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Abstract

Objective: Multimodal measurements of the same phenomena provide complementary 

information and highlight different perspectives, albeit each with their own limitations. A focus on 

a single modality may lead to incorrect inferences, which is especially important when a studied 

phenomenon is a disease. In this paper, we introduce a method that takes advantage of multimodal 

data in addressing the hypotheses of disconnectivity and dysfunction within schizophrenia (SZ).

Methods: We start with estimating and visualizing links within and among extracted multimodal 

data features using a Gaussian graphical model (GGM). We then propose a modularity-based 

method that can be applied to the GGM to identify links that are associated with mental illness 

across a multimodal data set. Through simulation and real data, we show our approach reveals 

important information about disease-related network disruptions that are missed with a focus on a 

single modality. We use functional MRI (fMRI), diffusion MRI (dMRI), and structural MRI 

(sMRI) to compute the fractional amplitude of low frequency fluctuations (fALFF), fractional 

anisotropy (FA), and gray matter (GM) concentration maps. These three modalities are analyzed 

using our modularity method.

Results: Our results show missing links that are only captured by the cross-modal information 

that may play an important role in disconnectivity between the components.

Conclusion: We identified multimodal (fALFF, FA and GM) disconnectivity in the default mode 

network area in patients with SZ, which would not have been detectable in a single modality.

Significance: The proposed approach provides an important new tool for capturing information 

that is distributed among multiple imaging modalities.

Keywords

Connectivity; covariance matrix; data fusion; default mode network; dMRI; fMRI; GGM; 
graphical model; joint estimation; partial correlation; precision matrix; sMRI
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I. Introduction

Multimodal imaging can provide useful and insightful information regarding brain health 

and disease [1], [2], [3], [4], [5], [6]. The motivation behind combining modalities is due to 

its potential of revealing hidden relationships in a set of complementary observations and 

discovering important variations that may unify disparate findings in brain imaging [2], [4], 

[7]. Multimodal techniques take advantage of complementary information from each 

imaging modality to provide a more comprehensive analysis of the brain and may provide a 

key to find missing links in complex mental illness, such as schizophrenia (SZ) [8], [9], [10]. 

For instance, temporal neural activity can be measured by functional magnetic resonance 

imaging (fMRI) [11], but it cannot provide information regarding tissue type of the brain. 

This is better assessed by structural MRI (sMRI) [12] and diffusion MRI (dMRI) [13]. Most 

previous studies analyzed each modality separately, which may disregard the multimodal 

cross-information [14], [15]. We have summarized previous multimodal MRI studies in SZ 

in the Related work section.

In this paper, we propose a method to estimate module disconnectivity from multimodal 

graphical models of the brain. While healthy brain graphs exhibit a modular community 

structure, neurodegenerative diseases such as schizophrenia may cause a breakdown of 

otherwise healthy communities into small modules. Our aim is to use the proposed approach 

to combine and analyze three types of magnetic resonance imaging (MRI) features together 

to investigate connectivity alternations in SZ. We use the three-way pICA [2] approach in 

order to accurately estimate multimodal graph edges representing relationships among data 

modalities. We start with estimating and visualizing links within and among extracted 

multimodal data features using a Gaussian graphical model (GGM). This approach enables 

us to construct an interpretable graphical model that represents interaction between brain 

components within and between the modalities (More explanation of the three-way pICA 

and GGM can be found in the Theoretical background section). We then propose our 

modularity-based method that can be applied to estimated group graphs of patients and 

controls to identify links that are associated with mental illness across a multimodal data set.

The disconnection hypothesis describes SZ as a disease that disrupts the synaptic 

neuroplastic modulation in several brain systems [16]. This hypothesis was first laid out by 

Friston and Frith [17] and then followed by subsequent variants [16], [18], [19], [20]. The 

disconnection hypothesis has been related to both structural [21] and functional [22] brain 

networks. Our modularity-based method aims at finding missing links associated with 

disconnectivity in SZ. There are some links (edges) in the healthy control group graph that 

play an important role in creating contiguously connected path(s) among identifiable brain 

(nodes). However, the disruption of some links in the patient group graph may lead to 

broken paths that splits a healthy module into smaller ones in the SZ patient graph. By 

mimicking the structure of paths in the control group graph, we are trying to find those 

missing links that are associated with disconnectivity (absence of path) between some 

components in the patient group graph.

We apply our method to real data collected from SZ patients and a healthy group including 

fMRI, dMRI, and sMRI. We compute fractional amplitude of low frequency fluctuations 
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(fALFF), fractional anisotropy (FA), and gray matter (GM) maps as input features. Using 

synthetic and real data, we show that our approach reveals important information about 

disease-related network disruptions possibly missed in analyses relying on a single modality. 

This approach enables us to analyze the information flow in group graphs of healthy control 

and SZ patient groups to identify “blocked” paths in the patient group and “missing edges” 

associated with the disconnectivity. A preliminary version of this work has been reported 

[23], [24].

