pollution exposure burdeons are essential to identifying the economic and

political mechanisms that continue to perpetuate uneven burdens such as the siting of toxic

facilities, discriminatory settlement patterns linked to racist 20th Century housing policies, and

the “indirect and partial commoditization of air quality” (Véron, 2006, p. 2096) through urban

property values.

6.3 Limitations and Future Iterations

Understanding the geographic context of the spread of air pollution can help to inform

sampling strategies, data aggregation strategies, modeling strategies and inference. The

geography of the relationship between PM2.5 and COVID-19 mortality is not simply additive but

provides the context for the production of the toxic emission itself, the spread of the virus, and

their unevenly distributed burdens. Air pollution legislation and enforcement that varies by
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political boundary, 20th and 21st Century discriminatory practices in the settlement and

planning of U.S. communities, and proximity dependent, fine-scale variability in exposure are all

likely contributors to the differential effects of long term exposure to air pollutants, including

PM2.5. Despite the reduction in model performance, the higher treatment effect estimates and

domain knowledge regarding the relationship between the presence of PM2.5 and climatic

conditions indicates that incorporating EPA Climatically Consistent Regional boundaries into

future study design begs further examination. Given these scale dependent relationships, and

the need to accurately uncover the environmental justice implications of this public health crisis,

future studies may wish to employ a finer-scale analysis of zip code or neighborhood-level

pollution and virus exposure data within a given EPA Climatically Consistent Region for a

clearer assessment of the health-risk outcomes of U.S. populations. Additionally, the economic,

political, topological and spatial aspects of the distribution of PM2.5 emissions should be

considered in avoidance of a spatial spillover effect.

For future iterations of this study, there are several more ways in which it can be

improved. First is to estimate the ozone inclusive analysis with ozone data mimicking the same

seventeen-year timescale of exposure as the PM2.5 data procured by Wu et al. (2020). Second,

Wu et al. explicitly state in their study that the limitations of an ecological analysis in this context

includes the potential misclassification of air pollution exposure due to "between-area mobility

and within-area variation" (2020, p.3). Within-area variation in pollution exposure would be

better captured at a much finer, sub-County geographic scale. Lastly, in consideration of the

potential for the incomplete characterization of variables that might affect COVID-19 mortality

such as education, healthcare access, and politically motivated attitudes towards containment

measures, more or different indicators of quality of life could be used. Additional areas of

improvement include, but are not limited to, exploring certain methodological pathways such as

Bayseian modeling approaches or Geographically weighted regression in order to more
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accurately model the spatial relationship between long-term exposure to PM2.5 and COVID-19

mortality.
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Appendix

Plot 3: Correlation Between PM2.5 and Ozone

Plot 5d: 2020 Population Density per U.S. County, From Census.gov; Public Domain.
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Plot 5e: America’s Economic Output in 2018, from HowMuch.net, a financial literacy website

Table 6b: Monte Carlo Simulation of Moran’s I
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Figure 11: Megalopolis, U.S. Census Bureau, 2021; Public Domain.

118



Bibliography

Adey, P., 2013. Air/Atmospheres of the Megacity. Theory, Culture & Society 30, 291–308.
https://doi.org/10.1177/0263276413501541

Adolph, C., Amano, K., Bang-Jensen, B., Fullman, N., Wilkerson, J., 2021. Pandemic
Politics: Timing State-Level Social Distancing Responses to COVID-19. Journal of
Health Politics, Policy and Law 46, 211–233.
https://doi.org/10.1215/03616878-8802162

Agnew, J.A., 2014. 1987: Place and Politics: The Geographical Mediation of State and
Society. Routledge, London. https://doi.org/10.4324/9781315756585

American Lung Association, 2001. Urban air pollution and health inequities: a workshop
report. Environ Health Perspect 109, 357–374.
https://doi.org/10.1289/ehp.109-1240553

American Lung Association, 2020. Ozone [WWW Document]. URL
https://www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/ozone (accessed
10.31.22).

American Lung Association, 2021. State of the Air 2021.

Amini, H., Danesh-Yazdi, M., Di, Q., Requia, W., Wei, Y., Abu-Awad, Y., Shi, L., Franklin,
M., Kang, C.-M., Wolfson, J., James, P., Habre, R., Zhu, Q., Apte, J., Andersen, Z.,
kloog, I., Dominici, F., Koutrakis, P., Schwartz, J., 2022. Hyperlocal super-learned
PM2.5 components across the contiguous US (preprint). In Review.
https://doi.org/10.21203/rs.3.rs-1745433/v1

Anselin, L., 1988. Spatial Econometrics: Methods and Models. Kluwer Academic
Publishers, The Netherlands.

Anselin, L., 1995. Local Indicators of Spatial Association—LISA. Geographical Analysis 27,
93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x

Anselin, L., 1996a. Interactive Techniques and Exploratory Spatial Data Analysis. Regional
Research Institute Working Papers.

119

https://doi.org/10.1177/0263276413501541
https://doi.org/10.1215/03616878-8802162
https://doi.org/10.4324/9781315756585
https://doi.org/10.1289/ehp.109-1240553
https://www.lung.org/clean-air/outdoors/what-makes-air-unhealthy/ozone
https://doi.org/10.21203/rs.3.rs-1745433/v1
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x


Anselin, L., 1996b. The Moran scatterplot as an ESDA tool to assess local instability in
spatial association, in: Spatial Analytical Perspectives on GIS. Routledge.

Anselin, L., 2003. Spatial Econometrics, in: A Companion to Theoretical Econometrics.
John Wiley & Sons, Ltd, pp. 310–330. https://doi.org/10.1002/9780470996249.ch15

Anselin, L., 2020. Global Spatial Autocorrelation (1) [WWW Document]. Geoda. URL
https://geodacenter.github.io/workbook/5a_global_auto/lab5a.html (accessed 6.30.22).

Anselin, L., Bera, A., 1998. Spatial Dependence in Linear Regression Models with an
Introduction to Spatial Econometrics: Regression Models with an Anselin Bera I.
INTRODUCTION, in: Handbook of Applied Economic Statistics. CRC Press.

Anselin, L., Getis, A., 1992. Spatial statistical analysis and geographic information systems.
Ann Reg Sci 26, 19–33. https://doi.org/10.1007/BF01581478

Aronow, P.M., Miller, B.T., 2019. Foundations of Agnostic Statistics. Cambridge University
Press, Cambridge. https://doi.org/10.1017/9781316831762

Asthma and Allergy Foundation of America. 2015. Air Pollution and Asthma | AAFA.org
[WWW Document], n.d. URL
https://www.aafa.org/air-pollution-smog-asthma/(accessed 6.29.22).

