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Abstract

Zinc-IV-nitrides and scandium nitride for novel heterostructure applications

by

Nicholas Lloyd Adamski

The wurtzite III-nitrides are an established set of wide-band-gap semiconductors with

a wide range of applications in optical and electronic devices. Recently, new types of ni-

tride semiconductors have been proposed to widen the range of accessible parameters and

device applications. One class of such materials are the Zn-IV-nitrides, which have strong

structural and electronic similarities to the III-nitrides. The predicted band gaps are de-

sirable for optical devices operating in the visible spectrum, while the predicted band

alignments to III-nitrides enable applications that are not achievable with III-nitrides

alone. Another alternative nitride is ScN, which has the rocksalt crystal structure, but

has a very small lattice mismatch to GaN. In this work, I thoroughly examine structural

and electronic properties of these materials crucial to understanding and evaluating their

application in devices.

In the Zn-IV-nitrides, we focus on ZnGeN2, which has a very close lattice match

to GaN, making it the most approachable of the Zn-IV-nitrides for integration with III-

nitrides. We examine the conductivity by determining the stability of native point defects

and dopants. We find that, in the absence of dopants, native defects will ensure ZnGeN2

is insulating. To n-type dope the material, we find that PGe acts as a shallow donor

with low formation energy. For p-type doping, we find that AlGe is a viable acceptor,

with an acceptor level 0.24 eV from the valence-band maximum. However, there is

strong compensation due to wrong-site doping of AlZn. This issue can be overcome by

co-doping with hydrogen, and the hydrogen can be removed in a post-growth anneal.

ix



We also thoroughly examine band alignments and polarization properties among all the

Zn-IV-nitrides.

Lastly, we consider interfaces between rocksalt ScN and wurtzite GaN, and show how

polarization charges can be calculated at this non-polar/polar interface. We demonstrate

an extremely large polarization discontinuity of –1.358 Cm−2, and propose that a ScN

could be used as an interlayer in a tunnel junction device.
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Chapter 1

Introduction

1.1 Wide-band-gap semiconductors

Wide-band-gap semiconductors have had huge economic impact since the invention

of the gallium nitride-based blue light-emitting diode (LED) in the early 1990s [1]. The

III-nitride materials system—based on alloys and heterojunctions between AlN, GaN,

and InN—has lead to the development of smaller and more efficient light emitters: en-

abling portable electronics, the Blu-ray optical storage format, and a variety of other

applications. GaN-based electronics have also been developed for transistor applications,

making use of high breakdown fields [2] and high polarization charges for high-frequency

and power conversion applications [3]. Research on these materials continues to evolve

with the desire to expand the emission spectrum of LEDs to both shorter and longer

wavelengths, higher efficiencies, and lower costs.

With these thoughts in mind, we look to expand the capabilities of these systems by

exploring other materials that can be integrated with the III-nitrides materials system.

The II-IV-nitrides are a class of materials based on the III-nitrides, where each pair of

group-III cations is replaced by a group-II element and a group-IV element in an ordered

1



Chapter 1 Introduction
Section 1.1 Wide-band-gap semiconductors

Figure 1.1: (a) Wurtzite GaN and (b) orthorhombic ZnGeN2 crystal structure viewed
along the c axis. The respective primitive unit cells are shown with a black outline.
aw is the in-plane lattice parameter for GaN, while a and b are the in-plane lattice
parameters for ZnGeN2.

fashion [4]. Such materials satisfy the octet rule, and are observed to have similar physical

and electrical properties as the material they are based on [5]. For example, ZnGeN2

shares strong similarities with GaN, as Zn has one less electron than Ga, but Ge has one

more electron than Ga. These materials provide high flexibility, as it is possible to alloy

on both the group-II site (with Mg or Cd) and on the group-IV site (with Si or Sn) as a

means to tune the properties of the material.

The III-nitrides have the wurtzite crystal structure (space group P63mc), which has a

hexagonal lattice. The substitution, changing two group-III ions for the pair of group-II

and IV ions results in a reduction of symmetry to Pna21 with an orthorhombic lattice;

the overall crystal structure is very similar. The similarities between the structures of

GaN and ZnGeN2 are illustrated in Fig. 1.1.

In selecting an appropriate material for a light emitter, we are primarily concerned

with its band gap. The band gap of a semiconductor determines the wavelengths of

light that will be absorbed and emitted. The band gap is the energy between the lowest

unoccupied state in the conduction band, or conduction-band minimum (CBM), and the

highest occupied state in the valence band, or valence-band maximum (VBM). These

2
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band edges are different for different materials, and the alignment of band edges between

different materials is important for understanding their macroscopic properties and thus

a significant point of my study.

Another important property is the conductivity, which is impacted by the presence

of charged point defects within the material. Native point defects (defects within pure

material) include vacancies, interstitials, and antisite defects [6], while dopants (other

elements) can be substitutional or interstitial. Each defect can exist in a variety of

charge states, and understanding the properties of defects within each material is crucial

to determining its suitability for device applications.

Light-emitting diodes function by confining both holes and electrons into a narrow

region [7]. This is done by growing a double heterostructure, where a material with a

smaller band gap is grown between two layers of a wider band-gap material. Electrons

localize at the lowest part of the conduction band and holes localize in the highest part in

the valence band. In heterostructures with a type-I band alignment, both electrons and

holes will localize in the material with the smaller gap. Electrons and holes recombine

and emit a photon of light (with energy approximately the band gap of the smaller gap

material).

To reach high carrier concentrations, one of the wide-gap layers is doped p-type

(containing acceptors), while the other is doped n-type (containing donors) [8]. As an

example, in GaN, Mg is used to dope the material p-type, as Mg has one less electron

than Ga and the MgGa substitutional defect will capture an electron, leaving a hole in

the valence band. Similarly, SiGa acts as a donor and is used to dope GaN n-type. In

considering ZnGeN2 and ZnSiN2 as materials for integration with III-nitride devices, I

examine a variety of elements that could be used for either n- or p-type doping.

A key feature of the III-nitride system is the strong spontaneous and piezoelectric

polarization along the c axis due to their wurtzite crystal structure. The polarization

3
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results in polarization charges at heterointerfaces and produces electric fields. These

charges are undesirable in GaN/InGaN/GaN quantum-well structures, as they spatially

separate electrons and holes, reducing recombination efficiency [9]. However, they can be

beneficial in electronic devices, as free electrons will move to compensate the polarization

charge, resulting in high-density two-dimensional electron gases (2DEGs) [3]. These

electron gases can be modulated for transistor applications.

Working within ternary alloy systems, such as the InGaN/GaN system (where InGaN

films are grown on GaN), band gaps and polarization properties are linked [10]. That is,

a specific band gap can only be achieved for a specific InxGa1−xN alloy concentration,

which also yields a specific spontaneous polarization. This limits design possibilities, as

it is not possible to engineer the polarization properties while keeping the band gaps and

alignments constant. To add design flexibility, growth along nonpolar and semipolar axes

has been employed, which reduces the effect of the polarization. Using the quaternary

AlInGaN has also been considered to reach new combinations of band gap and polar-

ization; however, growth of this quaternary is challenging as AlN and InN growth have

very different ideal temperature ranges. I examine the II-IV-nitrides as another potential

solution: with a new set of band gaps, alignments, and polarization properties, it will

be possible to engineer II-IV-nitride/III-nitride interfaces with properties that are not

achievable within the III-nitride system.

Lastly, I will examine polarization in nitrides more generally. While most research

has studied wurtzite nitrides, there are some nitrides, such as ScN [11] and YN, that

take the rocksalt crystal structure (space group Fm3m. The rocksalt structure, being

centrosymmetric, does not exhibit any macroscopic polarization; however, it is possible

to create epitaxial interfaces between the wurtzite nitrides and these rocksalt nitrides. In

particular, GaN and ScN have a very small lattice mismatch. Therefore, this provides a

unique opportunity to examine interfaces between polar and nonpolar materials. I show
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that such an interface results in polarization charges an order of magnitude larger than

at wurtzite-wurtzite interfaces, which may be applicable for tunnel junctions in nitride

devices.

1.2 First principles modeling of semiconductors

Before we delve into properties of materials, we must first examine how we calculate

those properties. The computational framework that is most widely used is density func-

tional theory (DFT), a so-called first-principles method. The following summary is based

on Electronic structure: basic theory and practical methods by Richard M. Martin [12]

and Density functional theory: A practical introduction by David Sholl and Janice A.

Steckel [13]. For further reading, I would recommend those two textbooks.

In quantum physics, each system has a wavefunction Ψ that solves the time-independent

Schrödinger equation,

HΨ = EΨ . (1.1)

H = T + U is the Hamiltonian of the system, and comprises the kinetic energy T

and the potential energy U . The potential energy term is different depending on the

system. There are eigenfunctions Ψ, which solve the equation, yielding a set of associated

eigenenergies. In a simple atomic model, each atom comprises a nucleus, with a positive

charge, and one or more electrons. Charges interact via the Coulombic interaction,

U =
q1q2

4πε0r
, (1.2)

where qi is the charge, ε0 is the dielectric constant of free space, and r is the separation.

Our first approximation is to model the nuclei as fixed point charges—the Born-

Oppenheimer approximation. As the nuclei are much heavier than the electrons, they

5
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will move orders of magnitude less, and can reasonably be approximated as fixed in space.

Our focus shifts entirely to the electrons.

The simplest system, the hydrogen atom, has only a single electron and can be solved

analytically and exactly. The lowest energy wavefunction describes an electron which is

spread out in space, spherically symmetric about the nucleus. The square magnitude of

the wavefunction returns the probability density of finding the electron at each point.

Moving first to single-atom systems with many electrons—with the goal of ultimately

moving to many-atom systems—the equations quickly become much more complicated.

The Hamiltonian can be written as

H =
∑
i

(
−~2∇2

i

2m
+
Ze2

4πε0

1

|ri|

)
+
∑
i

∑
j>i

e2

4πε0

1

|ri − rj|
. (1.3)

While the first two terms are familiar: the kinetic energy and the electron-nucleus in-

teraction, the last term is a double sum, depending on the position of two electrons at

the same time. The wavefunction of the system depends on all the electron coordinates

Ψ = Ψ(r1, r2, ...rN). For a crystal, with multiple atoms, we get the Hamiltonian:

H =
∑
i

−~2∇2
i

2m
+

e2

4πε0

(∑
i

∑
j>i

1

|ri − rj|
+
∑
i,I

ZI
|ri −RI |

+
∑
I

∑
J>I

ZIZJ
|RI −RJ |

)
, (1.4)

where the upper-case indices are used to indicate the nuclei.

The Hamiltonian in Eq. (1.4) becomes unwieldly as its complexity scales with the

number of electrons and ions. To reduce the computational complexity, we turn to

electron-density-based methods as a solution. The electron density is the square of the

wavefunction integrated over all-but-one of the coordinates:

n(r1) = N

∫
d3r2

∫
d3r3...

∫
d3rN |Ψ(r1, r2, ...rN)|2 . (1.5)
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Hohenberg and Kohn [14] demonstrated in their first theorem that the ground-state

energy is a unique functional of the electron density, and their second theorem states that

the density that minimizes the energy of the functional is exactly the electron density

corresponding to the solution of the full Schrödinger equation. The analytic form of

the functional that satisfies the Hohenberg-Kohn theorem is not known exactly, and

determining suitable approximations that give accurate results has been an ongoing focus

in the field of density functional theory.

The classical Coulomb interaction can be written out in terms of the electron density

as follows:

ECoulomb =

∫
d3rVext(r)n(r) +

1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
+ Enuclei . (1.6)

In the first term, Vext is the potential corresponding to the atomic nuclei in the sys-

tem. The second term, also called the Hartree energy, describes the electron-electron

interaction. Lastly, the nucleus-nucleus interaction is not written out as it is a constant

with respect to the electron density. Several important issues emerge by inspecting this

expression for the classical Coulomb energy. Firstly, the electron-electron term includes

interactions from every electron interacting with every electron, including each electron

interacting with itself, which is unphysical. (Consider the case where there was only

one electron: the electron-electron term should be zero, but clearly is not.) Secondly, it

neglects the effects of the Pauli exclusion principle, a restriction that electrons with the

same spin cannot occupy the same state. Further, we have not addressed how kinetic

energy can be described as a density functional, as the exact form of the kinetic energy

as a function of the density is not known. These issues are handled by the Kohn-Sham

equations, which demonstrate an ansatz which can be used to reformulate the problem

into a set of single-electron equations.

7
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The Kohn-Sham system describes a set of non-interacting particles that result in the

same electron density as the full interacting system. The wavefunctions of the particles

are the eigenfunctions of the equation

[
− ~2

2me

∇2 + Vext(r) + VHartree(r) + VXC(r)

]
φi(r) = εiφi(r) . (1.7)

As the equation is based on single-particle wavefunctions, it is simple to express the

kinetic energy in closed form. The Vext and VHartree are the same as before, but the new

term VXC captures all of the quantum mechanical information that was lacking. XC

stands for eXchange and Correlation, and it attempts to correct for the energy difference

that occurs as a result of Pauli interaction and correlation between electrons. It also

corrects the kinetic energy, as the proper expression for the kinetic energy needs to

account for electron-electron interactions. As the other terms have well defined formula,

it is this VXC term that is the most mutable, which gives rise to many ‘flavors’ of density

functional theory, each with its own expression for the exchange-correlation functional.

Once the functional has been settled on, the procedure finds a ground state using

iteration. First a density is assumed, and single-particle wavefunctions are determined

using the Kohn-sham equations. A new density is calculated from the Kohn-Sham wave-

functions. The cycle is repeated self-consistently until the density is converged. From the

density, a total energy for the ground state can be calculated. Forces can be computed

from derivatives in the total energy with respect to ionic coordinates. These forces can

be used to determine the atomic coordinates that result in the lowest energy.

The simplest functional is the local-density approximation, where the XC functional

is simply a function of the density. More sophisticated models allow the XC functional

to vary as a function of derivatives of the density. These are the generalized-gradient ap-

proximation (GGA) functionals; my work often makes use of the Perdew-Burke-Ernzerhof
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(PBE) functional [15]. However, these functionals have significant drawbacks: first, they

severely underestimate the band gap, second, they do not fully account for the self-

interaction portion of the Hartree energy, which results in inaccurate predictions for

localized charges.

There are numerous methods that have been employed to correct for these issues.

Hybrid functionals mix the XC functional from the approximations above with ex-

act exchange from Hartree-Fock theory. Hartree-Fock theory solves the multi-electron

Schrödinger equation using a Slater determinant which treats the Pauli exclusion princi-

ple appropriately. It also avoids the self-interaction issue in the Hartree term. However,

Hartree-Fock theory does not account for correlation effects. In practical use, Hartree-

Fock tends to overestimate the band gap in semiconductors significantly, thus the concept

of mixing the Hartree-Fock exchange with that of DFT. The amount of mixing used is

often tuned to the material to yield accurate calculations for the lattice constant and

the band gap. In my work, I have primarily used the Heyd-Scuseria-Ernzerhof (HSE)

functional [16, 17], which mixes 25% of the Hartree-Fock exchange with 75% of the PBE

XC functional at short range.

There are also post-processing methods that can be used to correct the band gap of

a DFT calculation. Most common among them is many-body perturbation theory in

the GW approximation, which uses the Green’s function G and the screened Coulomb

interaction W to correct the self-energy. This method was not used in this work, but was

used by others in works that will be discussed in Chapter 4.

1.3 Computational framework

To implement density functional theory, further simplifications and approximations

have to be made. A crystal is periodic in space, meaning we do not need to calculate the
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wavefunctions for each electron in the crystal. We can calculate the electronic structure

for a single repeating unit and apply periodic boundary conditions.

The smallest repeating unit in a crystal structure is called the primitive unit cell.

The size and shape of the primitive unit cell depend on the symmetries present in the

crystal. Translational symmetry determines the Bravais lattice, while symmetries that

leave at least one point fixed (reflections, rotations, etc.) make up the point group. For

example, the wurtzite crystal structure has a hexagonal lattice and point group 6mm,

which indicates it has 6-fold rotational symmetry along one axis, and two planes of

reflection.

For a crystal with translational symmetry, a lattice vector R is any vector that trans-

lates the crystal onto itself. We can then define reciprocal lattice vectors K, which have

the property K ·R = 2πn, where R is a lattice vector and n is any integer.

The solutions to the system under periodic boundary conditions are Bloch wavefunc-

tions ψn(k, r) = eik·run,k(r), which consist of a periodic function un,k(r) with the same

periodicity as the crystal, and an oscillating part eik·r. The vector k is called the wavevec-

tor, while n is the band index, highlighting that there are multiple solutions for each k.

The associated energies for these wavefunctions are continuous as a function of k.

Further, for any reciprocal lattice vector K, we find that ψ(k+K, r) = ψ(k, r) . This

implies that we can find all the wavefunctions and eigenenergies associated to a problem

by only examining a limited range of wavevectors k. The set of all such k points that

are closer to the origin than to any other value of K is called the first Brillouin zone.

Integrations over all the electrons in the system are often performed as integrals of k over

the first Brillouin zone. When we plot energies for the electrons in the crystal, we will

do so at key values of k within the first Brillouin zone.

To calculate the Bloch wavefunctions, we use plane wave basis functions f = eiK·r

that satisfy the periodicity of the lattice. Calculations on plane waves are convenient
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as they can be constructed to have the same periodicity as the lattice. Further, they

also give a convenient convergence test for our calculations: we can limit our calculation

to the set of basis functions to ~2|K2|
2me

< E, which limits the maximum energy of the

functions. Once the eigenenergies do not vary significantly with a change in E, we can

be satisfied our results are converged.

However, using plane wave basis functions is challenging when the potential varies

strongly with position, such as near the nucleus (where U diverges as 1/r). Here the

solution is to use pseudopotentials. Pseudopotentials treat the electrons that are local-

ized near the nucleus and largely unaffected by other atoms as core electrons. These

electrons are not explicitly evaluated and combined with the nucleus into an ionic core.

The valence electrons, which do interact with other atoms, are treated selfconsistently,

but the removal of the core electrons allows eliminating the strong oscillations in the

wavefunctions in the vicinity of the nucleus. The pseudopotentials I use my calculations

are projector-augmented-wave (PAW) pseudopotentials, which include information about

the core states and allow reconstructing an all-electron wavefunction.

1.3.1 Point defects

Defects determine the electronic properties of a semiconductor. We aim to determine

the concentration and nature of point defects in the system [6]. In order to examine

the properties of a single defect within periodic boundary conditions, we use a supercell

approach. A supercell consists of multiple copies of the primitive cell. For example,

for ZnGeN2, we use a 2 × 2 × 2 unit cell consisting of 128 atoms. The supercell spaces

the defects in all three dimensions, limiting defect-defect interactions. We define the
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formation energy of a defect as:

Ef (Dq) = Etot(D
q)− Etot(bulk) +

∑
i

niµi + qεF + ∆q , (1.8)

where Etot(D
q) is the total energy of the supercell with the defect in charge state q.

