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Abstract

Built-in Self-repair for OpenRAM Memories

by

Aditi Sinha

Incorporating self-repair capabilities to memories is a standard practice to re-

duce yield loss from hardware defects. OpenRAM is an open-source memory

compilation framework that supports the automated generation of Static Ran-

dom Access Memories (SRAMs). This thesis extends the OpenRAM memory

compiler with a built-in self-repair (BISR) feature. The self-repair logic is im-

plemented as a synthesizable Verilog wrapper, and the OpenRAM SRAM is

augmented to include extra rows and columns for remapping faulty cells.
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Chapter 1

Introduction

Embedded memories are an integral part of system-on-chip (SOC) archi-

tectures. Modern applications rely heavily on memory, which necessitates the

design of high-density memories with fast access speeds. However, as memo-

ries get dense, physical defects occur more frequently. At worst, these defects

can completely inhibit the functioning of a chip, and at best, lead to logical

faults that deteriorate performance. Hence, identifying and possibly correcting

such faults is crucial for SOC design.

Design for testability (DFT) techniques focus on making circuits that are

easily testable after manufacture. Testability is not considered separate from

design but is integrated into design flows. For a target node or signal line to be

testable, it must be externally controllable and observable [1]. This means the

node should be able to get driven to a value through external inputs, and its

value should also be observable externally. Both of these ensure the node can

be sensitized from the primary inputs to check for faults, and the effect of any

such fault can be propagated to the primary outputs. Thus, the goal of the DFT

approach is to make circuits controllable and observable.
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However, controlling and observing memories is challenging since high

memory densities hinder testing from the I/O pins on a chip. The built-in self-

test (BIST) approach offers a solution to this problem. In BIST, test logic is

implemented on-chip, so that memories can test themselves for manufacturing

failures without the external intervention of automatic test equipments (ATEs).

TEST PATTERN
GENERATOR CIRCUIT UNDER TEST RESPONSE

ANALYZER

TEST CONTROLLER

Figure 1.1: Testing a Circuit

Figure 1.1 describes a general memory test procedure, where test stimulus

is given to the circuit under test in the form of test patterns. Responses are read

back from memory and analyzed to locate faults. On top of this, repair logic can

also be added to repair such faults. Once BIST identifies faulty memory cells,

they can be remapped to healthy redundant cells through built-in redundancy

allocation (BIRA). Together, the BIST and the BIRA form the overall built-in

self-repair (BISR) logic. This thesis adds the feature of detecting and correcting

memory faults to the OpenRAM memory compiler.

OpenRAM [2] is an open-source memory compiler that automates the gen-

eration and characterization of SRAM memories. It supports the generation

of layouts, netlists, and Verilog modules for multi-ported SRAMs [3]. The

supported process technologies are NCSU’s FreePDK45 (10 metal layers) [4],

2



MOSIS’s SCMOS 0.35µm (4 metal layers) [5] and SkyWater’s 130nm node (5

metal layers) [6].

For supporting BISR, we add extra bitcells to the SRAM array as the re-

dundancy. A Verilog wrapper, synthesizable with standard cells, is used for

implementing the BISR logic. The wrapper tests and repairs memory on boot-

up (i.e., reset). The system then accesses the memory via the wrapper, as shown

in Figure 1.2. The wrapper also hides the use of redundancy from the system.

SRAM with
Redundancy

BISR
Wrapper System

Figure 1.2: BISR Top Module

This thesis is organized as follows. Chapter 2 introduces OpenRAM and

describes the implementation of redundancy. In chapter 3, we discuss the

design of BIST wrapper. Chapters 4 covers the redundancy allocation BIRA

wrapper and its integration with BIST. Chapter 5 concludes with the results

and summary of this work.

All contributions to OpenRAM are available on GitHub at:

https://github.com/VLSIDA/OpenRAM

3
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Chapter 2

Adding Redundancy

The addition of redundant memory cells to the SRAM is the first step towards

built-in self-repair. Healthy spare bitcells will store the data of faulty bitcells.

These spares are added to memory in two variants - spare columns and spare

rows.

In this chapter, we start with a background on the OpenRAM SRAM and its

components. Next, we cover redundancy implementation within SRAM banks

and describe how the redundant cells are read or written.

2.1 Background on OpenRAM

Figure 2.1 shows the OpenRAM SRAM architecture [3]. An SRAM is com-

posed of the bitcell array, port address and port data blocks, and additional

control logic. The number of words, word size, type of port, write size, and

other input parameters can be specified in a configuration file when running

OpenRAM. OpenRAM requires a minimum of four metal layer processes for

generating layouts; two metal layers for bitcells, and two layers for power and

SRAM-level routing.
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Figure 2.1: Multiported SRAM Architecture

Custom 6T SRAM cells form the bitcell array. The port address and port

data modules are responsible for accessing words in the bitcell array. The port

address block consists of a hierarchical row decoder, feeding into the wordline

driver for driving the selected row. The port data block performs reads and

writes using sense amplifiers and write driver arrays. Each port has a port

address and port data module. Additionally, address and data input flip-flops

give address and data inputs to the port address and port data modules.