Astivia, O., Zumbo, B., 2019. Heteroskedasticity in Multiple Regression Analysis: What it is,
How to Detect it and How to Solve it with Applications in R and SPSS. Practical
Assessment, Research, and Evaluation 24. https://doi.org/10.7275/q5xr-fr95

Bailey, Z.D., Krieger, N., Agénor, M., Graves, J., Linos, N., Bassett, M.T., 2017. Structural
racism and health inequities in the USA: evidence and interventions. The Lancet 389,
1453–1463. https://doi.org/10.1016/S0140-6736(17)30569-X

Baker, C., 2020. The Trump administration’s major environmental deregulations. Brookings.
URL
https://www.brookings.edu/blog/up-front/2020/12/15/the-trump-administrations-major-e
nvironmental-deregulations/(accessed 6.29.22).

120

https://doi.org/10.1002/9780470996249.ch15
https://geodacenter.github.io/workbook/5a_global_auto/lab5a.html
https://doi.org/10.1007/BF01581478
https://doi.org/10.1017/9781316831762
https://www.aafa.org/air-pollution-smog-asthma/
https://doi.org/10.7275/q5xr-fr95
https://doi.org/10.1016/S0140-6736(17)30569-X
https://www.brookings.edu/blog/up-front/2020/12/15/the-trump-administrations-major-environmental-deregulations/
https://www.brookings.edu/blog/up-front/2020/12/15/the-trump-administrations-major-environmental-deregulations/


Baller, R.D., Anselin, L., Messner, S.F., Deane, G., Hawkins, D.F., 2001. Structural
Covariates of U.s. County Homicide Rates: Incorporating Spatial Effects*. Criminology
39, 561–588. https://doi.org/10.1111/j.1745-9125.2001.tb00933.x

Bashir, M.F., Ma, B., Bilal, Komal, B., Bashir, M.A., Tan, D., Bashir, M., 2020. Correlation
between climate indicators and COVID-19 pandemic in New York, USA. Science of
The Total Environment 728, 138835. https://doi.org/10.1016/j.scitotenv.2020.138835

Bauer, R.N., Diaz-Sanchez, D., Jaspers, I., 2012. Effects of air pollutants on innate
immunity: The role of Toll-like receptors and nucleotide-binding oligomerization
domain–like receptors. Journal of Allergy and Clinical Immunology 129, 14–24.
https://doi.org/10.1016/j.jaci.2011.11.004

BBC News, 2022. Ella Adoo-Kissi-Debrah: Vigil to mark birthday of girl killed by toxic air -
BBC News [WWW Document]. URL
https://www.bbc.com/news/uk-england-london-60084882 (accessed 6.29.22).

Beland, L.-P., Boucher, V., 2015. Polluting politics. Economics Letters 137, 176–181.
https://doi.org/10.1016/j.econlet.2015.11.007

Bell, M.L., HEI Health Review Committee, 2012. Assessment of the health impacts of
particulate matter characteristics. Res Rep Health Eff Inst 5–38.

Berg, K., Romer Present, P., Richardson, K., 2021. Long-term air pollution and other risk
factors associated with COVID-19 at the census tract level in Colorado. Environmental
Pollution 287, 117584. https://doi.org/10.1016/j.envpol.2021.117584

Bivand, R., n.d. Lagrange Multiplier diagnostics for spatial dependence in linear models —
lm.LMtests [WWW Document]. URL
https://r-spatial.github.io/spdep/reference/lm.LMtests.html#see-also-1 (accessed
6.30.22).

Blum, M.R., Tan, Y.J., Ioannidis, J.P.A., 2020. Use of E-values for addressing confounding
in observational studies—an empirical assessment of the literature. International
Journal of Epidemiology 49, 1482–1494. https://doi.org/10.1093/ije/dyz261

Bocci, V.A., 2007. Tropospheric ozone toxicity vs. usefulness of ozone therapy. Arch Med
Res 38, 265–267. https://doi.org/10.1016/j.arcmed.2006.09.011

121

https://doi.org/10.1111/j.1745-9125.2001.tb00933.x
https://doi.org/10.1016/j.scitotenv.2020.138835
https://doi.org/10.1016/j.jaci.2011.11.004
https://www.bbc.com/news/uk-england-london-60084882
https://doi.org/10.1016/j.econlet.2015.11.007
https://doi.org/10.1016/j.envpol.2021.117584
https://r-spatial.github.io/spdep/reference/lm.LMtests.html#see-also-1
https://doi.org/10.1093/ije/dyz261
https://doi.org/10.1016/j.arcmed.2006.09.011


Boots, B., Tiefelsdorf, M., 2000. Global and local spatial autocorrelation in bounded regular
tessellations. J Geograph Syst 2, 319–348. https://doi.org/10.1007/PL00011461

Bravo, M.A., Anthopolos, R., Bell, M.L., Miranda, M.L., 2016. Racial isolation and exposure
to airborne particulate matter and ozone in understudied US populations:
Environmental justice applications of downscaled numerical model output.
Environment International 92–93, 247–255.
https://doi.org/10.1016/j.envint.2016.04.008

Cattel, F., Giordano, S., Bertiond, C., Lupia, T., Corcione, S., Scaldaferri, M., Angelone, L.,
De Rosa, F.G., 2021. Ozone therapy in COVID-19: A narrative review. Virus Res 291,
198207. https://doi.org/10.1016/j.virusres.2020.198207

Chen, B., Song, Y., Jiang, T., Chen, Z., Huang, B., Xu, B., 2018. Real-Time Estimation of
Population Exposure to PM2.5 Using Mobile- and Station-Based Big Data.
International Journal of Environmental Research and Public Health 15, 573.
https://doi.org/10.3390/ijerph15040573

Chen, X., Shao, S., Tian, Z., Xie, Z., Yin, P., 2017. Impacts of air pollution and its spatial
spillover effect on public health based on China’s big data sample. Journal of Cleaner
Production, Special Volume on Improving natural resource management and human
health to ensure sustainable societal development based upon insights gained from
working within ‘Big Data Environments’ 142, 915–925.
https://doi.org/10.1016/j.jclepro.2016.02.119

Cheng, W., 2019. Measuring the Robustness of the National Basketball Association Home
Court Advantage Effect. University of California, Los Angeles ProQuest Dissertations
Publishing.

Cheng, Y., He, K., Du, Z., Zheng, M., Duan, F., Ma, Y., 2015. Humidity plays an important
role in the PM2.5 pollution in Beijing. Environmental Pollution 197, 68–75.
https://doi.org/10.1016/j.envpol.2014.11.028

Chi, G., Zhu, J., 2019. Spatial Regression Models for the Social Sciences. SAGE
Publications.

122

https://doi.org/10.1007/PL00011461
https://doi.org/10.1016/j.envint.2016.04.008
https://doi.org/10.1016/j.virusres.2020.198207
https://doi.org/10.3390/ijerph15040573
https://doi.org/10.1016/j.jclepro.2016.02.119
https://doi.org/10.1016/j.envpol.2014.11.028


Chih, Y.-Y., Ojede, A., 2020. Racial Disparity Effects of the COVID-19 Pandemic: A Spatial
Diffusion Analysis Across U.S. Counties.

