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Abstract [Word count: 233]

Given any feasible amount of time, a talker would never be able to produce the same word twice

in an identical manner. Yet recognition memory experiments have consistently used identical

tokens to demonstrate that listeners recognize a word more quickly and accurately when it is

repeated by the same talker than by a different talker. These talker-specificity effects have served

as the foundation of decades of research in speech perception, but the use of identical tokens

introduces a confound: Is it the talker or the physical stimulus that drives these effects? And

consequently, to what extent do listeners encode the high-level acoustic characteristics of a

talker’s voice? We investigate the roles of token and talker repetition in two continuous

recognition memory experiments. In Exp. 1, listeners heard the voice of one talker, with either

Identical or Novel repeated tokens. In Exp. 2, listeners heard two demographically matched

talkers, with same-voice repetitions being either Identical or Novel. Classic talker-specificity

effects were replicated in both Identical and Novel tokens, but recognition of Identical tokens

was in some cases stronger than recognition of Novel tokens. In addition, recognition memory

varied across demographically matched talkers, suggesting stronger episodic encoding for one

talker than for the other. We argue that novel tokens should serve as the default design for similar

studies and that consideration of talker variation can advance our understanding of encoding and

memory differences more broadly.

Keywords: speech, recognition memory, episodic memory, talker specificity, perception
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1. Introduction

The observation that listeners remember words better when repeated in the same voice than when

repeated in a different voice has been one of the most influential findings in the speech

perception literature in recent decades. Early theories of speech perception assumed that acoustic

events are mapped to abstract representations, with phonologically irrelevant phonetic detail

discarded by the listener (e.g., Jakobson, Fant, & Halle, 1952; Kiparsky, 1973; Stampe, 1979;

Stevens, 2002). A landmark series of recognition memory studies provided empirical evidence

that phonetic detail is not discarded by the listener, but is rather retained in memory and

facilitates lexical access for future perception of speech by the same talker (Craik & Kirsner,

1974; Goldinger, 1996; Palmeri, Goldinger, & Pisoni., 1993). These studies paved the way for a

new set of episodic or exemplar-based theories of speech perception according to which memory

traces of acoustic events are not only retained, but form the substrate of the speech processing

mechanism in cognition (Goldinger, 1998; Johnson, 1997; Pierrehumbert, 2001).

The evidence for the preservation of detailed acoustic traces of spoken words in memory

stems largely from a series of experiments in the continuous recognition memory paradigm, in

which participants hear a series of words, one at a time, and must indicate for each word whether

it is “Old” (i.e., a repetition of a word heard earlier in the series) or “New” (i.e., not a repetition).

In seminal work, Craik & Kirsner (1974) found that participants were faster and more accurate to

identify a repeated word as “Old” when it was heard in the same voice as its original presentation

than when it was heard in a different voice. The effect was consistent across intervening trials:

even with many intervening trials between a word and its repetition, words repeated in the same

voice were still recognized more accurately than words repeated in a different voice. Taken

together, these results suggest that a same-voice recognition boost exists and that it is consistent

across time delays, which in turn suggests that acoustic information is encoded in long-term

memory of spoken words, rather being stripped away or limited to working memory. This boost

has since been referred to as a talker-specificity effect.

Following Palmeri et al. (1993), who reproduced Craik & Kirsner’s (1974) earlier findings

in a scaled-up replication, talker-specificity effects were widely recognized in the field. The

attention of researchers in speech perception largely shifted to identifying the characteristics of

acoustic information that are or are not encoded in memory. Some of these studies were

conducted outside the recognition memory paradigm (e.g., Church & Schacter, 1994; Nygaard,
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Sommers, & Pisoni., 1995), and sought to investigate the roles of variables such as voice,

intonation contour, overall f0, amplitude, and speech rate. Bradlow, Nygaard, & Pisoni(1999)

reported findings showing that in the context of a continuous recognition memory experiment, a

repeated word was more likely to be recognized as Old when it matched the first presentation in

speech rate, but not when it matched in amplitude. In addition to replicating previously described

talker-specificity effects, these findings helped demonstrate that not all sources of stimulus

variability are encoded equally well in memory. Another line of inquiry has sought to investigate

the encoding of non-speech sounds in memory traces of spoken words, ranging from broadband

aperiodic noise to environmental sounds such as barking dogs and ringing telephones (e.g.,

Cooper, Brouwer, & Bradlow, 2015; Creel, Aslin, & Tanenhaus, 2012; Pufahl & Samuel, 2014;

Strori, Zaar, Cooke, & Mattys, 2018). Results from this body of work indicate that while

memory representations of words can certainly contain non-speech acoustic information, such

information is encoded more strongly when it is integral to the speech signal. This contrast may

help elucidate the distinction between memory for physical acoustic events and memory for

higher-level properties of talker attributes. Further, preliminary evidence suggests that

talker-specificity effects may be found asymmetrically across individual talkers (Clapp, Vaughn,

& Sumner, 2023), but to date, this hypothesis has not been tested directly. If talkers are encoded

with different levels of specificity, it also follows that the type of token heard at a word’s

repetition (novel vs. identical) would influence recognition performance asymmetrically across

talkers. The present paper examines these questions as a secondary goal.

1.1 Memory for acoustic patterns

Despite the great strides that have been made in research on talker-specificity effects and

related phenomena in recent decades, several fundamental questions have either gone

uninvestigated or remain unanswered. One of these is the question of whether the

talker-specificity effect reflects encoding of high-level voice characteristics and talker identity or

low-level acoustic characteristics of the tokens themselves. In other words, is listener

performance better on same-talker than different-talker trials because the talker is the same or

because the token is the same? In all of the studies cited thus far, the tokens heard at first and

second presentation of variable-matched pairs (e.g. same talker, same speech rate, same

amplitude, and so on, depending on the independent variable in question) have been identical,
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even though this methodological decision creates an experimental confound in favor of the

repetition benefit. That is, studies have conflated repetition of the same talker (or speech rate,

etc.) with repetition of the exact physical stimulus1. This confound leaves open the possibility

that rather than demonstrating talker-specificity effects, past research has shown token-specificity

effects. In this case, the same-voice recognition benefit may not be the result of listeners

encoding talker-level acoustic information (i.e., all the things that make voices recognizable and

unique: spectral characteristics, VOT distributions, degrees of nasal leak, intonation contours,

etc.), but rather of listeners imprinting a highly specific acoustic event in memory and

recognizing it as a statistical match to their previous experience. Increased memory performance

for exact acoustic matches would be consistent with the finding that listeners are capable of

encoding even linguistically meaningless acoustic patterns in both non-linguistic contexts

(Viswanathan, Rémy., Bacon-Macé, & Thorpe, 2016; Winkler, Korzykov, Gumenyuk, Cowan,

Linkenkaer-Hansen, Alho, Ilmoniemi, & Näätänen, 2002) and linguistic contexts (Cooper et al.,

2015; Pufahl & Samuel, 2014). If it were to turn out that listeners respond to different tokens

produced by the same talker in the same way as they respond to tokens produced by different

talkers (i.e. without a recognition boost), then a core foundational piece of episodic models of

speech perception would be weakened. These models rely on the ability of listeners to leverage

acoustic memory traces to facilitate interpretation of similar acoustic patterns. If it were found

that recognition only benefited from identical rather than similar acoustic matches, it would be

difficult to argue that episodic encoding was the basis of a functional speech perception system,

given that such a system would have a hard time accounting for generalization across and within

talkers, social groups, contexts, exemplars, and so on.

The repetition of an identical token also creates a context impossible in natural speech

scenarios. The ecological validity of using identical tokens in examinations of exemplar effects

has been raised in the literature before, in the context of repetition priming experiments

(Hanique, Aalders, & Ernestus, 2014; Morano, ten Bosch, & Ernestus, 2019). These studies have

not treated memory for novel and identical tokens as the central object of study and have yielded

mixed results, perhaps due to the use of different designs and stimulus construction methods.

1 Interestingly, Bradlow et al. (1999) may have demonstrated a token-specificity effect. While stimuli reflecting
different speech rates were recorded separately, stimuli differing in amplitude were generated by rescaling a single
token. Thus, repetitions differing in amplitude in fact consisted of the same acoustic footprint, whereas repetitions
differing in speech rate consisted of entirely unique tokens. Given the confound we point out here, the result that
speech rate but not amplitude is subject to a specificity effect may be at least in part a result of tokens used.
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These mixed findings highlight the need for a dedicated study designed specifically to test how

memory for novel and identical tokens differs. Our study provides a straightforward investigation

of these factors in the context of recognition memory.