Etot(bulk) is the total energy of the pristine supercell structure. µi is the chemical

potential of the atoms added to (ni < 0) or removed from (ni > 0) to form the defect.

εF is the Fermi energy, referenced to the VBM. ∆q is an electrostatic correction to the

energy that accounts for interactions of the charged defect with its periodic images and

with the neutralizing background charge [18, 19].

In equilibrium, the concentration of point defects follows a Boltzmann distribution:

c = Nsitese
−Ef

kBT , (1.9)

where Nsites is the concentration of available sites for the defect to form, kB is the Boltz-

mann constant, and T is the temperature. Because of the exponential factor, the defects

with the lowest formation energies will have concentrations orders of magnitude larger

than those with higher formation energies. For this reason, we focus our work on identi-

fying the defects with the lowest formation energy.

For charged defects, we plot the formation energy as a function of the Fermi level in

the system. The Fermi level is determined by charge neutrality. In equilibrium, the total

number of positive and negative charges in the system is zero. These charges can be

positively charged donors, negatively charged acceptors, free holes in the valence band,

and free electrons in the conduction band. We use our formation-energy diagrams to

determine the concentration of these charges.
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1.3.2 Band alignments

In order to determine band alignments, we first calculate the bulk electronic structure

for each material. The eigenvalues that determine the band structure are referenced to the

average electrostatic potential. In a bulk calculation, this average electrostatic potential is

arbitrary (and commonly set to zero), and hence cannot serve to align different materials.

We can align the bulk electrostatic potential to the vacuum level by performing a surface

calculation, using a geometry in which a slab of material is surrounded by vacuum. By

taking a macroscopic average [20], we can compare the average electrostatic potential

within the slab to the electrostatic potential in vacuum. We can then use this value to

align the bulk band structure to the vacuum level.

Another way to calculate alignments between different materials is based on using

the charge-state transition level of an interstitial hydrogen impurity (Hi) as a common

reference [21]. The (+/−) charge-state transition level for interstitial hydrogen, which

we will label Hi(+/−), is defined as the Fermi level (referenced to the VBM) at which

Hi has the same formation energy in the + and − charge states [6]. These formation

energies are calculated using our supercell methodology discussed above.

Lastly, it is also feasible to calculate band alignments using explicit superlattices

between two materials. This requires selecting a lattice constant and straining one or

both materials to enforce epitaxy. This method has been employed by other groups

studying the Zn-IV-nitrides. We make use of superlattices in our work on ScN/GaN

interfaces and briefly examine band alignments.

1.3.3 Computational details

In our calculations, we use the Vienna Ab initio Simulation Package (VASP) [22, 23],

which provides pseudopotentials based on the PAW method. Our pseudopotentials treat
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Zn 3d104s2, Si 3s23p2, Ge 4s24p2, Ge 5s25p2, N 2s22p3, Ga 4s23p1 and Sc 4s23d1 electrons

as valence, with all other electrons treated as core electrons. We use the HSE hybrid

functional. For our primitive unit cell calculations, integrations over the Brillouin zone

are computed by sampling k-space with a grid of points.

1.4 Outline

In Chapter 2, I elaborate on the methodology I used for calculating bulk polarization

and polarization at interfaces. In Chapter 3, I briefly examine the bulk properties of the

Zn-IV-nitrides, before discussing native defects and doping in ZnGeN2 and ZnSiN2 in

Chapters 4 through 6. I return to polarization in Chapter 7, where I also examine band

alignments between the Zn-IV-nitrides and III-nitrides. I then turn to formal polarization

differences at rocksalt/wurtzite heterostructures in Chapter 8.

1.5 Permissions and Attributions

1. The content of Chapters 3, 4, 5, and 6 is the result of collaboration with Zhen

Zhu, Darshana Wickramaratne, and Chris G. Van de Walle, and has lead to three

publications. The work on native point defects in ZnGeN2 has previously appeared

in the Journal of Applied Physics [24]. The work on n-type doping previously ap-

peared in Physical Review B [25]. The work on p-type doping previously appeared

in Applied Physics Letters [26].

2. The content of Chapter 7 is the result of collaboration with Darshana Wickrama-

ratne and Chris G. Van de Walle. It has previously appeared in the Journal of

Materials Chemistry C [27].
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3. The content of Chapter 8 is the result of collaboration with Cyrus E. Dreyer and

Chris G. Van de Walle. It has previously appeared in Applied Physics Letters [28].
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Chapter 2

Methodology for calculating

polarization

2.1 The modern theory of polarization

The polarization is an intensive vector quantity that expresses the electric dipole

moments per unit volume in a material. In the simple Clausius-Mossotti model, this

value is defined as the sum of the dipole moments in a given cell, divided by the cell

volume [29]. However, in infinite crystals with periodic boundary conditions, there is

no unique fashion by which to partition the charges in the system. This is particularly

clear for covalent crystals, where the charge is delocalized and the charge density is

continuous throughout the cell: defining an associated center of charge (and therefore

dipole moment) is arbitrary. The Clausius-Mossotti model is therefore insufficient. As

a result, polarization is defined based on the flow of polarization currents between an

initial and final state:

∆P =

∫ 1

0

dλ
dP

dλ
. (2.1)
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Here λ = 0 and λ = 1 correspond to initial and final states of the system. Defining polar-

ization as an integral requires selecting an appropriate constant of integration; however

most properties of interest (e.g., piezoelectricity or pyroelectricity) are derivatives of the

polarization. In Eq. (2.1) dλ could be a strain, or a change in temperature, and in each

case dP
dλ

is a well-defined bulk vector property that corresponds to a physical observable.

Selecting an appropriate constant of integration is still necessary when considering

polarization differences between two structures or materials, such as for the ferroelec-

tric effect (two structures of the same material) and for heterostructures (two different

materials). Resta and Vanderbilt define the spontaneous polarization as the effective

polarization [29]

∆Peff =

∫ 1

0

dλ
dP

dλ
, (2.2)

where λ = 0 corresponds to the centrosymmetric reference. In this equation, λ is an

adiabatic deformation that maps the crystal structure of interest (λ = 1) to a crystal

structure belonging to a higher symmetry structure that has centrosymmetric symmetry.

This mapping explicitly sets the constant of integration equal to the polarization of the

centrosymmetric structure, which, as we will see later, is not necessarily zero. It is also

important to note that the material must be insulating throughout the deformation in

order to uniquely define the current dP
dλ

.

To calculate the polarization, we make use of the Berry phase. This methodology

for computing the contribution from electron wavefunctions is explained in Refs. [29, 30,

31, 32]. An adiabatic perturbation λ is applied to the Bloch wavefunctions, yielding a

first-order correction in the wave functions. From the perturbed wavefunctions, a total

polarization current can be defined. The total change in polarization due to a single band
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is determined to be

dPn

dλ
=

∫
dk 〈∇kunk|∂λunk〉+ complex conjugate . (2.3)

Integrating over λ and summing over all bands n, the polarization as a result of all the

electrons is:

Pel =
−ie

(2π)3

∑
n

∫
dk 〈unk|∇k|unk〉 . (2.4)

The contribution from ions is more straightforward:

Pion =
e

Ω

∑
j

ZjRj , (2.5)

where Zj is the charge on ion j, Rj are the coordinates of each ion in the system, and Ω

is the volume of the primitive unit cell. The total formal polarization is therefore:

Pf =
e

Ω

∑
j

ZjRj −
ie

(2π)3

∑
n

∫
dk 〈unk|∇k|unk〉 . (2.6)

It is this quantity which is central to our discussion of polarization.

A consequence of the definition above is that the formal polarization of a material

is defined only modulo the “quantum of polarization” eR/Ω, where R is any lattice

vector. This multivalued vector (which leads to different “branches” in Pf) must map

onto itself under the symmetry operations of the crystal [29]. This means that a crystal

that has a center of symmetry does not need to have a formal polarization branch at

zero. An example is rocksalt symmetry, where there are two distinct sets of vectors

that satisfy all the symmetry operations: the formal polarization can be written as

e
Ω
R or e

Ω
[R + ars(

1
2
, 1

2
, 1

2
)], where ars is the rocksalt lattice parameter. Since the formal

polarization itself is multi-valued, it is only differences in formal polarizations that are
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physically meaningful.

To determine the polarization difference at an interface between two materials, we

use the interface theorem [31]: if an insulating interface can be constructed between the

two structures, the bound charge at the interface can be determined from the differences

in the formal polarization:

σb = (PA
f −PB

f ) · n̂ . (2.7)

The formal polarizations are only defined modulo a quantum of polarization, as discussed

above. Specifically, Eq. (2.7) is modulo e/Aint [31], where Aint is the unit cell area of the

interface. To resolve the ambiguity, we need to select a specific branch of the formal

polarization for each material. We will do this by choosing a reference structure for each

of the two materials that allows connecting them at the specific interface under study.

2.2 Calculating bulk polarization

In this section I go into detail the process I used for calculating bulk polarization

properties and how I determined the proper branch alignments between materials.

To calculate bulk polarization, I used the VASP program. Starting from a fully

relaxed primitive unit cell, the tag LCALCPOL can be used to call for a calculation of

the dipole in the cell using the Berry phase approach. This code will output two (or

three, if spin polarization is applied) lines, listing an electronic dipole and an ionic dipole

for the unit cell. Each of these values is only well-defined modulo eR/Ω, where R is any

lattice vector.

Both the ionic and electronic contributions are calculated referenced to the center

of the unit cell. Calculating with respect to the same origin is critical for the total

polarization to be meaningful. However, I have found that, due to an error in VASP, the

19



Chapter 2 Methodology for calculating polarization
Section 2.2 Calculating bulk polarization

ionic contribution can be incorrect if there are atoms very near the origin. This issue is

particularly problematic for materials like the perovskites, which place an atom exactly

at the origin. To fix this, the origin for the ionic calculation can be set with the DIPOL

tag. The ionic contribution is linear in the position of the origin, and periodic with period

R/Nelec, where R is any lattice vector, and Nelec is the total number of electrons in the

system (which, in a neutral system, equals the total ionic charge in the system). As a

result, the origin for the ionic calculation can be shifted from the electronic origin, so

long as the ionic contribution is at an equivalent point under the periodicity. I tend to

pick the point (1/4, 1/4, 1/4) when the original origin does not work, as the total number

of electrons in the system for a typical semiconductor is usually divisible by 4 (but this

point may not work for all possible POTCARs).

Once a branch of the formal polarization has been determined, it is useful to apply

modular arithmetic to select a branch that is more conventional. Doing so can also

highlight any errors that have occurred. For instance, in the wurtzite material system,

it is practical to select a branch that points along the c axis; if there is no branch along

the c axis, then an error in calculation is likely. This error could be related to the issue

with the origin for the ionic calculation described above, or it could be related to the

electronic contribution. I have observed that even starting from a converged WAVECAR,

it is possible the electronic dipole moment will not be calculated properly the first time.

Simply restarting the calculation fixes this issue.

For materials without a center of symmetry, it is useful to define the effective polar-

ization [29] following Eq. (2.2). This can be done by first identifying a reference structure

belonging to a higher symmetry supergroup with centrosymmetry, and then constructing

a sequence of structures along the deformation path between the structure of interest and

the high symmetry structure. Formal polarization is then calculated for each of the struc-

tures along this path. As long as all the structures along the path are insulating, then
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an adiabatic deformation exists between the two structures, and an effective polarization

can be defined. However, the formal polarization of the centrosymmetric structure is not

necessarily zero, and this can cause issues for calculating polarization for materials with

different reference structures.

Because formal polarization is multivalued, we need to ensure that we compare the

same branch of the polarization for both structures. This is accomplished by calculating

the formal polarization of structures interpolated between the end points such that the

differences in formal polarization are significantly smaller than the quantum of polariza-

tion ec
Ω

. In Fig. 2.1, the case for ZnGeN2 is plotted between the stable Pna21 structure

and the high-symmetry Pnma structure. Inserts show the unit cells for the orthorhombic

Pna21 structure and the centrosymmetric Pnma structure of ZnGeN2.

Figure 2.1: Spontaneous polarization as a function of interpolated atomic coordinates
between the orthorhombic Pna21 structure and the high-symmetry Pnma structure
of ZnGeN2.
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2.3 Calculating polarization at interfaces

To calculate polarization between two dissimilar materials, we must invoke the in-

terface theorem [Eq. (2.7)]. In principle, from the interface theorem, only the formal

polarization of the two materials is necessary to determine the charge accumulation at

their interface; however, in practice, the ambiguity with respect to the polarization branch

complicates this issue. To unambiguously determine the polarization charge we must, in

general, explicitly evaluate the electronic properties (such as internal electric fields) of

the interface.

Implicit in this construction is the fact the materials can be epitaxially aligned. In

the plane of the interface, there will be a periodicity common to both materials. The

area of the smallest repeating unit is Aint. It is also practical to define RPi
= Ωi/Aint

for each material i, which is the magnitude of the periodicity along the axis normal to

the interface. The polarization normal to the interface is defined up to the quantum of

polarization
eRPi

Ω
= e/Aint.

For classes of materials with structural similarities, shortcuts may be available such

that a superlattice calculation is not needed. For instance, to calculate the polarization

between wurtzite materials with hexagonal reference structures [33], we can imagine

superlattices involving the reference structures instead. A superlattice between hexagonal

GaN and hexagonal InN along the c axis can be constructed with centers of symmetry

at the center of each of the GaN and InN layers. Without doing any calculations, this

immediately implies that there cannot be a field within each layer, and therefore that

there cannot be charge accumulation at the interface. This aligns the branches of the

polarization for the reference structures for InN and GaN, and polarization charges at

interfaces between the actual wurtzite structures can then be calculated by taking a

difference between their effective polarizations.
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However, for crystal structures that are very different, such a shortcut cannot be

made. Consider polarization differences between the rocksalt structure along [111] and

the wurtzite structure along [0001]. The rocksalt structure is centrosymmetic; however

it is difficult to align the polarization of the rocksalt structure to that of the hexagonal

reference structure. It is not possible to construct a superlattice between the two cen-

trosymmetric structures that contains a center of symmetry. Therefore, performing a

superlattice calculation is necessary.

The superlattice, with basal area Aint, should be constructed with layers of each

material thick enough such that we can define a bulk region sufficiently far away from

any interface relaxations. A self-consistent calculation of the electronic states of the

superlattice should be performed. If the superlattice is insulating, then the electric fields

within each material can be calculated and the bound charge at the interface can be

determined, which provides the branch alignment between the formal polarization of

the materials. To calculate the electric fields, the planar average of the electrostatic

potential is calculated throughout the superlattice. I then convolve the planar average

with a rectangle function of length RP in each material to remove any oscillations and

get the averaged electrostatic potential as a function of the distance from the interface.

The electric fields are the slope of this function in each of the respective bulk regions. In

Fig. 2.2, I plot the averaged electrostatic potential for a superlattice between eight layers

of hexagonal GaN and eight layers of layered ScN. The electric fields are taken from the

slopes over the bulk regions.

If the polarization difference between the two materials is too large, there is a chance

that the material will undergo breakdown, and free carriers will move to screen the

electric fields. As a result, the difference in calculated electric fields will not correspond

to the full polarization charge at the interface. Instead, if we can define an insulating

superlattice of alternative structures of the materials with smaller internal electric fields,
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Figure 2.2: Smoothed planar average of the electrostatic potential in a superlattice
consisting of hexagonal GaN and layered ScN. Bulk regions for each material are
indicated.

we can use that superlattice to make the correct choice of branch.

We observe in calculations for the wurtzite materials system that the effective polar-

ization scales approximately linearly with the separation of planes of cations and anions

along the polar axis. Therefore, it is reasonable to assume materials with similar sepa-

ration between planes of cations and anions will exhibit smaller polarization differences.

For the rocksalt structure, that is indeed what we observe.

To determine the polarization difference between rocksalt ScN and wurtzite GaN, the

simplest choice of superlattice with small electric fields is to place anions and cations into

the same planes. As a result, each layer will be electrically neutral. For wurtzite this

creates the higher symmetry hexagonal structure that was already used as a reference

structure. For rocksalt, this results in a lower symmetry structure which I refer to as

’layered-ScN’.

Once the electric fields are determined in each region, the bound charge at the inter-
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face can be calculated by Gauss’s law. The electric displacement field is discontinuous

across the interface, and the discontinuity is equal to the polarization difference:

σb = ε0ε
A
r EA − ε0ε

B
r EB , (2.8)

where E is the electric field in each material, ε0 is the permittivity of free space, and εr is

the relative permittivity. This value can then be compared to the bulk polarization values

in each material, and the correct branch alignment can be selected. Since ionic positions

are kept fixed in this calculation (the ionic coordinates are prevented from moving, or the

ions have previously been allowed to relax), only electrons are able to screen the charge,

the dielectric constant chosen should be the clamped-ion dielectric constant.

Once the alignment between any two crystal structures of materials is known precisely,

adiabatic transformations can be performed on each material separately to determine

the correct polarization discontinuity between materials of interest. For example, the

polarization discontinuity between layered ScN and hexagonal GaN can be determined

unambiguously from the electrostatic potential plotted in Fig. 2.2. The polarization

difference between rocksalt ScN and layered ScN can be determined from an adiabatic

transformation analogous to Fig. 2.1, as can the difference between hexagonal GaN and

wurtzite GaN. These differences can all be summed to give the polarization difference

between rocksalt ScN and wurtzite GaN.

2.4 Piezoelectricity

Piezoelectric materials are materials that produce a current when a mechanical strain

is applied. The proper piezoelectric tensor (which is the one that is commonly cited in

literature) describes the relation between the strain rate applied to the system and the
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resulting current density in a closed circuit, given by

eprop
ijk =

dJi
dε̇jk

. (2.9)

Here Ji is the current density along direction i, and ε̇jk is the time derivative of a strain

εjk applied to the system [34].

Now consider a thin layer of polar material with open-circuit boundary conditions [33].

The crystal will have an electric field across it due to its spontaneous polarization. If we

apply a strain on the crystal, then the electric field in the crystal will be affected in two

ways. The first is the same as in the proper case with the closed circuit: strain will cause

a flow of polarization current. The second effect is that as the cross-sectional area of the

crystal changes, the bound charge at the surfaces will be diluted or concentrated. The

sum of these effects is given by the improper piezoelectric constant.