The remainder of the paper is structured as follows. Section II discusses work related to 

multimodal MRI studies in SZ, Section III provides a theoretical background for three-way 

pICA and GGM; Section IV describes the details of estimating and visualizing links within 

and among extracted multimodal data features and introduces our modularity-based method; 

Section V provides the details of our results for both simulated and real data; and Section VI 

reviews our results and implications. We provide concluding remarks in Section VII.

II. Related work

The number of multimodal MRI studies in SZ is still limited since each necessitates more 

extensive knowledge in analyzing and interpreting the outcomes in comparison with 

unimodal studies. In this section, we summarize the previous studies in SZ that multimodal 

MRI data was considered.

In [7], they analyzed data collected on a group of SZ patients and healthy controls where 

joint independent component analysis was used across GM and task fMRI modalities. Their 

findings indicated that GM group differences in bilateral parietal lobe, frontal lobe, and 

posterior temporal regions are associated with bilateral temporal regions activated by 

auditory oddball target stimuli. Subsequent researchers simultaneously explored the changes 

of white matter (WM) tract integrity and density in SZ using voxel-wise analyses of 

diffusion tensor imaging (DTI) and structural WM images [25]. Results showed abnormal 

WM changes mainly in the left hemisphere in patients with SZ. Further evaluation of all 

possible combinations of correlations from the whole brain using GM and task fMRI 

modalities indicated that there are stronger correlations between GM and fMRI in healthy 

control than patients with SZ [26]. In [27] the authors calculated separate functional and 

anatomical connectivity maps and then combined them for each subject. They identified 

group differences and a correlation with clinical symptoms by using global, regional and 

voxel measures and k-means network analysis. Results showed that patients with SZ had a 

lower anatomical connectivity and less coherence between DTI and resting fMRI. Also, 

within the default mode network, patients with SZ showed decoupling between structural 

connectivity and functional connectivity. Brain connectivity abnormalities in SZ and the 

relationship with behavior were further examined [28]. DTI and resting state fMRI 

modalities were used to assess anatomical connectivity and resting functional connectivity 

respectively. Using a hybrid independent component analysis (ICA) approach, anatomical 

and functional connectivity showed evidence of reduced connectivity in SZ patients. 

Another study used DTI and task fMRI [29] to investigate the relationship between altered 

white matter diffusivity and neural activation in patients with SZ. Results showed a 

significantly decreased activation in the fronto-striato-cingulate network in association with 
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decision-making involving uncertainty in patients and increased radial diffusivity in 

temporal white matter. In [30] Multivariate multimodal methodology has been used to 

examine the linkage between cognitive biomarkers of SZ and combined information from 

the three MRI modalities: amplitude of low frequency fluctuations (ALFF), GM and FA 

using multiset canonical correlation analysis. Results showed that linked functional and 

structural deficits in a distributed cortico-striato-thalamic circuit can explain some aspects of 

cognitive impairment in patients with SZ. Interactions between fMRI contrast maps from a 

working memory task and dMRI data were recently studied using joint ICA [31]. This study 

helped elucidate our understanding of structure-function relationships in patients with SZ by 

characterizing linked functional and WM changes related to working memory dysfunction. 

A multimodal voxel-based meta-analysis was used in [32] to focus on brain regions with 

structural and functional abnormalities. The results of this study showed decreased GM with 

hyper-activation in the left inferior frontal gyrus/amygdala and decreased GM with hypo-

activation in the thalamus. Thus, there is considerable evidence of multimodal brain 

differences in SZ patients and healthy individuals; however, there are only a few studies in 

the context of multimodal graphical models and there is more to be studied in this area.

III. Theoretical background

In this section, we provide a theoretical background of the approach that we use for data 

fusion: three-way parallel independent component analysis (three-way pICA) [2], Also, we 

explain the Gaussian graphical model (GGM) approach, which is the graphical model that 

we used to extract graphs of control and patient groups.

A. Three-way pICA

The parallel ICA (pICA) is a hypothesis-free statistical technique (data-driven) that extends 

ICA to analyze two modalities simultaneously [33], [34], [35]. It reveals independent 

components from each modality and estimates the relationships between two modalities 

[33], [34], [35]. However, data acquisition advancement allows us to collect more than two 

data modalities for each subject and better take advantage of the available data [2]. In the 

current work, we analyze MRI data from three modalities, and we use the three-way pICA 

approach in order to combine them [2]. This extends the original pICA [35] approach with 

an ability to incorporate three modalities in one comprehensive analysis. A number of 

approaches for fusing data have been explored in brain imaging (see [9] for a review). The 

use of three-way pICA is preferred since it provides a relatively concise and straightforward 

way to compare the utility of the multimodal information. As Fig. 1 shows, three-way pICA 

algorithm seeks to maximize the statistical independence of components, while at the same 

time increases the correlation (of loadings from the ICAs) among modalities. Three-way 

pICA uses the Infomax algorithm [36], [37] to maximize the independence cost functions of 

three ICA factorizations: X(1) = A(1)S (1), X(2) = A(2)S(2) and X(3) = A(3)S(3) [2]. It factorizes 

a matrix of observations (X) for each of three features into a matrix of loading coefficients 