Chowkwanyun, M., Reed Jr., A., 2020. Racial Health Disparities and Covid-19 — Caution
and Context | NEJM [WWW Document]. URL
https://www.nejm.org/doi/full/10.1056/NEJMp2012910 (accessed 6.30.22).

Cinelli, C., Ferwerda, J., Hazlett, C., 2020. Sensemakr: Sensitivity Analysis Tools for OLS in
R and Stata. https://doi.org/10.2139/ssrn.3588978

Cinelli, C., Hazlett, C., 2020. Making sense of sensitivity: extending omitted variable bias.
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 82, 39–67.
https://doi.org/10.1111/rssb.12348

Cisneros, R., Bytnerowicz, A., Schweizer, D., Zhong, S., Traina, S., Bennett, D.H., 2010.
Ozone, nitric acid, and ammonia air pollution is unhealthy for people and ecosystems
in southern Sierra Nevada, California. Environmental Pollution 158, 3261–3271.
https://doi.org/10.1016/j.envpol.2010.07.025

Clay, K., Muller, N.Z., Wang, X., 2021. Recent Increases in Air Pollution: Evidence and
Implications for Mortality. Review of Environmental Economics and Policy 15, 154–162.
https://doi.org/10.1086/712983

Colmer, J., Hardman, I., Shimshack, J., Voorheis, J., 2020. Disparities in PM2.5 air pollution
in the United States. Science 369, 575–578. https://doi.org/10.1126/science.aaz9353

Cordes, J., Castro, M.C., 2020. Spatial analysis of COVID-19 clusters and contextual
factors in New York City. Spatial and Spatio-temporal Epidemiology 34, 100355.
https://doi.org/10.1016/j.sste.2020.100355

Cowan, J., Bloch, M., 2021. In Los Angeles, the Virus Is Pummeling Those Who Can Least
Afford to Fall Ill - The New York Times [WWW Document]. URL
https://www.nytimes.com/interactive/2021/01/29/us/los-angeles-county-covid-rates.html
(accessed 6.30.22).

Cresswell, Tim, 2004. “Defining place.” Place: A Short Introduction [WWW Document]. URL
https://www.northernhighlands.org/cms/lib/NJ01000179/Centricity/Domain/159/Defining
%20Place%20by%20Tim%20Cresswell.pdf(accessed 9.13.22).

123

https://www.nejm.org/doi/full/10.1056/NEJMp2012910
https://doi.org/10.2139/ssrn.3588978
https://doi.org/10.1111/rssb.12348
https://doi.org/10.1016/j.envpol.2010.07.025
https://doi.org/10.1086/712983
https://doi.org/10.1126/science.aaz9353
https://doi.org/10.1016/j.sste.2020.100355
https://www.nytimes.com/interactive/2021/01/29/us/los-angeles-county-covid-rates.html
https://www.northernhighlands.org/cms/lib/NJ01000179/Centricity/Domain/159/Defining%20Place%20by%20Tim%20Cresswell.pdf
https://www.northernhighlands.org/cms/lib/NJ01000179/Centricity/Domain/159/Defining%20Place%20by%20Tim%20Cresswell.pdf


Currie, J., Walker, R., 2019. What Do Economists Have to Say about the Clean Air Act 50
Years after the Establishment of the Environmental Protection Agency? Journal of
Economic Perspectives 33, 3–26. https://doi.org/10.1257/jep.33.4.3

Curtis, S., 2016. Space, Place and Mental Health. Routledge, London.
https://doi.org/10.4324/9781315610160

Cutchin, M.P., 2007. The Need for the “New Health Geography” in Epidemiologic Studies of
Environment and Health. Health Place 13, 725–742.
https://doi.org/10.1016/j.healthplace.2006.11.003

Davenport, C., 2022. California Returns as Climate Leader, With Help From the White
House. The New York Times.

David, L.M., Ravishankara, A.R., Brey, S.J., Fischer, E.V., Volckens, J., Kreidenweis, S.,
2021. Could the exception become the rule? “Uncontrollable” air pollution events in the
U.S. due to wildland fires. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abe1f3

Delmelle, E.M., Desjardins, M.R., Jung, P., Owusu, C., Lan, Y., Hohl, A., Dony, C., 2022.
Uncertainty in geospatial health: challenges and opportunities ahead. Annals of
Epidemiology 65, 15–30. https://doi.org/10.1016/j.annepidem.2021.10.002

Ding, P., VanderWeele, T.J., 2016. Sensitivity Analysis Without Assumptions. Epidemiology
27, 368–377. https://doi.org/10.1097/EDE.0000000000000457

Dummer, T.J.B., 2008. Health geography: supporting public health policy and planning.
CMAJ 178, 1177–1180. https://doi.org/10.1503/cmaj.071783

Dyck, I., 1995. Putting chronic illness ‘in place’. Women immigrants’ accounts of their health
care. Geoforum, Geographies of Women’s Health 26, 247–260.
https://doi.org/10.1016/0016-7185(95)00025-9

Farzin, Y.H., Bond, C., 2013. Are Democrats Greener than Republicans? The Case of
California Air Quality. https://doi.org/10.2139/ssrn.2201595

124

https://doi.org/10.1257/jep.33.4.3
https://doi.org/10.4324/9781315610160
https://doi.org/10.1016/j.healthplace.2006.11.003
https://doi.org/10.1088/1748-9326/abe1f3
https://doi.org/10.1016/j.annepidem.2021.10.002
https://doi.org/10.1097/EDE.0000000000000457
https://doi.org/10.1503/cmaj.071783
https://doi.org/10.1016/0016-7185(95)00025-9
https://doi.org/10.2139/ssrn.2201595


Fielding-Miller, R.K., Sundaram, M.E., Brouwer, K., 2020. Social determinants of COVID-19
mortality at the county level. PLOS ONE 15, e0240151.
https://doi.org/10.1371/journal.pone.0240151

Fink, S., Kosofsky, I., 2021. Dying of Covid in a ‘Separate and Unequal’ L.A. Hospital. The
New York Times.

Florida, R., 2019. The Real Economic Powerhouses Are Mega-Regions, Not Nations.
Bloomberg.com.