At an epitaxial interface between two semiconductors, there is typically some degree

of strain, since the lattice parameters of the two materials are usually not perfectly

matched. For purposes of calculating polarization differences at interfaces between two

semiconductors, improper piezoelectric coefficients should be used [33, 34]. The improper

piezoelectric tensor is given by:

eimp
ijk =

dPi
dεjk

, (2.10)

where Pi is the formal polarization along axis i, and εjk is the applied strain. Despite

the different formulations, the proper and improper piezoelectric tensors are calculated

with the same methods.

The improper piezoelectric tensor can be expanded into three terms:

eimp
ijk =

∂Pi
∂εjk

∣∣∣∣
R,Ω

+
∑
α,l

∂Pi
∂Rα,l

dRα,l

dεjk
− δjkPi + δijPk . (2.11)
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Here, Rα,l is the lth fractional coordinate of atom α and δ is the Kronecker delta. The

first term fixes all the internal coordinates and the volume of the cell, and is referred to

as the clamped-ion term. This term depends entirely on the electron wavefunctions, and

corresponds to the degree to which electrons fail to follow a homogeneous deformation

under applied strain [34]. The second term accounts for the changes in atomic coordi-

nates as a function of strain. These first two terms make up the proper piezoelectric

response, which is independent of the choice of branch and hence is not subject to the

ambiguity associated with the modulo of polarization [34]. The improper and proper

piezoelectric tensors are related by the last two terms, given by Kronecker deltas of two

indices multiplied by the branch-dependent formal polarization along the third axis [34].

These terms describe the effect of diluting or concentrating the bound charge under open

circuit boundary conditions.

The number of nonzero piezoelectric constants in the proper piezoelectric response

is determined by the symmetry of the crystal. For the wurtzite structure, using Voigt

notation, only eprop
31 , eprop

32 , eprop
33 , eprop

24 , and eprop
15 are nonzero. Of these, eprop

31 = eprop
32 and

eprop
24 = eprop

15 by symmetry. For the orthorhombic structure of the Zn-IV-nitrides, the

same selection of constants are nonzero, but the symmetries between eprop
31 and eprop

32 and

between eprop
24 and eprop

15 are broken. For the centrosymmetric rocksalt structure, all proper

piezoelectric tensor values are zero.

Each of the terms in Eq. (2.11) is calculated separately. VASP calculates the clamped-

ion piezoelectric tensor by making use of the converse piezoelectric effect [35]: the deriva-

tive of the polarization with respect to strain is equal to negative of the derivative of

stress with respect to electric field. VASP applies a small electric field and calculates the

clamped-ion piezoelectric effect without applying any strain.

For the internal-strain term, it is convenient to invoke the Born effective charge, which
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describes how the polarization changes as a function of an atomic coordinate:

Z∗α,il =
Ω

eal

dPi
dRα,l

, (2.12)

where al is the lth lattice parameter. The internal strain term can then be written as

eint
ijk =

e

Ω

∑
α,l

alZ
∗
α,il

dRα,l

dεjk
. (2.13)

The changes in fractional coordinates can be computed directly in response to an applied

strain, while the Born effective charges are computed by VASP as a response to an applied

electric field.

The last portion of Eq. (2.11), −δjkPi + δijPk is unique in that it is branch depen-

dent [34]. This term can be thought of as the effect of diluting or concentrating the

polarization into a larger or smaller area. In the wurtzite nitrides, the value of this term

is −P3 for eimp
31 and eimp

32 , and zero for all other piezoelectric elements.

By summing all of the terms in Eq. (2.11), we get the full piezoelectric response

which can be added to the spontaneous polarization to give the total polarization of each

material.

2.5 Polarization of alloys

Finally, we comment on how polarization of alloys should be handled. In most of

the literature, spontaneous polarization values for ternary alloys (in units of C/m2) have

been obtained by linear interpolation between the values for the binaries. I will show

that there is a more accurate way of performing this interpolation. We take as our

central assumption Vegard’s law, which states that the lattice parameters scale linearly

28



Chapter 2 Methodology for calculating polarization
Section 2.5 Polarization of alloys

Peff,lin (C/m2) Aint (Å
2
) Pr Peff,alloy (C/m2)

AlN 1.346 8.34 0.702 −
GaN 1.315 8.88 0.730 −
InN 1.038 11.05 0.717 −

Al0.5Ga0.5N 1.331 8.61∗ 0.716 1.330∗

Al0.5In0.5N 1.192 9.65∗ 0.710 1.175∗

In0.5Ga0.5N 1.177 9.93∗ 0.724 1.165∗

Table 2.1: Polarization parameters for AlN, GaN, and InN, along with ternaries
Al0.5Ga0.5N, Al0.5In0.5N, and In0.5Ga0.5N. The symbol * indicates the parameter
correctly accounts for the nonlinear dependence on the alloy concentration. All values
were calculated using the HSE hybrid functional with 25% mixing.

with alloy content. The polarization is a dipole per unit volume. The dipole (defined as

charge times displacement) scales approximately as lattice parameter to the first power,

while the volume scales as lattice parameter to the third power. The quotient therefore

scales as lattice parameter to the power of –2. As a result, the polarization should not

be linearly interpolated as a function of alloy content.

Instead, we should factor out all spatial dependence and work with the polarization

in dimensionless units. Then the polarization can be linearly interpolated as a function

of alloy content properly.

As an example, let us consider the formal polarization of the wurtzite system. Here,

I write the polarization Pr in dimensionless units:

Peff =
e

Aint

Pr . (2.14)

In Table 2.1, we list all of the values for AlN, GaN, and InN, along with their ternaries

at 50% composition. The first value, Peff,lin, is the effective polarization of the alloy

using linear interpolation, while Peff,alloy is the corrected effective polarization, by linearly

interpolating in units of e/Aint before converting back.
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The values using both types of interpolation are provided in Table 2.1. For Al0.5Ga0.5N,

linear interpolation of the polarization gives 1.331 C/m2, while interpolation in dimen-

sionless units gives 1.330 C/m2. The difference is not large in this case. For the alloys

including In, the difference is much more significant because the difference in lattice con-

stant is much larger. These differences on the order of 0.01-0.02 C/m2 may seem small,

but correspond to interfacial charge differences on the order of 1 × 1013 cm−2. We will

see in Chapter 7 that these interfacial charges directly impact the carrier density of two-

dimensional electron gases at these interfaces. We thus see that a more correct way of

performing interpolation for alloys can have a noticeable impact on quantities obtained

in device modeling.

The effect described here is not the same as the nonlinearity observed by Bernardini

and Fiorentini [36]. They perform calculations on explicit alloys and observe variations in

the polarization as a result of microscopic alloy structure. Further, they use zinc-blende

as their reference structure. While issues with the zinc-blende reference were pointed

out in Ref. [33], calculations referenced to zinc-blende are not as susceptible to errors

from using linear interpolation. This is because the formal polarization of zinc-blende

reference already depends on the lattice constant to the power of –2, and the error in the

difference Pf − Pzb is only about 0.001 C/m2.
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Chapter 3

The Zn-IV-nitrides

This work was done in collaboration with Darshana Wickramaratne, Zhen Zhu, and Chris

G. Van de Walle.

3.1 Introduction

The Zn-IV-nitrides are a group of semiconductors with wide band gaps and other

properties that make them promising candidates for a variety of electronic and opto-

electronic devices [5]. Taking advantage of the small lattice mismatch between Zn-IV-

nitrides and the III-nitrides, a variety of device applications have been proposed based

on heterostructures involving both sets of materials [37, 38, 39]. The success of these

applications depends on accurate knowledge of the bulk physical electronic structure.

II-IV-V2 compounds have been studied since the 1960s [40]. ZnGeN2 was first syn-

thesized in the early 1970s [41, 42], followed by synthesis of ZnSiN2 [43, 44]. In the last

decade we have seen a surge of interest in these materials, particularly in ZnSnN2 [45]

and ZnGeN2 [46] and their application to optical devices.

Our focus in this chapter is to introduce the Zn-IV-nitrides, their physical and elec-
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Figure 3.1: Unit cell of ZnGeN2 in the orthorhombic Pna21 phase.

trical structure, and explore where they fit with respect to other nitride semicondcutors.

In Chapters 5 and 6, we will investigate doping, while in Chapter 7 we will examine

heterostructures between Zn-IV-nitrides and III-nitrides, including band alignments and

polarization effects.

3.2 Physical structure

The structure of the Zn-IV-nitrides (ZnSnN2, ZnGeN2, and ZnSiN2) can be envisioned

as starting from, e.g., GaN in the wurtzite (wz) structure and replacing pairs of Ga

atoms with Zn-(group-IV) pairs. This lowers the symmetry of the crystal, and as a result

the Zn-IV-nitrides have an orthorhombic lattice with a 16-atom unit cell. The lattice

parameters of the orthorhombic cell can be related to those of the wz cell via the relations:

a ≈
√

3awz, b ≈ 2awz, and c ≈ cwz, where awz and cwz are the wz lattice parameters. In

Fig. 3.1, we illustrate the ZnGeN2 primitive cell.

The space group for this structure is Pna21, which imposes an ordering on the cation
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sublattice. There are two glide plane symmetries: one perpendicular to the a axis, and

one perpendicular to the b axis; as a result, polarization is zero along these directions.

Similar to the wz structure, the spontaneous polarization points along the c axis.

Our calculations are performed using the HSE functional (See Sec. 1.3) and a plane-

wave energy cutoff of 500 eV. We use the default mixing parameter of 25%. For integra-

tions over the Brillouin zone, we use a Monkhorst-Pack [47] 4× 4× 4 k-point grid.

In Table 3.1, we list the calculated lattice parameters for the Zn-IV-nitrides relative

to values reported in the literature. Very good agreement is observed. In the same table,

we also include the lattice parameters for the III-nitrides. The lattice parameters can be

compared using the relations listed above. In Fig. 3.2, we plot the lattice parameters of

the Zn-IV-nitrides and III-nitrides on the same figure using wurtzite-equivalent lattice

parameters a/
√

3 and b/2. a/
√

3 is smaller than b/2 for each of the nitrides. For ZnSiN2,

there is a large difference between the two values, but this difference is smaller for ZnGeN2

and extremely small for ZnSnN2. This effect can be explained by the ionic radii differences

between Zn and each of the group-IV cations. The Zn2+ ion has a radius of 0.60 Å, while

Si4+ has an ionic radius of 0.26 Å, Ge4+ 0.39 Å, and Sn4+ 0.55 Å. A much larger structural

change is required to fit Zn and Si together than for Zn and Sn.

We find ZnGeN2 has an average in-plane lattice parameter that is extremely close

to that of GaN. a/
√

3 is about 1% smaller, while b/2 is about 1% larger. As a result,

ZnGeN2 may be grown epitxially on GaN with very low strain. For the other Zn-IV-

nitrides, we find ZnSiN2 has an average in-plane parameter of 3.08 Å, slightly smaller

than that of AlN, while the average in-plane parameter of ZnSnN2 sits between GaN and

InN.
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Compound Property Calc. Expt.

ZnSnN2 a(Å) 5.85 5.84 [48]
b(Å) 6.74 6.75 [48]
c(Å) 5.47 5.46 [48]
Eg(eV) 1.40 ...

ZnGeN2 a(Å) 5.47 5.45 [42]
b(Å) 6.45 6.44 [42]
c(Å) 5.20 5.19 [42]
Eg(eV) 3.19 ...

ZnSiN2 a(Å) 5.24 5.25 [49]
b(Å) 6.27 6.28 [49]
c(Å) 5.02 5.02 [49]
Eg(eV) 4.83 ...

InN (α = 25%) a(Å) 3.59 [33] 3.55 [50]
c(Å) 5.76[33] 5.70 [50]
Eg(eV) 0.65[33] 0.78 [50]

GaN (α = 29.5%) a(Å) 3.19 3.19 [50]
c(Å) 5.19 5.19 [50]
Eg(eV) 3.48 3.51 [50]

AlN (α = 31%) a(Å) 3.10[33] 3.11[50]
c(Å) 4.96[33] 4.98[50]
Eg(eV) 6.04[33] 6.25[50]

Table 3.1: Calculated lattice parameters and band gaps for the Zn-IV-nitrides and
GaN; experimental values are included for comparison. For AlN and InN, we use
calculated values from Dreyer et al. [33].
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Figure 3.2: In-plane lattice parameters and band gaps for the Zn-IV-nitrides
and III-nitrides. The two data points for the Zn-IV-nitride materials are the
wurtzite-equivalent lattice parameters a/

√
3 and b/2.

3.3 Electronic structure

We calculate the band gaps by plotting the eigenvalues for all the electrons in the

system along high-symmetry lines in the first Brillouin zone. For the orthorhombic

crystal structure, the Brillouin zone is also orthorhombic; we depict the Brillouin zone

in Fig. 3.3(a). For ZnGeN2 and ZnSnN2, we find the band gap to be direct, with both

the CBM and VBM occuring at the Γ point. However, for ZnSiN2, we find the band

gap to be indirect, as the VBM is at the T point. A direct band gap is important for

optical devices, as efficient optical absorbtion and emission requires electrons and holes

to recombine at the same k-point to conserve momentum. The band gaps for each of the

Zn-IV-nitrides are listed in Table 3.1. In Fig 3.2, we plot the band gaps as a function

of the lattice constant, while in Fig 3.3, we plot the full bandstructure of each of the

Zn-IV-nitrides.

We calculate an indirect gap for ZnSiN2 of 4.83 eV and a direct gap at Γ of 5.18
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Figure 3.3: (a) The First Brillouin zone for the orthorhombic Pna21 phase. (b-d)
The band structure of (b) ZnSiN2, (c) ZnGeN2, and (d) ZnSnN2, calculated using the
HSE hybrid functional.
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eV. As a result, ZnSiN2 cannot be used as the active region in an light-emitting device,

but might still have applications as a barrier layer or in electronic devices that uniquely

make use of electrons (unipolar devices). Punya et al. previously calculated the band

structure of ZnSiN2 using the quasiparticle self-consistent GW approximation [51]. They

found an indirect band gap of 5.44 eV with the VBM residing between Γ and X. We find

the same local maxima in the valence band but find the maximum at the T point to be

higher than the local maximum between Γ and X. These differences are small, about 0.2

eV, and mostly result from small differences in the lattice parameters. Note that there

is a difference in labeling of k points between our results and the results of Punya et al.

as they have interchanged the a and b lattice vectors.

Previous experimental reports have determined the band gap of ZnGeN2 to lie within

the range of 2.99 eV to 3.3 eV [52, 53, 54], in good agreement with our calculated value

of 3.19 eV. For ZnSnN2, the gap has been reported in the range of 1 to 2 eV [55, 56], with

uncertainties arising from significant disorder on the cation sublattice and a Burstein-

Moss shift resulting from degenerate electron doping. Our ZnSnN2 band gap of 1.4 eV

is consistent with previous calculations [56, 57].

Due to the small lattice mismatch between GaN and ZnGeN2, and the band gap of

ZnGeN2 lying close to the visible spectrum, the majority of our work focuses on ZnGeN2.

The following three chapters study point defects and n and p-type doping in ZnGeN2.

We also examine point defects and n-type doping in ZnSiN2 for potential applications to

unipolar electronics. Point defects and doping in ZnSnN2 have been studied in a variety of

other works [57, 58, 59]. In Chapter 6, we study heterojunctions between Zn-IV-nitrides

and III-nitrides.
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Point defects and unintentional

n-type doping in ZnGeN2 and

ZnSiN2

The defect properties of materials significantly impact their applications in electronic and

optoelectronic devices. Some defects can be beneficial, such as shallow donors and accep-

tors that enable the formation of p-n junctions; while other defects can be detrimental,

causing compensation or leading to deep traps that increase recombination and reduce

carrier mobility. In this work, we examine interstitials, vacancies, antisites, and substi-

tutional dopants. This work was done in collaboration with Darshana Wickramaratne,

Zhen Zhu, and Chris G. Van de Walle.

4.1 Introduction

Defects in semiconductors, such as vacancies, interstitials, and antisites affect the

electronic properties of the material. The Zn-IV-nitrides have two cations: Zn, from
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group-II, and a group-IV cation. As a result, cation-cation antisite defects can be par-

ticularly important.

Prior work on point defects and impurities in ZnGeN2 was performed by Skachkov

et al. [60] using density functional theory and the local density approximation (LDA).

The LDA functional significantly understimates the band-gap, which they addressed by

applying an on-site potential U to the Ge and Zn s and p states. The LDA+U formalism

was designed to treat highly localized states, such as d of f states [61, 62], and there is

no formal justification for applying it to s and p states. In addition, while LDA + U

can bring the band gap into closer agreement with experiment, it does not necessarily

produce the correct values for the VBM and CBM on an absolute energy scale. This

can lead to deficiencies in formation energies and thermodynamic transition levels. Our

work, using the HSE functional, avoids these pitfalls. Skachkov et al. [60] also examined

O and Ga as potential dopants in ZnGeN2, showing ON acts as a shallow donor, and that

Ga acts as a shallow donor on the Zn site, and a shallow acceptor on the Ge site. We

found no previous defect studies on ZnSiN2

Our focus in this chapter is to access the relative stability of native point defects

in ZnGeN2 and ZnSiN2. We evaluate vacancies, interstitials, antisites, in a variety of

charge states, in order to determine their electronic behavior. Furthermore, we investigate

the role of oxygen and hydrogen, which may be unintentionally incorporated during

growth. We find that native point defects in ZnGeN2 do not lead to electrically conductive

material, while both hydrogen and oxygen, substituting on the nitrogen site, act as donors

in both ZnGeN2 and ZnSiN2.

Our point-defect calculations are performed within the VASP code, using the HSE

functional with the standard mixing parameter of 25% (See Sec. 1.3). For calculations

involving supercells, we use the single special k-point at (1/4, 1/4, 1/4) for integrations

over the Brillouin zone. We apply spin polarization in all our calculations.
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Under the formalism discussed in Sec. 1.3.1, the formation energy of a defect D in

charge state q is:

Ef (Dq) = Etot(D
q)− Etot(bulk) +

∑
i

niµi + qEF + ∆q , (4.1)

where Etot(D
q) is the energy of the supercell with the defect present, Etot(bulk) is the

energy of the pristine supercell, and µi is the chemical potential of the atoms added to

(ni < 0) or removed from (ni > 0) to form the defect. EF is the Fermi energy, referenced

to the VBM, and ∆q is the Freysoldt correction [18, 19, 63].

