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ScienceDirect
2 A few examples are the Crystallography Open Database (http://

www.crystallography.net/), the Cambridge Structural Database (http://

www.ccdc.cam.ac.uk/pages/Home.aspx), Pearson’s Crystal Data (http://

www.crystalimpact.com/pcd/Default.htm), and the Worldwide Protein

Data Bank (http://www.wwpdb.org/). A list of databases is maintained by

the International Union of Crystallographers at http://www.iucr.org/

resources/data.
3 In fact, until 1992 the defining feature of a crystal was the presence of

periodic order, when this definition was changed due to the discovery of

quasicrystals [54]. Now, any specimen that has ‘‘an essentially sharp

diffraction pattern’’ [5,6] is officially classified as a crystal. Nonetheless,

when we use the term ‘crystal’, we mean materials with periodic order.
4 Mackay in particular has argued that the range of crystallography
We review recent progress in applying information-theoretic

and computation-theoretic measures to describe material

structure that transcends previous methods based on exact

geometric symmetries. We discuss the necessary theoretical

background for this new toolset and show how the new

techniques detect and describe novel material properties. We

discuss how the approach relates to well known

crystallographic practice and examine how it provides novel

interpretations of familiar structures. Throughout, we

concentrate on disordered materials that, while important, have

received less attention both theoretically and experimentally

than those with either periodic or aperiodic order.
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Introduction
It is difficult to exaggerate the importance and influence

of crystallography over the past century. Twenty-nine

Nobel prizes have been awarded for discoveries either in

or related to crystallography, with at least one prize per

decade [1]. Crystallography strongly influences and is

influenced by other fields, such as chemistry, biology,

biochemistry, physics, materials science, mathematics,

and geology, making it perhaps the quintessential inter-

disciplinary science.1 So ingrained in other disciplines, it

is now often thought of as a service science, in the sense

that the techniques and theory developed in crystallo-

graphy have become standard tools for researchers in
§ Santa Fe Institute Working Paper 14-09-036. arxiv.org:1409.5930

[cond-mat.stat-mech].
1 Mackay [14��,45��] shows a ‘concept-association network’ of research

areas as they relate to classical crystallography. There are considerable

connections with other seemingly disparate fields.

www.sciencedirect.com 
these other fields. Often among the first questions in a

research problem is ‘What is the crystal structure of this

material?’— or, more colloquially — ‘Where are the atoms?’

Unquestionably crystallography is a mature field. The

International Tables for Crystallography consist of eight

volumes (A-G, A1) and if printed out would, collectively,

require nearly 6000 pages [2]. Together they coalesce and

codify the combined knowledge of the worldwide crystal-

lographic community. Additionally, there are at least a

dozen major crystallographic databases, some cataloging

hundreds of thousands of different solved crystal struc-

tures2 with tens of thousands being added yearly.

As successful as this research program has been, there has

been an inordinate interest in those material structures

that possess periodic order and thus have discrete reflections

in their diffraction patterns, called Bragg peaks.3 Even in

the early days of X-ray crystallography, though, some

materials were known to have considerable diffuse scat-

tering between the Bragg peaks [3] or even to lack Bragg

peaks altogether [4]. While an observed broadband spec-

trum is sometimes a result of thermal agitations or limited

experimental resolution, it can be and often is a signal of

disorder within the material. And this disorder can be mild,

preserving the integrity of the Bragg reflections, or it can be

severe, where no identifiable long-range order is present.

These cases have not, however, received nearly the same

attention as those with ‘‘an essentially sharp diffraction

pattern’’ [5,6] nor has the progress been nearly as impress-

ive. Indeed, in some sense disordered structures have

been defined to be outside the field of crystallography.4
should extend outside its traditional boundaries [43]: ‘‘Crystallography is

only incidentally concerned with crystals . . . crystallography is rapidly

becoming the science of structure at a particular level of organization,

being concerned with structures bigger than those represented by

simple atoms but smaller than those of, for example, the bacteriophage.