2.1.1 Bitcell Array

The bitcell array is appended with columns and dummy bitcells to make a

replica bitcell array, shown in Figure 2.2. Replica columns (aqua) help in driving

enables to the sense amplifiers for reads, so that read timings are consistent. The
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dummy cells ( red) ensure the layout meets lithography requirements.

Figure 2.2: Replica Bitcell Array

2.1.2 Port Address

The port address module in Figure 2.3 has a hierarchical address decoder

and a wordline driver, and is generated for every port. The row address de-

coder takes row address bits from the address input and selects the appropriate

row. Multiple predecoders form the row decoder; hence it is hierarchical. The

wordline driver enables access to the words on the selected row by driving the

word lines that gate individual transistors on that row.

2.1.3 Port Data

The port data module in Figure 2.4 consists of the precharge array, sense

amplifier array, write driver array, and the column multiplexer array.
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Hierarchical decoder WL driver

wl_14

wl_15

wl_13

wl_12

wl_4

wl_3

wl_2

wl_1

wl_0

wl_5

wl_6

wl_7

wl_8

wl_9

wl_10

wl_11

Row 
address 

Figure 2.3: Port Address Layout for 16 rows in the SCMOS process node

The precharge array drives a “1” onto the bitlines to precharge them for

reads. The sense amplifiers sense the difference in bitline voltages for reads,

while the write drivers write to words. The length of these two arrays is equal

to the word size. The column multiplexer selects the appropriate word using

the lower address bits when there are multiple words per row. If there is only

one word per row, the column multiplexer is not needed.

2.1.4 Control Logic

The control logic generates internal control signals such as a buffered clock

(clk buf ) and the enable signals for port data. An internal write enable signal

7



Column 
multiplexer

Sense amplifier 
array

Write driver 
array

Precharge
array

din_0

dout_0 dout_1 dout_2 dout_3

din_1 din_2 din_3

w_en

s_en

Figure 2.4: Read-write Data Port Layout for 4-bit word SRAM in the SCMOS
process node

(w en) is asserted to enable the write drivers when external chip select (csb) and

write enable (web) signals are active low. When web is high, an active high sense

amplifier enable (s en) allows the sense amplifiers to read the selected word.

Input data and external signals are captured and stored in flip flops when the

external clock (clk) is high, while reads/writes to bitcells occur when the clock

goes low.
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2.2 Redundancy Overview

Redundancy is implemented in OpenRAM by adding spare cells in the form

of extra rows and extra columns to the bitcell array. The input parameters for

enabling redundancy are the number of spare rows (num spare rows) and the

number of spare columns (num spare cols). Unless specified in the configuration

file, their values default to zero, and the functionality of OpenRAM remains

unchanged. Adding redundancy to the regular bitcell array itself instead of

implementing it as a separate memory block, avoids incurring excess area and

power overheads. In our design, bitcells in the spare columns are meant to

replace the faulty bits of a word. If too many words are faulty in a row, it is

replaced with a spare row. This is explained in detail in Section 4.1.

Figure 2.5 shows how the spare rows are added to the top of the bitcell array,

while spare columns are added on the right. The spare bitcells common to the

spare columns and rows (in yellow) are not used.

REGULAR MEMORY
SPARE
COLS

SPARE ROWS

Figure 2.5: Adding Redundancy to Bitcell Array
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2.3 Spare Columns

Implementing spare columns in the bitcell array is necessary for bit-level

granularity in repairs, say when only a single bit is faulty in an entire row which

needs to be remapped to a healthy bit. We add functionality for individual

writes to spare columns. Peripheral circuitry, such as port data and control

logic, is modified to support read and write operations to spare columns. The

major steps are – creating the spice netlist, creating the layout, performing

functional testing, and changing the Verilog model of the SRAM.

2.3.1 Netlist

The spice netlist for every module is generated by instantiating and connect-

ing sub-modules, adding pins at the current hierarchy level, and computing

some constants like the number of total columns, bus sizes, etc.

The first step is to create and connect more columns in the bitcell array. The

wordline driver also needs the new total number of columns input so that it

drives an entire selected row, including the spare column bitcells belonging to

that row. The port data module and its sub-modules are changed significantly.

2.3.1.1 Write Driver Array

A word-sized array of write drivers is used to give data inputs to the SRAM.

For writing to spare columns, individual write drivers are instantiated and

connected, one for every spare column. Every spare driver has its own unique

enable input. At this level, enable pins for spares are named en 1, en 2 and so

on. The first enable pin, en 0, is the single enable for all write drivers of the

regular word. This numbering changes if OpenRAM’s write masking feature

[7] is enabled.
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2.3.1.2 Sense Amplifier Array

The word-sized array of sense amplifiers is enabled during read operations.

Spare sense amplifiers are instantiated similar to spare write drivers, i.e., one

for every extra column. In this case, the difference is that spare-sense amplifier

cells will share the same enable as regular ones. Hence, all spare column bits

are also read along with the regular word and can be ignored if not required.

The control logic is also modified so that the s en enable driver has enough

strength to drive all amplifiers, including the extra ones.

2.3.1.3 Port Data

In the port data module, extra precharge cells are added for spare columns.