1.2 Talker-level asymmetries

The first goal of this study is to examine whether talker identity (as opposed to simply

token identity) is encoded in memory traces of spoken words, as discussed above. The second

goal of this study to examine the role of talker identity more closely by exploring asymmetries in

responses to individual talkers and to investigate the effect of switching repeated-token identity

(identical vs. novel) on responses to the individual talkers (see also Hanique et al., 2014; Mattys

& Liss, 2008; McLennan & Gonzalez, 2012 for talker variation in other paradigms). It has been

typical in the analysis of recognition memory results to treat responses to all voices as

equivalent, using the same-voice/different-voice distinction as the only talker-based independent

variable (e.g., Palmeri et al., 1993). Some studies have gone further in organizing voices into a

two-dimensional space of perceptual similarity and analyzing responses to voices based on

proximity within this plane (Goh, 2005; Goldinger, 1996). Other studies have been designed to

investigate group-level encoding, for example by Clopper, Tamati, & Pierrehumbert (2017), who

addressed asymmetrical encoding across two dialects of North American English. While such

studies have been illuminating for the field and helped highlight the high-level group dynamics

at play in memory for speech, it has long been known that variation is a hallmark of language

production (e.g., Bell, 1984; Labov, 1966), and there is no one-to-one correspondence between

the use of a particular variant and membership in a particular macro-demographic category

(Eckert, 2008; 2012). Under a theory of speech perception that treats exemplars as

asymmetrically weighted based on social characteristics (e.g., Clapp et al., 2023; Sumner, Kim,

King, & McGowan, 2014), and given that the use of sociolinguistic variables ranges widely

among individuals, it follows that the strength of lexical encoding and recall may vary between

talkers even when they are matched for macro-demographic category membership. The present

study is only a small step in squaring the psycholinguistic study of speech perception with recent

developments in sociolinguistics, but takes seriously the need for theories of episodic

representations to draw on these findings.
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1.3 Current study

In this study, we investigated whether listeners encode high-level voice characteristics

and leverage those memory traces to facilitate word recognition. Specifically, we compared the

recognition of identical tokens to the recognition of novel tokens within and across talkers.

Given that a growing body of research suggests that response patterns may be at least partially

conditioned based on the voices themselves, this study also investigates the possibility of

asymmetric encoding across talkers. Two continuous recognition memory experiments were

conducted using stimuli produced by two white, male, middle-class, 28-year-old talkers living in

Chicago but originally from smaller Midwestern cities (henceforth referred to as M1 and M2).

Words repeated in the same voice were presented with either identical tokens (i.e. exactly the

same audio file heard twice) or novel tokens (i.e., two different recordings of the same talker

producing the same word during the same recording session). As a first step, in Exp. 1, we

directly compared memory for identical tokens with memory for novel tokens by presenting each

participant with only one repetition type and stimuli from only one talker, either M1 or M2. We

also asked whether the influence of token type on responses was equivalent for listeners hearing

each of the voices. To directly address talker-specificity effects, in Exp. 2, all listeners heard one

repetition type (either identical or novel tokens) but both voices, which created a context where

talker-specificity effects could emerge. Exp. 2 was designed to address whether talker-specificity

effects are replicable when same-voice repetitions are heard with novel tokens, whether

asymmetries between the encoding of each talker’s voice emerge more clearly with novel than

with identical repetitions, and whether the presence of multiple talkers in the same context

enhances the encoding asymmetries across voices.

2. Experiment 1

Exp. 1 investigates the role of specific token identity in the memory encoding and recall of

spoken words, and the stability of these effects across two talkers matched in terms of

macro-demographic categories. This experiment allows us to investigate whether there are

differences in recognition memory for identical versus novel tokens for a single talker. If

high-level voice characteristics are not encoded at a word’s first presentation, and recognition is

instead dependent on fine-grained acoustic properties of the token itself, we would expect that

performance would be stronger when an identical token is repeated than when the repetition is a
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novel token. On the other hand, if listeners do encode high-level voice characteristics, hearing a

repetition with the natural variability present in a single talker’s voice would not inhibit

recognition, and performance would be similar regardless of the type of token heard at repetition.

Participants were placed in one of two token conditions (Identical or Novel) and one of two

talker conditions (M1 or M2). Using stimuli from two separate talkers served the dual purpose of

ensuring that effects were not the result of idiosyncratic facts about a single talker’s voice and

allowing an analysis of asymmetric encoding and recall of distinct voices.

2.1 Methods

2.1.1 Participants

A total of 444 participants completed Exp. 1 via the participant recruitment platform

Prolific. All participants provided informed consent. Based on Prolific’s built-in pre-screening

tool, the experiment was made available only to individuals who reported that they lived in the

United States and were American by nationality, were English-speaking monolinguals, and had

never had hearing loss or hearing-related difficulties. Responses from 89 of these individuals

were removed from analysis on the basis that they either failed to respond to at least 85% of

trials or had a miss rate of 10% or more on trials where a word was repeated either 1 or 2 trials

after its first presentation, leading to a total sample size of 355 participants. The sample size was

determined in advance by using the pwr package (Champely, Ekstrom, Dalgaard, Gill,

Weibelzahl, Anandkumar, Ford, Volcic, & De Rosario, 2017) in R to estimate the number of

participants needed to achieve an effect size of 0.06, given significance threshold ɑ = 0.02 and

power β = 0.9. Participants were compensated $3.77, and the procedure took 15.27 minutes on

average to complete.

2.1.2 Stimuli & Design

Stimuli. Stimulus words were selected from a subset of the SUBTLEXus corpus

(Brysbaert & New, 2009), which was filtered to include only monosyllabic words falling

between the 33rd and 90th percentile of frequency according to the corpus’s Lg10CD measure.

From this list, 183 words were randomly selected to act as stimuli. The mean word frequency of

this final subset was 28.0 per million.
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Auditory stimuli were produced by two white males living in Chicago (originally from

the Indianapolis and Dubuque metropolitan areas), aged 28 at the time of recording. Each talker

read through the list of all 183 words three times, each time in a different randomized order. Out

of these productions, two tokens were selected for use in the experiment. Tokens were excluded

if the recording contained extraneous noise, a slip of the tongue, or an anomalous production. If

all tokens of a word were possible candidates for inclusion in the experiment, the second and

third were selected by default. By design, we wanted novel tokens to exhibit naturalistic degrees

of variation, and thus we did not control them for acoustic similarity. Acoustic analysis indicated

natural inter-speaker variation. For example, M1’s tokens were slightly longer in duration than

M2’s (M1: x ̄ = 628 ms, σ = 94 ms; M2: x ̄ = 481 ms, σ = 90 ms). M1’s tokens were also

consistently produced with a higher mean f0 (in semitones, re: 1 Hz, M1: x̄ = 84 ST, σ = 0.65 ST;

M2: x ̄ = 75 ST, σ = 0.81 ST).

Audio was captured in a quiet room through an Electro-Voice RE320 dynamic

microphone at a sampling rate of 48 kHz and a 24-bit depth. After recording, ambient noise was

removed using the iZotope RX 8 audio editing software, and all tokens were normalized to a

common mean intensity using Praat (Boersma & Weenink, 2021).

Design. Participants were randomly placed in one of two TokenConditions (Identical or

Novel) and in one of two TalkerConditions (M1 or M2), leading to a 2 𝗑 2 matrix of

between-subjects conditions. In the Identical condition, repeated words were presented with

exactly the same audio file as was heard at the word’s first presentation. In the Novel condition,

the second presentation was a different recording of a different production of the same word with

all else held constant. In the M1 condition, all words were produced by talker M1 and in the M2

condition, all words were produced by talker M2.

Each participant completed three phases: practice, memory load, and test (see Figure 2.1).

Each phase was identical except that participants received feedback on responses in the practice

phase but not thereafter. The memory load phase differed from the main test phase only insofar

as its data were not included in the analysis. Participants were not made aware of any distinction

between the memory load and test phases, and it was not indicated to them when the test phase

had begun. No word from the memory load phase was repeated after the first word of the test

phase was presented. Every word in the experiment was played exactly twice, with no filler

words. We refer to the combination of each stimulus word’s Old and New presentations as a
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word pair. There were 8 word pairs in the practice round, 16 pairs in memory load, and 140 pairs

in the test phase. This led to a total of 164 word pairs, or a total of 328 trials. The 164 words used

in each participant’s procedure were a randomly selected subset of the total 183 recorded words.