Fotheringham, A.S., Wong, D.W.S., 1991. The Modifiable Areal Unit Problem in Multivariate
Statistical Analysis. Environ Plan A 23, 1025–1044. https://doi.org/10.1068/a231025

Fox, M.P., Arah, O.A., Stuart, E.A., 2020. Commentary: The value of E-values and why they
are not enough. International Journal of Epidemiology 49, 1505–1506.
https://doi.org/10.1093/ije/dyaa093

Garcia, C.A., Yap, P.-S., Park, H.-Y., Weller, B.L., 2016. Association of long-term PM2.5
exposure with mortality using different air pollution exposure models: impacts in rural
and urban California. International Journal of Environmental Health Research 26,
145–157. https://doi.org/10.1080/09603123.2015.1061113

Garcia, E., Marian, B., Chen, Z., Li, K., Lurmann, F., Gilliland, F., Eckel, S.P., 2022.
Long-term air pollution and COVID-19 mortality rates in California: Findings from the
Spring/Summer and Winter surges of COVID-19. Environmental Pollution 292, 118396.
https://doi.org/10.1016/j.envpol.2021.118396

Glass, G.E., 2000. Update: Spatial Aspects of Epidemiology: The Interface with Medical
Geography. Epidemiologic Reviews 22, 136–139.
https://doi.org/10.1093/oxfordjournals.epirev.a018010

Goldhagen, J., Remo, R., Bryant, T., Wludyka, P., Dailey, A., Wood, D., Watts, G.,
Livingood, W., 2005. The Health Status of Southern Children: A Neglected Regional
Disparity. Pediatrics 116, e746–e753. https://doi.org/10.1542/peds.2005-0366

Goodkind, A.L., Tessum, C.W., Coggins, J.S., Hill, J.D., Marshall, J.D., 2019. Fine-scale
damage estimates of particulate matter air pollution reveal opportunities for

125

https://doi.org/10.1371/journal.pone.0240151
https://doi.org/10.1068/a231025
https://doi.org/10.1093/ije/dyaa093
https://doi.org/10.1080/09603123.2015.1061113
https://doi.org/10.1016/j.envpol.2021.118396
https://doi.org/10.1093/oxfordjournals.epirev.a018010
https://doi.org/10.1542/peds.2005-0366


location-specific mitigation of emissions. Proceedings of the National Academy of
Sciences 116, 8775–8780. https://doi.org/10.1073/pnas.1816102116

Greenland, S., 1996. Basic Methods for Sensitivity Analysis of Biases. International Journal
of Epidemiology 25, 1107–1116. https://doi.org/10.1093/ije/25.6.1107-a

Grekousis, G., Feng, Z., Marakakis, I., Lu, Y., Wang, R., 2022. Ranking the importance of
demographic, socioeconomic, and underlying health factors on US COVID-19 deaths:
A geographical random forest approach. Health & Place 74, 102744.
https://doi.org/10.1016/j.healthplace.2022.102744

Hamra, G.B., 2019. RE: “APPLYING THE E VALUE TO ASSESS THE ROBUSTNESS OF
EPIDEMIOLOGIC FIELDS OF INQUIRY TO UNMEASURED CONFOUNDING.”
American Journal of Epidemiology 188, 1578–1580. https://doi.org/10.1093/aje/kwz128

Hazlett, C., Parente, F., 2020. Who supports peace with the FARC? A sensitivity-based
approach under imperfect identification.

Hernández, A., Viñals, M., Pablos, A., Vilás, F., Papadakos, P.J., Wijeysundera, D.N.,
Bergese, S.D., Vives, M., 2021. Ozone therapy for patients with COVID-19 pneumonia:
Preliminary report of a prospective case-control study. Int Immunopharmacol 90,
107261. https://doi.org/10.1016/j.intimp.2020.107261

Hinojosa-Baliño, I., Infante-Vázquez, O., Vallejo, M., 2019. Distribution of PM2.5 Air
Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model. Applied
Sciences 9, 2936. https://doi.org/10.3390/app9142936

Imbens, G.W., Rubin, D.B., 2010. Rubin Causal Model, in: Durlauf, S.N., Blume, L.E.
(Eds.), Microeconometrics, The New Palgrave Economics Collection. Palgrave
Macmillan UK, London, pp. 229–241. https://doi.org/10.1057/9780230280816_28

Ioannidis, J.P.A., Tan, Y.J., Blum, M.R., 2019. Limitations and Misinterpretations of E-Values
for Sensitivity Analyses of Observational Studies. Ann Intern Med 170, 108–111.
https://doi.org/10.7326/M18-2159

Jones, J.P.A., Tan, Y.J., Blum, M.R., 2019. Limitations and Misinterpretations of E-Values
for Sensitivity Analyses of Observational Studies. Ann Intern Med 170, 108–111.
https://doi.org/10.7326/M18-2159

126

https://doi.org/10.1073/pnas.1816102116
https://doi.org/10.1093/ije/25.6.1107-a
https://doi.org/10.1016/j.healthplace.2022.102744
https://doi.org/10.1093/aje/kwz128
https://doi.org/10.1016/j.intimp.2020.107261
https://doi.org/10.3390/app9142936
https://doi.org/10.1057/9780230280816_28
https://doi.org/10.7326/M18-2159
https://doi.org/10.7326/M18-2159


Jones, Kelvyn, Moon, Graham, 1993. Medical geography: taking space seriously - Kelvyn
Jones, Graham Moon, 1993 [WWW Document]. URL
https://journals.sagepub.com/doi/10.1177/030913259301700405 (accessed 9.6.22).

Kalashnikov, D.A., Schnell, J.L., Abatzoglou, J.T., Swain, D.L., Singh, D., n.d. Increasing
co-occurrence of fine particulate matter and ground-level ozone extremes in the
western United States. Science Advances 8, eabi9386.
https://doi.org/10.1126/sciadv.abi9386

Kolak, M., Anselin, L., 2019. A Spatial Perspective on the Econometrics of Program
Evaluation. International Regional Science Review 43, 128–153.
https://doi.org/10.1177/0160017619869781

Konisky, D.M., Woods, N.D., 2010. Exporting Air Pollution? Regulatory Enforcement and
Environmental Free Riding in the United States. Political Research Quarterly 63,
771–782. https://doi.org/10.1177/1065912909334429

Konstantinoudis, G., Padellini, T., Bennett, J., Davies, B., Ezzati, M., Blangiardo, M., 2021.
Long-term exposure to air-pollution and COVID-19 mortality in England: A hierarchical
spatial analysis. Environment International 146, 106316.
https://doi.org/10.1016/j.envint.2020.106316

Kumar, N., Chu, A., Foster, A., 2007. An empirical relationship between PM(2.5) and
aerosol optical depth in Delhi Metropolitan. Atmos Environ (1994) 41, 4492–4503.
https://doi.org/10.1016/j.atmosenv.2007.01.046

Lee, D., Robertson, C., Ramsay, C., Pyper, K., 2020. Quantifying the impact of the
modifiable areal unit problem when estimating the health effects of air pollution.
Environmetrics 31, e2643. https://doi.org/10.1002/env.2643

Lee, D., Sarran, C., 2015. Controlling for unmeasured confounding and spatial
misalignment in long-term air pollution and health studies. Environmetrics 26, 477–487.
https://doi.org/10.1002/env.2348