The spare precharge cells’ bitlines are named sparebl {} and sparebr {}, to distin-

guish them from regular ones. This lets us connect these bitlines to those of

the spare write drivers or sense amplifiers without name conflicts. The spare

column bitlines are not connected to the column multiplexer since they are indi-

vidually enabled. The spare write enable pins are renamed to bank spare wen{}.

2.3.1.4 SRAM

At the SRAM-level, the topmost level in the netlist hierarchy, D flip-flops

are added for the spare write enable inputs and extra data inputs. They are

supplied a buffered clock (clk buf ).

2.3.2 Layout

The SRAM layout is generated by placing and connecting modules, routing

the supplies and data lines, and adding the required pins. DRC checks ensure

11



no design rule errors are present, and LVS checks confirm that the extracted

netlist matches the schematic.

2.3.2.1 Write Driver Array

Figure 2.6 shows a sample layout for write driver array with spare columns

enabled. The spare write drivers are placed such that they are vertically aligned

with the precharges of spare columns. So, if there is a single word per row, as in

the figure, the spacing will continue as before. If there are multiple words per

row, spare column write drivers will be farther away from the regular drivers.

Figure 2.6: SCMOS layout of write driver array for 8b x 16 SRAM with 3 spare
columns and 1 word per row

The metal1 rail (in aqua) of the regular word write-enable en 0 is reduced in

length to avoid shorting with the spare drivers. Individual enable pins in the

spares have the smallest width possible, i.e. the minimum width specified by

the process node. This avoids via spacing errors at SRAM level. The enables are

positioned on the lower right of the write driver cell, as pointed by the yellow

arrows in the figure.

12



2.3.2.2 Sense Amplifier

In the layout for sense amplifier array, as shown in Figure 2.7, we add extra

sense amplifiers, one for every spare column. All sense amplifiers are supplied

the enable through a common enable (en) input. The spacing between sense

amplifiers is similar to that in the write driver array. The address and data

remapper, explained in Section 4.3, is responsible for either ignoring or using

the spare column outputs on every read. Their data is ignored when reading

from a fault-free cell.

Figure 2.7: SCMOS layout of sense amplifier array for 4b x 16 SRAM with 2
spare columns (rightmost)

2.3.2.3 Port Data

Bitlines are channel routed in the port data module from the precharge array

to the write driver and/or sense amplifier arrays. The column multiplexer is not

involved in the spare columns.

Figure 2.8 shows the layout of port data module for a write port. The

first enable pin of the write driver, en 0, is renamed to w en at this level to be

consistent with the naming in the absence of spare columns.

Figure 2.9 shows the layout of port data module for a read-only port, with an

eight-way column multiplexer, a 2-bit word and 3 spare columns. As shown,

spare bitlines are directly connected from the precharge array to the sense

13



Regular write drivers

Spare write drivers

bank_spare_wen1

bank_spare_wen0 bank_spare_wen2

w_en

Figure 2.8: SCMOS layout of Port Data for W-port, with 3 spare columns and
2-bit words

amplifier array. Since this is a read port, a single s en metal1 rail stretches across

all cells.

s_en

Spare sense amplifiersRegular sense amplifiers

Figure 2.9: SCMOS layout of Port Data for R-port, with 3 spare columns and 8
words per row
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2.3.2.4 Bank

At the bank level, the spare write enable pins are renamed to bank spare wen{} {},

where the numbering on the left indicates the port number. At this level, the

internal enable inputs are provided by connecting to vertical metal2 rails. This

is shown in Figure 2.10. These signals are generated by the control logic, which

will be instantiated and connected at the SRAM level.

w_en

s_en

p_en_bar

bank_spare_wen0_0

bank_spare_wen0_1

bank_spare_wen0_2

Figure 2.10: SCMOS layout of the bottom part of a bank, showing port data for
port 0 (a RW port), with 3 spare columns, word size of 4 and 1 word per row

15



2.3.2.5 SRAM

External inputs to the SRAM are provided using D flip-flops, as shown in

Figure 2.11. The spare write enable inputs are channel routed to the spare

enables of the bank pins in metal1 (in aqua) and metal2 (in pink). The D flip-

flops are placed such that there is enough space for the jogs in these routes. The

data inputs are channel routed to the din {} pins in metal3 (in purple) and metal2

(in pale yellow). If there are no spare columns, the data DFFs are routed in the

metal1 layer stack. All flip-flops are supplied a buffered clock by the control

logic.

Spare write 
enable DFFs

w_en

Data Input 
DFFs

data0_0 data0_1 data0_2 data0_3 data0_4 data0_5 data0_6

clk_buf

clk_buf

spare_wen0_0

spare_wen0_1

spare_wen0_2

Data Port

Figure 2.11: SCMOS Layout of the bottom part of an SRAM with 3 spare
columns, showing how inputs are channel routed to the bank pins

Figure 2.12 shows the full SRAM layout with three spare columns and supply

routing turned off for clarity. If it is enabled, a supply grid routed in metal3 and

metal4 connects all the vdd and gnd pins in the sub-parts of the SRAM. This

routing can be disabled in the configuration file if required.

