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Abstract Slip-corrected Reynolds equations have not

been widely used in the air bearing simulations for the

head-disk interface in hard disk drives since Fukui and

Kaneko [Trans ASME J Tribol 110:253–262, 1988] pub-

lished a more accurate generalized lubrication equation

(FK model) based on the linearized Boltzmann equation for

molecular gas lubrication. However, new slip models and

slip-corrected Reynolds equations continue to be proposed

with certain improvements or with the more physical basis

of kinetic theory. Here, we reanalyze those slip models and

lubrication equations developed after the FK model was

published. It is found that all of the slip-corrected Reynolds

equations are of limited use in the air bearing simulations,

and that these new slip-corrected Reynolds equations

cannot replace the FK model for calculating an accurate

pressure distribution of molecular gas lubrication.

Keywords Air bearing � Magnetic data disk �
Magnetic data recording head

List of Symbols

a Surface accommodation factor (a ¼ ð2� aÞ=a)

D Inverse Knudsen number

h Spacing between the slider and disk or air bearing

film thickness

h0 Characteristic spacing between the slider and the

disk

H Nondimensional form of h (H = h/h0)

k Boltzmann constant

Kn Knudsen number (Kn = k/h)

L Characteristic length or the radius of the base of

an asperity

m Mass of a molecule

N Molecular number density

n Unit outer normal of a boundary

p Air bearing pressure

pa Ambient air pressure

P Nondimensional air bearing pressure (P = p/pa)

QP,con Nondimensional flow rate or flow rate coefficient

for continuum Poiseuille flow (QP,con = D/6)

QP Nondimensional flow rate or flow rate coefficient

for Poiseuille flow

QC,con Nondimensional flow rate or flow rate coefficient

for continuum Couette flow (QC,con = 1)

QC Nondimensional flow rate or flow rate coefficient

for Couette flow
�QP Relative Poiseuille flow rate coefficient

( �QP ¼ QP=QP;con)
�QC Relative Couette flow rate coefficient

( �QC ¼ QC=QC;con)

R Gas constant for 1 g gas (R = universal gas

constant/gas molecular weight)

T Gas temperature

u Gas flow velocity

U Velocity of the bearing surface or the disk

uslip Slip velocity of the rarefied gas on a stationary

wall

Uslip Nondimensional form of uslip (Uslip = uslip/U)

�m Average molecular speed (�m ¼ 2
ffiffiffiffiffiffiffiffiffi

2RT
p

=
ffiffiffi

p
p

)

a Surface (momentum) accommodation coefficient

k Mean free path of gas molecules

ka Mean free path of gas molecules at the ambient

pressure

km Modified mean free path
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l Viscosity

s Shear stress

q Gas density (q = mN)

1 Introduction

Slip-corrected Reynolds lubrication equations are impor-

tant in the modeling of the low subsonic air bearing film in

the head-disk interface of hard disk drives. The classical

compressible Reynolds lubrication equation was derived

from the Navier–Stokes equation with the continuum

no-slip boundary condition. It is not accurate when the gas

rarefaction comes into effect, as happens when the slider to

disk spacing is on the order of the mean free path of the

ambient gas molecules. In the past as the slider-disk gap

was reduced from microns to nanometers, the velocity slip

was taken into consideration. However, slip-corrected

Reynolds equations have not been widely used in the air

bearing simulations for hard disk drives since Fukui and

Kaneko [1] derived a more accurate generalized lubrication

equation (FK model) based on the linearized Boltzmann

equation with the Bhatnager–Gross–Krook (BGK) model

[2]. The slip-corrected Reynolds equations may not be

valid for ultra-thin air bearing films with local transition

flows or free molecular flows, due to limitations of the

velocity slip models. On the other hand, the FK lubrication

equation, which has a similar form as that of slip-corrected

Reynolds lubrication equations, is valid for arbitrary

Knudsen numbers.

A slip-corrected Reynolds lubrication equation is based

on a slip model of the velocity boundary condition. The

first-order slip model, which was originally developed by

Maxwell [3], was incorporated into the Reynolds equation

by Burgdorfer [4]. Hsia and Domoto [5] derived a second-

order slip model using a Taylor expansion of the bulk mean

velocity and obtained a new Reynolds equation. Mitsuya

[6] developed a kinetic-theory based so-called ‘‘1.5-order’’

slip model and modified the Reynolds equation accord-

ingly. Recently, Wu and Bogy derived a pressure gradient

model [7] and new first- and second-order slip models [8]

from a more physical point of view. Shen and Chen [9]

analyzed the linearized Boltzmann equation with the BGK

model for Poiseuille flow and derived a ‘‘first-order’’ slip

model. Peng et al. [10] modified the gas molecule’s mean

free path due to the existence of boundaries of the air

bearing film and applied this modification to different slip

models and the corresponding Reynolds equations. Bah-

ukudumbi and Beskok [11] obtained a Reynolds equation

valid in a wide range of Knudsen numbers, using a modi-

fied slip boundary condition for steady plane Couette flows

[12] and a generalized higher-order slip model for pres-

sure-driven flows [13].