It deals with form and function at those levels, particularly with the way

in which large-scale form is the expression of local force.’’

Current Opinion in Chemical Engineering 2015, 7:47–56
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Nonetheless crystallographers, defined broadly here as

that community of researchers tasked with understanding

and characterizing the atomic arrangement and compo-

sition of materials, have shown a persistent interest in

them [4,7–9].

Researchers are increasingly discovering that disorder has

profound effects on material properties and, perhaps

surprisingly, disorder can improve their technological

usefulness. For example, it was recently shown that

significantly disordered graphene nanosheets are excel-

lent candidates for use in high-capacity Li ion batteries

due to their unusually high reversible capacities

[10]. Theoretical investigations suggest that the band

gap in ZnSnP2, a promising candidate for high-efficiency

solar cells, changes considerably (0.75–1.70 eV) as the

material transitions from an ordered chalcopyrite struc-

ture to a disordered sphalerite structure [11].

The growing importance of disorder in materials, then,

contrasts sharply with the lack of tools available to

characterize disordered materials. And, just as researchers

developed new conceptual models and theoretical tech-

niques to understand the novel organizational structure in

quasicrystals [12], new approaches are needed to charac-

terize disordered materials. Here, we detail a recent

initiative that exploits information- and computation-

theoretic ideas to classify the structure of materials in a

new way, one that can seamlessly bridge the gap between

perfectly ordered materials, those materials with some

disorder, and finally those that have no discernible under-

lying crystal structure.

Classical crystallography
Historically, crystals have been viewed as an unbounded

repetition of atoms that fills three dimensional (3D)

space.5 Traditionally one divides this repetition into

two parts: the basis and the lattice. The basis is a funda-
mental structural unit composed of one or more atoms.

Although the basis can be simple in the extreme, as for

example in Cu, Fe, and alkali metals where there is one

atom in the basis, it can be also much more complicated,

as for example in some inorganic crystals and proteins,

where in the latter the basis can be composed of tens of

thousands of atoms. Conversely, the lattice is a math-

ematical abstraction. It is defined as a regular periodic

collection of points, such that if one translates from one

lattice point to another, the entire arrangement of lattice

points appears to be identical. There are only a finite

number of ways that points can be so distributed in space.
5 Discussions of these well known concepts from crystallography are

available in any standard text on condensed matter physics [13,55]. For a

definitive exposition, see the International Tables for Crystallography, Vols.
A and A1. For classical crystallography, we exclude the case of quasi-

crystals and, thus, define a crystal as a periodic arrangement of atoms

(the pre-1992 definition) rather than by its diffraction pattern (the post-

1992 definition).

Current Opinion in Chemical Engineering 2015, 7:47–56 
In fact, there are fourteen lattice types in 3D, and these

are gathered into seven systems: triclinic, monoclinic,

orthorhombic, tetragonal, cubic, trigonal and hexagonal.

To form a crystal structure then, the basis is attached to

each lattice point, with each basis having an identical

orientation. This is conveniently summarized as [13]:

crystal structure ¼ basis � lattice: (1)

Each crystal structure belongs to one of the 230 different

crystallographic space groups, which are defined by the

symmetries of the crystal, including translations,

rotations, reflections, glides, and screw dislocations. Thus,

the regular distribution of matter in space can be classified

according to physical symmetry operations respected by

the crystal structure. So important is this approach that is

has been referred to as classical crystallography (ClC) [14��]
and may be defined as the categorization of material struc-
tures based on the geometric symmetries respected by the atoms
and formally couched in the language of group theory. Suc-

cinctly put then, given some material, a primary task of

ClC is to identify the basis and to which of the 230 crystal-

lographic space groups the crystal structure belongs. In

doing so, ClC provides an answer to the question — Where
are the atoms?

Towards a new crystallography
The exact symmetries captured by groups fail partially or

utterly, however, depending on a material’s degree of

disorder. Thus, an alternative is required; one that natu-

rally adapts to describe randomness and noisy, partial

symmetries.