16



Bitcell Array

Data Port

Address Port

Spare write
enable DFFs

Data DFFs

Row address 
DFFs

Control 
Logic

Figure 2.12: SCMOS Layout of an SRAM with 8-bit words, 3 spare columns and
no column multiplexer

2.3.3 Functional Tests

If the bits at an address have been mapped to a spare column, the spare

columns will also be written to when a word is written at that address. When

we write a word in a row, the spare columns of the same row will also be written,

if enabled. This is verified with functional tests that write random data values

at random addresses.
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2.3.4 Verilog

The behavioral Verilog model of the OpenRAM SRAM is modified to support

spare writes. The parameters NUM SPARE COLS and COL ADDR WIDTH are

used to define a separate spare memory array. The depth and width of this

array are the same as the number of rows and spare columns, respectively.

1 reg [DATA_WIDTH-NUM_SPARE_COLS-1:0] mem [0:RAM_DEPTH-1];

2 reg [NUM_SPARE_COLS-1:0] spare_mem [0:SPARE_RAM_DEPTH-1];

3 always @ (negedge clk0)

4 begin : MEM_WRITE

5 if (!csb0_reg && !web0_reg )

6 begin

7 mem[addr0_reg]

8 = din0_reg[DATA_WIDTH-1:NUM_SPARE_COLS];

9 if (spare_web0_reg[0])

10 begin

11 spare_mem[addr0_reg[ADDR_WIDTH-1:COL_ADDR_WIDTH]][0]

12 = din0_reg[0];

13 end

14 end

15 end

Figure 2.13: Verilog code showing writes to spare memory

An example is shown in Figure 2.13. The spare memory array is addressed

using the regular word’s row address (line 11) and the spare write enables (line

9). The chip select and write enable inputs to the SRAM are active low for spare

writes (line 5), since they occur with the regular word writes. Lower bits of the

18



data input are reserved as inputs for spare columns (line 12), while the rest are

for the regular word (lines 7 and 8).

2.4 Spare Rows

A spare row replaces an entire regular row. Spare rows must be accessible

using the address input to the SRAM, so an extra bit is added to the row address.

When regular words are accessed, this bit will be a “0”. Although this means

that the memory size can be doubled, we need to add just a few extra rows

to the bitcell array. Beyond the last word of the last spare row, the remaining

addresses that can be generated with the extra bit are not usable.

2.4.1 Netlist

Extra rows are added to the bitcell array by changing the total number of

rows. The port address block is also modified so that it can select the spare

rows and drive their wordlines. The words in spare rows will be accessible in

the same manner as regular words, so the port data block remains unchanged.

2.4.2 Layout

2.4.2.1 Replica Bitcell Array

The bitcell array is generated by creating a 2D array of bitcells, where every

other row is flipped vertically. Dummy arrays are instantiated and rotated or

mirrored to form dummy columns/ row-end caps on all four sides of the bitcell

array. Though these dummies have their bitlines disconnected, they still need

to be aligned and offset with the surrounding cells to avoid DRC issues.
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Design rule violations Dummy row

Figure 2.14: Layout of the top portion of replica bitcell array with 7 rows, where
the top dummy row is not flipped, causing DRC violations

When spare rows are enabled, extra bitcell rows are added to the top of the

array. Since the number of spare rows can be arbitrary, the total number of rows

can be odd instead of even, as they were previously. In this case, we see DRC

errors, as depicted in Figure 2.14. The dummy array boundaries clash with

those of regular 6T cells, and wordlines are broken. This is because, previously,

the number of rows has always been even, and so the top dummy array was

not flipped for aligning with the bitcell array.

With odd rows, this dummy row needs to be flipped vertically and offset to

match the top bitcell row. Then, the layout comes out DRC clean, as in Figure

2.15.

2.4.2.2 Wordline Driver

The wordline driver array is a NAND and INV array to drive all wordlines.

It is generated to match the total height of the bitcell, including the spare rows.
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Figure 2.15: DRC clean layout of the top portion of replica bitcell array with 7
rows

2.4.2.3 Hierarchical Row Decoder

The row address decoder is composed of predecoders feeding into AND

logic. The inputs to the address decoder are given by vertical metal2 rails,

which connect to row address flip-flops at the SRAM-level (see Figure 2.12).

Combinations of two kinds of predecoders – a 3-to-8 predecoder and a 2-to-4

predecoder, are used for the first stage of the decode. An array of AND gates

does the final decode to select a wordline.

The changes done to the hierarchical decoder for supporting spare rows can

be explained with an example. Figure 2.16 shows a hierarchical decoder for 19

rows, which means 16 regular rows and 3 spare rows. This implies a minimum

of 5-bit row address input, which can generate 32 unique row addresses using

combinations of the 3-to-8 and 2-to-4 predecode outputs. However, since we

need only 19 of them, the AND array is pruned to decode 18. This way, by

pruning the decoder to an upper limit, we can decode addresses for non-power-

of-two rows.
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Address 
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Figure 2.16: SCMOS layout of hierarchical decoder for 19 rows and 5-bit row
address width

2.4.3 Verilog

Only the repair wrapper must have access to the spare rows. An upper

limit of the acceptable address is set in the top module (SRAM BISR, explained

in Section 3.1) so that the extra rows are not directly accessible to the system.