4.2 Chemical potentials and phase stability

The chemical potentials in Eq. (4.1) act as proxy for the semiconductor growth and

processing conditions. The chemical potentials for each atom are bounded by the condi-

tions for stability in thermodynamic equilibrium. We reference these chemical potentials

to the total energies, per atom, of their respective ground-state phases; for instance

∆µZn = µZn − µZn(bulk), where µZn(bulk) is the per-atom energy of hexagonal close-packed

Zn. Using this notation, the constraints imposed by the formation of ZnGeN2 and ZnSiN2

are:

∆µZn + ∆µGe + 2∆µN = ∆Hf (ZnGeN2) (4.2)

and

∆µZn + ∆µSi + 2∆µN = ∆Hf (ZnSiN2) , (4.3)

where ∆Hf is the formation enthalpy. We calculate a formation enthalpy of −1.09

eV/(formula unit) (eV/f.u) for ZnGeN2 and −3.71 eV/f.u for ZnSiN2.

To define regions where ZnGeN2 and ZnSiN2 are thermodynamically stable, we also
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need to take into account secondary phases that can form during growth. Ge3N4 is one

such phase that can form during the growth of ZnGeN2; the appropriate restriction to

prevent formation of Ge3N4 is therefore:

3∆µGe + 4∆µN ≤ ∆Hf (Ge3N4) . (4.4)

Similar equations hold for the other secondary phases. The formation enthalpies of

secondary phases that we have considered are included in Table 4.1 where they are

compared to experimental values. We calculate a small positive formation enthalpy of

formation for Zn3N2. Ge3N4 is the only limiting phase for ZnGeN2, and Si3N4 is the only

limiting phase for ZnSiN2. We illustrate the phase diagram for ZnGeN2 and ZnSiN2 in

Fig. 4.1. We highlight the vertices of the ZnGeN2 and ZnSiN2 stability regions as they

will be informative choices of chemical potentials for plotting formation energies.

For the purposes of presenting formation-energy results in ZnGeN2, we focus on two

extreme cases: the points labeled “Zn-poor A” and “Ge-poor” in Fig. 4.1(a). “Ge-poor”

is where ∆µZn = 0 and ∆µGe = −1.09 eV. “Zn-poor A” is where ∆µZn = −0.71 eV

and ∆µGe = 0 eV. For ZnSiN2, the conclusions do not depend on the choice of chemical

potential, and we will present results only in the Zn-poor limit. Formation energies under

other conditions can always be obtained by referring back to Eq. (4.1).

We also consider the chemical potential of potential dopant elements. For example,

high concentration of O doping could result in growth of ZnO or GeO2. In calculating

dopant formation energies and concentrations, we are assuming that we are at the solubil-

ity limit of the dopant, where growth of these competing phases prevents further doping.

The formation enthalpies of these secondary phases are also included in Table 4.1. For

H, the limiting phase was taken to be H2 gas.
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Compound Calc. (eV) Expt. (eV)

ZnGeN2 −1.09 ...
ZnSiN2 −3.71 ...
Zn3N2 +0.20 −0.25 [64]
Ge3N4 −0.77 −0.64 [65]
Si3N4 −8.83 −8.58 [66]

Li3N −1.65 −1.71 [67]
AlN −3.15 −3.30 [68]
GaN −1.20 −1.29 [68]
ZnS −1.88 −2.12 [69]
ZnSe −1.73 −1.84 [69]
P3N5 −3.87 −3.32 [70]
Zn3P2 −1.28 −1.71 [71]
Zn3As2 −1.29 −1.34 [72]
GeAs −0.13 ...

ZnGeAs2 −0.93 ...
ZnO −3.10 −3.62 [64]
GeO2 −4.93 −5.70 [64]
SiO2 −8.90 −9.44 [70]

Table 4.1: Formation enthalpies for ZnGeN2, ZnSiN2, and limiting phases.
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Figure 4.1: Calculated phase stability diagrams for (a) ZnGeN2 and (b) ZnSiN2. For
any pair of ∆µZn and ∆µGe (∆µSi), ∆µN is given by Eq. (4.2) [Eq. (4.3)].
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4.3 Native point defects in ZnGeN2

The formation energies of all the native defects we have considered are shown in

Fig. 4.2. We first consider the properties of the vacancies. We find the Ge vacancy (VGe)

has a high formation energy for all values of the Fermi level under both chemical potential

conditions. Hence, VGe is unlikely to form in ZnGeN2 in any appreciable concentration

during growth. The Zn vacancy (VZn) exhibits low formation energies under n-type

conditions (Fermi level high in the gap), particularly under Zn-poor conditions. VZn is

stable as a deep acceptor in the 2– charge state for Fermi levels above 1.44 eV; it would

thus act as a compensating center in n-type material. The nitrogen vacancy VN, on the

other hand, acts as a deep donor; it is in a + charge state when the Fermi level is below

the (+/0) transition level, at 0.71 eV from the CBM. VN has a low formation energy,

particularly when the Fermi level is low in the gap; it has a (3+/+) transition 0.22 eV

from the VBM. VN can also be stable in the negative charge state, with a (0/–) level 0.32

eV below the CBM.

Next, we address the properties of interstitials. The Zn interstitial (Zni) has a low

formation energy under p-type conditions and is stable only in the 2+ charge state. The

Ge interstitial (Gei) has high formation energy across most of the band gap and is stable

as a donor in various positive charge states. The N interstitial (Ni), on the other hand, is

amphoteric, exhibiting both positive and negative charge states across the ZnGeN2 band

gap.

Turning to cation antisites, the GeZn antisite is the defect with the lowest formation

energies when the Fermi level is below mid gap. Ge has two more electrons than Zn and

therefore GeZn is stable in a 2+ charge state across a majority of the ZnGeN2 band gap,

with a (2+/0) level at 0.20 eV below the CBM. For the GeZn antisite in the 2+ charge

state we find a small outward relaxation of the nearest-neighbor N atoms, while in the
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Figure 4.2: Formation energies of point defects in ZnGeN2 as a function of Fermi
level under (a) Ge-poor and (b) Zn-poor conditions. The slope of each line segment
indicates the stable charge state of the defect at a particular Fermi level, and kinks
in the curves correspond to charge-state transition levels.
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neutral charge state, we find a large asymmetric displacement of the nearest-neighbor N

atoms.

Since Zn has two fewer electrons than Ge, we find the ZnGe antisite to act as a

double acceptor. Under Ge-poor conditions, we find ZnGe to be the lowest-energy defect

under n-type conditions. In the 2– charge state of ZnGe, a small inward relaxation of the

nearest-nightbor N atoms occurs. Under Zn-poor conditions, the formation energies of

ZnGe and VZn (both in the 2– charge state) are comparable when the Fermi level is high

in the gap.

Results for nitrogen antisites (NZn and NGe) are not included here as we found them

to have very large formation energies. This can be attributed to the mismatch in atomic

radii. Indeed, the formation energies of NGa antisites in GaN were also found to be very

large for all values of the Fermi level [73], and we note that Zn, Ge, and Ga have similar

atomic radii. In GaN, it was also found that GaN antisites are high in energy, and thus

we expect ZnN and GeN to also be energetically unfavorable.

Finally, we address the formation of ZnGe–GeZn complexes. Since these cation anti-

sites are the lowest-energy point defects, and they act as donors and acceptors, respec-

tively, we expect that they might form a complex with high binding energy. Also, since

the complex involves a simple interchange of Zn and Ge atoms, its formation energy is

independent of chemical potentials. The formation energy of the ZnGe–GeZn complex is

included in Fig. 4.2. As expected, the complex is neutral for most Fermi-level positions,

and the formation energy is 2.05 eV. The binding energy, defined as the energy difference

between the formation energy of the complex and the sum of the formation energies of

Zn2−
Ge and Ge2+

Zn , is 2.33 eV.

In the absence of impurities, GeZn, ZnGe and VZn are the dominant defects. Charge

neutrality between these defects will pin the Fermi level within the band gap. Under

Ge-poor conditions, charge neutrality is achieved by having equal concentrations of GeZn
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and ZnGe, pinning the Fermi level at 1.44 eV below the CBM. Zn-poor conditions, on

the other hand, will lead to the Fermi level being pinned at 0.56 eV below the CBM

with equal concentrations of GeZn donors and ZnGe or VZn acceptors. We have checked

that any other combination of chemical potentials leads to Fermi-level positions between

these two extremes. Hence, for any choice of chemical potentials, native point defects

would lead to insulating behavior in ZnGeN2, since the Fermi level would be pinned far

away from the band edges.

4.4 Hydrogen and oxygen impurities in ZnGeN2

Next, we consider hydrogen and oxygen impurities. These elements are ubiquitous

during growth and can affect the electronic properties of unintentionally doped material.

The formation energies of oxygen incorporated on the nitrogen site, ON, and of the

hydrogen interstitial, Hi, are plotted in Fig. 4.3 alongside the formation energies of GeZn,

ZnGe, and VZn.

We find ON to act as a shallow donor in ZnGeN2; that is, it is only stable in the

singly positive charge state for all values of the Fermi level. The incorporation of O on

the N site leads to a small outward relaxation of the nearest-neighbor Ge atoms, but a

significantly larger displacement of the Zn neighbors. We find the O–Zn bond lengths to

be about 9% larger than the equilibrium Zn–N bond length, while the O–Ge bonds are

elongated by only ∼2%.

The hydrogen interstitial, Hi, is stable in the positive charge state for most of the

band gap; the negative charge state can be stabilized when the Fermi level is within

0.06 eV from the CBM. In the positive charge state, the interstitial occupies a hydrogen

bond-center position, between Zn and N, while in the negative charge state, it occupies

the octahedral site. In nitride and oxide semiconductors, hydrogen can also substitute
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Figure 4.3: Formation energies of ON and Hi impurities as well as the lowest-energy
native point defects under (a) Ge-poor and (b) Zn-poor A conditions.
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on the anion site (alternatively considered a complex with an anion vacancy) [74]. The

formation energy of this HN configuration is included in Fig. 4.3. HN behaves as a deep

donor, with (2+/+) and (+/0) levels well below the CBM. Therefore, unlike HN in some

nitrides [75], HN in ZnGeN2 will not contribute to n-type conductivity.

The incorporation of ON and Hi will drive the Fermi level towards the conduction

band, and these impurities (which can easily be present in the growth environment)

could therefore in principle be responsible for the unintentional n-type conductivity that

has been observed in some experiments [76]. However, Fig. 4.3 shows that significant

compensation by the ZnGe and VZn acceptor-type defects is likely.

As noted in Sec. 1.3.1, the concentration of each defect, at equilibrium, follows a

Boltzmann distribution:

c = Nsitese
−

E
f
D

kBT . (4.5)

Nsites is the concentration of available sites for the defect to form, Ef
D is the formation

energy of the defect as defined in Eq. (4.1), kB is the Boltzmann constant, and T is the

temperature. It is evident that only defects with low formation energies will be present

in appreciable concentrations.

As an example, we consider the concentration of ON donors that may form in ZnGeN2

under Zn-poor conditions, based on the formation energies shown in Fig. 4.3(b). The

formation energies depend on the Fermi level, which in turn is established by charge

neutrality. For Zn-poor conditions, the Fermi level is pinned close to 3.03 eV above the

VBM, where the formation energies of both the dominating defects (VZn and ZnGe) and

ON are equal to 1.32 eV. At a growth temperature of 755◦C, as used in MOCVD growth

of ZnGeN2 [52], the resulting equilibrium concentration of ON would be approximately

1016 cm−3.

The actual formation energies of Hi and ON will depend on the abundance of H and
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O in the environment. The values shown in Fig. 4.3(b) assume equilibrium with ZnO,

GeO2, and H2. If the concentration of oxygen can be increased beyond this value, n-type

material could potentially be achieved. Our results show, however, that unintentional

n-type doping due to hydrogen or oxygen is not very likely. In Chapter 5, we will expand

on our methodology and examine intentional doping in ZnGeN2.

4.5 Discussion

Skachkov et al. previously examined the electronic and structural properties of native

point defects, oxygen and gallium impurities, and “exchange defects” such as the ZnGe–

GeZn complex in ZnGeN2 using the LDA [60, 77]. While some of their results (such as on

the qualitative issue of which defects have the lowest formation energies) agree with ours,

important quantitative differences occur, both in the magnitude of formation energies and

in the position of transition levels. To assess the impact of the underestimated LDA band

gap on their results, Skachkov et al. employed an LDA+U approach, using an on-site

U potential of ∼47 eV applied to the s states and ∼32 eV applied to the p states of Zn

and Ge. While this may provide an ad hoc correction of the gap, the physical meaning of

such a correction and its impact on total energies is unclear. We note that the enthalpies

of formation of ZnGeN2, Zn3N2, and Ge3N4 obtained by Skachkov et al. (estimated from

the boundaries in their chemical potential diagram) differ significantly (by as much as

several eV) from ours as well as from experiment (see Table 4.1).

In addition, the on-site U potential does not necessarily correct for the absolute posi-

tion of the valence-band edge, which in turn affects the formation energies [6, 63, 73]. We

can use the formation energy of ZnGe in the 2– charge state as a representative example.

Under Zn-rich conditions, our HSE formation energy at the CBM for this defect is ∼2

eV larger than the LDA+U formation energy at the CBM. This is consistent with the
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absolute position of the CBM in our calculations being as much as 1 eV lower than in

Ref. [60]. In addition to shifts in the positions of charge-state transition levels, some

transition levels that we identify to be stable in our calculations are missing in the work

of Skachkov et al. [60] For instance, for GeZn we find a (2+/0) level at 0.20 eV below the

CBM, while Skachkov et al. report only the 2+ charge state to be stable across the band

gap. In this case, we attribute the difference to a large lattice relaxation occurring for

the neutral charge state, which may have been missed in Ref. [60]. For the ZnGe–GeZn

complex, Skachkov et al. reported a formation energy of 2.8 eV [77], significantly larger

than our value of 2.05 eV (Fig. 4.2).

We also note that Ref. [60] reported very low formation energies for ON, suggesting

that oxygen would incorporate at high concentrations in ZnGeN2. However, the reference

for the oxygen chemical potential (µO) was taken as half of the total energy of an O2

molecule. It is more realistic to assume that ON incorporation is limited by the formation

of competing phases such as GeO2 and ZnO, which significantly raises the formation

energy.

We agree with the qualitative conclusions of Skachkov et al. about the dominance

of antisite defects and the role of ZnGe as a compensating center in n-type material.

However, we also find VZn to be low in energy under Zn-poor conditions [see Fig. 4.2(b)],

while Skachkov et al. find it to be higher than ZnGe by about 1.4 eV (when comparing

similar chemical potential conditions).

4.6 Point defects in ZnSiN2

ZnSiN2 has a large indirect band gap of 4.83 eV. An indirect band gap suggests

ZnSiN2 is unlikely to be useful for optical emitters or absorbers, but may be practical

as a wide-band-gap unipolar electronic device. We therefore investigate the native point
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defects as they relate to n-type doping, focusing on the native acceptors that lead to

charge compensation and evaluating ON and Hi as donors. The native acceptors we

examine are analogous to those we identified in ZnGeN2: the cation vacancies VZn and

VSi and the zinc antisite ZnSi. Formation energies for these defects are shown in Fig. 4.4.

Qualitatively, the native defects in ZnSiN2 behave similarly to the native defects in

ZnGeN2. We find VSi has much higher formation energy than VZn and ZnSi, similar to

the high formation energy seen for VGe in ZnGeN2. VZn and ZnSi have properties similar

to VZn and ZnGe in ZnGeN2: they both have low formation energies in the −2 charge

state under n-type conditions. Furthermore, the positions of the transition levels of VZn

and ZnSi within the band gap of ZnSiN2 are very similar to those of VZn and ZnGe in

ZnGeN2 when the band alignment between the two materials is taken into account. Band

alignments will be examined in Chapter 7.

ON has a (+/–) transition level within the gap; this is an example of DX-center

behavior [78]. This phenomenon will be explored in more detail in Chapter 5. Since the

transition level is very near the CBM (0.13 eV), ON could still contribute electrons to the

conduction band. In the positive charge state, ON causes an asymmetric relaxation, with

O–Zn bonds 11% longer than bulk N–Zn bonds but O–Si bond lengths within 2% of bulk

N–Si bonds. In the negative charge state, the O atom shifts away from a nearest-neighbor

Zn atom and assumes a position in the plane formed by the other nearest-neighbor Zn

atom and the two nearest-neighbor Si atoms.

Hi has a (+/–) transition level deep within the gap, acting as an amphoteric impurity.

Hi behaves as a deep donor in the presence of the native acceptors VZn and ZnSi. The

transition level occurs 1.33 eV below the CBM, significantly deeper in the gap than the

0.06 eV below the CBM found in ZnGeN2. In the positive charge state, it again occupies

a bond-center position between Zn and N. In the negative charge state, it occupies the

octahedral site, as it does in ZnGeN2. In Chapter 7, we will demonstrate how the H(+/–)
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Figure 4.4: Formation energies of ON and Hi impurities as well as the lowest-energy
native point defects under Zn-poor conditions.

transition level can be used to align the band edges between the Zn-IV-nitrides and GaN.

4.7 Summary

We have investigated a variety of native point defects in ZnGeN2 and ZnSiN2. In

ZnGeN2, we found that the most stable defects are the VZn and the cation antisites ZnGe

and GeZn. In equilibrium, charge neutrality pins the Fermi level within the band gap,

leading to insulating behavior. However, unintentionally incorporated impurities such as

ON and Hi can shift the Fermi level to near the CBM. In ZnSiN2, we find VZn and ZnSi

have similar thermodynamic transition levels as the VZn and ZnGe defects in ZnGeN2,

when band alignment is taken into account.
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Chapter 5

n-type doping in ZnGeN2 and

ZnSiN2

This work was done in collaboration with Darshana Wickramaratne, Zhen Zhu, and Chris

G. Van de Walle.

5.1 Introduction

The Zn-IV-nitrides have been considered for a variety of applications, such as solar

cells [5], light-emitting diodes [48], and high-power electronics [44]. However, each of

these applications requires controllable doping of the material.

Experimental work has shown that ZnSnN2 is typically degenerately n-type doped,

with carrier concentrations on the order of 1020−1021 cm−3, while growth of ZnGeN2 [79,

53] and ZnSiN2 [43] typically results in insulating material. Theoretical work has pointed

to ON dopants and SnZn antisites as the likely sources of n-type conductivity in ZnSnN2 [59,

80]. As for ZnGeN2, previous work using density functional theory demonstrated that

ON acts as a shallow donor and the GeZn antisite acts as a deep donor; however, they are
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heavily compensated by ZnGe antisite and VZn vacancy defects that act as acceptors [60].

We are not aware of any studies of defects or doping in ZnSiN2. To determine if ZnGeN2

and ZnSiN2 can be intentionally doped, we examine a variety of donors and acceptors and

evaluate the effect of compensation from the native defects we identified in Chapter 4.