Lee, H.J., Coull, B.A., Bell, M.L., Koutrakis, P., 2012. Use of satellite-based aerosol optical
depth and spatial clustering to predict ambient PM2.5 concentrations. Environmental
Research 118, 8–15. https://doi.org/10.1016/j.envres.2012.06.011

127

https://journals.sagepub.com/doi/10.1177/030913259301700405
https://doi.org/10.1126/sciadv.abi9386
https://doi.org/10.1177/0160017619869781
https://doi.org/10.1177/1065912909334429
https://doi.org/10.1016/j.envint.2020.106316
https://doi.org/10.1016/j.atmosenv.2007.01.046
https://doi.org/10.1002/env.2643
https://doi.org/10.1002/env.2348
https://doi.org/10.1016/j.envres.2012.06.011


LeSage, J.P., 2008. An Introduction to Spatial Econometrics. rei 19–44.
https://doi.org/10.4000/rei.3887

Lesage, J., 2014. What Regional Scientists Need to Know about Spatial Econometrics.
Review of Regional Studies. https://doi.org/10.52324/001c.8081

Liang, D., Shi, L., Zhao, J., Liu, P., Sarnat, J.A., Gao, S., Schwartz, J., Liu, Y., Ebelt, S.T.,
Scovronick, N., Chang, H.H., 2020. Urban Air Pollution May Enhance COVID-19
Case-Fatality and Mortality Rates in the United States. The Innovation 1, 100047.
https://doi.org/10.1016/j.xinn.2020.100047

Lipsitt, J., Chan-Golston, A.M., Liu, J., Su, J., Zhu, Y., Jerrett, M., 2021. Spatial analysis of
COVID-19 and traffic-related air pollution in Los Angeles. Environment International
153, 106531. https://doi.org/10.1016/j.envint.2021.106531

López-Feldman, A., Heres, D., Marquez-Padilla, F., 2021. Air pollution exposure and
COVID-19: A look at mortality in Mexico City using individual-level data. Science of
The Total Environment 756, 143929. https://doi.org/10.1016/j.scitotenv.2020.143929

Lukermann, F., 1964. Geography as a Formal Intellectual Discipline and the Way in Which It
Contributes to Human Knowledge. The Canadian Geographer / Le Géographe
canadien 8, 167–172. https://doi.org/10.1111/j.1541-0064.1964.tb00605.x

Lundberg, D.J., Cho, A., Raquib, R., Nsoesie, E.O., Wrigley-Field, E., Stokes, A.C., 2022.
Geographic and Temporal Patterns in Covid-19 Mortality by Race and Ethnicity in the
United States from March 2020 to February 2022. medRxiv 2022.07.20.22277872.
https://doi.org/10.1101/2022.07.20.22277872

Mailloux, N.A., Abel, D.W., Holloway, T., Patz, J.A., 2022. Nationwide and Regional
PM2.5-Related Air Quality Health Benefits From the Removal of Energy-Related
Emissions in the United States. GeoHealth 6, e2022GH000603.
https://doi.org/10.1029/2022GH000603

Makar, M., Antonelli, J., Di, Q., Cutler, D., Schwartz, J., Dominici, F., 2017. Estimating the
Causal Effect of Fine Particulate Matter Levels on Death and Hospitalization: Are
Levels Below the Safety Standards Harmful? Epidemiology (Cambridge, Mass.) 28,
627. https://doi.org/10.1097/EDE.0000000000000690

128

https://doi.org/10.4000/rei.3887
https://doi.org/10.52324/001c.8081
https://doi.org/10.1016/j.xinn.2020.100047
https://doi.org/10.1016/j.envint.2021.106531
https://doi.org/10.1016/j.scitotenv.2020.143929
https://doi.org/10.1111/j.1541-0064.1964.tb00605.x
https://doi.org/10.1101/2022.07.20.22277872
https://doi.org/10.1029/2022GH000603
https://doi.org/10.1097/EDE.0000000000000690


Manjunath, S.N., Sakar, M., Katapadi, M., Geetha Balakrishna, R., 2021. Recent case
studies on the use of ozone to combat coronavirus: Problems and perspectives.
Environ Technol Innov 21, 101313. https://doi.org/10.1016/j.eti.2020.101313

Matisziw, T.C., Grubesic, T.H., Wei, H., 2008. Downscaling spatial structure for the analysis
of epidemiological data. Computers, Environment and Urban Systems 32, 81–93.
https://doi.org/10.1016/j.compenvurbsys.2007.06.002

Messner, S.F., Anselin, L., Baller, R.D., Hawkins, D.F., Deane, G., Tolnay, S.E., 1999. The
Spatial Patterning of County Homicide Rates: An Application of Exploratory Spatial
Data Analysis. Journal of Quantitative Criminology 15, 423–450.
https://doi.org/10.1023/A:1007544208712

Miranda, M.L., Edwards, S.E., Keating, M.H., Paul, C.J., 2011. Making the Environmental
Justice Grade: The Relative Burden of Air Pollution Exposure in the United States.
International Journal of Environmental Research and Public Health 8, 1755–1771.
https://doi.org/10.3390/ijerph8061755

Morello-Frosch, R., Lopez, R., 2006. The riskscape and the color line: Examining the role of
segregation in environmental health disparities. Environmental Research, IG000012
102, 181–196. https://doi.org/10.1016/j.envres.2006.05.007

Morgan, S.L., Winship, C., 2015. Counterfactuals and Causal Inference: Methods and
Principles for Social Research, 2nd ed, Analytical Methods for Social Research.
Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781107587991

Morrill, R., Gaile, G.L., Thrall, G.I., 1988. Spatial Diffusion 65.

Murthy, B.P., Sterrett, N., Weller, D., Zell, E., Reynolds, L., Toblin, R.L., Murthy, N., Kriss, J.,
Rose, C., Cadwell, B., Wang, A., Ritchey, M.D., Gibbs-Scharf, L., Qualters, J.R., Shaw,
L., Brookmeyer, K.A., Clayton, H., Eke, P., Adams, L., Zajac, J., Patel, A., Fox, K.,
Williams, C., Stokley, S., Flores, S., Barbour, K.E., Harris, L.Q., 2021. Disparities in
COVID-19 Vaccination Coverage Between Urban and Rural Counties — United States,
December 14, 2020–April 10, 2021. MMWR Morb Mortal Wkly Rep 70, 759–764.
https://doi.org/10.15585/mmwr.mm7020e3

129

https://doi.org/10.1016/j.eti.2020.101313
https://doi.org/10.1016/j.compenvurbsys.2007.06.002
https://doi.org/10.1023/A:1007544208712
https://doi.org/10.3390/ijerph8061755
https://doi.org/10.1016/j.envres.2006.05.007
https://doi.org/10.1017/CBO9781107587991
https://doi.org/10.15585/mmwr.mm7020e3


Nagelkerke, N.J.D., 1991. A Note on a General Definition of The Coefficient of
Determination. Biometrika 78, 691–692. https://www.jstor.org/stable/2337038