More words were recorded than were necessary in case any word was found to be unusable after

processing (e.g., because only one production was valid or a talker failed to produce the correct

word). All words were usable and therefore included in the experiment.

The number of intervening trials between a given word and its repetition—henceforth

referred to as Lag—was used as an independent variable in analysis and ranged from 1 to 65.

The distribution of Lags was heavily left-modal, with a mean 18.54 and a median of 11. Note

that because previous studies in the continuous recognition memory paradigm used ANOVAs for

analysis, Lag was traditionally treated as a categorical variable, where each value fell into one of

several discrete groups (e.g. Lag could be 2, 4, 8, 16, 32, or 64, but not any of the intermediate

values). Because the present study’s results were modeled with regression, Lag was converted

into a continuous variable. The overall distribution was similar to previous studies’, but

intermediate values were included as well (i.e. any value between 1 and 65 was a valid Lag). The

precise distribution was generated pseudorandomly and uniquely for each participant with an

algorithm written in JavaScript designed to roughly approximate the distribution used by Palmeri

et al. (1993) but without excluding intermediate values, leading to the left-modal distribution

described above.

Participants made responses by pressing either the “D” or “K” key on their computer

keyboard. For half of participants, the “D” key was associated with a response of “New” and the

“K” key was associated with a response of “Old”, and for the other half of participants, this was

reversed. A visual prompt remained on the screen throughout the experiment to remind

participants which key was associated with which response.

Fig. 2.1: Structure of the experiment. Schematic diagram of the structure of the experiment, showing phase, sample stimuli,

and sample responses. Participants received feedback on their responses only during practice. Correct practice responses are
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shown in green and incorrect responses are shown in red. From left to right, the responses shown in the practice phase (had they

been given in the test phase and thus included in the analysis) would be coded as a Correct Rejection, Miss, Hit, and False Alarm.

Procedures for the memory load and test phases were identical for participants, but data from the Memory load phase were not

included in analysis.

2.1.3 Procedure

The experiment was conducted online through participants’ web browsers. The procedure

was coded in JavaScript, drawing heavily from the jsPsych library (de Leeuw, 2015). Before

beginning the main experiment, participants completed an audio check inspired by Woods,

Siegel, Traer, & McDermott (2017) to ensure that they were wearing headphones. After the audio

check, participants completed the practice round, memory load phase, and test phase. In all

phases, each trial consisted of an auditory stimulus (i.e., a single spoken word), to which

participants responded “New” or “Old,” depending on whether they believed it was their first

time hearing the word or whether they believed they had heard it already. In the memory load

and test phases, there was a 1-second silent interval between the time of response and the onset

of the subsequent stimulus. It was not possible to provide a response before the stimulus had

played fully. If no response was made within 4 seconds of the stimulus offset, the subsequent

trial began automatically.

2.2 Results & Discussion

For full model specifications and summaries, see Appendix A. Models reported in that

section are numbered 1.1–1.4 and reflect analyses of the dependent variables of correct Old

responses on repeated items (Hits, Model 1.1) based on TokenCondition (Novel vs. Identical),

TalkerCondition (M1 vs. M2), number of intervening trials (Lag, 1–65, mean-centered and

re-scaled), and TrialNumber (1–280, mean-centered and re-scaled); log-transformed response

latency on Hits (logRT, Model 1.2) by TokenCondition, TalkerCondition, Lag, TrialNumber, and

the token’s Duration (measured in ms, mean-centered and rescaled); incorrect Old responses on

New items (false alarms, FAs, Model 1.3) based on TokenCondition, TalkerCondition, and

TrialNumber; and z-transformed Hit-rate minus FA-rate (d’, Model 1.4) based on

TokenCondition and Talker. RTs more than 2 standard deviations from the mean were discarded

(approximately 4% of data). Interactions were included for all fixed effects except the controls of

TrialNumber and Duration, where relevant. Categorical independent variables were treatment
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coded with reference levels of Novel for TokenCondition and M1 for TalkerCondition.

Treatment as opposed to sum coding was selected in order to facilitate direct comparisons across

levels without making reference to grand means, which would not be relevant under the present

design. Using treatment coding allowed us to replicate the analyses of traditional approaches,

which used only identical tokens, while also showing how the results of the analysis may differ

based on talker and token type. For more information on treatment coding and sum coding, see

Brehm & Alday (2022). Post-hoc estimated marginal mean (EMM) tests were still necessary to

draw all relevant comparisons and were conducted using the emmeans package in R (Russell,

2022).

All models were mixed-effects regression models fitted in R using the lme4 package

(Bates, Mächler, Bolker, & Walker, 2015) except the model for d’, which was fitted as a

fixed-effects linear regression model using R’s built-in lm function2. For mixed-effects models,

p-values were obtained via Satterthwaite’s method using the lmerTest package (Kuznetsova,

Brockhoff, & Christensen, 2017). Random effects structures were determined by beginning with

the maximal structure and removing slopes and intercepts until the model converged (Barr, Levy,

Scheepers, & Tily, 2013). The maximal random effects structures were determined uniquely for

each model and included random intercepts by Item and by Subject along with random slopes by

each within-unit variable. If the maximal model did not converge, the random slope associated

with the lowest variance was removed. The same procedure continued until the model

converged. Fixed effects were determined in advance and not pruned in any way. Full model

specifications, including final random effects structures, are reported in Appendix A.

We hypothesized that if recognition of repeated words was facilitated by identical tokens,

performance would be stronger in the Identical condition than in the Novel condition. Stronger

performance would be characterized by higher Hit rates, faster RTs, lower FA rates, and higher

D’ in the Identical than in the Novel condition. We also tested whether results would be

asymmetrical across the two Talker conditions, M1 and M2, though we did not explicitly predict

the directions of these effects, which is beyond the scope of the current study.

2 All data and code, including models with maximal random effects structures specified, are available on Mendeley
Data: https://data.mendeley.com/datasets/cgrphxc976/2

https://data.mendeley.com/datasets/cgrphxc976/2
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Fig. 2.2: Accuracy by talker and token type. Left: Proportions of hits based on token condition (Identical vs. Novel) and talker

condition (M1 vs. M2) with each point representing a participant’s mean. Right: Proportions of hits across lags with smoothers

drawn by a generalized linear model. Densities at the bottom of the plots represent the number of repetitions at each Lag. Note

that plots are based on raw data rather than model predictions.

Hit rates are visualized in Fig. 2.2. Accuracy decreased as Lag increased (Model 1.1: β =

–1.78, SE = 0.13, z = –14.18, p < 0.001), as is visible in Fig. 2.2. Accuracy increased as

TrialNumber increased (Model 1.1: β = 0.50, SE = 0.061, z = –8.09, p < 0.001). For the reference

level of M1, there was not a statistically significant difference in accuracy rates between

participants in the Novel and Identical conditions (Model 1.1: β = –0.0048, SE = 0.12, z = –0.04,

p > 0.1). There was also no effect of Talker: Within the reference level of Novel, there was no

difference between M1 and M2 (Model 1.1: β = –0.20, SE = 0.13, z = –1.60, p > 0.1). Although

neither of these simple effects was significant alone, we observed a marginal interaction between

TokenCondition and Talker (Model 1.1: β = 0.30, SE = 0.17, z = 1.75, p = 0.08), suggesting that

accuracy may have been higher when TokenCondition was Identical and the Talker was M2 than

the cumulative effects of these variables would otherwise suggest. This possibility was partially

supported by a marginal effect in the post-hoc test showing that accuracy may have been higher

for M2 in the Identical than in the Novel TokenCondition (β = –0.30, SE = 0.13, z = –2.39, p =

0.08).

Latency data were analyzed for correct responses on Old trials. As expected, responses

slowed as the number of intervening trials increased (Model 1.2: β = 0.12, SE = 0.009, t = 14.00,

p < 0.001). Responses were also faster as TrialNumber increased (Model 1.2: β = –0.054, SE =

0.003, t = –18.16, p < 0.001). Faster response times were associated with durationally longer
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stimuli (Model 1.2: β = –0.32, SE = 0.01, t = –26.70, p < 0.001). There was no simple effect of

Talker or TokenCondition, and neither was present in interactions.

Fig. 2.3: False alarms and d’. Left: Proportions of FAs (Old responses to New items) based on TokenCondition (Identical vs.

Novel) and Talker (M1 vs. M2) with each data point reflecting a participant’s mean. Right: D’ values (z-transformed FAs

subtracted from Hits, calculated at the participant level) based on TokenCondition and Talker.