Unlike binary semiconductors, the Zn-IV-nitrides have two distinct cations with dif-

ferent charges. To obtain strong n-type conductivity, we search for dopants with a strong

preference for substitution on a specific site. If the dopant substitutes on the wrong site,

it may contribute to compensation. Group-III dopants, such as Al, Ga, and In, may

suffer from self-compensation as they are likely to substitute both on the Zn site as a

donor, and on the group-IV site as a compensating acceptor. O has been investigated

as an unintentional dopant, where it substitutes as a donor on the N site. Similarly, S

and Se can be expected to preferentially substitute on the N site [78]. We also consider

P and As, which can substitute as donors on the cation site and are isoelectronic with

nitrogen.

DX behavior poses a challenge for n-type doping in wide-band-gap semiconductors.

A DX center occurs when a donor impurity undergoes a large lattice relaxation and

captures two electrons, in the process converting to an acceptor. For example, SiGa

acts as a shallow donor in GaN, but for AlxGa1−xN with high Al concentration, silicon

has a transition level between the positive and negative charge states that lies within

the band gap [78]. As a result, it is difficult to achieve high carrier concentrations

in AlxGa1−xN [81]. With a different set of potential donors, the Zn-IV-nitrides could

potentially enable levels of n-type doping that are difficult to achieve in AlxGa1−xN.

Using our density functional methodology, we investigate P, As, S, and Se as dopants

substituting on each potential site in ZnGeN2 and ZnSiN2. We compare the formation

energies of these dopants acting as donors with their formation energies when incorpo-

rating on competing sites. Since the concentrations of the donors as well as the native
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acceptors depend on the growth conditions, we calculate the n-type carrier concentration

for a range of growth conditions to determine the effect of compensation and select the

optimal donor for achieving n-type conductivity.

Our dopant calculations are performed using the HSE functional within the VASP

program as previously discussed in Sec. 1.3.1. To evaluate each dopant, we determine the

maximum carrier concentration that can be induced in each material. In equilibrium,

the total number of positive and negative charges in the material will be equal. The

positive charges in the material are the free holes and positively charged point defects or

impurities, while the negative charges are the free electrons and negatively charged point

defects or impurities. For n-type material, the hole concentration, p, is small and can be

neglected. The concentration of charge resulting from a particular defect or impurity is

Q
i

= qiNsites exp (
−Ef

i

kBT
), (5.1)

where qi is the charge of the defect or impurity, Nsites is the concentration of sites it can

occupy, Ef
i is the formation energy, kB is Boltzmann’s constant and T is the growth

temperature. This expression is summed over all point defects and impurities in the

system. The full charge balance equation in equilibrium can be written as:

∑
i

qiNsites exp (
−Ef

i

kBT
) = Nc exp (

−EF
kBT

), (5.2)

where the electron concentration, n, is expressed assuming the Boltzmann approximation

(nondegenerate limit) and Nc is the effective density of states for the conduction band.
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5.2 n-type doping in ZnGeN2

As ZnGeN2 is a ternary material, there are three types of substitutional impurities

that can result in (single) donors: substitution of a group-III element on the Zn site,

substitution of a group-V element on the Ge site, or substitution of a group-VI element

on the N site. As will be discussed in detail in Chapter 6, the group-III elements (Al,

Ga, and In) can substitute on the Zn site, where they act as donors, but also on the Ge

site, where they act as acceptors. This strong tendency for self-compensation renders

it difficult (or impossible) to obtain n-type doping with group-III elements. We will

therefore focus on group-V and group-VI dopants. We will first examine the properties

of each of the substitutional dopants, and then evaluate the carrier concentrations that

can be achieved.

5.2.1 Group-V donors: P and As

In Fig. 5.1, we plot the formation energies as a function of Fermi level for P and As

substituting on each of the Zn, Ge, or N sites. The group-V elements are expected to

act as donors when substituting on the Ge site. Indeed, we find that PGe and AsGe act

as shallow donors (i.e., the positive charge state is the only stable charge state over the

entire range of Fermi levels). We have explicitly investigated potential formation of DX

centers and find that the (+/–) charge transition levels are not stable for PGe and AsGe.

PGe and AsGe also have relatively low formation energies. However, P and As can

also substitute on the Zn or N sites, and the effects of incorporation on those sites

need to be examined. On the Zn site, P and As should still act as donors (expected

to be triple donors), but on the N site they are isoelectronic and would be expected

to be electronically inactive. In Fig. 5.1 we plot the formation energies under N-poor

conditions so as to show the worst-case scenario for incorporation on the N site.
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Figure 5.1: Formation energies for (a) P and (b) As substitutional impurities in
ZnGeN2 under N-poor conditions.

We find that P prefers to substitute on the Ge site for all chemical potentials and

all Fermi levels. Examining the local relaxations we find that PGe bonds symmetrically

to its four nearest-neighbor N atoms, causing a breathing relaxation as the four P–N

bond lengths contract by 10% of the bulk Ge–N bond lengths. For PN, there is an

asymmetric relaxation in the neutral state, where the P–Zn bonds are 17% longer than

bulk N–Zn bonds, and the P–Ge bonds are 9% longer than bulk N–Ge bonds. These

large relaxations are an indication of the size mismatch between P and N, and partially

explain why, despite P being isoelectronic to N, PN has a significantly higher formation

energy than PGe. We also find PZn acts as a triple donor, but has a very high formation

energy under n-type conditions and is unlikely to form.

As shown in Fig. 5.1, we find that As prefers substitution on the Ge site for most

Fermi levels, but under N-poor conditions, AsN is more stable than AsGe when the Fermi

level is high in the gap. Conveniently, since AsN is electrically neutral under n-type

conditions, it will not compensate AsGe donors. In terms of relaxations, we find that
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AsGe in the positive charge state causes only a small breathing relaxation where As–N

bond lengths are 3% shorter than bulk Ge–N bond lengths. Similar to PN, AsN causes a

large asymmetric relaxation, where As–Zn bonds are 20% longer than bulk N–Zn bonds

and As–Ge bonds are 11% longer than bulk N–Ge bonds. Lastly, like PZn, AsZn acts as

a donor, but under n-type conditions, it is unlikely to form.

Ionic radii can be used to explain the relaxations around PGe and AsGe in the positive

charge state. P5+ has an ionic radius of 0.17 Å, As5+ 0.34 Å, and Ge4+ 0.39 Å [82].

The differences in these ionic radii agree with the differences in length between the N–P,

N–As, and N–Ge bond lengths to within 0.03 Å.

P and As are isovalent with N and we therefore expect them to occur in the neutral

charge state. We find, however, that for Fermi levels in the lower part of the gap they can

also be stable in the positive charge state. The positive charge states are associated with

localized hole states. These findings are consistent with the AsN substitutional impurity

in GaN [83, 84].

5.2.2 Group-VI donors: S and Se

In Chapter 4, we studied O as a potential unintentional dopant and found that ON

acts as a shallow donor, but O doping does not lead to high n-type conductivity due to

effects of compensation. However, other group-VI elements such as S and Se may act

as good donors. This is indeed confirmed by the results in Fig. 5.2, where SN, and SeN

are found to be stable only in a positive charge state. DX configurations are not stable;

in each case, the transition level between the between the positive and negative charge

states occurs well above the CBM.

The formation energies in Fig. 5.2 are plotted for Zn-poor conditions. Since we would

like the group-VI dopants to substitute on the N site, Zn-poor (i.e., N-rich) conditions
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Figure 5.2: Formation energies for (a) S and (b) Se substitutional impurities in
ZnGeN2 under Zn-poor conditions [Zn-poor B in Fig. 4.1(a)].

constitute a worst-case scenario for such incorporation. Even then, SZn, SeZn, SGe, and

SeGe all have much higher formation energies than SN or SeN. Substitution on the N site

is thus strongly preferred under all growth conditions. However, the formation energies

of SN and SeN are high when EF is high in the gap, and we will see that this leads to

very low electron concentrations when n-type doping is attempted.

SN bonds to two Zn atoms and two Ge atoms. In the positive charge state, SN causes

a large asymmetric relaxation, where S–Ge bond lengths are 19% longer than bulk N–Ge

bond lengths and S–Zn bond lengths are 12% longer than bulk N–Zn bond lengths. A

similar relaxation occurs for SeN in the positive charge state, where Se–Ge are 23% longer

than bulk N–Ge bonds, and Se–Zn bonds are 15% longer than N–Zn bonds.

5.2.3 Carrier concentrations

We now examine the levels of n-type doping that can be achieved with various donor

impurities. This will depend on the formation energies of the substitutional donors
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as well as any compensating acceptors that may form. In Chapter 4, we previously

identified ZnGe and VZn as the dominant native acceptors in ZnGeN2, VGe being much

less likely to form. In Fig. 5.3 we plot the formation energies of these dominant acceptors

alongside those of our candidate donors. We chose Zn-poor conditions, which were found

to suppress the formation of native acceptors. The plot shows that even under these

conditions, compensation by native acceptors is a serious problem in ZnGeN2. However,

given that there is a lot of flexibility in choosing chemical potentials (corresponding to

growth under different conditions), one may wonder whether it is possible to identify

conditions that would be more optimal for achieving n-type doping.

Figure 5.3: Formation energies for candidate dopants and native acceptors in ZnGeN2

under Zn-poor conditions [Zn-poor B in Fig. 4.1(a)].

To examine this, we investigate the actual carrier concentrations that can be achieved.

These depend on the concentrations of donors and acceptors in the system, which are

determined by their formation energies. We have seen that these formation energies

depend on the Fermi level. In an actual material, the Fermi level is fixed by the condition

of charge neutrality, as expressed in Eq. (5.2). We perform this investigation over the full
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range of allowed chemical potentials, which is determined by the phase stability diagram

for ZnGeN2, shown in Fig. 4.1(a). This diagram shows the range of chemical potentials

∆µi for each element i for which ZnGeN2 is stable, in the presence of competing phases.

Small changes in chemical potential can significantly change defect concentrations, due

to the exponential dependence in Eq. (5.1).

Figure 5.4: Calculated electron concentration as a function of chemical potentials for
ZnGeN2 doped with (a) P, (b) As, (c) S, or (d) Se, for a range of chemical potentials al-
lowed by the phase stability diagram [Fig. 4.1(a)] and at a growth temperature of 1000
K. The chemical potential condition that enables the highest carrier concentration is
indicated by nmax for each dopant.

In Fig. 5.4, we use a color map to illustrate how the electron concentration depends

on the chemical potential for each dopant at a growth temperature of 1000 K. The carrier

concentration results from solving the charge-balance condition [Eq. (5.2)] quantitatively,

including potential compensation by native acceptors.

Phosphorous [Fig. 5.4(a)] stands out as the best dopant; we find that a concentration

of n = 1.3 × 1019 cm−3 can be achieved. Notably, we find that the maximum carrier
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concentration is found neither at the Zn-poor condition, where the formation energy of

the acceptors is highest, nor at the Ge-poor condition, where the formation energy of the

PGe is lowest, but somewhere in the middle, near the N-poor condition.

When doping with arsenic [Fig. 5.4(b)], it is possible to reach concentrations up to

n = 2 × 1016 cm−3 for conditions roughly midway between the Zn-poor and Ge-poor

limits. Sulfur and selenium, finally, are found to be poor dopants (which was evident

already from their high formation energies, Fig. 5.2). Sulfur can yield concentrations up

to n = 1 × 1014 cm−3, while with selenium n = 1 × 1012 cm−3 can be achieved, both

under Zn-poor conditions.

5.3 n-type doping in ZnSiN2

For ZnSiN2 we study the same dopants as for ZnGeN2. We will present the results

for the dopant configurations in less detail because, as we will show, compensation by

native acceptors is an insurmountable problem in ZnSiN2.

In Fig. 5.5, we plot the formation energy of these donors along with the acceptors

identified in Sec. 4.6. Similar to the case of ZnGeN2, we find that AsSi has much higher

formation energy than PSi, and that SeN has much higher formation energy than SN. We

have also found that Al, Ga, and In, can substitute both as a donor on the Zn site or as

an acceptor on the Si sites. As a result, they self-compensate and will not lead to n-type

doping. Therefore, we focus on PSi and SN as potential donors.

PSi is a shallow donor, stable only in the +1 charge state. PSi gives rise to a small

breathing relaxation where the P–N bonds are 4.8% shorter than bulk Si–N bonds. The

P–N bond lengths in ZnSiN2 are similar to the P–N bonds in ZnGeN2 (just 0.9% shorter).

The PSi ε(+/0) and ε(0/−) transition levels occur well above the CBM, indicating that

PSi does not exhibit DX-center behavior.
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Figure 5.5: Formation energies for candidate dopants and native acceptors in ZnSiN2

under Zn-poor conditions.

SN behaves as a DX-center, just like ON (see Sec. 4.6). However, its (+/–) transition

level is only 0.04 eV below the CBM. As a result, SN can still contribute electrons to the

conduction band. In the positive charge state, the atoms around SN relax in a manner

qualitatively similar to the relaxation around ON (Sec. 4.6). S–Zn bonds are 10% longer

than bulk N–Zn bonds and S–Si bonds are 21% longer than bulk N–Si bonds. The

quantitative differences with the case of oxygen are consistent with the fact that S has a

larger ionic radius than O. However, in the negative charge state, the relaxations differ

from the oxygen case. For SN there is no significant change in the position of the S atom;

however, one of the nearest neighbor Si atoms moves away from the S atom by 21% of

the bulk N–Si bond length; while for ON, the oxygen atom shifts significantly.

While we observe that PSi acts a shallow donor and SN and ON have transitions to

the negative charge state near the CBM, compensation by native acceptors is very strong

in ZnSiN2. A significant difference between the native defects in ZnGeN2 and ZnSiN2 is

that the formation energy of VZn is much lower in ZnSiN2 than in ZnGeN2. In particular,
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the formation energy of VZn is negative for the Fermi level at the CBM for any choice of

chemical potentials. As a result, VZn would spontaneously form in any n-type ZnSiN2,

and therefore n-type conductivity cannot be achieved.

5.4 Summary

We have investigated a variety of potential donors in ZnGeN2. We find SN, SeN, PGe,

and AsGe act as shallow donors. However, compensation by the native ZnGe and VZn

acceptors can hamper doping. We identify PGe as the best donor: n-type carrier concen-

trations up to 1.3× 1019 cm−3 may be achieved under N-poor conditions. In ZnSiN2, we

identify PSi as a shallow donor; however, the compensation by native acceptors is much

stronger. VZn will form spontaneously for any choice of chemical potentials and it is not

possible to achieve n-type conductivity in ZnSiN2.
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This work was done in collaboration with Darshana Wickramaratne, Zhen Zhu, and Chris

G. Van de Walle.

6.1 Introduction

Light-emitting devices require both an n-type layer and a p-type layer. We have

shown that n-type doping is feasible in ZnGeN2 using phosphorus doping; however, it is

p-type doping that has proven to be more challenging for nitride semiconductors. The

primary issue is a lack of acceptor dopants with low ionization energies [85]. In GaN opto-

electronics, use of Mg to achieve controlled p-type doping has proven very successful [86].

Translating this success to the II-IV-nitrides requires a thorough understanding of the

electronic properties of candidate p-type dopants. We focus on ZnGeN2 because of its

close lattice match to GaN and potential for integration in III-nitride/II-IV-nitride het-

erostructures. At present, no experimental reports on p-type doping of ZnGeN2 are avail-

able. Accurate first-principles calculations can lead the way in addressing the prospects

and challenges associated with acceptor doping in ZnGeN2.
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Skachkov et al. [60] previously performed density functional theory (DFT) calculations

on Ga acceptors in ZnGeN2. However, as discussed in Sec. 4.5 their approach using the

local density approximation (LDA) severely underestimates the band gap and falls short

in describing charge localization, an issue that is particularly important for correctly

calculating the ionization energy of acceptors [6, 87]. Use of a hybrid functional overcomes

these problems. Hybrid functional calculations were applied by Wang et al. [57] to

ZnSnN2, which has a lower band gap than ZnGeN2; they identified LiZn as a shallow

acceptor.

Acceptor doping of ZnGeN2 can be achieved with group-I elements substituting on the

Zn site; group-III elements substituting on the Ge site; or group-IV elements substituting

on the N site. We examine a wide array of candidate acceptors: LiZn, LiGe, CuZn; AlGe,

GaGe, and InGe; and CN. Among these, LiZn, AlGe, and GaGe will be found to have small

enough ionization energies to enable p-type conductivity.

We also examine compensation by native defects, as well as self-compensation due to

incorporation of the dopant on the “wrong” site: for instance, AlGe acts as an acceptor,

but AlZn as a donor. The similarity in ionic radii between Zn and Ge indeed leads to

a propensity for wrong-site substitution, causing severe self-compensation. We will also

propose a potential solution in the form of co-doping with hydrogen. The incorporation

of hydrogen donors can be more favorable than the incorporation of wrong-site dopants,

thus suppressing self-compensation. Our detailed examinations include calculations of

hydrogen-dopant complexes, thus providing guidance as to whether co-doping with hy-

drogen and subsequent removal of hydrogen in a post-growth anneal is a viable route for

p-type doping in ZnGeN2.
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6.2 Acceptor levels

We use the same calculation methods as previously discussed in Sec. 1.3.1 using the

2× 2× 2 supercell with 128 atoms. The chemical potentials are illustrated in Fig. 4.1(a),

and we focus on two extrema in plotting our chemical potentials: Ge-poor (which is N

and Zn rich), and Zn-poor A (which is Ge and N rich). For our investigations of candidate

acceptors, we use Li3N, Cu metal, diamond, AlN, GaN and InN as limiting phases. For

each dopant configuration we report a formation energy based on chemical potentials that

would maximize the incorporation of the acceptor on their respective substitutional site,

based on calculated formation enthalpies for Li3N (−1.65 eV), AlN (−3.15 eV), and GaN

(−1.2 eV); these values are in agreement with experiment [67, 68]. In our calculations

involving hydrogen we assume µH is determined by the H2 molecule at T=0.

The ionization energy of an acceptor is given by the thermodynamic charge-state

transition level, ε(q/q′). This transition level is defined as the Fermi-level position below

which the defect is stable in the charge state q and above which it is stable in the

charge state q′. For example, for the case of the AlGe acceptor, the ionization energy is

determined as:

ε(0/−) = Ef (AlGe
−1;EF = 0)− Ef (AlGe

0;EF = 0). (6.1)

where Ef (AlGe
−1;EF = 0) is the formation energy of AlGe in the negative charge when

the Fermi level is at the VBM and Ef (AlGe
0;EF = 0) is the formation energy of AlGe in

the neutral charge state. We will also call this quantity the acceptor level.