Processes defined: Consider an infinite sequence of ran-

dom variables, as one might encounter from time series

measurements or as one scans the positions of atoms along

one direction in a material. Formally, we say that there is

an ordered sequence of variables indexed by subscripts

and written as { . . . X�2, X�1, X0, X1, X2, . . . }. If we make

an observation of this sequence, we observe a specific

realization given in lower case: { . . . x�2, x�1, x0, x1, x2,

. . . }. We define a process as the collection of all the possible
behaviors that the system may exhibit, , as the set of all possible
realizations of the system.i.e. The ensemble of all possible

realizations implies a probability distribution over length-

L sequences, at each finite L. We will find that identifying
the process that describes a material is analogous to determining
the lattice in ClC. We assume that all the processes con-

sidered here are stationary, in the weak sense that their

sequence distributions are not functions of absolute pos-

ition in space.

Information theory: Inherent in the notion of disorder is

uncertainty, and the amount of uncertainty is quantified

by information theory [17,15]. Imagine a random variable X
that assumes discrete outcomes x 2 A, where the latter is

the set of all possible outcomes. If before a measurement
www.sciencedirect.com



Chaotic crystallography Varn and Crutchfield 49

6 When the T
ðsÞ
s ! s0 are written as m � m matrices, with m being the

number of CSs, these are the familiar transition matrices [16] from the

study of Markov models of stochastic processes. Also, note that due to e-
machine’s unifilarity the symbol s determines the unique destination

state. And so, Eq. (4) does not need to sum over s0.
the result is predicted, then there is no uncertainty in the

outcome and one learns nothing by observing it. If all

possible outcomes are equally likely (maximum ignor-

ance) then, before the measurement, the result is maxi-

mally uncertain and much is learned by discovering the

result. The genius of Claude Shannon was that this notion

can be quantified and, subject to a few reasonable restric-

tions, one can define a unique function (up to an overall

scaling factor) that measures the degree of uncertainty

and hence the amount of information learned from a

measurement. It is given by the Shannon entropy H[X]

as [17,15]:

H½X� ¼ �
X
x 2 A

PrðxÞlog2 PrðxÞ; (2)

where Pr(x) is the probability of observing a particular

realization x when the random variable X is measured. If

the logarithm is taken to base 2, as done here, the units of

the Shannon entropy are bits.

Shannon entropy has many multivariate extensions used to

capture multivariate correlations. In particular, there are

the oft-used joint entropy (the Shannon entropy of two or

more variables), conditional entropy (the Shannon entropy

of a variable conditioned on the outcome of one or more

additional variables), and mutual information (the infor-

mation shared between two or more variables). Other

measures have been recently introduced in the literature

that identify a new range of correlation types [18,19].

Computational mechanics: There is a well studied theory

of correlated, discrete random variables called compu-
tational mechanics [20-22,23��]. Within computational

mechanics many processes of interest are conveniently

represented as a kind of hidden Markov model [24,25]

known as an e-machine. In turn, e-machines can often be

written as directed finite state automata (FSA) [26], where

the nodes are called causal states (CSs) and are connected

by directed arcs that represent transitions between the

CSs. The arcs are labeled s|p, where s is the symbol

emitted (observed) upon transition between CSs (which

generally are not directly observable). The set of CSs,

which we denote S, together with the transition prob-

abilities between them, the set of output symbols A, and

the initial state probability distributions define the e-
machine. Critically, instead of being described by group

theory, such as one finds in the crystallographic space

groups, the mathematical structure of the e-machine is

that of a semi-group. This relaxed mathematical construct

allows the e-machine to capture the approximate sym-

metries of the process in a natural and self-consistent

manner. This becomes essential in disordered materials,

where strict spatial symmetries may no longer exist.