(A) and a matrix that represent statistically independent components in the measurement 

space (S). The algorithm seeks the strongest related triplet among all possible column 

combinations using mean statistics for triplet relationship and subsequently, similarities 

across modalities are measured based on Pearson correlation gradient [2] .
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B. GGM

In this paper, we use GGM in order to construct an interpretable graphical model that 

represents interaction between components within and between the modalities. Since a 

Gaussian distribution is fully characterized by the mean vector and the covariance matrix, it 

suffices to determine these two quantities to construct a Gaussian model. It is more 

convenient to represent the covariance structure of a Gaussian model with a graph that is 

called a Gaussian graphical model (GGM) [38]. GGM is an undirected network of partial 

correlation coefficients and describes the conditional independences of multiple random 

variables (X1, X2, …, Xp) with a graph G = (V, E) where V = {1, …, p} as a set of nodes 

and E as a set of edges in which an edge between two nodes indicates they are conditionally 

dependent given all the other nodes [38]. The graphs that we gain from GGM are used for 

encoding relationships among components, wherein nodes represent components and edges 

that demonstrate a relationship between the connected components.

IV. Materials and Methods

In this section, we describe our method for meta-modal information flow analysis to 

determine the pathways and path-blocking features of the multimodal data. The methods 

consist of two parts: identifying a graph structure from multimodal data and identifying links 

in that structure that are likely contributors to the mental illness. We use GGM to address the 

former and introduce a modularity-based method for the latter. We investigate the properties 

of our method on synthetic data and evaluate its potential to improve our understanding of 

the brain and its disorders on a multimodal brain imaging data set.

A. Method Description

First, we use a GGM to construct graphs of healthy and patient groups. A Gaussian 

distribution is completely characterized by the mean vector and the covariance matrix. 

Therefore, in order to construct a Gaussian model, it is adequate to specify these two 

quantities [39], [40].

To construct GGMs from multimodal information for healthy and patient groups, we used a 

joint estimation of multiple sparse Gaussian graphical model approach previously presented 

in [41]. The joint estimation approach merges information across classes to boost estimation 

of their common characteristics while retaining support for class-specific structures [42], 

[43]. This estimates precision matrices of the multivariate Gaussian distribution (the inverse 

of covariance matrices) from the observation data.

By jointly estimating precision matrices, we got adjacency matrices for the patient and 

healthy groups such that if we could find significant partial correlation between the two 

components, we will consider an edge between them. In other words, the corresponding 

element of them in adjacency matrix would be 1.

After constructing the graphs of healthy and patient groups, we applied our modularity 

method. The modularity method can identify which sets of links are likely contributing 

factors to mental illness. We estimated the existence or absence of paths between each pair 

of components in the healthy group and identified cases where a path exists in the healthy 
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group but not in the patients by using the concept of modularity. This concept is similar to 

the concept of a connected graph. A graph is connected when there is a path between every 

pair of nodes and in a connected graph there are no unreachable nodes [44]. We first identify 

the modules in the healthy graph and, if those modules break into multiple modules in the 

patient graph, we then identify the missing edges associated with disconnectivity in the 

patient group.

In order to implement this idea within a modularity framework, we propose the following 

steps:

1) Find all the modules in healthy graph and patient graph.—To further clarify, 

consider the simple example in Fig. 2(a) that shows healthy and patient group graphs that 

assume just two modalities, modality A and B (left graph belongs to healthy and right graph 

belongs to patient). There are two modules in the healthy group graph (healthy_module_1 

and healthy_module_2) and three modules in the patient group graph (patient_module_1, 

patient_module_2 and patient_module_3). In the first step, we find the modules in the 

graphs of the healthy and patient groups. Notice that when two nodes belong to the same 

module, it indicates that there is at least one path between them.

2) Find disconnections that may happen in the patient group graph—In step 

two, we are interested in disconnections that may occur in the patient graph. For example, in 

Fig. 2(a), in healthy graph (left), there is a path between node 1 and node 6 as they both 

belong to the same module (healthy_module_1). However, as the structure of the patient 

graph is different in comparison with the healthy graph (there are some additional edges and 

also some missing edges), node 1 and node 6 no longer belong to the same module. The 

reason for this is the nodes of ‘healthy_module_1’ spreads into multiple modules in the 

patient group graph. In other words, the ‘healthy_module_1’ breaks into multiple modules in 

the patient graph that reveal disconnectivity between some nodes, which means there is no 

path in-between anymore.

In order to detect the disconnections in the patient graph, we see if it splits into two or more 

modules or not for each module in the healthy group by comparing the set of nodes of the 

healthy module and all the patient modules nodes. If the nodes in a healthy graph module 

spread into two or more modules in a patient graph, this indicates a disconnectivity. Once 

disconnectivity is detected, the missing edges associated with this disconnectivity are 

obtained in step 3.