The analysis of FAs (incorrect Old responses on New items) demonstrated that listeners

produced more FAs as the experiment progressed (Model 1.3: β = 1.23, SE = 0.05, z = 25.06, p <

0.001), as demonstrated by a main effect of TrialNumber. No simple effect was observed for

either TokenCondition or Talker, and neither were involved in interactions, but pairwise

comparisons revealed one pattern based on Talker. Within the Identical condition, listeners

produced significantly more FAs when hearing M2 than when hearing M1 (β = –0.34, SE = 1.31,

z = –2.61, p < 0.05). This was the only significant pairwise comparison and is visible in Fig. 2.3

(left).

Lastly, the analysis of D’ (Fig. 2.3, right) showed that listeners in the Novel condition

(reference level) were more sensitive to words produced by M1 than words produced by M2

(Model 1.4: β = –0.23, SE = 0.11, t = –2.15, p < 0.05). While we did not observe a significant

simple effect of TokenCondition within the reference level of M1 (Model 1.4: β = –0.087, SE =

0.10, t = –0.83, p > 0.1), we did observe an interaction between TokenCondition and Talker

(Model 1.4: β = 0.32, SE = 0.15, t = 2.12, p < 0.05). Given the negative coefficient associated

with the effect of Talker and the null effect associated with TokenCondition, this interaction
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suggests that sensitivity in the M2, Identical condition is higher than would be expected based on

the independent effects.

The primary purpose of Exp. 1 was to test whether recognition of words produced by a

single talker would be inhibited when repetitions contained natural phonetic variability, and if so

whether the memory effects are asymmetrical between talkers. Few effects of TokenCondition

were found, particularly for listeners hearing M1, whose Hit rates, RTs, FA rates, and D’ were all

stable between the Identical and Novel conditions. However, there were several notable effects

of Talker, and interactions between Talker and TokenCondition, suggesting that this stability is

not broadly generalizable. Crucially, the analysis of D’ showed greater sensitivity among

listeners hearing M1 than M2, as well as an interaction between TokenCondition and Talker,

indicating that the repetition type bore a stronger influence on responses to M2 than to M1.

Within the Identical condition, listeners who responded to M2’s voice produced more FAs than

those hearing M1’s voice. The analysis of Hits showed a marginal effect of TokenCondition

among listeners in the M2 condition. Although the influence of repetition type was subtle in Exp.

1, these effects are enough to suggest that variation in listener behaviors is patterned to some

extent by the combination of talker and token repetition type and provide a baseline for

subsequent comparisons in more complex contexts. Exp. 2 expands on these findings by

examining the roles of token type and talker in a context where it is possible for classic

talker-specificity effects to emerge, i.e. a context where both talkers are heard together.

3. Experiment 2

Exp. 2 has two main goals. One goal of Exp. 2 is to test whether talker-specificity effects are

replicable when listeners hear novel as opposed to identical token repetitions on same-talker

trials. In cases where voice information—as opposed to solely token-level acoustic

information—is encoded, it would be expected that even with novel-token repetitions, listeners

would be faster and more accurate in responding to words repeated in the same voice than in a

different voice. The other goal is to test whether these effects are equivalent for the two talkers.

Our hypothesis was that there would be significant differences in response patterns based on the

talker heard at each word’s first presentation.

3.1 Methods
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3.1.1 Participants

A total of 462 participants completed the experiment after recruitment through Prolific.

All participants provided informed consent. The same exclusion criteria were applied to Exp. 2

as Exp. 1: participants were monolingually English-speaking American nationals living in the

United States who had reported no hearing loss. Responses from 87 participants were removed

from analysis because they either had a miss rate of over 10% on trials where a token was

repeated with a lag of either 1 or 2 trials, or failed to respond to at least 85% of trials, leading to a

sample size of 375. Power analysis was conducted in the same manner as in Exp. 1. Participants

were again compensated $3.77, and took an average of 15.46 minutes to complete the

experiment.

3.1.2 Stimuli & Design

Stimuli. The words and tokens used as stimuli in Exp. 2 were identical to those used in

Exp. 1. The experiment was again coded in JavaScript using the jsPsych library.

Design. The design of Exp. 2 was nearly identical to that of Exp. 1 with the exception

that all participants heard both talkers rather than one talker individually. Thus, TokenCondition

(Identical vs. Novel) was the only between-subjects variable.

The words in each phase had a 50% chance of being heard in the voice of each talker. In

other words, of the 140 first presentations heard in the test phase, 70 were produced by M1 and

70 were produced by M2. Among the repeated words, 50% were produced by the same talker as

the first presentation and 50% were produced by the other talker. For example, among repetitions

of the 70 words initially produced by M1, 35 were repeated by M1 and 35 were repeated by M2.

In the identical token condition, all words repeated in the same voice as the initial presentation

were identical recordings to the initial presentation. In the novel token condition, all repeated

words in the same voice as the initial presentation consisted of previously unheard audio. The

exact distribution of words and talkers was generated randomly and uniquely for each participant

in-browser using an algorithm written in JavaScript. There were again 8 practice word pairs, 16

memory load word pairs, and 140 test word pairs. Here, word pair refers to each individual

stimulus word’s Old and New presentations. There were 164 total word pairs, and therefore 328

total trials. Lags again ranged from 1 to 65 with approximately the same distribution as in Exp. 1.
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3.1.3 Procedure

The procedure of Exp. 2 was identical to that of Exp. 1. The response keys, the number of

trials in each phase, and the audio check procedure were all the same.

3.2 Results & Discussion

Mixed-effects regression models were again fitted in R using the lme4 package (Bates et

al., 2015). Random effects structures were determined in the same manner as in Exp. 1. For full

model specifications and summaries, see Appendix B. Models in that section are numbered

2.1–2.7. These models were fitted to the proportion of correct Old responses on both talker’s

stimuli pooled (Hits, Model 2.1), based on TokenCondition (Novel vs. Identical), the voice of

the repetition (RepVoice, DIFF vs. SAME), Lag (1–65, mean-centered and rescaled), and

TrialNumber (1–280, mean-centered and rescaled); and the proportion of Hits with words first

presented in each talker’s voice separated (Model 2.2) based on TokenCondition, talker heard on

first presentation (FirstTalker, M1 vs. M2), talker heard at second presentation (SecondTalker,

M1 vs.M2), and Lag. Models with the same fixed-effects structures and the additional control of

Duration (measured in ms, mean-centered and rescaled) were fitted to logRT with the talkers

pooled (Model 2.3) and separated (Model 2.4). As in Exp. 1, RT was measured from the offset of

each stimulus. Models were also fitted to the proportion of incorrect Old responses on New

words (false alarms, FAs, Model 2.5) based on TokenCondition, Talker (M1 vs. M2), and

TrialNumber, to D’ (Model 2.6) based on TokenCondition, and to By-Talker D’ (Model 2.7)

based on TokenCondition and Talker. By-Talker D’ was calculated using Hits on words heard in

each talker’s voice at the first presentation. As in Exp. 1, categorical independent variables were

treatment coded with reference levels of Novel for TokenCondition, DIFF for RepVoice, andM1

for FirstTalker, SecondTalker, and Talker. Models with a dependent variable of Hits or FAs were

fitted using binomial logistic regression and models with a dependent variable of logRT or d’

were fitted using linear regression. Interaction terms were included for all fixed effects except the

controls of TrialNumber and Duration. Given the large number of fixed effects, higher order

interactions involving Lag were excluded from Models 2.2 and 2.4.

3.2.1 Replication of talker-specificity effects
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We first asked whether talker-specificity effects were observable in the context of novel

token repetitions. In the Novel condition (the reference level), listeners were more accurate in

correctly recognizing Old words when the word was repeated in the SAME voice than in a DIFF

voice (Model 2.1: β = 0.12, SE = 0.05, z = 2.18, p < 0.001), as visualized in Fig. 3.1 (left).

Pairwise comparisons revealed that the same was true in the Identical condition (β = –0.34, SE =

0.56, z = –6.11, p < 0.001), replicating the classic talker-specificity effect. As expected, listeners

were decreasingly accurate as Lag increased (Model 2.1: β = –1.75, SE = 0.11, z = –16.42, p <

0.001), and more accurate as TrialNumber increased (Model 2.1: β = 0.28, SE = 0.053, z = 5.28,

p < 0.001).

Fig. 3.1: Accuracy and latency by RepVoice and token type. Left: Proportions of hits based on TokenCondition (Identical vs.