Importantly, e-machines have the minimal number of

states, and all CSs have a unique successor CS upon
www.sciencedirect.com 
transition with a particular symbol, a property called

unifilarity [27]. It can be shown that the e-machine for a

process is unique — in the sense that any other minimal

representation is isomorphic to it — and optimal — in the

sense that no other representation captures more of the

structure [22]. Figure 1 shows nine e-machines that are

important in crystallography. We call the arrangement of

CSs and their transitions the causal architecture of the e-
machine, and the discovery, study, and interpretation of a

process’s causal architecture is one of the main goals of

computational mechanics.

Measures of intrinsic computation: Glancing at Figure 1,

one notices some obvious differences between the e-
machines: (i) some have more CSs than others and (ii)

some have multiple outgoing transitions for some of their

CSs. The first property relates to an intuitive notion of

structure, which can be quantified in terms of the stat-
istical complexity Cm of the e-machine, given by [20,22]:

Cm ¼ �
X
s 2 S

PrðsÞlog2 PrðsÞ: (3)

Cm is simply the Shannon entropy of the state probability

distribution Pr(\sigma) and represents the average amount

of memory (in bits) that the process retains. As a general

trend, the more CSs in an e-machine, the larger Cm and we

say that the process is more structurally complex.

More than one outgoing arc at a CS suggests that there is

some uncertainty about the next observed symbol. This

notion of uncertainty can be quantified by the Shannon
entropy rate hm and is directly calculable from the e-
machine as [22]:

hm ¼ �
X
s 2 S

PrðsÞ
X
s 2 A

T
ðsÞ
s ! s0 log2T

ðsÞ
s ! s0 : (4)

The T
ðsÞ
s ! s0 are the probabilities for a transition from CS s

to CS s0 on symbol s.6 The Shannon entropy rate gives the

average uncertainty per measurement when all corre-

lations are accounted for. It has units of [bits/measure-

ment].

While perhaps not obvious from casual examination, the

e-machines in Figure 1 imply different Markov orders —

the range of interdependence. This is quantified by the

memory length r‘ [28��], an integer parameter that measures

the maximum range over which two symbols may carry

nonredundant information about each other. That is,

there may exist correlations between symbols that are

not captured by the intervening symbols. It is possible
Current Opinion in Chemical Engineering 2015, 7:47–56
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Figure 1
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Current Opinion in Chemical Engineering

Nine e-machines that represent ordered (a-e; above the dashed line) and disordered (f-i; below the dashed line) material structures. For each the

set of output symbols is chosen from A ¼ f0; 1g. The first seven e-machines, (a-g), are finite order Markov processes, and the CSs are labeled by

S with subscripts giving the minimum number of previous symbols necessary to uniquely place the process in that CS. In contrast, the last two e-
machines, (h) and (i), may require an indefinitely long history to place them in a particular CS. These e-machines represent strictly sofic processes.

The CSs are labeled with the symbols U; V; W; X . Arcs connecting CSs are labeled s|p, where s is the symbol emitted on transition and p is the

probability of a transition. A bar over a transition probability is defined as p̄ � 1 � p. (a) 3C+ crystal structure. (b) 3C� crystal structure. (c) 2H

crystal structure. (d) 4H crystal structure. (e) 6H crystal structure. (f) Independent and identically distributed (IID) process [15,16]. For q ¼ q̄ ¼ 1=2,

the process is maximally random. (g) Random growth fault (RGF) process. For b small, we have a randomly twinned 3C structure and, for b large,

there are random growth faults in the 2H structure. (h) Random deformation fault (RDF) process. For a small, we have random deformation faulting

in 2H. (i) Nonrandom deformation fault (NRDF) process. For h small, this is nonrandom deformation faulting in 2H; for h large, this is a

nonrandomly twinned 3C structure.
that, even if the set of states is finite, the memory

length may be infinite; these are the strictly sofic
processes [29].