All of these efforts on slip-corrected Reynolds equations

uncover certain physical aspects of rarefaction effects on

an air bearing; however, they do not show any important

advantages over the generalized Reynolds equation derived

by Fukui and Kaneko [1], except for Wu’s work [7], Shen

and Chen’s ‘‘first-order’’ model [9], and Peng’s modifica-

tion of the mean free path [10]. Wu showed that, unlike the

FK model, the 1.5- and second-order slip-corrected Rey-

nolds equations do not have the unbounded air pressure

singularities when the air bearing is at or near contact. The

physics mechanism emphasized in Shen and Chen’s ‘‘first-

order’’ slip model makes the model in close agreement with

the FK model, but no complicated solving process of the

linearized Boltzmann equation is needed in their model.

Peng et al. [10] applied the gas molecule’s modified mean

free path to the slip model and Reynolds lubrication

equations and changed the Poiseuille flow rate coefficient

in different gas lubrication equations.

The question arises as to whether or not these

improvements should be incorporated into the numerical

simulation of the air bearing film in a head-disk interface.

Here we reanalyze these slip models and the corresponding

slip-corrected Reynolds equations. It is found that the

improvements of these slip models and the corresponding

slip-corrected Reynolds equations are of limited use in the

air bearing simulation of molecular gas lubrication. The

problem of a contact pressure singularity inherent in the FK

model needs to be further analyzed.

2 Slip Models and Slip-Corrected Reynolds Equations

Slip models are the bases of slip-corrected compressible

Reynolds equations. A compressible Reynolds equation is

derived from the Navier–Stokes equations with the con-

servation of the mass flow rates, the equation of state of the

compressible flow and the velocity boundary conditions. In

hard disk drives, the disk’s rotation velocity is low sub-

sonic. Usually, it is assumed that the flow is isothermal, the

pressure field is uniform in the film thickness direction, the

inertial effects are negligible, and the viscosity change with

position and velocity is also negligible. The equation of

state of the compressible flow in hard drives is the ideal gas

law. The slip model prescribes the velocity boundary

condition due to rarefaction, which usually depends on the

velocity profile near the wall, the Knudsen number, the

surface accommodation coefficient, the flow velocity gra-

dient or pressure gradient, or shear stress at the wall.

In general, the obtained slip-corrected Reynolds equa-

tions have the form,
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r � ½ð �QPph3rpÞ � ð6UlphÞ� ¼ 12l
oðphÞ

ot
; ð1Þ

where �QP is the relative Poiseuille flow rate coefficient.

The deviation of its value from 1 represents the effect of

the velocity slip on the gas flow. Its’ expression in terms of

the (inverse) Knudsen number depends on the slip model

used in the derivation.

Usually, a compressible slip-corrected Reynolds equa-

tion does not contain the relative Couette flow rate coef-

ficient, provided that the surface accommodation

coefficients on the two boundaries are close to each other.

The surface accommodation coefficient is defined for the

tangential momentum exchange of gas molecules with

surfaces, and it determines the velocity slip property of the

boundary for slip flows. Due to the skew symmetry of

Couette flow with respect to its center plane, the Couette

flow rate does not depend on the velocity slip at the

boundaries, provided that the slip conditions at the upper

and lower boundaries are the same. On the contrary, the

symmetry of Poiseuille flow with respect to the center

plane results in a strong dependence of the Poiseuille flow

rate on the slip conditions at the boundaries.

2.1 First-Order [4] and Classical Second-Order [5]

Models

Usually, the temperatures of the slider and the disk surfaces

are close to the ambient temperature. So the air bearing

film can be assumed to be isothermal, which has been

validated using the linearized Boltzmann equation with the

BGK model [1], and the thermal creep effect can be

neglected in the velocity slip at the boundaries. Hence, the

first-order slip model, which was originally proposed by

Maxwell in 1879 and contains the velocity jump and

thermal creep, can be reduced to [3],

uslip ¼
2� a

a
k

du

dn
: ð2Þ

Burgdorfer [4] used this velocity slip model based on

Schaaf and Sherman’s work on slip flow [14] and derived a

first-order slip-corrected Reynolds equation. A second-

order slip model,

uslip ¼
2� a

a
k

du

dn
� k2

2

d2u

dn2

� �

; ð3Þ

was derived by Hsia and Domoto [5] and a new slip-

corrected Reynolds equation was obtained. Hsia and

Domoto also compared this Reynolds equation to their

experimental results. This slip model has more of a

mathematical basis than a physical basis. These first- and

second-order models were developed earlier than the FK

model. Different types of slip models continue being

proposed to search for a better slip-corrected Reynolds

equation.