Novel) and RepVoice (SAME vs. DIFF) with each point representing a participant’s mean. Right: Mean logRT values based on

TokenCondition (Identical vs. Novel) and RepVoice (Same vs. Diff) with 95% CIs. For reference, logRT values of 2.64 and 2.67

are equivalent to 437 ms and 468 ms respectively. Note that both plots are based on raw data rather than model estimates.

Latency data further confirmed that talker-specificity effects were observable in the

context of Novel tokens (Fig. 3.1, right). In the Novel condition (reference level), responses were

faster on SAME trials than on DIFF trials (Model 2.3: β = –0.010, SE = 0.002, t = –4.085, p <

0.001). A post-hoc EMM test showed that this effect was also significant in the Identical

condition (β = 0.0067, SE = 0.0024, t = 2.96, p < 0.05), replicating the classic talker-specificity

effect. As Lag increased, responses on DIFF trials (the reference level) slowed (Model 2.3: β =

0.12, SE = 0.0078, t = 15.84, p < 0.001). Responses were faster at higher than at lower

TrialNumbers (Model 2.3: β = –0.037, SE = 0.0030, t = –12.54, p < 0.001) and faster when
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tokens were longer than when they were shorter (Model 2.3: β = –0.34, SE = 0.0061, t = –54.86,

p < 0.001).

Some effects suggested differences across TokenConditions. While responses were only

marginally more accurate in the Identical than in the Novel condition within the reference level

of DIFF (Model 2.1: β = 0.14, SE = 0.085, z = 1.67, p = 0.1), there was an interaction between

TokenCondition and RepVoice (Model 2.1: β = 0.22, SE = 0.067, z = 3.37, p < 0.001), suggesting

that on SAME repetitions in the Identical condition, listeners were more accurate than would be

expected based on the independent effects of TokenCondition and RepVoice. The post-hoc test

confirmed that on SAME trials, responses were more accurate in the Identical than in the Novel

condition (β = –0.37, SE = 0.089, z = –4.15, p < 0.01). We did not observe effects of

TokenCondition in the latency data. However, the analysis of d’ showed that when accounting

for decision bias, listeners were more discriminate in the Identical condition than in the Novel

condition (Model 2.6: β = 0.11, SE = 0.037, t = 3.01, p < 0.01).

Taken together, these effects suggest that talker-specificity effects are observable even

when listeners are unable to match precise acoustic patterns. In the Novel condition, listeners

were faster and more accurate to recognize Old words when they were repeated in the same

voice than when they were repeated in the alternate voice, suggesting that this group of effects

surfaces not only through the precise repetition of a distinct acoustic event but also through the

encoding of higher level talker voice characteristics. However, we also observed effects based on

TokenCondition, suggesting that recognition may be bolstered by the repetition of an exact

phonetic match. The difference in accuracy between SAME and DIFF trials was greater when

listeners heard identical tokens than when they heard novel tokens. Additionally, overall

discriminability was higher in the Identical than in the Novel condition. We explore these effects

further via analyses of talker-based asymmetries.

3.2.2 Asymmetric talker encoding

Our second set of analyses in Exp. 2 aimed to investigate the hypothesis that encoding

and recall of the two talkers’ voices would be asymmetrical. We hypothesized that accuracy and

latency would differ based on the talker heard at each word’s first presentation. The remainder of

this section uses a shorthand convention where, for example, M1-M2 refers to trials where the



20

first presentation was heard in the voice of M1 and the repetition was heard in the voice of M2.

Thus M1-M1 and M2-M2 refer to SAME trials.

We found substantial differences in accuracy based on the talkers (Fig. 3.2). Relative to

M1-M1 trials in the Novel condition (the reference level), participants produced fewer correct

responses on M1-M2 trials (Model 2.2: β = –0.23, SE = 0.070, z = –3.36, p < 0.001) and on

M2-M1 trials (Model 2.2: β = –0.65, SE = 0.073, z = –9.050, p < 0.001), reflecting the

across-the-board lower accuracy on DIFF trials relative to SAME trials described above.

However, the post-hoc EMM test revealed these two categories of DIFF trials were not

equivalent. The order of talkers influenced responses significantly in the Novel condition, with

significantly higher Hit rates for M1-M2 than for M2-M1 (β = –0.42, SE = 0.073, z = –5.80, p <

0.001). The same relationship was found in the Identical condition (β = –0.43, SE = 0.074, z =

–5.85, p < 0.001). This indicates that words first presented in the voice of M1 were remembered

better than words first presented in the voice of M2. The decrease in accuracy relative to M1-M1

was less pronounced for the SAME trials M2-M2 than the combined effects of DIFF trials

M1-M2 and M2-M1 would suggest, as indicated by a significant interaction between FirstTalker

and SecondTalker (Model 2.2: β = 0.34, SE = 0.084, z = 4.03, p < 0.001). However, a post-hoc

EMM test confirmed that participants were significantly less accurate on M2-M2 trials than

M1-M1 trials in the Novel condition (β = 0.55, SE = 0.079, z = 6.95, p < 0.001), indicating

asymmetrical accuracy on the two types of SAME trial within the Novel condition. As in

previous models, response accuracy decreased as lag increased (Model 2.2: β = –1.89, SE = 0.12,

z = –16.46, p < 0.001) and increased as TrialNumber increased (Model 2.2: β = 0.28, SE = 0.084,

z = 4.03, p < 0.001).



21

Fig. 3.2: Accuracy by talker and token type. Left: Plots of proportions of Hits (correct Old responses) based on token condition

(Identical vs. Novel) and voice of each presentation on SAME trials. The talker label refers to the talker heard at both the first

and second presentation. Right: Plots of proportions of hits on DIFF trials. The voice order naming schema shows the voice of

the initial presentation separated by a hyphen from the voice of the repetition. For example, the group M1-M2 includes all trials

where the word was first heard in the voice of M1 and repeated in the voice of M2.

Latency data from the Novel condition were largely consistent with accuracy data.

Relative to M1-M1 trials, listeners were slower to respond on M1-M2 trials (Model 2.4: β =

0.030, SE = 0.0053, t = 5.65, p < 0.001) as well as on M2-M1 trials (Model 2.4: β = 0.018, SE =

0.0037, t = 4.73, p < 0.001), reflecting the previously described RT cost on DIFF trials relative to

SAME trials. The increase in RT was less pronounced on M2-M2 trials, as indicated by an

interaction between FirstTalker and SecondTalker (Model 2.4: β = –0.020, SE = 0.0049, t =

–4.08, p < 0.001), but the EMM test indicated that responses were slower on M2-M2 trials than

on M1-M1 trials (β = –0.028, SE = 0.0054, t = –5.12, p < 0.001). As observed previously,

responses were slowed as Lag increased (Model 2.4: β = 0.12, SE = 0.0077, t = 15.82, p <

0.001), and sped as TrialNumber increased (Model 2.4: β = –0.037, SE = 0.0030, t = –12.62, p <

0.001), and as Duration increased (Model 2.4: β = –0.30, SE = 0.012, t = –25.037, p < 0.001).

Talker-based asymmetries were also evident in the FA data (Fig. 3.3, left) and in the

By-Talker D’ data (Fig. 3.3, right). Listeners had higher error rates for New items in the Novel

condition (reference level) when responding to M2 than to M1 (Model 2.5: β = 0.29, SE = 0.051,

z = 5.78, p < 0.001). The EMM test revealed that the same was true in the Identical condition

(Model 2.5: β = –0.14, SE = 0.050, z = –2.88, p < 0.05). They were also more likely to produce a
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FA as the experiment progressed (Model 2.5: β = 1.24, SE = 0.046, z = 26.87, p < 0.001). The

analysis of By-Talker D’ revealed that listeners in the Novel condition showed greater sensitivity

to words first presented in the voice of M1 compared to M2 (Model 2.7: β = –0.26, SE = 0.026, t

= –9.96, p < 0.001). Similarly, we observed higher d’ values for M1 than M2 in the Identical

condition in the EMM test (β = 0.15, SE = 0.026, t = 6.08, p < 0.001).

Fig. 3.3: False alarms and d’ by talker and token type. Left: Proportion of FAs (incorrect Old responses on New trials) based

on Talker and TokenCondition. Right: Overall sensitivity or D’ (Hits – FAs) calculated at the talker level.