Nakagawa, S., Schielzeth, H., 2013. A general and simple method for obtaining R2 from
generalized linear mixed-effects models. Methods in Ecology and Evolution 4,
133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Namin, S., Xu, W., Zhou, Y., Beyer, K., 2020. The legacy of the Home Owners’ Loan
Corporation and the political ecology of urban trees and air pollution in the United
States. Social Science & Medicine 246, 112758.
https://doi.org/10.1016/j.socscimed.2019.112758

Nardone, A., Neophytou, A.M., Balmes, J., Thakur, N., 2018. Ambient Air Pollution and
Asthma-Related Outcomes in Children of Color of the USA: a Scoping Review of
Literature Published Between 2013 and 2017. Curr Allergy Asthma Rep 18, 29.
https://doi.org/10.1007/s11882-018-0782-x

Neelon, B., Mutiso, F., Mueller, N.T., Pearce, J.L., Benjamin-Neelon, S.E., 2021.
Associations Between Governor Political Affiliation and COVID-19 Cases, Deaths, and
Testing in the U.S. American Journal of Preventive Medicine 61, 115–119.
https://doi.org/10.1016/j.amepre.2021.01.034

Nguyen, J.L., Benigno, M., Malhotra, D., Reimbaeva, M., Sam, Z., Chambers, R.,
Hammond, J., Emir, B., 2022. Hospitalization and Mortality Trends among Patients with
Confirmed COVID-19 in the United States, April through August 2020. Journal of
Public Health Research 11, jphr.2021.2244. https://doi.org/10.4081/jphr.2021.2244

Nordenstam, B.J., Lambright, W.H., Berger, M.E., Little, M.K., 1998. A framework for
analysis of transboundary institutions for air pollution policy in the United States.
Environmental Science & Policy 1, 231–238.
https://doi.org/10.1016/S1462-9011(98)00021-5

Norwood, K., 2021. Former COVID hot spot is first county in NM to have 100% of residents
one shot down [WWW Document]. KOAT. URL
https://www.koat.com/article/mckinley-county-becomes-first-county-in-new-mexico-to-g
et-100-of-residents-vaccinated-with-first-shot/36948214 (accessed 11.8.22).

130

https://www.jstor.org/stable/2337038
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1016/j.socscimed.2019.112758
https://doi.org/10.1007/s11882-018-0782-x
https://doi.org/10.1016/j.amepre.2021.01.034
https://doi.org/10.4081/jphr.2021.2244
https://doi.org/10.1016/S1462-9011(98)00021-5
https://www.koat.com/article/mckinley-county-becomes-first-county-in-new-mexico-to-get-100-of-residents-vaccinated-with-first-shot/36948214
https://www.koat.com/article/mckinley-county-becomes-first-county-in-new-mexico-to-get-100-of-residents-vaccinated-with-first-shot/36948214


NY State Dept. of Health, 2018. Fine Particles (PM 2.5) Questions and Answers [WWW
Document]. URL https://www.health.ny.gov/environmental/indoors/air/pmq_a.htm
(accessed 6.29.22).

Oster, A.M., Kang, G.J., Cha, A.E., Beresovsky, V., Rose, C.E., Rainisch, G., Porter, L.,
Valverde, E.E., Peterson, E.B., Driscoll, A.K., Norris, T., Wilson, N., Ritchey, M., Walke,
H.T., Rose, D.A., Oussayef, N.L., Parise, M.E., Moore, Z.S., Fleischauer, A.T., Honein,
M.A., Dirlikov, E., Villanueva, J., 2020. Trends in Number and Distribution of COVID-19
Hotspot Counties — United States, March 8–July 15, 2020. MMWR Morb Mortal Wkly
Rep 69, 1127–1132. https://doi.org/10.15585/mmwr.mm6933e2

Pacheco, A.I., Tyrrell, T.J., 2002. Testing spatial patterns and growth spillover effects in
clusters of cities. J Geograph Syst 4, 275–285. https://doi.org/10.1007/s101090200089

Park, S.H., Gong, S.L., Gong, W., Makar, P.A., Moran, M.D., Zhang, J., Stroud, C.A., 2010.
Relative impact of windblown dust versus anthropogenic fugitive dust in PM2.5 on air
quality in North America. Journal of Geophysical Research: Atmospheres 115.
https://doi.org/10.1029/2009JD013144

Pierce, A.M., Loría-Salazar, S.M., Holmes, H.A., Gustin, M.S., 2019. Investigating
horizontal and vertical pollution gradients in the atmosphere associated with an urban
location in complex terrain, Reno, Nevada, USA. Atmospheric Environment 196,
103–117. https://doi.org/10.1016/j.atmosenv.2018.09.063

Pope, C.A., Coleman, N., Pond, Z.A., Burnett, R.T., 2020. Fine particulate air pollution and
human mortality: 25+ years of cohort studies. Environ Res 183, 108924.
https://doi.org/10.1016/j.envres.2019.108924

Razavi, S., Jakeman, A., Saltelli, A., Prieur, C., Iooss, B., Borgonovo, E., Plischke, E., Lo
Piano, S., Iwanaga, T., Becker, W., Tarantola, S., Guillaume, J.H.A., Jakeman, J.,
Gupta, H., Melillo, N., Rabitti, G., Chabridon, V., Duan, Q., Sun, X., Smith, S.,
Sheikholeslami, R., Hosseini, N., Asadzadeh, M., Puy, A., Kucherenko, S., Maier, H.R.,
2021. The Future of Sensitivity Analysis: An essential discipline for systems modeling
and policy support. Environmental Modelling & Software 137, 104954.
https://doi.org/10.1016/j.envsoft.2020.104954

131

https://www.health.ny.gov/environmental/indoors/air/pmq_a.htm
https://doi.org/10.15585/mmwr.mm6933e2
https://doi.org/10.1007/s101090200089
https://doi.org/10.1029/2009JD013144
https://doi.org/10.1016/j.atmosenv.2018.09.063
https://doi.org/10.1016/j.envres.2019.108924
https://doi.org/10.1016/j.envsoft.2020.104954


Reich, B.J., Yang, S., Guan, Y., Giffin, A.B., Miller, M.J., Rappold, A., 2021. A Review of
Spatial Causal Inference Methods for Environmental and Epidemiological Applications.
International Statistical Review 89, 605–634. https://doi.org/10.1111/insr.12452

Reynolds, E., 2020. Air pollution a cause of UK girl’s death, coroner rules - CNN [WWW
Document]. URL
https://www.cnn.com/2020/12/16/uk/air-pollution-death-ella-kissi-debrah-uk-gbr-intl/ind
ex.html (accessed 9.25.22).