To further elucidate step 2, we go through each healthy module of the graph in Fig. 2(a). We 

have two healthy modules and we check both for comparison. First, we consider 

‘healthy_module_1’. The set of nodes of this module is {1, 2, 3, 4 ,5 ,6}. We compare this 

set with the sets of nodes of the patient modules:

V H1 ∩ V P1 = {1, 2, 3, 5}
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V H1 ∩ V P2 = {4}

V H1 ∩ V P3 = {6}

VHi denotes the nodes in the i-th healthy module and VPi denotes the nodes in the i-th 

patient module. Because the set of nodes of ‘healthy_module_1’ intersects with more than 

one module in patient modules, this indicates disconnectivity.

We then consider ‘healthy_module_2’ and check if it splits into more modules in the patients 

or not.

V H2 ∩ V P1 = {}

V H2 ∩ V P2 = {}

V H2 ∩ V P3 = {7, 8}

As the set of nodes of ‘healthy_module_2’ has some intersection with just one module in 

patient, it indicates no disconnectivity.

3) Identify missing edges associated with disconnections.—From identified 

disconnectivity in step 2, we obtain the set of modules in patient group that have intersection 

with a module in the healthy group and put them in a set “D”. Then from set “D”, we 

consider all 2-combinations of modules and for each of them we obtain the union of their 

nodes and put them in set “N”. We then induce a subgraph of the healthy graph whose nodes 

set is “N” and the edges set is the healthy graph edges where their endpoints exist in “N”. 

(The two nodes forming an edge are said to be the endpoints of this edge). We named this 

subgraph h′.

We also induce a subgraph of the patient group graph whose nodes set is “N” and the edges 

set is the patient graph edges where their endpoints exist in “N”. We named this subgraph p
′. We then subtract the edges set of p′ from the edges set of h′. (E(h′) – E(p′)). We consider 

those edges from the result as “disconnectors” if the endpoints belong to two different 

modules in the patient group graph and belong to the current healthy module we are 

analyzing. If E(h′) – E(p′) gives an “empty” set, this then indicates that these two modules 

indirectly have become disconnected through other module(s). We repeat this for all the 2-

combinations of modules in set “D”.

To describe step 3, consider the example of Fig..2; from step 2 for the graphs of Fig. 2(a), 

we noticed that nodes of healthy_module_1 spread into patient_module_1, 
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patient_module_2 and patient_module_3. We put them into set “D”. (D = {p_module_1, 

p_module_2, p_module_3}). We consider all 2-combinations modules of this set, obtain the 

union of their nodes and put them in set “N”.

The first 2-combination is patient_module_1 and patient_module_2. The set “N” for them 

would be {1, 2, 3, 4, 5}. Fig. 2(b) shows subgraphs h′ and p′ and subtraction of the edges 

set of p′ from the edges set of h′ (E(h′) – E(p′) = {(4,5), (2,5)}). As node 4 and node 5 

belong to different modules in the patient group graph, we consider this edge to be a 

disconnector. However, since node 2 and 5 belong to same module in the patients, we do not 

consider this to be a disconnector.

The second 2-combination is patient_module_1 and patient_module_3. The set “N” for 

them would be {1, 2, 3, 5, 6, 7, 8}. Fig. 2(c) shows subgraphs h′ and p′ in this case and 

subtraction of the edges set of p′ from the edges set of h′ (E(h′) – E(p′) = {(2,5), (2,6)}). 

We accept the edge (2,6) as the disconnector since its endpoints belong to two different 

modules in the patient graph.

The third 2-combination is patient_module_2 and patient_module_3. The set “N” for these 

would be {4, 6, 7, 8}. Fig. 2(d) shows subgraphs h′ and p′ and subtraction of the edges set 

of p′ from the edges set of h′(E(h′) – E(p′) = {}). The empty set indicates that these two 

modules indirectly have become disconnected through other module. Fig. 2(e) summarizes 

the results of applying the proposed modularity method. It shows that the nodes of 

healthy_module_1 spreads into three modules in the patient graph (patient_module_1, 

patient_module_2, and patient_module_3). The missing edge associated with 

disconnectivity between nodes of module 1 and module 2 in patient is shown (4,5). The 

missing edge associated with disconnectivity between nodes of module 1 and module 3 is 

shown (2,6). Nodes of module 2 and module 3 in the patient graph indirectly have become 

disconnected through module 1. Missing edges associated with disconnectivity are identified 

(4,5) and (2,6).

B. Simulation Study

We appeal to the simulation as a proxy for method's performance as it is not possible to 

know the ground truth in real data.

As described earlier, we use a GGM for modeling the multi-modal information. In order to 

generate simulated multi-modal data, we first considered two “fixed” graph structures that 

assume multiple modalities including data from healthy and patient groups. The difference 

between the two is that the fixed graph of patient group does not include some links in 

comparison with the fixed graph of the healthy group. This includes missing links within or 

between the modalities as well as new links. We analyzed different fixed graphs (see Fig. 3 

for an example). Fig. 3 (left) shows a fixed graph of a heathy group and Fig. 3 (right) shows 

a fixed graph for the patient group. The patient group graph is missing a few links in 

comparison with the fixed graph from the healthy group. For example, edge (2,5) which is 

missing in the patient graph and is a cross edge between modality A and modality B or 

edges (6,7) and (10,11) which are inside modalities B and C respectively. Also, there is an 

additional edge in the patient group which is (8,9). For the sake of simplicity, here in Fig. 3, 
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we analyzed fixed graphs of simulated patient and healthy control subjects with 11 nodes. In 

our simulation, we generated 50 random fixed graphs using stochastic block model [45]. The 

simulation has three blocks of nodes with the sizes 3, 3 and 11. The edge probability within 

a block was set to ln(n)
n  that it is close to the probability that a randomly chosen node in the 

block is a part of the largest connected component [46] where n is the number of nodes in 

the block and the edge probabilities between the blocks were set to 0.01. We randomly 

generated 50 graphs for the healthy group and introduced the disconnectivity similar to Fig. 