Essentially, the most significant bit of the row address must be a “0” in any

address inputs coming from the system. If a row is to be remapped to a spare,

the BISR wrapper supplies the required row address to the SRAM. This is

explained further in Chapter 4.
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Chapter 3

Self-Test

Built-in self-test (BIST) techniques are a standard industrial practice, exten-

sively used for memory tests since they can perform checks on the fly, not just

after manufacture. For OpenRAM, this is implemented as a synthesizable Ver-

ilog test collar around the memory. It requires only the power-on reset and clock

signals from the system. The BIST module checks for functional faults in the

memory array and sends diagnostic information to the redundancy allocator

(BIRA) on boot-up. This chapter covers an overview of the BISR architecture,

memory fault models, the test algorithm, and the state machine implemented

for BIST.

3.1 BISR Overview

Figure 3.1 shows the repair schema and its sub-modules. The test/repair

collar works in two modes of operation – the test mode, where mode signal is

high, and the normal mode, after the repair has finished and the system wants

to use the memory. The top module is named SRAM BISR and instantiates the

modified SRAM remapper, BIST, and BIRA controllers. Signals to and from the

23



system are the same as when BISR was not used previously. The BIST controller

has access to the memory in the test mode, while Address and Data Remapper

has access in the normal mode.

BIRA 
Control

Address and Data
Remapper 

BIST Controller

BIST Address
Generator

Fault
 information

Assign row/col

Status

Error signals

SRAM 
(with redundancy)

Address/enables

Data

Address/enables

Data

Clock Reset
Data 

inputs/outputs Address Chip
 select Write enable

To/From System

Repair
 Done

Fault not 
repaired

Faulty 
address

Figure 3.1: BISR Architecture

On reset, the BIST controller starts testing the memory array and gives fault

information to the BIRA controller and the remapper. The BIRA controller

monitors the remapper’s status and accordingly instructs it to store the data

in redundant rows/cols. This re-allocation occurs in the test mode itself, so

when the entire test sequence is complete, the repair is finished too. If a fault is

not reparable, its information is exported using the faulty address and fault not
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repaired signals to the system. BIRA Controller informs the system about repair

end and switches to normal mode. In normal mode, the remapper compares

incoming addresses from the system to the ones stored and issues appropriate

signals to the SRAM, and also sends the corrected outputs to the system.

3.2 RAM Fault Models

Many physical deformities have logical effects. By modeling these effects

as faults, test algorithms are used to verify the operations of circuits. Here,

we focus on three memory fault models - stuck-at, transition, and stuck-open,

to classify the logical behavior of such defects. Figure 3.2 a. shows the state

transitions of a healthy memory cell. The states correspond to the values stored

in the cells, while the “w”s are write operations.

10 10

w1

w0

a) Healthy bitcell b) Stuck-at-0 and Stuck-at-1 faults

10

c) Transition fault (upward)

w1
w0

w0

w1

w0

w0

w1

w1

w0 w1

Figure 3.2: Fault Models
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Stuck-at Faults

Stuck-at faults (Figure 3.2 b.) occur when defects cause opens or shorts in

bitlines or drivers. Such faults cause the output of a memory cell to get perma-

nently forced to a particular value. Cells can be stuck-at ones (s-a-1) or zeroes

(s-a-0).

Transition Faults

Transition faults (Figure 3.2 c.) are cases where cells fail to transition to a value.

For example, if a cell cannot go through upward transitions (‘0’→‘1’), a “1”

cannot be stored in it again once a “0” has been written.

Stuck-open Faults

Stuck open faults occur when a memory cell cannot be accessed. For example,

if the address decoder is faulty, one or more of the wordlines might not get

selected.

3.3 Test Algorithm

In a typical memory BIST approach, test patterns are written into cells, read

back, and compared with the expected responses to generate fault signatures

and related information. Typical examples of memory test algorithms are the

Checkerboard tests and March tests [8]. Even though checkerboard tests are

simpler, March tests are popular because they can detect a variety of faults [9].

The test patterns in March tests are applied by marching through the memory

in order of ascending or descending addresses. In our implementation, we use

the MATS++ test [10], a variant of the march tests.
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Figure 3.3: The MATS++ Algorithm

The MATS++ test is a sequence of March elements, where each element is

an operation (read or write) performed at addresses in a marching fashion. The

test is described in Figure 3.3, with the arrows showing the marching order.

Although every element here represents an operation at a cell, this can be easily

extended for word-oriented memories such as OpenRAM SRAMs – instead of

performing an operation at a single cell, it is performed for all bitcells in a word.

M0 is the first element, where the address sequence can start either at the

highest or the lowest address, as shown by the double-arrow. For this BIST, we

start at the highest address and go in the descending order. For every address,

the element’s operation is performed, which in case of M0, is writing a “0” at

the address. This means every bit in the word is initialized with a “0” as part of

the M0 element. Next, the element M1 begins, where we go in ascending order

of addresses, read an expected “0”” and write a “1” in its place. Finally, the

first operation in element M2 is to read the “1” written previously, followed by

writing and reading “0”s. If there is any difference in the read outputs from the

expected responses, that cell is deemed faulty.