We also found substantial evidence that TokenCondition influenced responses to the

talkers asymmetrically. On M1-M1 trials (reference level), listeners in the Identical condition had

only marginally higher Hit rates than listeners in the Novel condition (Model 2.2: β = 0.18, SE =

0.10, z = 1.78, p = 0.08), but the EMM test showed significantly higher accuracy on M2-M2 in

the Identical than in the Novel condition (Model 2.2: β = –0.56, SE = 0.093, z = –6.01, p <

0.001). This asymmetry is further supported by a three-way interaction between TokenCondition,

FirstTalker, and SecondTalker (Model 2.2: β = 0.42, SE = 0.12, z = 3.50, p < 0.001). This is

clearly visible in Fig. 3.2 (left), when comparing responses on M1-M1 trials across conditions to

M2-M2 trials across conditions. A post-hoc test also showed that listeners were not measurably

more accurate on M2-M2 trials than M2-M1 trials in the Novel condition (p > 0.1), indicating

that in the absence of a precise physical match between tokens, the specificity effect was entirely

dependent on the voice heard at encoding (appearing for M1 but not for M2).

We also observed asymmetries based on TokenCondition in the latency data. The latency

data showed that listeners were slightly slower to respond to M1-M1 trials in the Identical

condition than in the Novel condition (Model 2.4: β = 0.028, SE = 0.014, t = 2.03, p < 0.05). The
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RT increase associated with M1-M2 trials relative to M1-M1 was less pronounced in the

Identical condition than in the Novel condition, as indicated by a significant interaction between

TokenCondition and SecondTalker (Model 2.4: β = –0.016, SE = 0.0054, t = –2.94, p < 0.01).

Token-based asymmetries across talkers were also present in the FA data, although the

simple effect of TokenCondition was not significant in the reference level of M1, Novel (Model

2.5: β = 0.12, SE = 0.093, z = 1.30, p > 0.1). M2 trials were characterized by more FAs than M1

trials in both conditions, but to a lesser extent in the Identical condition than in the Novel

condition, as demonstrated by an interaction between TokenCondition and Talker (Model 2.5: β

= –0.15, SE = 0.0062, z = –2.431, p < 0.05). The D’ data showed a similar pattern, where

responses to M2 were characterized by less of a decrease relative to M1 in the Identical condition

relative to the Novel condition, as demonstrated by an interaction between TokenCondition and

Talker (Model 2.7: β = 0.10, SE = 0.036, t = 2.85, p < 0.01). A post-hoc EMM test confirmed

that D’ for M2’s tokens was significantly higher in the Identical condition than in the Novel

condition (β = –0.16, SE = 0.42, t = –3.82, p < 0.001).

These patterns of results strongly suggest that encoding and recall of spoken words is not

symmetrical across talkers. Responses differed substantially even to two talkers matched along

macro-demographic lines. Words spoken by M1 were encoded more strongly and recognized

more accurately than words spoken by M2, as indicated by the higher rate of Hits, faster RTs,

lower FA rates, and higher D’ values. Crucially, the influence of token type was also

asymmetrical across talkers. While responses to M1’s stimuli were relatively stable in the Novel

and Identical conditions, responses to M2’s stimuli were generally characterized by stronger

performance (higher Hits, higher D’) in the Identical than in the Novel condition. The better

recognition of Old items first presented in the voice of M1 than M2 in the Novel condition may

indicate that high-level voice information was better encoded for M1 than for M2. This pattern

suggests that the stronger performance on SAME trials in the Identical as opposed to Novel

condition when talkers were pooled (described in the previous section, 3.2.1) must have been

driven largely by the decreased sensitivity to M2’s stimuli in the Novel condition rather than an

across-the-board decrease in sensitivity when same-talker trials were repeated with novel tokens.

4. General Discussion
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In this study, we compared recognition of identically repeated tokens to recognition of novel

tokens within and across talkers. By including word repetitions that contained the natural

phonetic variability present in a talker’s voice (novel tokens), we tested whether listeners used

high-level voice characteristics to facilitate recognition. Aside from informing our understanding

of what kinds of acoustic information are stored in memory traces of spoken words, this allowed

us to investigate the possibility that previously observed talker-specificity effects arose from an

experimental confound where same-talker repetitions were presented with identical tokens. We

also investigated data at the talker level, a mode of analysis which has previously been absent in

recognition memory studies, even as there is reason to believe that encoding and recall of spoken

words is not consistent across talkers. We found that memory for identical tokens was in some

cases stronger than memory for novel tokens, although this effect was dependent on the talker.

Although specificity effects were replicated with novel token repetitions, an analysis of

talker-level patterns revealed substantial richness in the data not captured by that generalization.

We argue that these asymmetries were the result of variable encoding strengths of each voice

(i.e., listeners encoded one voice more strongly than the other). We also argue that examining

data at the talker level is a crucial step in speech research, noting that the conclusions of this

study would have been very different if we had only analyzed the pooled data.

One important finding was that talker-specificity effects were replicated when

same-talker repetitions were presented with non-identical tokens. Even when these repetitions

consisted of tokens that listeners had not previously heard in the procedure, responses were faster

and more accurate when the voice was the same as the first presentation. This finding suggests

that previously observed talker-specificity effects are unlikely to have been purely the result of

the widespread experimental confound of using same-talker, identical-token repetition trials.

This means that to at least some extent, listeners must be capable of encoding higher level voice

characteristics and using those encodings actively in word recognition. However, rich and

nuanced by-talker effects emerged that add nuance to this interpretation.

Although classic talker-specificity effects were replicated, the results of the two

experiments together gesture toward a system where recognition is facilitated by identical token

matching, but only in some cases and in a way that is largely contingent on the talker. While

effects of TokenCondition were observed in both experiments, these were largely overshadowed

by effects of Talker and often came in the form of interactions with Talker. For M1, results were



25

largely consistent across TokenConditions in both experiments. In Exp. 1, listeners hearing M1

performed equally well in the Novel and Identical conditions, but this level of consistency was

not observed for listeners hearing M2, whose recognition performance was somewhat poorer in

the Novel condition than in the Identical condition. This suggests that listeners hearing M2 were

more dependent on the precise repetition of the physical stimulus than were listeners hearing M1.

A similar but more robust pattern of results was observed in Exp. 2, with TokenCondition

having a more substantial influence on responses for M2 than for M1. While the only observed

benefit of identical repetitions for M1 came in the form of marginally higher accuracy on M1-M1

trials in the Identical than in the Novel condition, benefits of Identical repetitions were

widespread for M2. In the Identical condition relative to the Novel condition, Hit rates on

M2-M2 trials were higher, false alarm rates on M2 trials were lower, and d’ was higher for

repetitions of words first presented in M2’s voice. As in Exp. 1, performance benefited more

from the repetition of identical tokens when M2 rather than M1 was the talker in question. Given

that humans have been demonstrated to retain even meaningless acoustic information quite well

(e.g. Viswanathan et al., 2016; Winkler et al., 2002), it is logical that listeners would recruit this

information for word recognition when relevant. It follows that when listeners jointly encode

word and high-level voice information well (as in the case of M1), fine-grained acoustic

information does not improve performance, but when voice information is more weakly encoded

(as in the case of M2), this otherwise meaningless acoustic information becomes advantageous,

leading to a relative boost in performance.

Importantly for this account, not all talker-level asymmetries were contingent on the type

of token heard at repetition. This was particularly evident in the analysis of D’ in Exp. 2, which

showed that even within the Identical condition, participants were more accurate when the talker

was M1 than when the talker was M2. The analysis of Hits showed that on different-talker trials

in the Identical condition, participants were more accurate when the talker order was M1-M2

than when it was M2-M1. This pattern indicates that encoding may have been overall stronger

for words spoken by M1 than words spoken by M2. While the current study was not designed to

tease apart the specific factors that lead to and condition asymmetric encoding and recognition of

voices, we explore several possibilities here.

One account may appeal to the typicality of each voice. Some past work has

demonstrated that atypical forms draw more attention at encoding, leading to easier access at
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recall. This effect has been found for speech rates (Nygaard, Burt, & Queen, 2000), typical and

atypical male and female voices (Johnson, 2006), and typical and atypical phonological forms

(Sumner & Samuel, 2005). The account of the present results appealing to typicality would need

to demonstrate that M2’s voice is more typical than M1’s voice, leading to weaker episodic

encoding and therefore worse recall. (Although defining and quantifying typicality in this case

may prove difficult.)