2.2 1.5-Order Model [6]

Equating the kinetic-theory based momentum transfer rate

on a stationary wall and the macroscopic shear stress s ¼
lou

oz; Mitsuya [6] derived a ‘‘1.5-order’’ slip model,

uslip ¼
2� a

a
k

du

dn
� 1

2

2k
3

� �2
d2u

dn2
: ð4Þ

Although it is referred to as a 1.5-order slip model, it is

actually a second-order type model, since the slip velocity

contains the second-order effect of the mean free path

(or Kn in a nondimensional sense). The methodology of

equating two shear stresses on a wall is also used in the

derivation of Wu’s pressure gradient slip model [7] and

new first- and second-order slip models [8] as well as Shen

and Chen’s slip model [9].

2.3 Wu’s Pressure Gradient Model [7] and New First-

and Second-Order Models [8]

Equating the macroscopic shear stress at the wall and the

shear stress obtained from kinetic theory, Wu and Bogy

proposed a pressure gradient model [7] and new first- and

second-order slip models [8]. In the first model, the mac-

roscopic shear stress is obtained from the balance of forces

on a control volume with its height equal to the mean free

path, which is shown in Fig. 1(a), and it is expressed in the

form,

(a)

(b)
x

y

λm

z

x

y

λ

Fig. 1 Control volume with different heights used to derive the force

balance equation. a Control volume used by Wu and Bogy [7].

b Control volume used by Shen and Chen [9]
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sjz¼0 ¼ l
ou

oz
jz¼0 � k

oP

ox
jz¼0; ð5Þ

which is different from the conventional formula s ¼ lou
oz of

fluid mechanics for slip and continuum flows.

The kinetic-theory based shear stress is the momentum

transfer rate from the gas molecules to the solid wall [3],

which is expressed as

s ¼ q�vauslip

2ð2� aÞ: ð6Þ

The slip velocity, obtained by equating these two

expressions, is then,

uslip ¼
2� a

a
k
ou

oz
� 2k

q�c

oP

ox

� �

: ð7Þ

The existence of the pressure gradient in the model is

consistent with the fact that it is essentially a second-order

slip-type model. Using one of the reduced Navier–Stokes

equations of Wu [7],

0 ¼ �op

ox
þ l

o2u

oy2
; ð8Þ

and the viscosity of the hard sphere model l ¼ mN�mk=2

[3], the slip model in Eq. 7 changes to a second-order form,

uslip ¼
2� a

a
k
ou

oz
� k2o

2u

oz2

� �

: ð9Þ

In the derivation of the new first- and second-order slip

models [8], the conventional formula s ¼ lou
oz is used for

the macroscopic shear stress at the boundary instead of

Eq. 5. The kinetic analysis of the momentum transfer rate,

which still uses integration based on the continuum media

assumption, obtains an expression of viscosity,

l ¼ 1

3
mN�mk: ð10Þ

This equation is slightly different from the conventionally

used expression of viscosity for the hard elastic sphere gas

molecule model [15],

l �
ffiffiffiffiffiffiffiffiffi

2RT

p

r

qk ¼ 1

2
mN�mk; ð11Þ

which is also used in the derivation of the pressure gradient

model [7]. With Eq. 11 for the viscosity, new first- and

second-order slip models are produced.

2.4 Shen and Chen’s Model [13]

Shen and Chen [9] did not solve the Boltzmann equation

for the air bearing film, although the derivation of their slip

model started from the linearized Boltzmann equation.