This algorithm can be used to detect all the faults discussed in Section 3.2.

It detects stuck-at and stuck-open faults since we write a complemented value

at every cell and read again. It also detects transition faults since we write all

“0”s first, followed by “1”s, followed by “0”s again; this procedure covers both

the upwards and downwards transitions.
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3.4 BIST Architecture

The BIST architecture in Figure 3.4 consists of the BIST Controller and the

Address Generator. The spare rows and columns are not tested with BIST and

are assumed to be fault-free.

Figure 3.4: BIST Top

The address generator generates the marching addresses and also sends the

fault’s address to BIRA. It initializes to the highest address on the reset pulse,

and increments or decrements an address when the controller sends inc or dec

signals. If both signals are low, the address value is held constant. It also

informs the controller when the lowest or highest address is reached, so that
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the controller can go to the appropriate state in the next clock cycle.

The BIST controller handles data in/out and enable signals to the SRAM and

also communicates with the BIRA controller (discussed further in Section 4.2).

When an error is detected, the error signal to BIRA goes high. The pause is an

active-high input from BIRA which indicates that the remapper is working on

storing the fault information, and so all output values to BIRA should be held

constant until it goes low. The skip input tells the BIST to move to the next

address and forces error to low.

Once BIST is finished, done goes high, and the repair wrapper switches to

normal mode.

3.5 BIST State Machine

The BIST state machine in Figure 3.5 has a total of eight states. Each state

corresponds to one march element in the test. The BIST controller stays in the

same state until the element’s operations are performed on all memory cells.

On reset, it transitions to the first state, write descend zeroes, where zeroes

are written into all addresses starting with the highest address (excluding the

spare rows) and going to the lowest. Next, reads are done in an ascending order.

The read ascend zeroes state sets up the read by providing necessary enable

signals, the next state write ascend ones sees the actual read output and also

writes ones at the same address. Similarly, the next march element operations

are carried out in read descend ones, write zero last and read zero last states.

The state machine enters the error state if a fault is detected, where fault-

related information is sent to BIRA. When pause goes low, it exits the error

state, skips the address, goes back to the previous state, and continues testing

from there.
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Lowest address reached 

Fault detected

Pause

Reset

Figure 3.5: BIST State Machine

When the March test is finished (bist complete), BIST controller sends a

bist done signal to the redundancy allocator.
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Chapter 4

Self-Repair

While BIST can be used to diagnose faults and improve fabrication processes

to avoid them, some repair capability is crucial for enhancing production yields

in high volume manufacturing. This is even more important for memories,

since memory yields determine overall SOC yields to a large extent.

The repair feature added to OpenRAM is designed as a synthesizable Verilog

wrapper, similar to how BIST is implemented. The repair logic works with the

self-test logic to allocate spare cells to defective cells during the repair phase and

also performs data/address remapping after the repair is complete. This chapter

discusses how the redundancy is organized and how repair and remapping are

done.

4.1 Fault Replacement

Figure 4.1 shows how the redundancy replaces faults. This redundancy

organization and repair architecture is based on the BISR scheme proposed by

J. F. Li et al. [11] in their paper on 2D redundancy repairs. Every word is

logically divided into sub-words; for example, a sub-word may have 2 bits if
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the word size is 8 bits. Although spare columns can be individually enabled,

as explained in Section 2.3.2.1, they are divided into groups. One spare column

group replaces a sub-word for a range of rows. The number of spare columns

should be a multiple of the number of bits in every sub-word. The number

of spare rows can be arbitrary, and one such row is meant to replace an entire

regular row if the spare columns are not sufficient. Faults are always assigned

to spare columns first; row allocation is done only if the column groups are full.

Fault coverage depends on the number of spare columns and rows.

Having sub-words instead of bit-level replacements reduces the area over-

head of the repair logic since a smaller number of registers is needed to keep

track of the remapping. It also allows the logic to handle multiple bitcell repairs

at once. If faults are close by, they will likely fall in the same sub-word and

hence can be repaired in one go.

Figure 4.1: Fault replacement of defective cells (in red) and regular cells in (in
blue) with the spare cells (in grey)

32



4.2 BIRA Controller

The controller is a finite state machine that instructs the remapper to store

fault information. It enters the monitor state on power-on reset, where it looks

out for the error signal coming from the BIST module. It receives the fault

address and faulty sub-word inputs from the BIST. The faulty sub-word is an

array input that shows which of the sub-words in a word are faulty (indicated

by a “1”). When BIST informs the controller about an error, it decides to allocate

a column group or an entire row for the fault according to the remapper’s status.

If no spares are available, the controller exports the fault’s address to the system.

The controller and remapper are shown in Figure 4.2.