Intrinsic computation is defined as how systems store,

organize, and transform historical and spatial

information [20,30]. Different processes may have

quantitatively and qualitatively different kinds of

intrinsic computation, and understanding these differ-

ences gives insight into how a system is structured

[31]. In addition to the previous three measures of

intrinsic computation, there are others such as excess
entropy [32]; transient information and synchronization
time [33]; crypticity [34]; bound information and residual
entropy; and elusive information [18], each sensitive to

different aspects of information processing and storage.

Usefully, it has recently been shown that many of

these information measures are directly calculable from

the e-machine [35,36].
Current Opinion in Chemical Engineering 2015, 7:47–56 
Chaotic crystallography
Chaotic crystallography (ChC) [16,28��,37��,38�,39��,
40�,41��] is the application of information- and compu-
tation-theoretic methods to discover and characterize structure
in materials. The choice of the name is intended to be

evocative: we retain the term ‘crystallography’ to empha-

size continuity with past goals of understanding material

structure; and we introduce the term ‘chaotic’ to associate

this new approach with notions of disorder, complexity,

and information processing.

The idea of appealing to information theory to describe

material structure is not new, indeed Mackay has

been a vocal and long-time proponent for such an

approach [14��,42-44,45��]. Until recently, though, a com-

prehensive program to realize this vision was lacking.

While ChC does realize this vision, it does not replace

ClC, but rather augments it, providing a parallel, alterna-

tive view of structural organization in materials. In many
www.sciencedirect.com
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Table 1

(top) A comparison of classical crystallography (ClC) and

chaotic crystallography (ChC). Notice the close parallels be-
tween the two descriptions. (bottom) Measures of intrinsic

computation for the e-machines in Figure 1 and Figure 2(b). The

units of Cm are bits, hm are bits/ML, and r‘ are MLs. The

abbreviations are: RT 3C = random twinned 3C; RD 2H = random

deformation 2H; NRD 2H = nonrandom deformation 2H; NDT 3C

= nonrandom (deformation and twinned) 3C.

ClC ChC

Material structure Crystal Chaotic crystal

Fundamental unit Basis/unit cell Modular layers

Organizational schema Spatial symmetry Intrinsic computation

Mathematical formalism Group theory Semi-Group theory

Symmetries exact approximate

Range of applicability Crystalline Crystalline or disordered

Example Material structure Cm hm r‘

1(a) 3C+ 0.00 0.00 0

1(b) 3C� 0.00 0.00 0

1(c) 2H 1.00 0.00 1

1(d) 4H 2.00 0.00 2

1(e) 6H 2.58 0.00 3

1(f), q = 0.50 Random 0.00 1.00 0

1(g), b = 0.10 RT 3C 1.00 0.47 1

1(h), a = 0.10 RD 2H 1.00 0.47 1
1(i), h = 0.10 NRD 2H 1.44 0.43 1
2(b), SK137 NDT 3C 2.7 0.65 3
cases, especially for disordered materials, ChC gives a

more consistent and comprehensive picture of material

structure. We now show how these information-theoretic

and computation-theoretic tools can be incorporated in a

new view of material structure.

Quasi-one-dimensional materials: We specialize to the

case where the periodic distribution of atoms is pre-

served in two dimensions (2D), but not necessarily in the

third, as in the case of some polytypes such as ZnS and SiC

(they are isostructural) [7]. A modular layer (ML) [46,47]

is a sheet or plane of atoms organized in a regular 2D

array. For closed-packed structures (CPSs), this is a

hexagonal net. For ZnS in particular, at each lattice

point in the net there is a Zn-S pair, separated by

one-quarter of a body diagonal (as measured along the

conventional unit cell) in the direction perpendicular to

the plane of the net, called the stacking direction. Since

spatial symmetries are absolutely respected within

the MLs themselves, we can write the 2D version of

Eq. (1) as:

modular layer ¼ basis � 2D lattice: (5)

For CPSs, each ML can assume only one of three possible

positions, usually denoted A, B or C, and adjacent MLs

stack according to the familiar closed-packed rule [13]

that adjacent MLs may not have the same orientation. It

is useful to take advantage of this stacking constraint and

introduce the so-called Hägg notation, such that cyclic

transitions (A ! B ! C ! A) between MLs are labeled

‘1’ and anticyclical transitions (A ! C ! B ! A) are

labeled ‘0’ [48]. We define the stacking sequence [37��] as

the sequence of MLs encountered as one scans the

material along the stacking direction. The stacking process
is defined as the effective stochastic process induced by

sweeping the stacking sequence [37��], and we represent

this in the Hägg notation over the binary symbols

A ¼ f0; 1g.