With the linearized Boltzmann equation and a restriction of

the flow to Poiseuille type with u = u(y) and P = P(x),

shown in Fig. 1(b), Shen and Chen [9] obtained the shear

stress in the flow in the form of,

s ¼ nskT
du

dy
¼ l

du

dy
; ð12Þ

and the shear stress at the wall in the form of,

sjy¼0 ¼ a

ffiffiffiffiffiffiffiffiffi

kT

2pm

r

ujy¼0mnþ 1

2
nikT

du

dy
jy¼0

" #

; ð13Þ

For the hard sphere ideal gas molecule model, we have

P ¼ qRT and l ¼ nskT . Hence the above Eq. 13 can be

rewritten as,

sjy¼0 ¼ a
l
2k

ujy¼0mnþ l
2

du

dy
jy¼0

� �

: ð14Þ

Instead of equating the internal shear stress at the flow

boundary, shown by Eq. 12 evaluated at the wall (y = 0),

and the shear stress at the wall, i.e., Eq. 13, and then

producing the classical first-order slip model, Shen and

Chen [9] adopted the balance equation of forces on a

control volume at the wall. The control volume has a height

equal to the so-called effective mean free path. The force

balance equation produces an expression for the slip

velocity,

uslip ¼ ujy¼0 ¼
2� a

a
i

pkT

2m

� �2
du

dy
jy¼0 �

km

a

ffiffiffiffiffiffiffiffiffi

2pm

kT

r

1

mn

dp

dx
:

ð15Þ

Using the hard sphere gas molecule model, this can be

changed to

uslip ¼ ujy¼0 ¼
2� a

a
km

du

dy
jy¼0 �

2

2� a
k2

m

l
dp

dx

� �

: ð16Þ

As in the derivation of the pressure gradient model [7], the

force balance equation does not produce the final slip

velocity expression in Eq. 16 until the approximation
du
dyjy¼kmðorkÞ � du

dyjy¼0 is used, which is not based on any

kinetic theories. It is seen that this approximation is not

valid for a transition flow, which has 0.1 \ Kn \ 10. For a

transition flow, the mean free path is comparable to the

thickness of the gas film, so it cannot be approximated as

zero.

It is interesting to note that this slip model is very

similar to Wu’s pressure gradient model [7], except for the

mean free path and the factor 2/(2 - a) in the second term.

With Eq. 15 and the conservation of linear momentum for

the Poiseuille flow, the slip velocity can be finally

expressed as,

uslip ¼ ujy¼0 ¼
2� a

a
km

du

dy
jy¼0 �

2

2� a
k2

m

d2u

dy2

� �

: ð17Þ
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Essentially, this is still a second-order slip-type model,

since its nondimensional expression contains the square of

the Knudsen number.

2.5 Bahukudumbi and Beskok’s Model [15]

Using a modified slip boundary condition for steady plane

Couette flow [12],

uslip ¼
2� a

a
ð1:2977þ 0:71851 tan�1

� ð�1:17488Kn0:58642ÞÞkdu

dy
; ð18Þ

and a generalized high-order slip boundary condition for

the pressure-driven flow [13],

uslip ¼
2� a

a
Kn

1þ Kn

� �

k
du

dy
: ð19Þ

Bahukudumbi and Beskok [11] derived a

phenomenological Reynolds equation valid for a wide

range of Knudsen numbers. An interesting point is that

Eq. 19 is only valid for the nondimensional velocity profile

of Poiseuille flow. The Poiseuille flow rate coefficient

based on Eq. 19 differs greatly from the DSMC results

[13]. With a modification of dynamic viscosity, a modified

Poiseuille flow rate coefficient is proposed [11, 13],

Qp ¼ ð1þ dKnÞ 1þ 6Kn

1þ Kn

� �

; ð20Þ

where the rarefaction correction parameter d (also denoted

by a in [11, 13]) is obtained by matching the modified flow

rate coefficient with the Poiseuille flow rate database via

the solution of a two-dimensional linearized Boltzmann

equation [16]. So it is not surprising that their analytical

lubrication equation gives similar results to those of the FK

lubrication equation with its numerically obtained look-up

table [16]. A good point is that their model also gives the

analytical expressions for the flow velocity profile and

shear stress at the boundaries with good accuracy for flows

with Kn \ 12. This is an advantage over the FK lubrication

equation; however, there is no accuracy improvement to

the air bearing simulation.

2.6 Other Kinetic-Theory Based Slip Models

Although not integrated into the Reynolds lubrication

equation, several second-order slip models have been

proposed for shear or pressure-driven flows, such as the

models by Schamberg [17], Beskok and Karniadakis [13],

Cercignani and Daneri [18], Deissler [19], and Hadjicon-

stantinou [20]. Beskok and Karniadakis [13] also derived

higher-order slip models.

The slip velocity of all of the second-order slip models

can be expressed in a general form, when the surface

accommodation coefficient is 1,

Uslip ¼ C1Kn
oU

on

� �

jboundary � C2Kn2 o2U

on2

� �

jboundary ð21Þ

These models are only valid in the slip flow regime and

not for the entire Knudsen number regime. Table 1 lists the

coefficients C1 and C2 for all of the second-order slip

models referred to in this paper. In this table, the first- and

1.5-order slip models are viewed as second-order slip

models with special coefficients C1 and C2.