BIRA 
CONTROL

Error

BIST Done

Pause

Skip address

Fault count

Faulty address

Repair Done

Irrepairable
fault

Export
Address

ADDRESS &
DATA 

REMAPPER

Assign Row

Assign Col

Col match
Row match

Threshold reached

Rows full

Cols full

Change subword

To/from 
BIST

To/from
 system

Faulty subword, Faulty address

Access 
addressData

Write enable Chip Select

Address

Data

Chip
select

Write 
enable

Spare 
enables

To/From
SRAM

Figure 4.2: BIRA Control and Remapper
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4.2.1 State Machine

The BIRA state machine in Figure 4.3 has eight states. On reset, it enters the

monitor state and waits for the error signal from BIST.

fault count > limit
or threshold_reached

monitor

check_registers

allocate_col

allocate_row
redundancy_full

continue_bist

multiple_faults_
handling

error

fault count > 1

!col_match & !row_match
& !threshold_reached & !cols_full

repair_end

BIST done

fault count > 1

Irreparable fault

!end_reached

Reset

Figure 4.3: BIRA Control State Machine

When BIST detects a fault, the BIRA state machine asks it to pause and then

goes to the check registers state so that it can decide what to do in the next clock

cycle. Here, the status of remapper’s registers is observed through five input

signals - column match, row match, threshold reached, rows full and cols full. The

match signals are sent by the remapper if the incoming fault has been stored

before. The full signals indicate whether all spare columns and rows have been

used up. Also, threshold reached indicates if all spare col groups for the fault’s

row address are full.
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One of the following is possible in the check registers state:

• If there is a row match or a col match, this means the fault has been handled

already, so it goes to the continue bist state directly.

• If the threshold has not been reached, the fault is assigned to the first

available column group, so it goes to the allocate col state.

• If the threshold has been reached, this means the fault needs to be assigned

to a row, so it goes to the allocate row state.

• If the threshold has been reached, but all spare rows are full, this means

the fault cannot be repaired, so it transitions to the redundancy full state.

• If multiple sub-words within a word are faulty, they have to be assigned

one by one, so it goes to the multiple faults handling state which takes care

of this case.

Signals assign row and assign col are used to tell the remapper to store the

fault into its registers at the positive edge of clock.

In the multiple faults handling state, we check the number of ones in the

faulty sub-word input and assign them one by one to the available column

groups. For example, if the faulty sub-word is “0110”, then the sub-words

“0010” and “0100” are stored into two different column groups. For doing

this, the state machine goes to the allocate col state, then back to the multi-

ple faults handling state as many times as required to check and store all faulty

sub-words in the word.

If there are too many faults in the same word (shown as fault count > limit

in Figure 4.3), we go directly to the allocate row state to assign a spare row to the

fault’s row.
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In the redundancy full state, the controller exports the faulty address and

asserts a signal to inform the system about the fault. These irreparable faults

need to be handled by the system through software-based remapping, so that

non-usable addresses are masked.

After one of the above decisions is taken, the state machine goes back to

the monitor state through the continue bist state. In the continue bist state, the

pause signal to memory is de-asserted and skip goes high, so that the address

generator can skip this address when it goes back to testing. When BIST is done,

the repair phase also ends (repair end state) and the remapper takes control of

the memory. The BIST and BIRA controllers are inactive during the normal

mode of operation.

4.3 Address and Data Remapper

The address and data remapper is the most important part of this architec-

ture. It is responsible for storing fault information in the test mode, and deciding

inputs to the SRAM when switched to the normal mode. It also provides data

outputs from the SRAM to the system in the normal mode.

4.3.1 Test/Repair Mode

In the test mode, registers are used to store allocations to spare cells at the

positive clock edge. The registers are numbered such that every register corre-

sponds to a specific spare row or spare column group. A valid bit corresponding

to the register number is also set when allocating spares.

• If a row has to be allocated, the row address of the current fault is stored

in the first non-valid row info register.
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• If a spare column group has to be allocated, the column address of the

current fault and the faulty sub-word is stored in the first available col info

and sub-word info registers.

4.3.2 Normal Mode

In the normal mode, the remapper compares incoming addresses with the

stored ones to decide the data and address inputs to the SRAM. The incoming

address from the system will be referred to as the access address.

• If the access address matches with one of the row info fields, then the row

address to the SRAM is changed to the corresponding spare row’s address.

• For the range of rows the access address falls under, if the column address

matches with one of the col info fields:

– Read operation: The faulty sub-word in the data output from SRAM

is replaced with the sub-word stored in the spare column. Then this

new word becomes the data output to the system, while the extra

output bits from the spares are not visible.

– Write operation: The data input bits at the locations of the faulty sub-

words are copied and written into the spare column groups which

were allocated for those sub-words.

• If the access address has been stored in row as well as column registers,

then priority is given to the row allocation. Since the row has already been

assigned, we do not need to read or write anything to the spare columns.

• If the access address has not been stored in any row or column information

registers, then the spare columns are not enabled and the address input

to SRAM is not changed.
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Chapter 5

Results and Conclusions

This thesis discussed the need for self-repair in memories and how this

feature has been added to the OpenRAM memory compiler. In this chapter, we

present the results of this work, followed by a summary of what was achieved.

5.1 Simulation Results

Functional faults in the SRAM are simulated by modifying its Verilog model.