The calculated charge-state transition levels are shown in Fig. 6.1. From this figure

it is clear that CuZn, InGe, and CN have deep acceptor levels and cannot lead to p-type

conductivity in ZnGeN2. We also considered LiGe and find it has a large ionization
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LiZn AlGe GaGe

ε(0/−) 0.36 0.24 0.30
Eb(A−D) 0.99 0.57 0.58
Eb(A−H) 1.08 0.55 0.58

Table 6.1: Properties of candidate acceptors in ZnGeN2. ε(0/−) is the acceptor level
referenced to the VBM (i.e., the ionization energy). Eb(A–D) is the binding energy of
the acceptor-donor complex, where the donor is the dopant incorporated on the wrong
site. Eb(A–H) the binding energy of the acceptor-hydrogen complex. All quantities
are in eV.

energy (1.01 eV). The best candidates for shallow acceptors are LiZn, AlGe and GaGe,

with ionization energies of 0.36, 0.24, and 0.30 eV, as listed in Table 6.1. The ionization

energy of AlGe, 0.24 eV, is close to the ionization energy for MgGa in GaN (0.26 eV,

Ref. [85]) and would thus lead to a reasonable hole concentration. The equations for

carrier concentrations in a doped semiconductor show that the hole concentration at room

temperature decreases by roughly an order of magnitude for every 100 meV increase in

ionization energy. An ionization energy of 0.46 eV due to InGe would therefore probably

be too high to lead to a useful hole concentration. Hence, among the acceptors we have

investigated, p-type doping of ZnGeN2 should be feasible using Li, Al, or Ga.

CuZn LiZn AlGe GaGe InGe CN

Valence band

Conduction band

2.01 eV

0.36 eV 0.24 eV 0.30 eV 0.46 eV

1.26 eV

Figure 6.1: Thermodynamic transition levels for candidate acceptors in ZnGeN2. The
zero of energy is set at the VBM. Values for ionization energies are indicated.
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6.3 Acceptors and compensation

We now discuss the atomic structure of these potential p-type dopants. In Figs. 6.2(d)-

(i), we illustrate the local relaxations in terms of deviations from the bulk bond lengths.

For LiZn in the negative charge state [Fig. 6.2(e)], a small breathing relaxation occurs in

which the Li–N bonds are extended by ∼1% compared to Zn–N bond lengths in the bulk.

In the neutral charge state, however, a large asymmetric relaxation occurs [Fig. 6.2(d)]:

three Li–N bonds contract by ∼1.6%, while the fourth Li–N bond extends by 16%,

compared to the bulk Zn–N bond lengths. For Al−Ge [Fig. 6.2(g)], there is a breathing

relaxation in which Al–N bonds extend by ∼0.4% of the bulk Ge–N bond length; for

Ga−Ge [Fig. 6.2(i)], this relaxation is an extension of Ga–N bonds by ∼3.7%. The smaller

relaxation of the N atoms in the case of AlGe compared to GaGe can be understood by

comparing the ionic radii of Al and Ga in the 3+ charge state with Ge in the 4+ charge

state: the ionic radius of Al is identical to that of Ge (0.39 Å), while that of Ga is

significantly larger (0.47 Å) [82]. In the neutral charge state, AlGe [Fig. 6.2(f)] and GaGe

[Fig. 6.2(h)] exhibit an asymmetric relaxation. For AlGe, one of the Al–N bond lengths

is 2.7% longer than bulk Ge–N bonds, while the other three Al–N bonds are close to the

bulk Ge–N bond lengths. For GaGe, one of the Ga–N bond lengths is 5.6% longer than

the bulk Ge–N bond lengths, while the other three bonds are only about 3.1% longer

than bulk lengths.

The formation energies of these candidate acceptors are illustrated in Figs. 6.2(a)-(c).

In each case, we focus on a regime where incorporation of the appropriate substitutional

configuration of the acceptor is favored: Li should go on a Zn site, which calls for Zn-poor

(Ge-rich) conditions, while Al and Ga should go on a Ge site, calling for Zn-rich (Ge-

poor) conditions. Figures 6.2(a)-(c) also include information about other configurations

of the dopant that may lead to self-compensation. The similarity in atomic size of Zn
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A)

Figure 6.2: Formation energies for (a) Li, (b) Al and (c) Ga in ZnGeN2. The chem-
ical-potential conditions used in each case are shown at the top of each panel. Local
relaxations for (d), (e) LiZn, (f), (g) AlGe, and (h), (i) GaGe in the neutral and negative
charge states.

and Ge suggests that Al and Ga may choose to substitute on the Zn site instead of the

Ge site, where they will act as donors. In the case of Li, self-compensation may occur by

incorporation of Li as an interstitial (Lii).

In principle we should also consider compensation by native defects. Under Zn-rich

conditions, our previous calculations of defect formation energies [24] (see Sec. 1.3.1)

indicate that the GeZn antisite is the lowest-energy native donor. However, its forma-

tion energy is higher than that of the AlZn and GaZn donors, indicating that wrong-site

incorporation is the more severe problem. Under Zn-poor conditions, where the incorpo-

ration of Al and Ga on the Ge site decreases, self-compensation by AlZn and GaZn donors

remains the more severe problem. Turning to Li, under Zn-poor conditions, where the

incorporation of LiZn is favored, we find compensation by the GeZn antisite to be more

severe than self-compensation. However, under Zn-rich conditions, where the formation

energy of both LiZn and GeZn is higher, we find self-compensation by Lii to be more
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severe.

Lii, AlZn, and GaZn all act as shallow donors, i.e., the positive charge state is the

only stable charge state for all Fermi-level positions. The Li interstitial is located in the

octahedral site. Incorporation of Al or Ga on the Zn site leads to a symmetric relaxation

of the nearest-neighbor N atoms. For Al+Zn the N atoms relax inwards by up to 6.0%, and

for GaZn by 3.4%. Ali and Gai interstitials are also potential compensating donors, but

we find them to have significantly higher formation energies compared to AlZn and GaZn.

Charge neutrality requires the concentration of positively and negatively charged

defects and impurities to be equal. In the absence of other defects or impurities, the

presence of compensating donors pins the Fermi level at a position corresponding to the

intersection point of the formation energies of the donors and acceptors. In the example

of Al, the intersection between Al+Zn and Al−Ge occurs at EF=1.63 eV; this is far away

from the VBM and the material will be insulating rather than p-type.

We have also considered the formation of complexes between the negatively charged

acceptors and the positively charged donors. We can assess the stability of the AlGe–AlZn

and GaGe–GaZn complexes by calculating their formation energies. The binding energy

is defined as the energy difference between the formation energy of the neutral complex

(which is its only stable charge state) and the sum of the formation energies of the

negative acceptor and the positive donor. The binding energies are listed in Table 6.1.

6.4 Hydrogen co-doping

From the results in Fig. 6.2 it is evident that self-compensation is a serious prob-

lem. We now discuss a potential strategy to avoid or at least suppress self-compensation,

namely co-doping with hydrogen. This approach is inspired by the example of Mg-doped

GaN: growth in a hydrogen-rich environment (such as metal-organic chemical vapor depo-
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sition) leads to strong compensation by hydrogen donors, suppressing the incorporation

of other potential compensating species in the process. However, the advantage of hy-

drogen as a compensating donor is that it is sufficiently mobile to be removed from the

p-type layer in a post-growth anneal, leading to activation of the MgGa acceptors [86, 88].

Figure 6.2 includes our calculated formation energy for interstitial H (previously dis-

cussed in Sec. 4.4). The case of Al illustrates that the formation energy of Hi is lower than

that of the compensating AlZn donor. Hydrogen will thus be preferentially incorporated,

suppressing incorporation of Al on the Zn site. An additional advantage of the hydrogen

co-doping is that the Fermi level where the formation energies of donors and acceptors

intersect is shifted higher, leading to a decrease in the acceptor formation energy and a

higher concentration of acceptors.

Still, the material that is grown in the presence of hydrogen will be completely com-

pensated, with a Fermi level somewhere in the middle of the gap. Generating p-type

material depends on the ability to remove hydrogen from the acceptor-doped layer. This

needs to be accomplished at a temperature that is sufficiently high to effectively remove

hydrogen, but low enough to “freeze in” the impurities at the concentrations that were

established during the (hydrogen-rich) growth, and prevent formation of new defects.

To calculate migration barriers, we use the nudged elastic band (NEB) method [89,

90]. In bulk ZnGeN2, H+
i is preferentially located in a bond-center position between

Zn and N. Configurations placing H+
i near Ge are much higher in energy; therefore, we

calculate the barrier for each hop the H+
i ion makes between Zn–N bonds. Each hop

consists of a rotation around either a N atom or a Zn atom. Net diffusion requires

repeatedly making both types of hops. These hops are illustrated in Figs. 6.3(a) and (b),

with saddle points along the hops labeled B1, B2, and B3. The hop around a N atom

has a low barrier of 0.2 eV. Hops around a Zn atom have a larger barrier, with a slight

anisotropy: hops along the c axis [Fig. 6.3(a)] have a barrier of 1.3 eV, while hops along
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the a axis [Fig. 6.3(b)] have a barrier of 1.1 eV. The difference between these barriers

is because the H+
i ion experiences slightly higher repulsion from second-nearest-neighbor

Zn cations while hopping along the c axis. The hop around the N atom is much lower

in energy as the H+
i is bonded to and remains close to the N atom throughout the hop,

while the hop around the Zn atom breaks the N-H bond.

Zn

NH

Al

Ge

Ge1Zn1

Zn2
H

N2

N1

1

2 Zn3
1

3N3
N4N3

Zn2

H

Ge1

Figure 6.3: (a), (b) Schematic of bonding arrangement within the two distinct layers
of ZnGeN2 perpendicular to the b axis, illustrating the connectivity of Zn–N bonds.
(a) Path for Hi migration along the c axis, with B1 and B2 indicating saddle points.
(b) Path for Hi migration along the a axis. A subset of atoms labeled in (a) are the
same atoms as in (b). (c) Schematic illustration of the AlGe–H complex.

Fig. 6.3(a) shows a chain of Zn–N bonds along the c axis. The maximum diffusion

barrier along this chain is at the saddle point B2 with a height of 1.3 eV. Fig. 6.3(b)

shows a chain of Zn–N bonds along the a axis. The maximum diffusion barrier along this

chain is at the saddle point B3 with a height of 1.1 eV. There is no similar chain along

the b axis, but each H+
i ion hop has some displacement component along b. Alternating

the steps illustrated for travel along the a and c axes enables net movement and diffusion

along the b axis; therefore, H+
i can travel between Zn–N bond centers in all three spatial

directions with modest migration barriers.

The H+
i migration barriers of 1.3 eV along the c axis and 1.1 eV along the a axis

in ZnGeN2 are similar to H+
i barriers in GaN [91, 92]. This migration barrier is low

enough to suggest that moving hydrogen around should not be a problem at elevated

temperatures. However, H+
i will be attracted to the negatively charged acceptors, and
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thus additional energy may be required to dissociate acceptor-hydrogen complexes.

We have therefore investigated LiZn–H, GaGe–H, and AlGe–H complexes. The AlGe–H

complex is illustrated schematically in Fig. 6.3(c). We find each complex to be stable

only in the neutral charge state. In the LiZn–H complex, hydrogen assumes a position

similar to its position in the bulk, close to the center of the Li–N bond. In contrast, in

the AlGe–H and GaGe–H complexes, the H+
i ion sits in the antibonding position on the

extension of a nearby Zn–N bond. The H+
i ion is not collinear with the Zn–N bond,

but is shifted slightly towards the nearest Zn atom, as seen in Fig. 6.3(c). The binding

energies for the acceptor-hydrogen complexes are listed in Table 6.1.

We find the binding energies to be about 0.6 eV for Al and Ga; this is lower than

the binding energy of the Mg–H complex in GaN, calculated to be 1.02 eV [85]. This

suggests that modest annealing temperatures can be used to disassociate such complexes

and remove the hydrogen. As illustrated by Fig. 6.2 and Table 6.1, Al appears to be the

best candidate for p-type doping of ZnGeN2.

We note that the formation energies in Fig. 6.2 are plotted for specific choices of

the chemical potentials. Specifically, we assumed the highest possible chemical potential

of the impurity, corresponding to the solubility limit. At lower impurity concentrations

the extent to which hydrogen suppresses compensation would be stronger. In addition,

growth conditions that are more hydrogen-rich than assumed in Fig. 6.2 may be achiev-

able.

6.5 Summary

In summary, we have determined the acceptor ionization energies for a wide range

of candidate dopants in ZnGeN2. The ionization energy of AlGe is only 0.24 eV, which

is comparable to Mg in GaN. Co-doping with hydrogen is a potential strategy to sur-
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mount issues of compensation: incorporation of hydrogen suppresses the formation of

self-compensating donors, and hydrogen can be removed in a post-growth anneal.
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Chapter 7

Heterostructures with

Zn-IV-nitrides

This work was done in collaboration with Darshana Wickramaratne and Chris G. Van de

Walle. The calculation of the Hi(+/−) charge transition level in GaN was done by Dar-

shana Wickramaratne. We thank C. E. Dreyer for helpful discussions about determining

spontaneous and piezoelectric polarization.

7.1 Introduction

Electronic and optoelectronic devices function by localizing electrons and/or holes

in a thin active region or channel. Electronic devices modulate the concentration of

charge and its flow using applied voltages, while optoelectronic devices make use of

recombination of holes and electrons to emit light. Both types of devices require control

over the band alignments to confine the carriers.

Previous work has already addressed band alignments between the Zn-IV-nitrides and

the III-nitrides. Punya et al.[93, 94] calculated band alignments between ZnGeN2 and
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GaN that found the VBM and CBM of ZnGeN2 higher in energy than those of GaN. This

configuration means holes and electrons would not be confined to the same layers and

has lead to device designs for quantum wells with higher wavefunction overlap [38, 39]

and quantum-cascade lasers [37].

Other studies have reported different results for the band alignments, however. All

of the studies used explicit interface calculations based on a superlattice geometry. The

calculations by Punya et al. [93, 94] used the local density approximation with a GW cor-

rection. They calculated a valence-band offset of –1.4 eV at the ZnSnN2/GaN interface,

and a valence-band offset of −1.1 eV at ZnGeN2/GaN, where the negative sign indicates

that the VBM of GaN is lower in each case. These results differ significantly from those

of Wang et al. [57] who calculated offsets between ZnSnN2 and GaN using the HSE hy-

brid functional. They calculated a much smaller valence-band offset of –0.39 eV between

ZnSnN2 and GaN, where they also noted strain affects the alignment by less than 0.1

eV. More recently, Cao et al. [95] calculated the offset between cubic GaN and cubic

ZnGeN2 with the HSE functional and found the valence-band offset for ZnGeN2/GaN to

be −0.38 eV, different by 0.7 eV from the results of Punya et al. [93, 94] Experimentally,

the valence- and conduction-band alignments for ZnSn1−xGexN2 alloys of varying com-

position were measured using x-ray emission and absorption by Narang et al. [46], who

found the valence band of ZnGeN2 to be slightly lower than that of ZnSnN2, and the

conduction band of ZnGeN2 to be significantly higher than that of ZnSnN2.

These inconsistencies (by up to 1 eV) between band alignments reported by different

groups prompted us to re-examine band alignments using two different methodologies:

(1) using surface calculations to align the electrostatic potential to the vacuum level [96],

and (2) using alignment based on the (+/−) level of interstitial hydrogen [21]. We apply

both methods to determine the band alignments between the Zn-IV-nitrides and GaN,

and compare the results to previous reports.
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Another key aspect of nitride heterostructures is polarization charge at the interface.

The Zn-IV-nitrides, like the wurtzite (wz) III-nitrides, exhibit spontaneous polariza-

tion and piezoelectric effects [3, 97]. The polarization leads to large bound charges at

the interface, which can either be a detriment or provide useful functionality for device

operation. In light-emitting devices, polarization discontinuities produce the quantum-

confined Stark effect, which reduces electron-hole wavefunction overlap and reduces ef-

ficiency [98]. On the other hand, large polarization discontinuities can be favorable

for electronic devices since they lead to high-density two-dimensional carrier gases at

interfaces [99]. Interest in controlling these polarization charges has led to the field of

polarization engineering [10], which relies on the manipulation and control of ternary and

quaternary alloy concentrations to identify polarization differences that are beneficial for

the intended device application, taking lattice-matching constraints into account.

Some prior results on polarization properties of the Zn-IV-nitrides have also been

reported. Paudel et al. [97] calculated stiffness tensors, spontaneous polarization, and

piezoelectric coefficients. They reported spontaneous polarization values for ZnSnN2,

ZnGeN2, and ZnSiN2 between −0.022 Cm−2 and −0.029 Cm−2 and concluded that, since

differences between these values are markedly smaller than between III-N compounds,

polarization-induced electric fields would be significantly suppressed at heterostructures

between II-IV-nitrides. However, these spontaneous polarization values were calculated

referenced to a zinc-blende (zb) structure. Recent work on wz nitrides has demonstrated

that differences in spontaneous polarization values referenced to the zb structure require

corrections to account for lattice-parameter differences [33]. Such corrections were not

included in the work of Ref. [97]. In the present work, we evaluate the spontaneous

polarization values for the Zn-IV-nitrides using a proper centrosymmetric reference [33].

We also perform calculations of the proper piezoelectric constants and the stiffness tensors

to generate a consistent set of parameters.
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Our results allow us to determine the magnitude of polarization charges at Zn-IV-

nitride/III-nitride heterostructure interfaces. Using these polarization properties, along

with our calculated band alignments, we can identify interfaces with significantly reduced

polarization charge, as well as interfaces with increased polarization charge that are

favorable for applications in electronic devices.

7.2 Computational Methods

Our calculations are performed using DFT with the HSE hybrid functional, as de-

scribed in Sec. 1.3 and 3.2. In this chapter, we also calculate properties of GaN in the

wurtzite structure. For GaN, we adjust the HSE mixing parameter to reproduce the

experimental band gap; at 29.5% we obtain a band gap of 3.48 eV. Calculations on the

primitive unit cell of GaN were performed using a Γ-centered 6× 6× 8 grid.

We perform slab calculations to align eigenvalues of the system to the vacuum level.

Our bulk calculations report the eigenvalues relative to the electrostatic potential average

of the system, and the slab calculations can be used to align the electrostatic potential to

the vacuum level. For our slab calculations, we use a 8×1×1 slab in a supercell geometry,

separated by 20 Å of vacuum, and a 1×4×4 Monkhorst-Pack k-point grid. Calculations

for GaN were performed using slabs with nonpolar (11̄00) (m-plane) surfaces. For the

Zn-IV-nitrides we use (100) slabs which are also nonpolar and analogous to the m plane

in III-nitrides.