Corresponding to the general slip model in Eq. 21, the

Poiseuille flow rate coefficient can be calculated and

expressed in the form,

Qp ¼
D

6
þ C1

ffiffiffi

p
p

2
þ C2

p
2D
: ð22Þ

Figure 2 shows plots of the Poiseuille flow rate of the FK

model [1], the first-, second- and 1.5-order slip models

[4–6], the pressure gradient model [7], and Shen and

Chen’s model [9] without using the effective mean free

path. All of the second-order type models have a similar

trend different from that of the first-order model. It is seen

that in the transition flow and free molecular flow regions

(D \ 8.86) all of the slip models, which can be expressed

by Eq. 21, differ greatly from the FK model in predicting

the Poiseuille flow rate. This is expected, since the slip

model is only valid in the slip flow region.

3 Modification of the Mean Free Path

The mean free path of gas molecules is the mean value of

the free distances that gas molecules can travel between

two collisions in the equilibrium state. It depends on the

Table 1 Coefficients for second-order slip models expressed in a

general form

Model developers C1 C2

Maxwell [3] 1 0

Schamberg [17] 1 5p/12

Cercignani and Daneri [18] 1.1466 0.9756

Deissler [19] 1 9/8

Hsia and Domoto [5] 1 0.5

Mitsuya [6] 1 2/9

Beskok and Karniadakis [13] 1 -0.5

Wu and Bogy [7] 1 1

Wu and Bogy [8] 2/3 1/4

Hadjiconstantinou [20] 1.1466 0.647

Shen and Chen [9] 1 2

Tribol Lett (2010) 37:191–201 195
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molecule’s internal structure, gas pressure, and tempera-

ture. Based on kinetic theory, different air molecule models

give different expressions for the mean free path.

3.1 Probabilistic Mean

It is obvious that the free distance that a gas molecule in an

air bearing film can travel before a collision with another

molecule or the boundary is reduced due to the existence of

the boundaries. The second-order slip models [5–7, 9]

either take the Taylor expansion of the bulk velocity with

respect to the mean free path or employ a control volume

with a height related to the mean free path. So it may be

more accurate if the mean free path in the second-order slip

models is replaced by a modified mean free path in con-

sidering the existence of boundaries. Peng et al. [10]

obtained the probabilistic mean of the mean free path

considering the boundary effects,

km ¼
k 1� k

4h

� �

; h� k
k 3h

4k� h
2k ln h

k

� �� �

; h\k:

�

ð23Þ

Three assumptions are adopted in the derivation process.

For the air flow, it is assumed that the air molecules are

uniformly distributed in the air film and the velocity

directions of air molecules are uniformly distributed in the

three-dimensional space. In their derivation, it is also

assumed that collision with another molecule is almost sure

to happen when one molecule travels a distance of its mean

free path. This inherent assumption can be seen from their

result that the mean free path of molecules with a distance

d [ k from the boundary is not affected by the boundary

effect. Specifically, Fig. 3 shows it is not possible for the

molecule to travel more than k in the direction to the

boundary before collision, while the possibility is finite if

there is no boundary. This boundary effect is neglected

under that inherent assumption.

With the mean free path modification, an agreement

between high-order slip-corrected Reynolds equations and

the FK model is obtained. The mean free path in the slip

models can be replaced by the modified mean free path in

Eq. 23, resulting in a more reasonable choice of the Taylor

expansion variable and the control volume’s height. With

this replacement, the 1.5- or second-order slip-corrected

Reynolds equations predict a pressure distribution and a

load capacity close to that of the FK model, although the

first-order slip-corrected Reynolds equation does not

change much; and the Poiseuille flow rates of the 1.5- and

second-order slip models have a similar trend to that of the

FK model in the entire Knudsen number regime. As an

example, in Fig. 2 the classical second-order slip model

with the modified mean free path gives a Poiseuille flow

rate coefficient much closer to that predicted by the FK

model than the classical second-order slip model.