Romano, S.D., Blackstock, A.J., Taylor, E.V., El Burai Felix, S., Adjei, S., Singleton, C.-M.,
Fuld, J., Bruce, B.B., Boehmer, T.K., 2021. Trends in Racial and Ethnic Disparities in
COVID-19 Hospitalizations, by Region — United States, March–December 2020.
MMWR Morb Mortal Wkly Rep 70, 560–565.
https://doi.org/10.15585/mmwr.mm7015e2

Rosenbaum, P.R., 2014. Sensitivity Analysis in Observational Studies, in: Wiley StatsRef:
Statistics Reference Online. John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781118445112.stat06358

Rossen, L.M., 2020. Excess Deaths Associated with COVID-19, by Age and Race and
Ethnicity — United States, January 26–October 3, 2020. MMWR Morb Mortal Wkly
Rep 69. https://doi.org/10.15585/mmwr.mm6942e2

Roussel, S., Butkus, Neva, 2020. Poverty in Louisiana. Louisiana Budget
Project.https://www.labudget.org/wp-content/uploads/2020/09/LBP-Census-2019.p

Schnell, J.L., Prather, M.J., 2017. Co-occurrence of extremes in surface ozone, particulate
matter, and temperature over eastern North America. PNAS 114, 2854–2859.
https://doi.org/10.1073/pnas.1614453114

Sergi, B., Azevedo, I., Davis, S.J., Muller, N.Z., 2020. Regional and county flows of
particulate matter damage in the US. Environ. Res. Lett. 15, 104073.
https://doi.org/10.1088/1748-9326/abb429

Shin, M., Agnew, J., 2011. Spatial regression for electoral studies: The case of the Italian
Lega Nord. Revitalizing Electoral Geography 59–74.

132

https://doi.org/10.1111/insr.12452
https://www.cnn.com/2020/12/16/uk/air-pollution-death-ella-kissi-debrah-uk-gbr-intl/index.html
https://www.cnn.com/2020/12/16/uk/air-pollution-death-ella-kissi-debrah-uk-gbr-intl/index.html
https://doi.org/10.15585/mmwr.mm7015e2
https://doi.org/10.1002/9781118445112.stat06358
https://doi.org/10.15585/mmwr.mm6942e2
https://www.labudget.org/wp-content/uploads/2020/09/LBP-Census-2019.pdf
https://doi.org/10.1073/pnas.1614453114
https://doi.org/10.1088/1748-9326/abb429


Shin, M., Ward, M.D., 1999. Lost in Space: Political Geography and the Defense-Growth
Trade-Off. Journal of Conflict Resolution 43, 793–817.
https://doi.org/10.1177/0022002799043006006

Simon, H., Reff, A., Wells, B., Xing, J., Frank, N., 2015. Ozone Trends Across the United
States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol.
49, 186–195. https://doi.org/10.1021/es504514z

Sittner, T., 2021. A Case for The Curriculum: Health Geography. Teaching Geography 46,
21–24.

Stewart, J., Kennelly, P., 2010. Illuminated Choropleth Maps. Annals of the Association of
American Geographers 100, 513–534. https://doi.org/10.1080/00045608.2010.485449

Thind, M.P.S., Tessum, C.W., Azevedo, I.L., Marshall, J.D., 2019. Fine Particulate Air
Pollution from Electricity Generation in the US: Health Impacts by Race, Income, and
Geography. Environ. Sci. Technol. 53, 14010–14019.
https://doi.org/10.1021/acs.est.9b02527

Thompson, C.N., Baumgartner, J., Pichardo, C., Toro, B., Li, L., Arciuolo, R., Chan, P.Y.,
Chen, J., Culp, G., Davidson, A., Devinney, K., Dorsinville, A., Eddy, M., English, M.,
Fireteanu, A.M., Graf, L., Geevarughese, A., Greene, S.K., Guerra, K., Huynh, M.,
Hwang, C., Iqbal, M., Jessup, J., Knorr, J., Latash, J., Lee, E., Lee, K., Li, W., Mathes,
R., McGibbon, E., McIntosh, N., Montesano, M., Moore, M.S., Murray, K., Ngai, S.,
Paladini, M., Paneth-Pollak, R., Parton, H., Peterson, E., Pouchet, R., Ramachandran,
J., Reilly, K., Sanderson Slutsker, J., Van Wye, G., Wahnich, A., Winters, A., Layton,
M., Jones, L., Reddy, V., Fine, A., 2020. COVID-19 Outbreak — New York City,
February 29–June 1, 2020. MMWR Morb Mortal Wkly Rep 69, 1725–1729.
https://doi.org/10.15585/mmwr.mm6946a2

Tobler, W.R., 1970. A Computer Movie Simulating Urban Growth in the Detroit Region.
Economic Geography 46, 234. https://doi.org/10.2307/143141

Tsirigotis, Panagiotis (EPA), 2021. Release of the Draft Policy Assessment for the
Particulate Matter National Ambient Air Quality Standards. Federal Register, National
Archives. https://www.federalregister.gov/d/2021-22067

133

https://doi.org/10.1177/0022002799043006006
https://doi.org/10.1021/es504514z
https://doi.org/10.1080/00045608.2010.485449
https://doi.org/10.1021/acs.est.9b02527
https://doi.org/10.15585/mmwr.mm6946a2
https://doi.org/10.2307/143141
https://www.federalregister.gov/d/2021-22067


Tuan, Yi-Fu, 1979. Space and Place: Humanistic Perspective | SpringerLink [WWW
Document]. URL https://link.springer.com/chapter/10.1007/978-94-009-9394-5_19
(accessed 9.6.22).

Tulchinsky, T.H., 2018. John Snow, Cholera, the Broad Street Pump; Waterborne Diseases
Then and Now. Case Studies in Public Health 77–99.
https://doi.org/10.1016/B978-0-12-804571-8.00017-2

U.S. Census Bureau, 2021a. Megalopolis [WWW Document]. URL
https://www.census.gov/content/dam/Census/library/visualizations/2021/demo/megalop
olis.pdf (accessed 11.4.22).

U.S. Census Bureau, 2021b. U.S. Census Bureau QuickFacts: Louisiana [WWW
Document]. URL https://www.census.gov/quickfacts/LA (accessed 11.4.22).

U.S. Dept. of Commerce, 1994. Geographic Areas Reference Manual [WWW Document].
Census.gov. URL
https://www.census.gov/programs-surveys/geography/guidance/geographic-areas-refer
ence-manual.html (accessed 2.2.22).

U.S. Dept. of Energy, 2015. Midwest Region ENERGY SECTOR RISK PROFILE [WWW
Document]. URL
https://www.energy.gov/sites/prod/files/2015/10/f27/Energy_Sector_Risk_Profile_Midw
estRegion.pdf (accessed 11.8.22).