3 (right) to create another 50 graphs for the patient group. We then applied our modularity 

approach and generated a histogram of the number of missing links associated with 

disconnectivity (see Fig. 4).

In order to generate a random covariance matrix, we generated a random partial correlation 

matrix in accordance with the structure of the aforementioned fixed graphs. The values for 

missing edges were uniformly randomly sampled in an interval around zero ([−0.0001 

0.0001]). Values for edges were sampled from [−1, 1] interval excluding the [−0.0001 

0.0001] range; while diagonal elements of the partial correlation matrix were set to 1. We 

then establish a precision and covariance matrices. The mean vector was set to zero. Given 

the covariance matrix and mean vector, we generated simulated data for each node of the 

healthy and patient group graphs. In order to compute the estimated graphs, we used the 

joint estimation of the multiple sparse Gaussian graphical model approach [41]. The 

simulation data was analyzed with this algorithm to obtain the estimated precision matrix for 

healthy and patient groups.

The mean square error of the estimated precision matrix of both groups was calculated for 

validation, which will be discussed in the results section. In order to identify which sets of 

links are likely contributing factors to mental illness, we applied the modularity approach 

described earlier on estimated graphs. To elucidate, consider Fig. 5 that shows modules of 

both groups of Fig. 3 that assumes three modalities. We have two modules in the healthy 

group, which means between every node of each module there is at least one path. In the 

patient graph, we have four modules that show disconnectivity relative to the healthy group. 

For example, there is a path between node 4 and node 7 in the healthy group as they both 

belong to a same module (module 1), but the patient graph does not have a path between 

them as they no longer belong to same module (e.g., node 4 belongs to module 2 and node 7 

belongs to module 3 in the patient group graph). The reason for this disconnectivity is the 

absence of two edges: edge (2,5), which is cross edge between two modalities, and edge 

(6,7). By applying modularity method, we can identify all the missing links that are 

associated with disconnectivity. Missing links related to example of Fig. 5 will be shown in 

the simulation result section.

To study the effect of noise on performance of our proposed method we added different 

levels of white Gaussian noise to the samples from the model. By imposing different noise 

variances, we controlled the Signal-to-Noise Ratio (SNR). As explained earlier, we 

generated 50 random fixed graphs using the stochastic block model. We applied modularity 

method to estimate the set of disconnectors (missing links associated with disconnectivity) 

for each graph and kept them as the ground truth. We then have added noise to the synthetic 
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data to evaluate model performance. We focused on model stability in terms of predicting 

missing edges associated with disconnectivity - the main focus of our work. For varying 

SNR, we estimated the appropriate level of noise variance of each node to correspond to the 

SNR in the −20 to 20 dB range. We used our estimator to estimate graphs of patient and 

control groups from the noisy data. We applied our modularity approach to these graphs and 

compared the outcome and the ground truth. For the sets of estimated and the ground truth 

disconnectors of each graph, we calculated precision (the ratio of correctly identified 

disconnectors to their total estimated number), recall (the ratio of correctly identified 

disconnectors to their total true number) and F-measure -- their harmonic average (in [0,1] 

range). Result are shown in the simulation results section.

C. Analysis of Multimodal Brain Imaging Data

We considered data from the fBIRN study that included fMRI, dMRI, and sMRI collected 

from 147 healthy subjects and 147 SZ patients [47].

The fMRI data was preprocessed using an automated analysis pipeline [48] in SMP 8. 

Motion correction, slice timing correction and normalization to MNI space were conducted 

including re-slicing to 3 × 3 × 3 mm voxels. Data spatially was smoothed with an 8 mm full 

width half max (FWHM) Gaussian filter. Sum of the amplitude values in the 0.01 to 0.08Hz 

low-frequency power range was divided by the sum of the amplitudes over the entire 

detectable power spectrum (range: 0–0.25Hz) to calculate fractional amplitude of low 

frequency fluctuations (fALFF) (see more details in [49], [50]).

The following preprocessing steps were applied to dMRI data using the FMRIB Software 

Library (www.fmrib.ox.ac.uk/fsl). Quality control was conducted to identify and remove 

excessive motion or vibration artifacts. Also, motion and eddy current correction were 

applied based on the correction of gradient directions for any image rotation. Diffusion 

tensor and scalar measures such as fractional anisotropy (FA) were calculated and smoothed 

using 8 mm FWHM Gaussian filter.

sMRI was normalized to MNI space using the unified segmentation method in SPM 8 and 

was resliced to 3 × 3 × 3 mm, and was segmented into gray matter (GM), white matter and 

cerebral spinal fluid (CSF). The GM images were smoothed with a FWHM of 8 mm 

Gaussian filter. For identifying outlier and quality control, spatial Pearson correlation with 

the template image was performed (details can be found in [51]).