We perform tests by injecting stuck-at faults at random addresses. All sub-

modules of the wrapper are validated with testbenches. The top module is also

verified with testbenches by doing random reads and writes to the SRAM and

comparing the outputs with the expected responses. The following subsections

show the waveform simulation results for the BIST, BIRA, and SRAM BISR

modules. For each all timing diagrams, the following configuration is assumed:

• Row address size = 5 bits

• Column address size = 2 bits

• Word size = 8 bits
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• Sub-word size = 2 bits

• Range of rows in a column group = 4

• Number of spare rows = 3

• Number of spare columns = 4

5.1.1 BIST

The BIST top module is tested with the SRAM in this section. Figure 5.1

shows how stuck-at-1 faults are detected by BIST. In this figure, a stuck-at-1

fault is injected at the first 4 MSB bits of the word at address 0000001. Previously,

the BIST was in the first march element, writing “0”s at all addresses. When the

address is 0000001, the read ascend zeroes state sets up the read at time t = 660ns

expecting all zeroes in the output. In the next clock cycle write ascend ones state

detects an error. The error signal goes high and the state machine transitions to

the error state (“111”) at t = 680ns. The faulty sub-word is sent to BIRA, along

with the fault count, which is 2 (“010”), implying two sub-words are faulty.

When pause goes low at t = 730ns, test is resumed from the next address.

Figure 5.1: BIST simulation for multiple stuck-at-1 faults at an address
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5.1.2 Address Remapper

This section details the timing diagram results of the address remapper

under different input conditions. For initial verification, it is tested independent

of the BIRA control logic.

5.1.2.1 Allocating Spare Columns

The Figure 5.2 shows how spare column groups are allocated for defective

cells. In this case, the row address input is for the 7th row. Hence, we see

from the valid register that column groups 2 and 3 are responsible for this

range of rows. On the assign col input, if the threshold has not been reached,

a column group is assigned to the sub-word by storing its information in the

corresponding index.

Figure 5.2: Allocating spare columns to faults in the remapper

At t = 20ns, the sub-word “0010” and column address “00” are stored in the

information registers for column group 2. At t = 30ns, the fault information

is stored for column group 3. Since there are 2 column groups per row, the
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threshold has been reached in storing the above two sub-words. So, at t = 40ns,

the assign col input does not affect any registers. The threshold reached signal

also goes high to inform BIRA.

5.1.2.2 Allocating Spare Rows

Figure 5.3 shows how row allocation works. On the active high assign row

input, the fault’s row address is stored in the first available row info register.

The row valid bit for this register is also set. Faulty sub-word input is ignored

since the entire row is replaced. BIRA is informed if rows are full (rows full).

Figure 5.3: Allocating spare rows to faults in the remapper

5.1.2.3 Writing to the SRAM

After repair ends, the address remapper is in the normal mode (mode 0).

Figure 5.4 shows three cases of writes. In the first case, at t=80ns, the access

address from system matches with a column allocated fault, which was allocated

at t=30ns. So, the data bits at the faulty sub-word are also written to the spare

columns. In the second case at t=110ns, the address to SRAM is changed to that

of a spare row. In the third case at t=140ns, the address has not been stored as

faulty, so inputs to the SRAM are the same as those from the system.
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Figure 5.4: Writing to SRAM after repair

5.1.3 BISR

Figure 5.5 shows the normal mode operation of the top module (SRAM BISR)

once repair is finished. Stuck-at-1 faults were introduced at the 3 least signifi-

cant bits LSB of the word, at the access address shown. At 5000ns, data input

from the system was written to this address. At the time marked by the label,

data output is read back from this address. Had the fault not been repaired, the

three LSBs of the output would be a “1”.

Figure 5.5: SRAM BISR simulation for repairing multiple bit faults
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5.2 Area Costs

We estimate the wrapper’s area cost by synthesizing the design using 45nm

cell libraries. Moreover, appending extra bitcells to the SRAM introduces addi-

tional overheads.

Figure 5.6 shows the area results for the configurations mentioned in Section

5.1. The overhead percentages are given relative to the no-spares SRAM. The

no-repairs configuration is a 512-bit memory, to which we add 172 spare bitcells,

along with the extra read/write logic described in Chapter 2. As shown in the

figure, the SRAM area increases by 50%, while the wrapper takes up 31.5% of

the new SRAM’s area. Since the wrapper uses flip-flops for storing information

about re-allocations, its area also depends on the redundancy.

No repair

8b x 64 SRAM SRAM BISR Total area

Area (in 

µm
2
 )

9421.19 14189.75 4475.24 18664.99

Overhead 50.60% 47% 98.11%

Repair with 4 spare columns and 3 spare rows

Figure 5.6: FreePDK 45nm area for SRAM and wrapper

In this design, the maximum critical path is between the address output of

the address generator and the state flip-flop of BIRA controller. Similar results

can be derived for other configurations of repair. The obvious approach to

optimize for area is by reducing the number of spares. However, because they

decide the number of reparable faults, a tradeoff exists between the desired

repair efficiency and area constraints.
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5.3 Conclusion

This thesis is an effort to expand the capabilities of the OpenRAM memory

compiler. A synthesizable wrapper was designed and memory repair using

redundancies was explored. The OpenRAM SRAM was modified to support

parametrized number of rows and columns, granting flexibility in choosing

SRAM sizes.

Future work involves estimating the wrapper’s repair rates and power over-

heads, and optimizing the design for them. Advanced march tests for word-

oriented memories can also be implemented to detect more varieties of faults.
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