A second explanation may appeal to the ideological idealization of voices. Sumner &

Kataoka (2013) found in a false-memory study that among General American accent (GA)

listeners, New York City accents (NYC) and Southern Standard British English accents (BE)

were represented asymmetrically in memory, even though the two variants are in principle

equally atypical for GA listeners. False recall was higher for NYC talkers than for BE talkers,

suggesting that the BE voices were somehow privileged in encoding. This increased allocation of

cognitive resources to BE rather than NYC talkers may be the result of BE having a more

idealized status than NYC among many GA listeners. In the present study, if responses to M1’s

voice were stronger than responses to M2’s it may be the case that M1’s voice is in some way

more idealized than M2’s. However, there is currently a wide range of possible explanations for

the asymmetries seen in encoding of the two voices used in the present experiments, and it is not

the aim of this study to disentangle the source of these asymmetries. Rather, our purpose is to

demonstrate that encoding is not equivalent across talkers and to encourage researchers to tease

apart the factors that may contribute to variable degrees of encoding. Future studies will need to

target specific sources of variance directly. Research in this area could prove fruitful in

contributing to understandings of how social phenomena emerge in speech perception, how

idiolects emerge for individuals, how the veridicality of ear-witness testimonies varies depending

on the talkers in question, and so on.

The fact that high-level voice characteristics seem to have been encoded well for listeners

hearing M1 leads to questions about the nature of memory traces of voices as something

separable from the specific tokens in which they were encountered. It has been a fruitful line of

research in auditory cognitive science and cognitive neuroscience to investigate how humans are

able to associate voices with individuals (e.g., Lavan, Burston, & Garrido, 2019; van Lancker,

Kreiman, & Cummings, 1989; von Kriegstein & Giraud, 2006; Winters, Levi, & Pisoni, 2008).

However, identifying specific characteristics of speech that listeners use to associate voices with
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individuals has been difficult. For example, van Dommelen (1990) found that f0 was treated as a

useful cue to talker identity only when talkers had unusually high or low pitch averages,

suggesting that the roles of acoustic parameters in identifying speakers by voice are not

hierarchically fixed. In an fMRI study, Hasan, Valdes-Sosa, Gross, & Belin (2016) found

cross-classification of facial and vocal information in several areas of the temporal lobe,

suggesting that voice information is part of a larger identity-classification mechanism, where

voice characteristics are entangled or interlocking with other sources of individual

differentiation. Much of this recognition system must be divorced to at least some extent from

the types of acoustic regularities that are present only in identical tokens, but much work remains

to be done to better understand memory representations of individual voices, how these

representations are active in speech perception, and why they are apparently encoded more

strongly for some voices than for others.

Another important point regarding the observed asymmetries relates to the degree to

which we observed talker-based asymmetries in each experiment. Notably, these effects were

subtle in Exp. 1, but quite robust in Exp. 2. When M1 and M2 were heard in isolation, response

patterns barely differed across talkers, but when the two talkers were heard together, the

differences increased substantially. We posit that context strongly conditions the degree to which

listeners encode the voices of particular talkers. When the talkers were heard separately, listeners

allocated all available resources to the task at hand, but when the talkers were heard together,

listeners may have (subconsciously) allocated more cognitive resources to the recognition and

encoding of tokens spoken by M1 than M2. This observation is consistent with a rich history of

context effects in speech perception research (Barreda, 2012; Sommers, Nygaard, & Pisoni,

1994). Kim and Sumner (2015), for example conducted two experiments probing the extent to

which emotionally neutral words (e.g., pineapple) uttered with phonetically-cued emotional

information prime semantically related words. Crucially, in Exp. 1, each listener heard only one

type of emotional prosody for all words (happy/neutral/angry), and in Exp. 2, participants heard

a mix of prosody types (happy & neutral/angry & neutral). When neutral primes were presented

alone in Exp. 1, they successfully primed semantically related targets, but when they occurred in

a mixed context in Exp. 2, the neutral primes did not prime semantically related targets. The

authors posit that this asymmetry emerged as a result of the additional attention allocated to

emotionally uttered primes relative to neutral primes when the two types co-occur. This schema
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may be analogous to our own observations in the present study, where M1’s voice may have

drawn additional attention primarily in the context of M2’s voice.

A final point relating to the observed asymmetries in responses based on talkers is that

this level of analysis has not been common in speech perception, but had it not been conducted in

this case, the study’s conclusions would have been very different. This is clear from the

outcomes of the two strategies employed for modeling the results of Exp. 2. One set of models

followed the traditional approach for analysis by pooling results for both talkers while the other

set included predictors reflecting the talker heard in each trial. If our analysis had consisted

solely of the models with pooled talkers, the conclusion would have been that performance is

characterized by a tripartite system where recognition is strongest for identical-token same-talker

repetitions, followed by novel-token same-talker repetitions, followed by different-talker

repetitions. The analysis of responses by talker revealed an altogether different schema where

novel token repetitions are recognized just as well as identical repetitions for some talkers, but

not for others. This demonstrates the importance of considering the specific talker producing the

stimuli and suggests that the encoding of spoken words is not equivalent from talker to talker.

Individual talkers are encoded differently and induce unique patterns of results. Future studies

may benefit from using stimuli from as many talkers as is feasible, and where possible, analyzing

results with consideration of talker-level asymmetries.

Several other outstanding questions were apparent in the data. Contrary to our hypothesis

that identical token repetitions would facilitate recognition and therefore be characterized by

faster responses relative to novel tokens, the only significant effect of TokenCondition on RT

(Model 2.4) showed that in some cases, responses were in fact somewhat slower for identical

tokens than novel tokens in Exp. 2. Because this was not the central focus of analysis in the

current study, additional experiments would need to be conducted to confirm the validity of this

finding. In the case that this finding is replicated, it may point to differences in the nature of the

tasks of recognizing identical and novel tokens. While the most typical pattern described across

chronometric research is that high accuracy is associated with low RTs (a negative correlation), it

has been observed that in some cases, more difficult tasks requiring more attention to the

stimulus may induce a positive correlation, or high accuracy associated with high RTs (see De

Boeck & Jeon, 2019 for discussion). This pattern of results is consistent with findings in Exp. 2,

where slower RTs were accompanied by higher accuracy in the Identical condition relative to the
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Novel condition. In this case, the positive correlation would theoretically emerge because the

nature of the task encourages listeners to attend to subtle acoustic characteristics of the stimuli

rather than broad voice characteristics, making the process of correctly identifying a match more

often successful, but also more cognitively burdensome than when fine-grained acoustic

characteristics are not available. However, for reasons described above, the interpretation of

patterns in the latency data is not straightforward and more convincing explanations of these

patterns will require their own studies.

5. Conclusion

In this study, we asked whether listeners encoded higher level voice characteristics in addition to

low-level acoustic properties of spoken words, whether widely replicated talker-specificity

effects were bolstered by an experimental confound involving the repetition of a physical

stimulus, whether encoding was stable across demographically matched talkers, and whether

talker-level asymmetries in recognition were influenced by the type of token heard at a word’s

repetition. We replicated talker-specificity effects in the context of novel token repetitions but

found that these effects were less stable than when the exact physical stimulus was repeated.

Specifically, when novel token repetitions were heard, it was clear that listeners encoded the

voice of one talker more strongly than the voice of the other talker, suggesting that the degree to

which listeners encode voice characteristics may depend in part on the voice itself. We draw on

this observation to suggest that future research in talker specificity use novel rather than identical

token repetitions, given that this approach provides a more sensitive measure of memory, a

context where asymmetrical encoding strengths are more readily observable, and a more direct

test of the encoding of high-level voice characteristics as opposed to idiosyncratic statistical

patterns present in the stimuli. It will also be important for researchers to consider the voices

used for stimulus creation, given that the cognitive processes we aim to study are in part

dependent on the characteristics of the voices. Future research will be needed to determine the

extent to which various cognitive processes are or are not contingent on the voices heard as well

as the characteristics of voices that encourage or discourage various processing strategies.
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Appendix A – Exp. 1 Model Summaries

Model 1.1

Hits ~ TokenCondition × Talker × Lag + TrialNumber + (1 + Lag | Participant) + (1 + Talker |
Item)

β SE z p Sig.

Intercept 2.859732 0.092228 31.007 <2e-16 ***

TokenCondition–Identical -0.004774 0.120129 -0.04 0.9683

Talker–M2 -0.201397 0.125794 -1.601 0.1094

Lag -1.783588 0.125827 -14.175 <2e-16 ***

TrialNumber 0.496981 0.061472 8.085 6.23E-16 ***

TokenCondition–Identical : Talker–M2 0.302764 0.173012 1.75 0.0801 .

TokenCondition–Identical : Lag 0.036061 0.171911 0.21 0.8339

Talker–M2 : Lag -0.053959 0.171095 -0.315 0.7525

Model 1.2

logRT ~ TokenCondition × Talker × Lag + TrialNumber + Duration + (1 + Lag | Participant) + (1
+ TokenCondition + Talker + Lag | Item)
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β SE DF t p Sig.