Valence-band alignments are calculated based on the VBM in each material. To

determine the band alignments between Zn-IV-nitrides and III-nitrides, we first determine

alignments to GaN, then use the results of Moses et al. [96] to align to AlN and InN.

Note that in Ref. [96] alignments were expressed for an average of the top three valence

bands; we have combined those values with values of crystal-field splitting to obtain the
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VBM positions reported in the present work.

We also examine the band alignments with reference to the (+/−) charge-state tran-

sition level of interstitial hydrogen (Hi). This method has been successfully used to align

the band gaps of a variety of semiconductors, including the III-nitrides [21]. The position

of Hi(+/−) is calculated using formation energies as discussed in Chapter 4.

7.3 Results

7.3.1 Band alignments

Surface calculations

In Table 7.1, we list the VBM and CBM with respect to the vacuum level as ob-

tained from surface calculations in which the atomic positions are not relaxed; effects

of atomic relaxation are discussed below. Conduction-band positions for the III-nitrides

are obtained based on EVBM and the experimental band gaps. These results allow us to

determine the band alignments shown in Fig. 7.1. The band offsets between the three

Zn-IV-nitrides are “type I”, i.e., the band edges of the material with the smaller gap lie

within the band gap of the material with the larger gap, similar to how the III-nitrides

are aligned. Between ZnGeN2 and GaN, there is a type-II alignment: the VBM and

CBM of ZnGeN2 are both lower in energy than the corresponding bands in GaN.

We investigated atomic relaxations and found them to have only a small effect on

alignments. Allowing the atoms in the slab to relax resulted in a lowering of the average

electrostatic potential within the slab by 0.1-0.2 eV for all three Zn-IV-nitrides. We also

examined alignments based on slabs with a different orientation, namely (010), a nonpolar

surface analogous to (112̄0) (a plane) in the III-nitrides. For this surface orientation the

average electrostatic potential in the slab is systematically slightly higher (by up to 0.14
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eV) than for the (100) surface. Relaxation of the atoms for the (010) surface results in

a larger shift of the electrostatic potential than for (100): a lowering by 0.30±0.05 eV is

found for each of the Zn-IV-nitrides. These effects are consistent with the 0.30±0.01 eV

reduction in the electrostatic potential upon relaxation for GaN and InN surfaces found

by Moses et al. [96] The differences are systematic, and as a result very similar band

alignments are obtained irrespective of whether relaxed or non-relaxed surfaces are used

in the calculations.

ZnSnN2 ZnGeN2 ZnSiN2 InN GaN AlN
ECBM −4.48 −3.40 −1.95 −5.04 −2.82 −0.60
EVBM −5.88 −6.59 −6.78 −5.69 −6.30 −6.76

Hi(+/−) −3.33 −3.46 −3.34 ... −3.58 ...

Table 7.1: Position of the valence-band maximum EVBM and conduction-band min-
imum ECBM with respect to the vacuum level as obtained from surface calculations
for nonpolar (100) Zn-IV-nitride and (11̄00) GaN surfaces. InN and AlN values are
from Ref. [96]. The Hi(+/−) was calculated relative to the VBM and then combined
with the EVBM values to obtain a position relative to the vacuum level. All values are
in eV.

In Table 7.1 and Fig. 7.1 we combine this information with the positions of the

valence-band edges obtained from surface calculations. Among the Zn-IV-nitrides, the

position of the Hi(+/−) level varies by only 0.1 eV on an absolute energy scale, showing

that alignment based on the Hi(+/−) level is very consistent with the alignment based

on surface calculations.

Comparison with previous calculations

The band alignment between ZnSnN2 and GaN has been calculated by two other

groups, using a superlattice geometry: Wang et al. [57] found a VB offset of –0.39 eV,

while Punya et al. [93, 94] calculated a VB offset of –1.4 eV. Our calculated offset of

–0.42 eV is very close to the value reported by Wang et al., but disagrees with the Punya
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Figure 7.1: Band alignments between Zn-IV-nitrides and GaN, shown on an absolute
energy scale where zero is the vacuum level.

et al. result by 1.0 eV. Punya et al. also reported the VBM of ZnGeN2 to be 1.1 eV

higher than that of GaN, while we find the VBM of ZnGeN2 to be 0.28 eV lower than

that of GaN: a difference of 1.4 eV.

The difference with the results of Punya et al. is likely due to the difference in

computational approach. While we (and Wang et al. [57]) use the HSE functional, Punya

et al. used the LDA functional and applied a correction based on GW calculations. It is

known that GW results can depend on the accuracy of the DFT calculations used as a

starting point.

Based on superlattice calculations for cubic ZnGeN2/GaN Cao et al. [95] found a VB

offset of −0.38 eV, a difference of 0.70 eV from our results. The discrepancy here is likely

due to the fact they are evaluating the (001) interface for cubic material, i.e., a different

interface and crystal structure from what we evaluate here.
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7.3.2 Polarization

Spontaneous polarization

The Zn-IV-nitrides have an orthorhombic unit cell, with space group Pna21 and point

group mm2. Pna21 is a polar space group that has two glide planes, and as such it has

two nonpolar axes and one polar axis. The direction along the polar axis is labeled

the c direction, consistent with the notation for the wz III-nitrides. We calculate the

spontaneous polarization along this polar axis.

As explained in Sec. 2.2, the effective spontaneous polarization is the difference be-

tween the formal polarization of the orthorhombic structure and the formal polarization

of a reference structure, for which we choose the centrosymmetric Pnma structure. The

effective spontaneous polarization values for the Zn-IV-nitrides are listed in Table 7.2.

ZnSnN2 ZnGeN2 ZnSiN2

PSP 1.184 1.333 1.433
PSP(zb ref) −0.033 −0.027 −0.029
PSP(zb ref),Ref. [97] −0.029 −0.023 −0.022

Table 7.2: Calculated effective spontaneous polarization constants of the Zn-IV-ni-
trides. Also listed are the spontaneous polarization values calculated with respect
to a zb reference as obtained in the present work, and compared with values from
Ref. [97]. All values in Cm−2.

In Fig. 7.2, we plot the spontaneous polarization for the III-nitrides and the Zn-

IV-nitrides as a function of lattice parameter. For the Zn-IV-nitrides, we use awz =√
ab

2
√

3
to define a wurtzite-equivalent lattice parameter. To determine the spontaneous

polarization of alloys, we first convert to the reduced units of ec
Ω

= e/Aint (the quantum

of polarization), where Aint =
√

3a2
wz is the area of the base of the wz unit cell [drawn

in Fig. 1.1]. In these units, we interpolate the spontaneous polarization linearly, then

convert back to Cm−2. This method accounts for the areal dependence of the polarization.

The arguments for interpolating in this manner are explained in Sec. 2.5.
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Figure 7.2: Spontaneous polarization for the III-nitrides and the Zn-IV-nitrides, as
a function of wurtzite-equivalent in-plane lattice parameter awz. The values for a
zinc-blende structure are also indicated.

Our calculations indicate that the spontaneous polarization values of ZnGeN2 and

GaN are quite similar. More generally, the spontaneous polarization of ZnSnGeN2 alloys

and InGaN alloys is very similar at the same lattice parameter. Interestingly, there is a

significant spontaneous polarization difference between ZnSiGeN2 and AlGaN.

Paudel et al. [97] previously calculated spontaneous polarization constants for the

Zn-IV-nitrides, reporting values in the narrow range of –0.022 Cm−2 to –0.029 Cm−2.

However, they used a zb structure as their reference. In Fig. 7.2 we also show the formal

polarization (along the [111] axis) for a zb structure. For zb, the magnitude of the

appropriate branch of the formal polarization is Pzb
f = e

√
3/2a2

wz (see Ref. [33]), which

is equivalent to 3e
4Aint

; i.e., the value for zb depends only on the lattice parameter. This

allows us to express our spontaneous polarization values with respect to a zb reference;

the values are shown in Table 7.2, and compared to the values reported in Ref. [97].

Reasonable agreemeent is found.

We caution against using spontaneous polarization values referenced to zb. Each
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material has different lattice parameters for the zb reference structure, which leads to

additional terms in polarization differences calculated at an interface (due to the fact

that the formal polarization of zb is nonzero) [33]. Those terms have not been properly

included in conventional simulations. When the centrosymmetric structures (which have

zero formal polarization) are used as the reference, additional terms are not necessary.

Piezoelectric polarization

For piezoelectric polarization, there are five nonzero piezoelectric tensor elements

for orthorhombic materials with the mm2 point group [35]. We calculate the proper

piezoelectric coefficients, eij = dJi
dε̇j

, where Ji is the current density that flows through the

bulk of the material in response to a slow deformation ε̇j = dεj/dt, and εj is a strain.

For purposes of calculating polarization differences at pseudomorphic interfaces between

two semiconductors, improper piezoelectric coefficients should be used [33, 34]. Here

we calculate the proper piezoelectric coefficients because they are branch-independent

and can be compared to experimental values [34]. Improper coefficients are related to

the proper coefficients by expressions that involve the zero-strain (spontaneous) formal

polarization [33, 34]. The improper piezoelectric constants e31 and e32 are related to the

respective proper constants by

eimp3i = eprop3i − PSP, (7.1)

while the improper coefficient eimp33 is the same as the proper coefficient. Our calculated

proper piezoelectric constants are listed in Table 7.3. The values of e31 and e32 are close

to the values of e31 in the III-nitrides, while the values of e33 are significantly smaller

than the values of e33 for the III-nitrides [33].

Elastic constants are also required to calculate piezoelectric polarization at pseudo-
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ZnSnN2 ZnGeN2 ZnSiN2

e15 −0.307 −0.302 −0.279
e24 −0.286 −0.262 −0.241
e31 −0.397 −0.378 −0.386
e32 −0.403 −0.299 −0.305
e33 0.825 0.666 0.692

Table 7.3: Calculated proper piezoelectric polarization constants for the Zn-IV-ni-
trides. All values in Cm−2.

morphic interfaces. Calculated elastic constants are listed in Table 7.4. The values are in

good agreement with previously published calculations [97]. Elastic parameters for the

III-nitrides have been taken from Ref. [50].

ZnSnN2 ZnGeN2 ZnSiN2

C11 270 342 403
C22 255 330 372
C33 285 385 467
C23 91 103 119
C13 93 98 101
C12 115 138 150
C44 67 97 124
C55 63 87 104
C66 73 108 138

Table 7.4: Calculated elastic constants of the Zn-IV-nitrides. All values in GPa.

Polarization charges at interfaces

Polarization differences between materials manifest in interface charges at a hetero-

junction. For an interface normal to the c axis the interface charge σb can be calculated

based on the polarization properties and the elastic constants [33]:

σb = Pm
SP − P n

SP −
∑
i=1,2

εni (en3i − P n
SP − en33C

n
i3/C

n
33) . (7.2)
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Here we assume that material n is strained coherently to material m (i.e., m is the

substrate, or a layer much thicker than n) and grown along the +c axis. We will denote

such a interface as n/m. PSP is the spontaneous polarization, εi are the strain components,

eij are the piezoelectric coefficients, and Cij are the elastic constants. Parameters for AlN

and InN were taken from Ref. [33]. Elastic parameters for the III-nitrides have been taken

from Ref. [50].

Unlike the III-nitrides, the Zn-IV-nitrides exhibit an anisotropy in lattice parameters

perpendicular to the c axis (see Table 3.1). A ZnGeN2 layer strained to a c-plane GaN

substrate experiences a tensile strain ε1 in the [100] direction, but compressive strain ε2 in

the [010] direction. The in-plane lattice parameters can be visually compared in Fig. 3.2.

The strain ε3 in the direction normal to the interface can be calculated using the elastic

constants (Table 7.4). Each of these strains εj produces a piezoelectric effect along the c

direction with coefficient e3j.

In Fig. 7.3, we plot the total (spontaneous + piezoelectric) polarization for Zn-IV-

nitrides strained to wz substrates with a given lattice parameter awz. Units of e/Aint are

chosen for clarity of visualization, since the polarization differences are more difficult to

discern when expressed in units of Cm−2 (as evident from Fig. 7.2). The total polarization

lines extend up to ±2% average planar strain (note that the strains along a and b axes

are different; this anisotropy is taken into account in the calculation of the piezoelectric

polarization). The differences in polarization values between the unstrained III-nitrides

(blue line) and the strained Zn-IV-nitrides (green lines) at the same lattice parameter

are precisely the bound charges at an interface between the two materials, in accordance

with Eq. (7.2).

For ZnGeN2 strained to GaN the total polarization difference is 0.0052 e/Aint or

5.9× 1012 e/cm2. This interface exhibits a very small net piezoelectric effect, as ZnGeN2

strained to GaN is slightly tensile strained along the a axis, and slightly compressed along
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the b axis. The total polarization difference is thus primarily a result of the difference

in the spontaneous polarization values. Similarly, the differences in polarization values

between the strained III-nitrides (purple lines) and unstrained II-IV-nitrides (red line)

correspond to bound charges at an interface between the two materials. To identify an

interface with zero polarization difference, we would look for a point where the blue and

green lines intersect; this happens, e.g., for an interface between strained ZnGeN2 and

In0.09Ga0.91N.

Figure 7.3: Green lines denote total polarization for ZnSiN2, ZnGeN2, and ZnSnN2

strained to wurtzite as a function of in-plane lattice parameter. Purple lines to-
tal polarization for AlN and GaN strained to orthorhombic ZnSixGe1−xN2 and
ZnGexSn1−xN2, plotted as a function of wurtzite-equivalent lattice parameter. Spon-
taneous polarization values for II-IV-nitrides are in red and for III-nitrides in blue.

The anisotropic in-plane strain at the ZnGeN2/GaN interface distinguishes it from

conventional III-nitride interfaces. The piezoelectric polarization from the strain along

the a axis mostly cancels the effect along the b axis, leaving the spontaneous polarization

as the primary contribution to the interface charge at the interface. This is in contrast

to III-nitride interfaces, where the piezoelectric effect dominates over the spontaneous

polarization.
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7.4 Prospects for polarization engineering with Zn-

IV-nitrides

7.4.1 Light emitters

We now examine, based on our calculated values of band alignments and polarization

constants, specific structures which could improve the light-emission efficiency of nitride

quantum wells. The cases discussed here are only examples of the rich space that is

opened up by integrating the Zn-IV-nitrides with III-nitrides. c-plane devices lead to

strong polarization fields, which separate electrons and holes in the quantum well and

reduce radiative recombination. To overcome the Stark effect, the use of nonpolar or

semipolar orientations has been proposed [100, 101], but growth in those orientations

tends to be harder to control than for the c plane.

An alternative approach is the use of c-plane heterostructures with interfaces that

minimize the polarization charge. In Fig. 7.3, we showed that a ZnGeN2 layer strained to

In0.09Ga0.91N results in an interface with zero polarization charge. The choice of substrate

has only a minor effect on the required composition to achieve zero polarization charge:

a ZnGeN2/In0.07Ga0.93N interface strained to GaN would also have zero polarization

charge. These zero-polarization charge structures are not possible within the InGaN

ternary system alone.

Minimizing polarization fields is only one aspect of enhancing light emission; the

heterostructure also needs to provide adequate confinement for electrons and holes in a

quantum well. In Fig. 7.4, we plot the band offsets between ZnGeN2 and ternary III-

nitrides; a positive value indicates the band edge of the III-nitride is higher in energy

than that of ZnGeN2. For concentrations of In lower than 24%, the CB of InGaN is above

the CB of ZnGeN2, indicating that there will be no quantum confinement for electrons
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in the InGaN quantum well. This means that the heterostructure with zero polarization

charge (with < 24% In) cannot be directly used for a quantum-well device. Electron

confinement would require In concentration higher than 24%.

Figure 7.4: CB and VB offsets for AlGaN and InGaN layers relative to the CBM
and VBM of ZnGeN2. Band bowing parameters for InGaN are from Ref. [96] and
for AlGaN from Ref. [102]. Strain effects are taken into account using deformation
potentials from Refs. [103] and [104].

Finally, we comment on proposals for optoelectronic device structures incorporating

Zn-IV-nitrides in InGaN quantum wells [38, 39, 105]. The aim was to counteract the

Stark effect by confining holes in a thin ZnGeN2 layer. Such confinement of holes will

occur only if the ZnGeN2 valence band lies above the VBM in the III-nitride alloy.

The simulations of Ref. [38], [39], and [105] relied on the values calculated by Punya et

al. [93, 94], which show a large and negative value for the ZnGeN2/GaN VB offset (–1.1

eV). As discussed in Sec. 7.3.1, our present calculations show that this is not the case;

i.e., we find the ZnGeN2/GaN VB offset to be positive. Therefore the Zn-IV-nitride layer

is not able to confine holes, thus casting doubt on these predictions.
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7.4.2 Transistors

For electronic applications, enhanced interfacial polarization charge can be benefi-

cial since it allows achieving higher carrier densities [3]. If ZnSiN2 can be grown with

sufficiently high quality, forming heterostructures with AlGaN could be advantageous

both for electron confinement and for enhanced polarization. Our calculations indicate

that the CBM of ZnSiN2 is 1.6 eV below that of AlN, while the VBM of ZnSiN2 is only

slightly lower than that of AlN. The large CB offset is beneficial for the two-dimensional

electron gas at a ZnSiN2 strained-to-AlN interface. We find the polarization charge to

be −3.5 × 1013 cm−2 at the ZnSiN2/AlN interface, which is comparable to an interface

between GaN and Al0.5Ga0.5N. This high polarization charge and large band offset makes

ZnSiN2 an interesting material for electronic applications.

7.5 Summary

We have performed a comprehensive study of band alignments and polarization prop-

erties of heterostructures between the Zn-IV-nitrides and the III-nitrides. Values for spon-

taneous and piezoelectric polarization coefficients are reported. We have demonstrated

that the Zn-IV-nitrides allow for new combinations of polarization and band gap, which

might enable novel device structures. We have identified zero-polarization-charge inter-

faces between Zn-IV-nitrides and III-nitrides; however these structures cannot be used for

quantum-well devices due to the band offsets. For electronic devices, ZnSiN2/AlN inter-

faces exhibit a larger conduction-band offset and polarization charge than AlGaN/GaN,

thus allowing for potentially higher electron sheet densities. The cases discussed are

only examples of the space that is opened up by integrating the Zn-IV-nitrides with

III-nitrides; our study will enable full exploration of this space.
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Chapter 8

Polarization at the rocksalt-wurtzite

interface

This work was done in collaboration with Cyrus E. Dreyer and Chris G. Van de Walle.