After preprocessing, the three-dimensional brain images of each subject were reshaped into 

a one-dimensional vector and stacked, forming a matrix (N_subj × N_voxel) for each of the 

three modalities. Then these three matrices were normalized to have the same average sum 

of squares to ensure all modalities had the same ranges. To minimize the potential impact of 

gender, age and site covariates, multivariate analysis of covariance (MANCOVA) was used 

to adjust for these covariates prior to computing the normalized feature matrices.

After estimating fALFF, FA, and GM maps as input features, we applied three-way pICA [2] 

(implement in MATLAB and is part of the GIFT software) on these three features and set 

the number of components to 10. (see the theoretical background section for more details 
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about three-way pICA). The output of the three-way pICA gave us 6 matrices including 3 

loading matrices for fALFF, FA, and GM with the dimension of (number of subjects) × 

(number of component) which in our study is 294×10 and 3 components matrices with the 

dimension of (number of components) × (number of voxel of each feature).

The three-way pICA generated ICA components for each modality: 10 components for 

fALFF, 10 for FA, and 10 for GM. Relying on expert knowledge we removed artifactual 

components consisting of one fALFF, one FA and two GM maps. The remaining 26 

components include 9 fALFF, 9 FA, and 8 GM maps. A composite montage plot of these 

components is shown in Fig. 6. We used the labeling tool in GIFT software (http://

trendscenter.org/software/gift/) to gain the names of the regions of each component. Table 1 

shows how each component is related to brain regions.

In order to extract the group graphs of healthy and patient with SZ groups, we use the joint 

estimation of multiple sparse Gaussian graphical model [41]. We applied a joint estimator to 

the 26 features of the load matrices of fALFF, FA and GM that were obtained from the 

three-way pICA. The outputs of the estimator are the precision matrices for healthy controls 

and SZ patients. From the precision matrices, we obtain the partial correlation matrices and 

compute the adjacency matrices of both groups by applying the test statistic for each 

element of partial correlation matrix for determining the significant edges. The extracted 

group graph is shown in the results section. After extracting the group graphs, we applied 

our modularity method. We next show the modules and missing edges associated with 

disconnectivity in the results section.

To relate our synthetic experiments to the real data, we estimated the SNR in fBIRN data. 

The loading matrix computed by three-way parallel ICA consists of 30 components (26 

networks + 4 artifact). Out of the 26 preserved networks we picked a component that is most 

significantly group discriminative according to the t-test. We defined SNR as the T-value for 

this component divided by T_fake which we got from applying t-test to data after randomly 

permuting the labels. We repeated this process 1000 times each time computing the SNR. 

We then computed the median and the mean of all the SNRs. We discuss the result in the 

real data analysis results section.

V. RESULTS

A. Simulation Results

The simulation was implemented in Python 2.7 mainly using NetworkX, SciPy and Scikit-

Learn libraries [52] included 1000 subjects for the healthy group and 1000 subjects for 

patients’ group. We generated simulated data for every node (feature) of the fixed graphs 

displayed in Fig. 3 using GGM. After applying the joint estimation algorithm in [41] on 

simulated data, that was implemented in R [7], the mean square error of estimated precision 

matrices of both groups for 100 iterations were calculated. Estimated mean square errors are 

very small with the mean of 0.08. From precision matrices we gained partial correlations and 

performed statistical tests on the partial correlations. We considered edges between two 

nodes if the corresponding corrected P-value for multiple comparisons was less than a 

significance level of 0.05. We gained the 100 estimated graphs with 100% precision for 
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comparison. The result of applying the proposed modularity approach on the estimated 

graphs is seen in Fig. 7. Missing edges associated with disconnectivity are shown in this 

figure as well. Module 1 in the healthy group that includes nodes 1, 2, 3, 4, 5, 6, 7, 9, 10 and 

11 breaks into four modules in the patient group. For example, there is no path between the 

nodes of module 1 and module 2 in the patient group because of the missing edge (2,5), 

which is the cross edge between two modalities. Also, there is no path between nodes of 

module 2 and module 4 in the patient group because of missing edges {(2,5), (6,7), (10,11)}.

As we explained in the simulation study section, we tried to investigate to what signal to 

noise ratio the system will work. Fig. 8 shows that our model works well when the signal to 

noise ratio (SNR) is higher than 7dB. It shows boxplots of f-measure and SNR of 50 

synthetic random graphs.

B. Real Data Analysis Results

After performing statistical tests on the partial correlations, we considered edges between 

two components if the corresponding corrected P-value for multiple comparisons was less 

than the significance level (0.05). The extracted group graphs of healthy and SZ patients are 

shown in Fig. 9.

After applying our modularity approach on extracted group graphs, we see that the healthy 

group graph includes three modules and the SZ patients graph includes 10 modules. This is 

due to one of the healthy modules splitting into eight modules in the patient group. Fig. 