US EPA, 2013. National Ambient Air Quality Standards for Particulate Matter; Final Rule.
https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm

US EPA, 2015. Criteria Air Pollutants 22.
https://www.epa.gov/sites/default/files/2015-10/documents/ace3_criteria_air_pollutants.
pdf

US EPA, 2016a. Particulate Matter (PM2.5) Trends | National Air Quality: Status and Trends
of Key Air Pollutants | US EPA [WWW Document]. URL
https://19january2017snapshot.epa.gov/air-trends/particulate-matter-pm25-trends_.htm
l (accessed 6.15.22).

134

https://link.springer.com/chapter/10.1007/978-94-009-9394-5_19
https://doi.org/10.1016/B978-0-12-804571-8.00017-2
https://www.census.gov/content/dam/Census/library/visualizations/2021/demo/megalopolis.pdf
https://www.census.gov/content/dam/Census/library/visualizations/2021/demo/megalopolis.pdf
https://www.census.gov/quickfacts/LA
https://www.census.gov/programs-surveys/geography/guidance/geographic-areas-reference-manual.html
https://www.census.gov/programs-surveys/geography/guidance/geographic-areas-reference-manual.html
https://www.energy.gov/sites/prod/files/2015/10/f27/Energy_Sector_Risk_Profile_MidwestRegion.pdf
https://www.energy.gov/sites/prod/files/2015/10/f27/Energy_Sector_Risk_Profile_MidwestRegion.pdf
https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm
https://www.epa.gov/sites/default/files/2015-10/documents/ace3_criteria_air_pollutants.pdf
https://www.epa.gov/sites/default/files/2015-10/documents/ace3_criteria_air_pollutants.pdf
https://19january2017snapshot.epa.gov/air-trends/particulate-matter-pm25-trends_.html
https://19january2017snapshot.epa.gov/air-trends/particulate-matter-pm25-trends_.html


US EPA,  2016b. Particulate Matter (PM) Basics [WWW Document]. US EPA. URL
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics (accessed 6.5.21).

US EPA, 2018. EPA Report on the Environment.
https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=19

US EPA, 2021a. National Ambient Air Quality Standards (NAAQS) for PM [WWW
Document]. URL
https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm
(accessed 6.29.22).

US EPA, 2021b. Regional Haze Program [WWW Document]. URL
https://www.epa.gov/visibility/regional-haze-program (accessed 6.29.22).

US EPA, 2021c. Reviewing National Ambient Air Quality Standards (NAAQS): Scientific
and Technical Information [WWW Document]. URL https://www.epa.gov/naaqs
(accessed 6.29.22).

US EPA, 2021d. Regulatory and Guidance Information by Topic: Air [WWW Document].
URL
https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-t
opic-air (accessed 6.29.22).

VanderWeele, T.J., Ding, P., 2017. Sensitivity Analysis in Observational Research:
Introducing the E-Value. Ann Intern Med 167, 268–274.
https://doi.org/10.7326/M16-2607

VanderWeele, T.J., Martin, J.N., Mathur, M.B., 2020. E Values and Incidence Density
Sampling. Epidemiology 31, e51. https://doi.org/10.1097/EDE.0000000000001238

Véron, R., 2006. Remaking Urban Environments: The Political Ecology of Air Pollution in
Delhi. Environ Plan A 38, 2093–2109. https://doi.org/10.1068/a37449

Vijayan, T., Shin, M., Adamson, P.C., Harris, C., Seeman, T., Norris, K.C., Goodman-Meza,
D., 2021. Beyond the 405 and the 5: Geographic Variations and Factors Associated
With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Positivity
Rates in Los Angeles County. Clinical Infectious Diseases 73, e2970–e2975.
https://doi.org/10.1093/cid/ciaa1692

135

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics
https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=19
https://www.epa.gov/pm-pollution/national-ambient-air-quality-standards-naaqs-pm
https://www.epa.gov/visibility/regional-haze-program
https://www.epa.gov/naaqs
https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-topic-air
https://www.epa.gov/regulatory-information-topic/regulatory-and-guidance-information-topic-air
https://doi.org/10.7326/M16-2607
https://doi.org/10.1097/EDE.0000000000001238
https://doi.org/10.1068/a37449
https://doi.org/10.1093/cid/ciaa1692


Wallace, C., 2020. COVID Is Everywhere, Even in “the Last COVID-Free County” [WWW
Document]. Texas Monthly. URL
https://www.texasmonthly.com/news-politics/covid-loving-county/ (accessed 11.8.22).

Wu, X., Nethery, R.C., Sabath, M.B., Braun, D., Dominici, F., 2020. Air pollution and
COVID-19 mortality in the United States: Strengths and limitations of an ecological
regression analysis. Science Advances 6, eabd4049.
https://doi.org/10.1126/sciadv.abd4049

Xu, A., Loch-Temzelides, T., Adiole, C., Botton, N., Dee, S.G., Masiello, C.A., Osborn, M.,
Torres, M.A., Cohan, D.S., 2022. Race and ethnic minority, local pollution, and
COVID-19 deaths in Texas. Sci Rep 12, 1002.
https://doi.org/10.1038/s41598-021-04507-x

Yang, T.-C., Noah, A.J., Shoff, C., 2015. Exploring Geographic Variation in US Mortality
Rates Using a Spatial Durbin Approach. Population, Space and Place 21, 18–37.
https://doi.org/10.1002/psp.1809

Yang, X., Ye, X., Sui, D., 2016. We Know Where You Are: International Journal of Applied
Geospatial Research 7, 61–75. https://doi.org/10.4018/IJAGR.2016040105

Zalakeviciute, R., López-Villada, J., Rybarczyk, Y., 2018. Contrasted Effects of Relative
Humidity and Precipitation on Urban PM2.5 Pollution in High Elevation Urban Areas.
Sustainability 10, 2064. https://doi.org/10.3390/su10062064

Zhang, G., Rui, X., Fan, Y., 2018. Critical Review of Methods to Estimate PM2.5
Concentrations within Specified Research Region. ISPRS International Journal of
Geo-Information 7, 368. https://doi.org/10.3390/ijgi7090368

Zhu, J., Chen, L., Liao, H., Dang, R., 2019. Correlations between PM2.5 and Ozone over
China and Associated Underlying Reasons. Atmosphere 10, 352.
https://doi.org/10.3390/atmos10070352

Zhu, Y., Xie, J., Huang, F., Cao, L., 2020. Association between short-term exposure to air
pollution and COVID-19 infection: Evidence from China. Science of The Total
Environment 727, 138704. https://doi.org/10.1016/j.scitotenv.2020.138704

136

https://www.texasmonthly.com/news-politics/covid-loving-county/
https://doi.org/10.1126/sciadv.abd4049
https://doi.org/10.1038/s41598-021-04507-x
https://doi.org/10.1002/psp.1809
https://doi.org/10.4018/IJAGR.2016040105
https://doi.org/10.3390/su10062064
https://doi.org/10.3390/ijgi7090368
https://doi.org/10.3390/atmos10070352
https://doi.org/10.1016/j.scitotenv.2020.138704