However, it appears that the approach of modifying the

mean free path cannot replace the FK model. It is obvious

that these three assumptions used in Peng’s derivation are

not valid for a real air bearing flow. The distribution of

molecular velocities is described by the Boltzmann equa-

tion. For an ideal gas, the number density of the air mol-

ecules, related to the density, is proportional to the gas

pressure which is not necessarily uniform. The third

assumption neglects the randomness of molecular colli-

sions. Thus, it is supposed to be better if the true mean free

path considering the boundary effects can be calculated

directly from the velocity distribution function of gas

molecules in the Boltzmann equation for the air bearing

film. On the other hand, after the solution of the Boltzmann

equation for the air bearing film is obtained, the air bearing

problem is solved and the air pressure, the macroscopic

flow velocity, the shear stress and so on can be obtained in

terms of integrals with the molecular velocity distribution,

as shown by Fukui and Kaneko [1]. The slip-corrected

Reynolds equation then becomes unnecessary. In this

sense, one should not expect to replace the FK model with

a slip-corrected Reynolds equation by modifying the gas

molecular mean free path.

The mean free path modification is not necessary for the

FK model. In that model, the mean free path is a charac-

teristic value of the BGK gas molecules in the equilibrium

Fig. 2 Relation between the Poiseuille flow rate coefficient (nondi-

mensional Poiseuille flow rate) and the inverse Knudsen number in

the FK model [1], the first-, second-, and 1.5-order models [4–6], the

pressure gradient model [7], Shen and Chen’s model [9]

d > 

Fig. 3 One molecule and one boundary

196 Tribol Lett (2010) 37:191–201
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state. The boundary effect is considered by the boundary

conditions for the linearized Boltzmann equation. So

Peng’s further implementation of the modified mean free

path into the FK model is not necessary.

3.2 The Matthiessen Rule

The effective mean free path in Shen and Chen’s slip

model [9] is calculated using the Matthiessen rule [21],

1

km
¼ 1

k=
ffiffiffi

3
p þ 1

h=2
: ð24Þ

The Matthiessen rule is widely used in considering the

boundary scattering effects on electron and phonon trans-

port. However, it is seldom used for rarefied gas dynamics.

This effective mean free path cannot be taken as a modified

mean path of air molecules. A discrepancy occurs when the

air film thickness h becomes much larger than the mean

free path. As h increases, the boundaries move away from

most of the air molecules, the boundary effect diminishes

and the mean free path should approach the original mean

free path k instead of k=
ffiffiffi

3
p

. Without this effective mean

free path, Shen and Chen’s slip model is a second-order

type, and the corresponding Poiseuille flow rate is no

longer close to that predicted by the FK model. This can be

seen from Fig. 2. However, the application of the Matthi-

essen rule to rarefied gases is not supported by the Boltz-

mann equation. And, it does not work better than the usage

of the modified mean free path in Peng et al. [10], since

both Shen and Chen’s model and the classical second-order

model with the modified mean free path are close to the FK

model in Fig. 2.

3.3 Air Molecule Models

Instead of the hard sphere model, which is usually used to

calculate the mean free path used in the slip models, Sun

et al. [22] took the results of a variable hard sphere (VHS)

model [23] and variable soft sphere (VSS) model [24] and

applied the modified mean free path to the classical second-

order slip model. However, they compared their results to

those of the slip-corrected Reynolds equations and the

linearized Boltzmann equation with the BGK model. Using

only this comparison may not validate the application of

VHS and VSS models to an air bearing lubrication.

4 Contact Pressure Singularity

It was stated by Wu and Bogy [7] that the second-order

slip-corrected Reynolds equation does not predict an

unphysical unbounded pressure singularity in the limit of

contact between the bearing surface and the moving

surface. Following Wu’s analysis [7], the form of the

Reynolds equation, i.e., Eq. 1, can be changed by using the

second-order slip flow’s Poiseuille flow rate coefficient in

Eq. 22 to the following form for the steady state one-

dimensional air bearing equation,

o

oX

pah2
0

6lUL
PH3 þ bpakah0

6lUL
H2 þ cpak

2
a

6lUL

H

P

� �

oP

oX

� �

¼ o

oX
ðPHÞ; ð25Þ

where b = 6a and c = 6a (12a) for Hsia and Domoto’s

second-order slip model [5], and b = 6a and c = 12a for

Wu’s pressure gradient model [7]. In the near-contact

regime, H approaches zero. With the high-order terms of H

in Eq. 25 neglected in Wu’s analysis, the Reynolds

equation can be reduced to,

o

oX
C

H

P

oP

oX

� �

¼ o

oX
ðPHÞ; ð26Þ

where the dimensionless parameter C ¼ cpak
2
a

6lUL: Wu’s

asymptotic solution of Eq. 26 for an asperity with actual

contact at X = 0, the profile of which is H ¼
ðAL2=h0ÞX2 þ 1 and shown in Fig. 4, is

P ¼
PLC

C�PLð1þXÞ; �1�X\0;
PRC

CþPRð1�XÞ; 0\X� 1:

(

ð27Þ

where PL and PR are the nondimensional air bearing

pressures at the left and right side of the contact regime. As

shown by Wu, this solution has a shock wave-like dis-

continuity at the contact point. However, one special situ-

ation is not discussed by Wu. Provided that the same

boundary condition is taken with PL = PR = 1, Eq. 27

may produce an unbounded air pressure before the contact

point X = 0 if C = 1. The parameter values used by Wu

[7] for an asperity in near contact with the disk are

pa = 0.101 MPa, ka = 65 nm, U = 10 m/s, l = 1.85 9

10-5 N s/m2 and L = 0.5 lm. It is obvious that if the

accommodation coefficient is 1 and L = 2.284 lm for

c = 6 (L = 4.568 lm for c = 12), which are still

Fig. 4 Parabolic profile of an asperity in near-contact with the disk

[7]
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reasonable parameter values for the characteristic length of

an asperity, unbounded pressure values can be obtained

near the contact point. So it is possible that a second-order

slip-corrected Reynolds equation also predicts an unphys-

ical unbounded pressure singularity in the limit of contact

with a certain asperity profile, which partially contradicts

Wu’s conclusion.

Numerical simulations are carried out here to compare

with this asymptotic analysis. A slider with a length of

0.04 mm and a width of 0.04 mm has an asperity at the

center of the flat air bearing surface. The asperity has a

parabolic shape of H ¼ AL2

h0
r2 þ 1; where r is the distance

from the center. The slider has fixed zero pitch and roll

angles on a disk with 10000 RPM. The CML air bearing

program with a finite volume method is used to solve the

Reynolds equation for the air bearing pressure profile. The

FK model, the pressure gradient model [7] and the classical

second-order slip model [5] are used in the air bearing

simulation, respectively. The pressure singularity is

numerically analyzed with the slider’s minimum flying

height at 0.1, 0.01, and 0.001 nm, as done by Wu and Bogy

[7]. Three cases with different parameter values are ana-

lyzed—Case 1 with A = 104/m and L = 0.5 lm; Case 2

with A = 102/m and L = 5 lm and Case 3 with A = 25/m

and L = 10 lm. These micron level values are reasonable

for L, the radius of the base of a parabolic asperity. A is the

shape parameter of the parabolic profile and here a value of

A is chosen so that the asperity tip has a height of 2.5 nm

above its base in each case, which is a reasonable height

value.

Simulation results of Case 1 are shown in Fig. 5,

including the ABS profile and air bearing pressure profile

along the center line for a minimum flying height (min FH,

i.e., the gap between the asperity tip and the disk) of 0.1,

0.01, and 0.001 nm. They are similar to Wu’s simulation

results. The air bearing pressure along the center line

obtained using the pressure gradient model has a shock

wave-like shape across the near-contact regime, while the

air bearing pressure obtained using the FK model has a

very large value in the near-contact regime. As the min FH

decreases from 0.1 nm to 0.001 nm, the pressure profile

obtained using the pressure gradient model converges to a

bounded value, while the pressure profile obtained using

the FK model has an increasing air pressure in the near-

contact regime. These conclusions with Case 1 agree well

with Wu’s conclusions.

The ABS profiles and air bearing pressures along the

slider’s center line of Cases 2 and 3 are plotted in Figs. 6

and 7, respectively. It is obvious in both of these cases that

the air bearing pressures obtained using either the FK

model or the pressure gradient model do not converge to a

bounded value. The air bearing pressure at the near-contact

regime increases beyond 100pa or even 1000pa, as the min

FH decreases. Further, the results of the classical second-

order slip-corrected Reynolds equation for Cases 1, 2, and

3 are shown in Fig. 8. The rapid increase of the air bearing

pressure at the near-contact region as the gap decreasing

does not change for Cases 2 and 3. A shock wave-like

profile of the air bearing pressure at the near-contact region

is not a universal result of a second-order type slip-cor-

rected Reynolds equation.

Fig. 5 ABS profile and air bearing pressure profile along the center

line from the leading edge to the trailing edge in Case 1 (A = 104/m

and L = 0.5 lm). a Air bearing surface profile. b Air bearing pressure

profile along the ABS’s center line using the FK model. c Air bearing

pressure profile along the ABS’s center line using the pressure

gradient model
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Wu’s asymptotic approach may not be valid for a gen-

eral slider-disk contact situation. For an isothermal gas

flow, the mean free path of the gas molecules is inversely

proportional to the gas pressure, i.e., kp = kapa. Thus, the

Knudsen number of the air flow at a local position with

a slider-disk gap of h can be written as Kn = k/h =

ka/(hoPH). With this expression of Kn, Eq. 25 can be

written in the form of,

o

oX

cpak
2
a

6lUL

1

P

1

cKn2
H þ b

cKn
H þ H

� �

oP

oX

� �

¼ o

oX
ðPHÞ:

ð28Þ

The slider-disk gap is negligible near a contact region;

hence H can be taken as a first-order term near the

contact region. However, the first and second terms on the

left hand side of Eq. 28 are not necessarily higher-order

Fig. 6 ABS profile and air bearing pressure profile along the center

line from the leading edge to the trailing edge in Case 2 (A = 102/m

and L = 5 lm). a Air bearing surface profile. b Air bearing pressure

profile along the ABS’s center line using the FK model. c Air bearing

pressure profile along the ABS’s center line using the pressure

gradient model

Fig. 7 ABS profile and air bearing pressure profile along the center

line from the leading edge to the trailing edge in Case 3 (A = 25/m

and L = 10 lm). a Air bearing surface profile. b Air bearing pressure

profile along the ABS’s center line using the FK model. c Air bearing

pressure profile along the ABS’s center line using the pressure

gradient model
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terms in H, unless 1/Kn is a first- or higher-order term in

H. The numerically obtained Knudsen numbers in Cases

1, 2, and 3 with Wu’s pressure gradient model, FK model

and the classical second-order slip model are listed in

Table 2. It is seen that the product of Kn and H in Case 1

almost remains constant, which indicates that 1/Kn may

be a first-order term in H. So Wu’s asymptotic approach

is supported by the numerical results in Case 1. However,

in Cases 2 and 3, Kn almost remains constant as H

reduces dramatically. The first and second terms in Eq. 25

and 28 are no longer higher-order terms in H, and they

cannot be directly neglected in the asymptotic analysis.

So the numerical data here do not support Wu’s

asymptotic approach. From this point of view, it can be

concluded that Wu’s asymptotic result of a bounded air

pressure at the contact region may not always be valid at

a general slider-disk contact region.

As a conclusion, neither the pressure gradient model nor

the classical second-order slip model always predicts a

bounded air bearing pressure at the contact or near-contact

region. In fact this contact pressure singularity may be

associated with the usage of the ideal gas law p = qRT. As

the film thickness approaches zero at the near-contact

region, the gas density there approaches infinity, due to the

continuity equation, which is the basis of different types of

Reynolds equations. As a result, the pressure also approa-

ches infinity at the near-contact region. On the other hand,

the ideal gas law may not be a good approximation when

the gas film thickness is close to zero. Therefore, the

contact singularity of the Reynolds lubrication theory

needs further analysis.

5 Conclusions

A valid slip model for Poiseuille flow is critical to deriving

a slip-corrected Reynolds equation, when the surface

accommodation coefficients at the slider surface and

bearing surface are the same or close to each other. Dif-

ferent slip models predict different slip conditions at the

Fig. 8 Air bearing pressure profile along the center line from the

leading edge to the trailing edge obtained using the classical second-

order model. a Case 1 (A = 104/m and L = 0.5 lm). b Case 2

(A = 102/m and L = 5 lm). c Case 3 (A = 25/m and L = 10 lm)

Table 2 Knudsen number at the center of the near-contact region in

the slider-disk contact Cases 1, 2, and 3

Pressure

gradient

model

FK model Classical

second-order

model

Case 1

min FH 0.1 nm 635.065 56.034 604.692

min FH 0.01 nm 6338.341 146.351 6006.280

min FH 0.001 nm 63371.088 1007.475 60022.681

Case 2

min FH 0.1 nm 172.256 26.462 46.899

min FH 0.01 nm 316.719 28.005 50.611

min FH 0.001 nm 274.574 33.493 60.803

Case 3

min FH 0.1 nm 46.340 25.801 32.923

min FH 0.01 nm 49.256 26.834 34.608

min FH 0.001 nm 51.998 28.230 36.493
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slider and the disk surfaces, and then lead to different

Poiseuille flow rate coefficients, i.e., the nondimensional

Poiseuille flow rates, which are the only varying part in

different slip-corrected Reynolds equations.

Through modifying the mean free path or mathemati-

cally matching the Poiseuille flow rate to the kinetic sim-

ulation results, some slip-corrected Reynolds equations can

obtain results close to that of the FK model based on the

linearized Boltzmann equation. However, it is not expected

that these can replace the FK model and give more accurate

results. The contact pressure singularity is a common

problem of the second-order type slip-corrected Reynolds

equation as well as the FK lubrication equation and the

first-order slip-corrected equation. It may be related to the

application of the ideal gas law, and it needs further

consideration.
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