10(a) shows the module in the healthy group which breaks into eight modules. The Fig. 

10(b) shows how the healthy module (M1) breaks into eight modules in SZ patients’ graph 

(M1, M2, M3, M4, M5, M6, M9, M10). The modality and the ID for components of each 

broken module can be seen in Fig. 10(b). For example, module 4 (M4) includes components 

5, 7 and 8 of GM (GM5, GM7 and GM 8). Module 2 (M2) includes components 1, 2, 3 and 

6 of fALFF (fALFF1, fALFF2, fALFF3 and fALFF6). Missing edges associated with 

disconnectivity between the components of different modules can be seen in the Fig. 10(c). 

For example, the missing edge associated with disconnectivity between component GM5 

located in module 4 (M4) and component fALFF1 located in module 2(M2) is (fALFF6, 

GM7) that is related to cross modal paths and emphasizes the importance of analyzing 

multimodal data in order to provide a more informed understanding of mental illness.

We investigated to see whether our model works well in real data or not by estimating the 

signal to noise ratio in the fBIRN data and compared it to the level of SNR that can be 

tolerated by our model. We computed the median and the mean of all the SNRs that we 

gained through the method that was explained earlier in the “analysis of multimodal brain 

imaging data” section. We obtained the median of 9.5 dB and the mean of 10.49 dB. One 

can see in Figure 8 that above these values our method is performing sufficiently well 

according to the F-measure. In Fig. 8 the red dotted line determines the mean of SNR related 

to real data.
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VI. Discussion

We proposed a modularity approach that can be applied on any undirected graph to find 

disconnected modules. When applied to a comparison of healthy vs. patient populations, the 

method finds blocked paths and missing edges in the patient graph compared to the healthy 

population graph. our approach is also suitable to analyze graphs of patient and healthy 

groups using multimodal data. In our framework, the GGM method provides a simple but 

powerful approach for estimating and comparing graphs of healthy and patient groups. SZ 

has been shown to be associated with a disruption of the connections present in the healthy 

brain [7], [53], [54], [55], [56]. In applying our modularity approach to sZ and healthy 

control samples, we found several disconnectors that are in line with previous literature 

findings. Also, it can highlight the importance of considering multimodal information in 

gaining a better understanding of sZ through the missing edges associated with 

disconnections between components, which are related to cross-modal edges such as 

(fALFF6, GM7), (fALFF2, GM6) and (fALFF2, FA3) (see Fig. 10(c)). Our modularity 

method can be applied to unimodal data analysis, but as discussed in the introduction 

regarding the importance of multimodal analysis, we applied it to multimodal data to have a 

more comprehensive analysis. In this paper, we specifically focused on sZ patients, but our 

method can be applied to any undirected graph extracted from data related to other 

conditions that can be distinguished by disconnectivity since our method can easily find a 

disconnector.

According to our real data analysis results, one of the healthy modules that includes the 

majority of components spanning all three modalities (FA, GM, fALFF) breaks into eight 

modules in sZ. A more detailed analysis of Fig. 10, along with Fig. 6, shows that most of the 

identified components that fall within the default mode network (DMN) are separated in SZ 

patients. Module 10, module 6 and module 5 include components related to DMN and were 

split. The GM6 component in module 10 shows a posterior cingulate region, the fALFF5 

component in module 6 includes parahippocampal gyrus, and the fALFF7 component in 

module 5 includes angular gyrus and cingulate gyrus regions that are typically part of the 

DMN that break into a disconnected module in SZ. The DMN describes a large-scale 

functional brain network, which is typically more active during rest periods compared to 

cognitively demanding tasks [57], [58] and many previous studies on DMN reported reduced 

default mode network connectivity in SZ patients [19], [59], [60]. New findings [61] also 

revealed impaired interaction among DMN subsystems in SZ patients with a reduced central 

role for posterior cingulate cortex (PCC) and anterior medial prefrontal cortex (aMPFC). 

Hence, in light of previous studies on DMN in SZ, it seems our result regarding 

disconnections in DMN using our modularity-based approach is consistent, but we also 

identify new and complex multimodal relationships with these regions.

Module 1 in the SZ group is a large module that covers much of the brain, consisting of 

components related to FA and GM modalities that show some integrity preserved in this 

module in SZ. Module 3 in SZ is a combination of several fALFF and FA components 

related to the sensory processing area and frontal lobe. Module 2 components include 

sensory processing and frontal lobe regions. These two modules show a connection between 

sensory and frontal regions is still preserved in the patients. These new observations can be 
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further investigated in future works by applying our modularity based method on other data 

sets related to SZ.

Since SZ is a brain disorder that can be distinguished by functional disconnectivity or 

abnormal integration between distant brain regions [62], it is worth mentioning that 

additional edges in the patient group graph may create new paths that were not present in the 

healthy controls. This topic can be explored in future studies, whereas this paper focuses on 

missing edges associated with disconnections in SZ group graph. We considered unweighted 

undirected graphs for analysis. Additional work could focus on weighted directed networks 

analysis that might provide more specific information.