Intercept 2.62 0.0136 404 192.577 <2e-16 ***

TokenCondition–Identical 0.00621 0.0183 355 0.339 0.735

Talker–M2 0.0129 0.0191 376 0.677 0.499

Lag 0.121 0.00861 359 13.998 <2e-16 ***

TrialNumber -0.0540 0.00297 42900 -18.16 <2e-16 ***

Duration -0.318 0.0119 715 -26.701 <2e-16 ***

TokenCondition–Identical : Talker–M2 0.00629 0.0264 351 0.238 0.812

TokenCondition–Identical : Lag 0.00433 0.0116 335 0.374 0.708

Talker–M2 : Lag -0.00195 0.0118 331 -0.165 0.869

TokenCondition–Identical : Talker–M2 : Lag -0.00794 0.0167 331 -0.477 0.634

Model 1.3

FalseAlarms ~ TokenCondition × Talker + TrialNumber + (1 | Participant) + (1 +
TokenCondition + Talker | Item)

β SE z p Sig.

Intercept -2.2512 0.10682 -21.074 <2e-16 ***

TokenCondition–Identical 0.01537 0.1274 0.121 0.904

Talker–M2 0.10678 0.13248 0.806 0.42

TrialNumber 1.22763 0.04898 25.064 <2e-16 ***

TokenCondition–Identical : Talker–M2 0.22693 0.18193 1.247 0.212

Model 1.4

d’ ~ TokenCondition × Talker

β SE t p sig.
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Intercept 1.68999 0.07466 22.636 <2e-16 ***

TokenCondition–Identical -0.08663 0.10419 -0.831 0.4063

Talker–M2 -0.23025 0.10713 -2.149 0.0323 *

TokenCondition–Identical : TalkerM2 0.31933 0.15053 2.121 0.0346 *

Appendix B – Exp. 2 Model Summaries

Model 2.1

Hits ~ TokenCondition × RepVoice × Lag + TrialNumber + (1 + RepVoice + Lag | Participant) +
(1 + TokenCondition + RepVoice + Lag | Item)

β SE z p Sig.

Intercept 2.28284 0.07699 29.652 <2e-16 ***

TokenCondition–Identical 0.14207 0.08517 1.668 0.095312 .

RepVoice–Same 0.11617 0.0532 2.184 0.028999 *

Lag -1.74645 0.10633 -16.424 <2e-16 ***

TrialNumber 0.27868 0.05281 5.277 1.32E-07 ***

TokenCondition–Identical : RepVoice–Same 0.22701 0.06736 3.37 0.000751 ***

TokenCondition–Identical : Lag -0.10846 0.14205 -0.764 0.445144

RepVoice–Same:Lag -0.07122 0.13342 -0.534 0.593452

TokenCondition–Identical : RepVoice–Same : Lag 0.23889 0.19183 1.245 0.213001

Model 2.2

Hits ~ TokenCondition × FirstTalker × SecondTalker + Lag + TrialNumber +
Lag:TokenCondition + Lag:FirstTalker + Lag:SecondTalker + (1 + FirstTalker + SecondTalker +
Lag | Participant) + (1 + FirstTalker + SecondTalker + Lag | Item)

β SE z p Sig.

Intercept 2.72732 0.0868 31.419 <2e-16 ***
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TokenCondition–Identical 0.18445 0.10385 1.776 0.075703 .

FirstTalker–M2 -0.65633 0.07257 -9.045 <2e-16 ***

SecondTalker–M2 -0.23333 0.06951 -3.357 0.000789 ***

Lag -1.89438 0.11509 -16.461 <2e-16 ***

TrialNumber 0.27754 0.05299 5.238 1.63E-07 ***

TokenCondition–Identical : FirstTalker–M2 -0.02967 0.0895 -0.332 0.740257

TokenCondition–Identical : SecondTalker–M2 -0.01822 0.09075 -0.201 0.84084

FirstTalker–M2 : SecondTalker–M2 0.33996 0.08438 4.029 5.60E-05 ***

TokenCondition–Identical : Lag -0.01077 0.10952 -0.098 0.92167

FirstTalker–M2 : Lag 0.13755 0.10015 1.373 0.16965

SecondTalker–M2 : Lag 0.03507 0.09902 0.354 0.723184

TokenCondition–Identical : FirstTalker–M2 : SecondTalker–M2 0.42248 0.12063 3.502 0.000461 ***

Model 2.3

logRT ~ TokenCondition × RepVoice × Lag + TrialNumber + Duration + (1 + Lag | Participant)
+ (1 + TokenCondition + Lag | Item)

β SE DF t p Sig.

Intercept 2.65 0.00977 446 271.084 <2e-16 ***

TokenCondition–Identical 0.0164 0.0132 395 1.239 0.2162

RepVoice–Same -0.0100 0.00245 43700 -4.085 4.42E-05 ***

Lag 0.123 0.00778 784 15.835 <2e-16 ***

TrialNumber -0.0372 0.00296 43700 -12.535 <2e-16 ***

Duration -0.335 0.00611 12200 -54.863 <2e-16 ***

TokenCondition–Identical : RepVoice–Same 0.00340 0.00340 43800 1.000 0.3173

TokenCondition–Identical : Lag -0.0178 0.0106 882 -1.687 0.0919 .
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RepVoice–Same : Lag 0.00398 0.00908 43200 0.438 0.6616

TokenCondition–Identical : RepVoice–Same : Lag 0.00414 0.0126 43200 0.328 0.7426

Model 2.4

logRT ~ TokenCondition × FirstTalker × SecondTalker + Lag + TrialNumber + Duration +
Lag:TokenCondition + Lag:FirstTalker + Lag:SecondTalker + (1 + FirstTalker + SecondTalker +
Lag | Participant) + (1 + TokenCondition + FirstTalker + SecondTalker + Lag | Item)

β SE DF t p Sig.

Intercept 2.63 0.0105 473 249.642 <2e-16 ***

TokenCondition–Identical 0.0283 0.0139 393 2.033 0.04274 *

FirstTalker–M2 0.0175 0.00370 949 4.728 2.61E-06 ***

SecondTalker–M2 0.0301 0.00532 1040 5.646 2.11E-08 ***

Lag 0.121 0.00767 744 15.819 <2e-16 ***

TrialNumber -0.0373 0.00295 43600 -12.619 <2e-16 ***

Duration -0.301 0.0120 713 -25.037 <2e-16 ***

TokenCondition–Identical : FirstTalker–M2 -0.00611 0.00496 1330 -1.232 0.21823

TokenCondition–Identical : SecondTalker–M2 -0.0159 0.00541 936 -2.939 0.00338 **

FirstTalker–M2 : SecondTalker–M2 -0.0198 0.00486 43100 -4.079 4.54E-05 ***

TokenCondition–Identical :Lag -0.0158 0.00838 356 -1.882 0.06071 .

FirstTalker–M2:Lag 0.00113 0.00628 43000 0.179 0.85793

SecondTalker–M2:Lag 0.00665 0.00629 43200 1.057 0.29034

TokenCondition–Identical : FirstTalker–M2 :
SecondTalker–M2 0.00589 0.00675 43100 0.873 0.38264

Model 2.5

FalseAlarms ~ TokenCondition × Talker + TrialNumber + (1 + Talker | Participant) + (1 + Talker
| Item)
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β SE z p Sig.

Intercept -2.16869 0.08458 -25.642 <2e-16 ***

TokenCondition–Identical 0.12055 0.09282 1.299 0.194

TalkerM2 0.29472 0.05098 5.781 7.44E-09 ***

TrialNumber 1.23554 0.04598 26.871 <2e-16 ***

TokenCondition–Identical : TalkerM2 -0.15107 0.06214 -2.431 0.0151 *

Model 2.6

d’ ~ TokenCondition

β SE t p Sig.

Intercept 1.29586 0.02646 48.972 <2e-16 ***

TokenCondition–Identical 0.11169 0.03713 3.008 0.0028 **

Model 2.7

By-talker d’ ~ TokenCondition × Talker + (1 | Participant)

β SE DF t p Sig.

Intercept 1.46437 0.02973 539.1072 49.26 <2e-16 ***

TokenCondition–Identical 0.05575 0.04165 539.1072 1.338 0.1813

FirstTalker–M2 -0.25829 0.02593 373 -9.96 <2e-16 ***

TokenCondition–Identical : FirstTalker–M2 0.10352 0.03634 373 2.849 0.00463 **