8.1 Introduction

ScN is a semiconducting nitride that takes the rocksalt crystal structure, and can be

integrated with the technologically interesting III-nitride family of compounds. Recently,

a great deal of attention has been focused on alloys of ScN and AlN, which exhibit

enhanced piezoelectricity at Sc concentrations up to 43% [106] and ferroelectricity at Sc

concentrations between 27 and 43% [107]. Pure rocksalt ScN has attracted interest for

its low lattice mismatch to GaN; grown along the [111] direction it exhibits a mismatch

of less than 1% with c-plane GaN [108]. ScN grown by molecular beam epitaxy has

been examined as a potential buffer layer for improving the quality of heteroepitaxial

GaN [109, 110]. However, questions still remain about properties of the pristine interface,

as electrical characterization has only been conducted on polycrystalline films [111] or on
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films with oxide contamination at the interface [108].

Interfaces between wurtzite III-nitrides have charges induced by polarization differ-

ences [3]. These polarization charges are desirable in power electronics, where they result

in large two-dimensional electron and hole gases (2DEGs and 2DHGs) [112, 113]. Po-

larization can also be utilized to enhance the field in tunnel junctions [114, 115, 116].

Current tunnel structures are based on a GaN p-n junction with a thin AlGaN or InGaN

interlayer that creates a strong polarization field across the depletion region. High Al or

In content is desirable to increase the field strength and reduce the width of the depletion

region, but the alloy composition is constrained by strain considerations [10].

Here we use density functional theory and the modern theory of polarization to

demonstrate that a large polarization sheet charge with magnitude 1.358 Cm−2 will exist

at the ScN/GaN interface. We clarify that the reason for this charge is not a result of

the näıve expectation that, since rocksalt (rs) is centrosymmetric (space group Fm3m),

it has no polarization [35], while wurtzite (wz) GaN has a large spontaneous polariza-

tion. In fact, rs-ScN has a nonvanishing formal polarization [29] along the [111] direction

that must be taken into account when calculating polarization differences that lead to

bound charges at the interface. This is confirmed by comparing to explicit superlattice

calculations. Based on the large polarization discontinuity, we will propose potential

applications of ScN interfaces.

8.2 Bulk properties

ScN has the rocksalt structure, which consists of two interpenetrating face-centered

cubic lattices. Using the 2-atom primitive unit cell of ScN, we calculate the lattice

parameter to be aScN=4.48 Å (which corresponds to an in-plane wurtzite equivalent of

3.17 Å) with an indirect band gap of 0.80 eV, in agreement with experimental values [117].
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We find that the electric contribution to the polarization of ScN is particularly sensitive

to the k-point grid; we report the formal polarization of ScN from a finer 15 × 15 × 15

k-point grid. The lattice parameters of GaN are aGaN=3.20 Å and cGaN=5.20 Å, with a

direct band gap of 3.18 eV.

All of our calculations are done using the HSE hybrid functional with 25% mixing.

Note that this is different from the previous chapter, where calculations for GaN used a

higher mixing of 29.5% in order to reproduce the experimental band gap. We are forced

to choose a single HSE mixing parameter for the purpose of performing the ScN/GaN

superlattice calculations. The use of 25% mixing causes an underestimation of the GaN

band gap (experiment: 3.51 eV, Ref. [50]); however, we have verified that this does not

affect the quantities extracted from the superlattice calculations [118], nor the accuracy

of calculated polarization values.

Our rs-ScN structure is relaxed using a 7 × 7 × 7 Γ-centered grid. We find that the

electronic contribution to the polarization of ScN is particularly sensitive to the k-point

grid; we report the formal polarization of ScN based on a finer 15× 15× 15 k-point grid.

Our GaN structure is calculated using a Γ-centered 6× 6× 8 grid, as in Chapter 7.

The rocksalt structure has a center of symmetry. As discussed in Sec. 2.1, within the

modern theory of polarization formal polarization is defined only modulo the quantum

of polarization. For the rocksalt structure, this means that there are two set of vectors

that satisfy the symmetry of the structure: e
Ω
R or e

Ω
[R + ars(

1
2
, 1

2
, 1

2
)], where ars is the

rocksalt lattice parameter. From explicit evaluation of Eq. (2.6) we find that ScN has

the formal polarization e
Ω

[R + ars(
1
2
, 1

2
, 1

2
)].

In order to properly define polarization differences, we also need to choose a reference

structure. For wurtzite, the layered hexagonal structure (h-GaN) has centrosymmetry

(space group P63/mmc) and serves as a convenient reference structure [33]. It is derived

from wurtzite by considering planes of atoms along the polar axis and moving the cations
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into the plane of the anions, resulting in a centrosymmetric structure with zero Pf [33].

The formal polarization of GaN is approximately linear as a function of the wurtzite

internal parameter uwz, which is defined as the ratio of the Ga–N bond length along the

c axis to the c lattice parameter. The equilibrium structure of GaN has uwz = 0.377,

whereas layered hexagonal has uwz = 0.5.

Similar to wurtzite [0001], rocksalt in the [111] direction has alternating planes of

cations and anions [see Fig. 8.1(c)]. However, the stacking sequence is ABCABC, as op-

posed to ABAB in wurtzite. We follow a similar strategy to obtain a reference structure

as we did for wurtzite: moving the cations into the plane of the anions creates the face-

centered cubic analog of the P63/mmc GaN structure [Fig. 8.1(a)]. Unlike P63/mmc,

this layered version of rocksalt (space group R3m) is not centrosymmetric and therefore

symmetry does not dictate that its formal polarization should be zero; however, since

each layer is charge neutral, we expect the polarization of this structure to be very small,

as will indeed be confirmed by explicit calculations.

To generalize uwz to a parameter that can be used with both wurtzite and rocksalt

structures, we define δ as the ratio of the separation between planes of anions and cations

to the separation between planes of cations; with this definition, δ = 1 − 2uwz for the

wurtzite structure. The layered structures, in which the anions and cations lie in the

same plane, have δ = 0. Ideal wurtzite has δ = 0.25, and bulk GaN has δ = 0.245 along

the c axis. The rocksalt structure [Fig. 8.1(c)] has δ = 0.5 along the [111] axis. We find

that the formal polarization is approximately linear in δ.

In Fig. 8.1(d), we plot a branch of the formal polarization of ScN and GaN as a

function of δ. The branches are chosen so that h-GaN has zero formal polarization, and

δ = 0 ScN has a formal polarization close to zero. Our calculated formal polarization

of rs-ScN along the c axis is ears
Ω
‖(1

2
, 1

2
, 1

2
)‖ = 2.731 Cm−2, while the formal polarization

of layered ScN is −0.064 Cm−2. The calculated formal polarization of wz-GaN is 1.315

96



Chapter 8 Polarization at the rocksalt-wurtzite interface
Section 8.2 Bulk properties

Figure 8.1: ScN in the (a) layered, (b) δ = 0.245, and (c) rocksalt crystal structures.
Unit cells are indicated by black lines. (c) Calculated formal polarization as a function
of the δ parameter. For ScN, the lattice parameters are held at the rs-ScN values,
while for GaN the lattice parameters are held at the wz-GaN values. The circles
indicate centrosymmetric structures.
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Cm−2. According to the modern theory of polarization [31], differences between formal

polarization of two structures A and B are physically meaningful if a gap-preserving

deformation exists between A and B; we have verified that the deformations as a function

of δ are all gap-preserving, for both GaN and ScN.

8.3 Polarization differences

Our goal is to determine the bound polarization charge at an interface between wz-

GaN in the [0001] direction and rs-ScN in the [111] direction. The formal polarizations

are only defined modulo a quantum of polarization, as discussed in Sec. 2.1. Specifically,

Eq. (2.7) is modulo e/Aint [31], where Aint is the unit cell area of the interface. To resolve

the ambiguity, we need to select a specific branch of the formal polarization for each

material. We will do this by choosing a reference structure for each of the two materials

that allows connecting them at the specific interface under study.

As mentioned before, the lattice mismatch between rs-ScN and wz-GaN is quite small;

however, if we consider the ScN to be strained coherently to GaN, there will be a small

piezoelectric contribution to the interface charge. Rocksalt, being centrosymmetric, has

no “proper” (in the sense of Ref. [34]; see Sec. 2.4) piezoelectric response; however, strain

in the (111) plane will dilute or concentrate the zero-strain formal polarization, and thus

there will be an “improper” contribution [34], given by −2εP ScN
f , where ε is the strain

induced by the lattice mismatch in the (111) plane, ε = (aScN/
√

2 − aGaN)/aGaN. We

calculate this piezoelectric contribution to be −0.058 Cm−2. The polarization charge at

the interface can then be calculated using

σb = PGaN
f − (1− 2ε)P ScN

f (8.1)
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and the predicted polarization difference of rs-ScN coherently strained to wz-GaN is

σb = 1.315 − (2.731 − 0.058) = −1.358 Cm−2, corresponding to a bound charge with

magnitude 8.5 × 1014 cm−2. This value is over an order of magnitude larger than the

bound charge at interfaces between, e.g., GaN and AlN.

In order to predict this bound charge based on differences between formal polarization

values calculated for wz-GaN and rs-ScN, we applied the interface theorem [Eq. (2.7)].

Application of this theorem requires that the interface is insulating; we verify this by

performing explicit superlattice calculations, in which the ScN layer is strained to the

in-plane lattice parameters of GaN (but allowing all internal coordinates to relax). The

layer-resolved density of states (DOS) is shown in Fig. 8.2(a). Strong electric fields are

present, due to the large polarization charges at the interfaces. The fields are so large

that the resulting voltage drop across the ScN layer exceeds the band gap (no matter how

thin we make this layer), leading to charge transfer between the interfaces. Though the

presence of mobile charges at the interfaces results in a non-insulating cell, the essential

feature in the layered DOS is the presence of a band gap in each of the layers; therefore,

the interface itself is insulating and our use of the interface theorem is justified.

In principle, the electric fields present in the superlattice should be quantitatively

consistent with our calculation of bound interface charges based on differences of po-

larization quantities determined for bulk wz-GaN and rs-ScN. However, the presence of

mobile charge complicates a direct comparison. It also precludes a direct verification

of our choice of branches when calculating formal polarization differences based on bulk

values [Fig. 8.1(d)]; indeed, the large polarization charge is on the same order as the quan-

tum of interface polarization, (e/Aint = 1.803 Cm−2). We will address this by performing

superlattice calculations between structures of GaN and ScN that give rise to smaller

polarization differences; these structures are based on different values of the interlayer

spacing δ [Fig. 8.1(d)].
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Figure 8.2: Layer-resolved density of states for GaN/ScN superlattices with (a) wz–
GaN/rs-ScN, (b) δ = 0, and (c) δ = 0.245. The superlattice structure is illustrated to
the right, with Ga atoms in blue, Sc atoms in purple, and N atoms in green.
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First, we construct a superlattice for the δ = 0 structures, i.e., between h-GaN and the

layered ScN structure [Fig. 8.1(a)]. Based on the formal polarization values in Fig. 8.1(d),

and accounting for the improper piezoelectric effect (since ScN is strained to GaN),

we expect a relatively small bound charge of 0.070 Cm−2, at the interface. Indeed, in

Fig. 8.2(b), we see that the electric fields are significantly smaller and breakdown is

avoided, i.e., the entire superlattice is insulating. The fields in Fig. 8.2(b) are opposite

in sign to those in Fig. 8.2(a) as the polarization of layered ScN is smaller than that of

h-GaN, whereas the polarization of rs-ScN is larger than that of wz-GaN (see Fig. 8.1).

The electric fields extracted from the superlattice and the theory of linear dielectric

media allow us to obtain the zero field polarization difference between the layers (i.e.,

removing the additional polarization from the dielectric response of the layers to the

fields in the calculation, see Ref. [119]). By Gauss’s law, the electric displacement field

is discontinuous across the interface, the discontinuity being equal to the polarization

difference:

σb = ε0ε
ScN
r EScN − ε0ε

GaN
r EGaN, (8.2)

where E is the electric field in each material, ε0 is the permittivity of free space, and εr

is the relative permittivity. In the superlattice of the layered structures, the atomic posi-

tions are fixed; only the electrons screen the electric field, and the relevant permittivity

is the clamped-ion dielectric constant. We calculate clamped-ion dielectric constants of

5.6 for h-GaN and 6.7 for layered ScN.

This procedure produces a bound polarization charge of 0.058 Cm−2, to be compared

with the bound charge of 0.070 Cm−2 obtained from the difference in formal polarizations.

Because these values are much smaller than the quantum of interface polarization, we

can be confident that we have chosen the correct branch for the formal polarizations in

Fig. 8.1(d).
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As an additional test we repeat the procedure for an interface between wz-GaN and

ScN with δ = 0.245, with respective clamped-ion dielectric constants of 5.1 and 6.5. The

ScN layer is strained to the in-plane lattice parameters of GaN. The results are shown

in Fig. 8.2(c). An analysis of the electric fields allows us to extract a polarization charge

of 0.121 Cm−2 at the interface. This is to be compared with a value of 0.126 Cm−2

derived from the formal polarization difference. This again confirms that we have made

the correct choice of branch for the polarization charge at the (0001)wz-GaN/(111)rs-ScN

interface.

The procedure for determining polarization charge at the (0001)wz-GaN/(111)rs-ScN

interface can equally be applied to similar interfaces between rs-ScN and other nitride

semiconductors (wz-AlN or wz-InN) for which polarization values are known [33]. Using

the value of 2.731 Cm−2 for the formal polarization of rs-ScN, and Eq. (8.1) to include

the effect of the piezoelectric field, polarization charges between ScN and any wurtzite

nitride can then be computed.

8.4 Applications

In the absence of free carriers, breakdown will occur if the potential drop over the

ScN layer is larger than the band gap of ScN. For a rs-ScN layer grown on semi-infinite

wz-GaN, we can apply Eq. (8.2), setting EGaN = 0. The electric field in the ScN layer will

be |σb|/ε0ε
ScN
r = 6.1 GV/m (using σb = −1.358 Cm−2 and our calculated static dielectric

constant of 25.0). The critical layer thickness for breakdown to occur is then given by

dc = Eg/eE = 1.5 Å, approximately one monolayer. Therefore, for any thickness of the

ScN layer, a 2DEG forms when ScN is grown on the (0001) GaN interface, and a 2DHG

forms on the (0001) GaN interface.

For finite-thickness layers, as the thickness of the GaN and ScN layers increases,
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increasing numbers of holes or electrons will appear at the interfaces to compensate the

bound polarization charge. As the thicknesses of the GaN and ScN layers increase to

infinity, the fields in the layers will vanish, and the free-carrier density at the interface

will equal the bound polarization charge density (8.5× 1014 cm−2).

The hole and electron gases at the GaN/ScN interfaces may be useful for contacts

or as current spreading layers, due to the extremely high carrier concentrations. p-

GaN/ScN/n-GaN (grown in the [0001] direction) tunnel junctions are another attractive

application. Current tunnel junctions make use of the smaller band gap InGaN interlayers

to reduce the effective barrier and increase the polarization field across the p-n junction

to reduce the junction width [115, 116]. ScN is a promising alternative, with a higher

polarization field, smaller band gap, and much smaller strain.

8.5 Summary

In summary, we have demonstrated a large polarization difference between ScN and

GaN. The polarization difference between rs-ScN and wz-GaN is −1.358 C/m2 when the

formal polarizations are appropriately referenced. This polarization difference produces

extremely large bound charges and electric fields, which can be exploited for high-density

electron and hole gases with concentrations up to 8.5× 1014 cm−2, in tunnel junctions.
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Chapter 9

Outlook

9.1 Summary

I have investigated the Zn-IV-nitrides and ScN for potential integration with III-

nitride devices. I identified that ZnGeN2 can be doped n-type and p-type, implying that

diode structures could be formed based on p-n junctions in ZnGeN2. By studying band

alignments, I found that ZnGeN2 and GaN form a type-II band offset. These offsets make

it more difficult to confine electrons and holes within the same layer in III-nitride/Zn-IV-

nitride/III-nitride or Zn-IV-nitride/III-nitride/Zn-IV-nitride quantum wells. The band

offsets can be advantageous in the case of devices involving ZnSiN2. ZnSiN2/AlN in-

terfaces exhibit a larger conduction-band offset than AlGaN/AlN interfaces where the

AlGaN layer has a similar band gap to ZnSiN2. That, along with a large polarization

charge at the interface, can enable higher electron sheet densities in ZnSiN2 layers.

ScN/GaN interfaces exhibit a large polarization discontinuity. The most promising of

applications for ScN layers are tunnel junction interlayers, which could be grown very thin

with low strain and be a significant improvement over existing InGaN based junctions.

The high electron sheet densities also render ScN layers useful as current spreading layers.
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I am optimistic the calculations performed in this thesis will inform and motivate work

on such devices.

9.2 Future prospects

I am most excited about the potential for further developments based on the work I

did in the area of polarization. There are many aspects of my calculations on ScN/GaN

interfaces that I believe could be applied to other materials. The most obvious is to look

at other combinations of rocksalt and wurtzite materials. There are many semiconducting

rocksalt oxides with a range of band gaps and lattice parameters, and wurtzite oxides also

exist. My calculations indicate that we should see very large polarization charges at these

interfaces, similar to the case of ScN/GaN. The methodology is also equally applicable

to rocksalt/zinc-blende interfaces grown along the [100] direction, where a similar large

polarization difference is expected.

In calculating the superlattices between ScN and GaN, I allowed ions to relax. Most

relaxation occurred near the interface, and ions further from the interface did not move

significantly. Most interestingly, the ions relaxed in such a manner as to reduce the

polarization discontinuity between both materials (the polarization in the ScN layer was

reduced, while the polarization in the GaN layer was increased). I think this effect should

be studied more quantitatively, particularly as it relates to the ionic contribution to the

dielectric constant. This effect has already been experimentally reported in PbSe/InAs

interfaces using transmission-electron microscopy [120].

Lastly, there are issues to be addressed relating to the growth of ScN films on GaN due

to the differences in symmetry. Experimental reports show that ScN films grown on GaN

exhibit twinning, as the ScN (111) axis has 3-fold symmetry, while the GaN (0001) axis

has 6-fold symmetry [121]. An alternative would be to look at other crystal structures,
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for instance, the Zn-TM-N2 materials (TM = Zr, Hf). These materials are a unique

cross between the Zn-IV-nitrides and the rocksalt nitrides. The Zn atom is tetrahedrally

bonded, while the TM atom is octahedrally bonded [122]. The crystal structure consists

of alternating tetrahedral Zn layers with octahedral TM layers. It would be interesting

to determine their effective spontaneous polarization, for potential heterostructures with

the III-nitrides.

I am extremely optimistic the methodologies discussed in this thesis will have appli-

cations to a wide variety of materials.
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