VII. Conclusion

In summary, we have provided an approach to estimate and visualize links within and among 

multimodal data. We then proposed a modularity-based method that can identify which links 

are associated with mental illness across a multimodal data set that may not be achieved by 

separate unimodal analyses. Through simulation and application to a large SZ data set, we 

demonstrated that our approach reveals important information about disorder-related 

network disruptions that are missed in a focus on single modality. This includes components 

belonging to regions of the default mode network (DMN) that are separated in SZ patients. 

We identified missing edges between modalities and associated these with disconnectivity, 

which emphasizes the importance of analyzing multimodal data. Without having the multi-

modal information, we are not able to identify these important missing edges in the SZ 

patients that play an important role in disconnectivity between the components. This 

highlights the utility of our approach as well as the importance of a multimodal imaging 

method to studying complex mental illnesses.
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Fig. 1. 
Three-way pICA uses the Infomax algorithm to maximize the independence cost functions 

and estimates the strongest related triplet among all possible column combinations using 

mean statistics for triplet relationship. subsequently, similarities across modalities are 

measured based on Pearson correlation gradient.
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Fig. 2. 
Modularity Method. (a) Shows step 1 of the modularity method. In the first step we find the 

modules in the graphs of healthy (left) and patient (right) groups. When two nodes belong to 

the same module, it indicates that there is at least one path between them. For example, there 

is a path between nodes 5 and 6 in the healthy graph as they both belong to 

healthy_module_1. However, there is no path between nodes 5 and 6 in the patient graph 

since they belong to different modules. Parts (b), (c) and (d) show details of step 3 of the 

modularity method. See text for details. Part (e) summarizes the results of applying the 

modularity method on graphs of part a. It shows that the nodes of healthy module 1 spreads 

into three modules in patient module 1, patient module 2, and patient module 3 and the 

missing edge associated with disconnectivity between nodes of module 1 and module 2 in 

the patient is (4,5). The missing edge associated with disconnectivity between nodes of 

module 1 and module 3 is indicated (2,6). Nodes of module 2 and module 3 in the patient 

modules indirectly have become disconnected through module 1. Missing edges associated 

with disconnectivity are revealed (4,5) and (2,6).
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Fig. 3. 
Fixed graphs of a healthy group (left) and a patient group (right). The patient graph is 

missing some links in comparison with the fixed graph of healthy group, e.g. edge (2,5) 

which is an edge between modality A and modality B and edges (6,7) and (10,11) which are 

inside modalities B and C, respectively. Also, there is an additional edge in patient group 

which is (8,9).
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Fig. 4. 
Various sizes of disconnecting sets. The simulation has been applied to the different graphs’ 

structures. The histogram of number of missing links associated with disconnectivity of 

random generated graphs shows that different random graphs structures were analyzed.
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Fig. 5. 
Modules in the fixed graphs of a healthy group (left) and a patient group (right). There are 

two modules in the healthy group graph and four modules in the patient graph. Each module 

includes a set of nodes which there is a path between every pair of them. If two nodes belong 

to separate modules, it means there is no path between them.

Falakshahi et al. Page 24

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Montage composite plot of components of fALFF(left), FA(middle) and GM(right). After 

removing the artifactual components includes one fALFF, one FA and two GM components, 

we have 9 components for fALFF and FA and 8 components for GM.
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Fig. 7. 
Missing edges associated with disconnectivity in patient graph of Fig. 3. For instance, nodes 

of module2 (M2) in patient group graph that includes nodes 4, 5, 8 and 9 (according to Fig. 

3) become disconnected from nodes of module1 (M1) that includes nodes 1, 2, 3 and 6. The 

missing edges in the patient group graph associated with this disconnectivity is (2,5).
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Fig. 8. 
Dependence of F-measure for varying SNR for synthetic data experiment (50 randomly 

generated graphs per SNR. To relate our synthetic experiments to the real data, we have 

estimated the SNR in fBIRN data red dotted line determines the mean of SNR related to real 

data.
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Fig. 9. 
Extracted group graphs of healthy group and SZ patients using GGM. After performing 

statistical tests on the partial correlations, if the corresponding corrected P-value for multiple 

comparisons was less than a significance level of 0.05, the edge was considered between two 

components (nodes).
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Fig. 10. 
(a) shows module 1 (M1) in the healthy group graph which breaks into eight (8) modules in 

SZ patient graph. Part (b) shows how the healthy module (M1) breaks into 8 modules in SZ 

patients’ graph (M1, M2, M3, M4, M5, M6, M9, M10). Components of each module can be 

seen in part b. For example, module 4 (M4) includes components 5, 7 and 8 of GM (GM5, 

GM7 and GM 8). Module 2 (M2) includes components 1, 2, 3 and 6 of fALFF (fALFF1, 

fALFF2, fALFF3 and fALFF 6). Missing edges associated with disconnectivity between the 

components of different modules can be seen in part c. For example, the missing edge 

associated with disconnectivity between component GM5 that is located in module 4 (M4) 

and component ALLF 1 that is located in module 2(M2) is (fALFF6, GM7).
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