Formally, for quasi-one-dimensional materials, ChC

divides the task of describing material structure into

two parts: (i) specify the structure of the fundamental

unit, i.e., the (crystalline) 2D MLs; and (ii) specify the

mathematical construct that organizes the spatial distri-

bution of the fundamental unit; i.e., the kind and amount

of intrinsic computation as captured by the e-machine.

The resulting material structure is referred to as a chaotic
crystal. ChC’s analogous relationship to ClC’s Eq. (1) is:

chaotic

crystal

� �
¼ modular

layers

� �
� e�machineð Þ: (6)

Notice the tight parallels between ClC and ChC: the

material structure (crystal versus chaotic crystal) is formed

by taking a fundamental unit (basis or MLs) and distributing
www.sciencedirect.com 
it through space according to some mathematical instruction

(lattice or e-machine). This close association between ClC

and ChC is summarized in Table 1 (top).

Methods for detecting intrinsic computation: Determin-

ing a material’s intrinsic computation, by calculating or

estimating the e-machine, is a primary goal of ChC, and

several methods have been explored in the literature.

Additionally, the causal architecture of the e-machine

provides invaluable information about the stacking pro-

cess, and this is explored in the examples shortly. (i) One

method to obtain the e-machine is to postulate causal

architectures based on theoretical grounds. Estevez et al.
[49��] considered combined random growth and defor-

mation faulting in closed-packed crystals and were able to

generate a model that included both, called the random
growth and deformation faults (RGDF) process

[16,49��]. Although this model is not unifilar, and thus

not an e-machine, many of the techniques developed here

can be adapted to analyze it [36,41��]. (ii) Another,

statistical method is to simulate chaotic crystals, and

use one of the reconstruction methods available in com-

putational mechanics, such as the subtree merging method
[20], causal state splitting reconstruction [50] or Bayesian
structural inference [51], to find the appropriate model

[38�]. (iii) Lastly, the approach that has received the most

attention is e-machine spectral reconstruction theory (eMSR)

[28��,37��,39��,40�]. The importance of this technique is
Current Opinion in Chemical Engineering 2015, 7:47–56
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that it uses experimentally obtained X-ray diffraction

patterns to reconstruct the stacking process e-machine.

Using this, one directly calculates a stacking process’s

intrinsic computation. Table 1 (bottom) compares these

for the nine machines in Figure 1 and that in Figure 2(b).

Examples
Periodic stacking sequences: ClC is well suited to

describe periodic stacking sequences. Being periodic,

spatial symmetries are strictly obeyed, and crystal struc-

tures are often specified using the Ramsdell notation nX,

where n refers to the period of the repeated stacking

sequence and X to the crystal system [48]. Commonly

encountered crystal systems for CPSs include the cubic

(C), hexagonal (H) and rhombohedral (R). Examples are

3C+ (. . .ABCABC. . .), 2H (. . .ABABAB. . .) and 6H

(. . .ABCACB. . .) or in the Hägg notation these are

(. . .111111. . .), (. . .101010. . .) and (. . .111000. . .), respect-

ively.

ChC describes these familiar crystalline stacking struc-

tures in the form of an e-machine. For example, the 3C+

stacking structure is compactly given in Figure 1(a): an e-
machine with but a single CS and a single transition. The

2H stacking structure, Figure 1(c), is slightly more

involved: there are a pair of CSs connected by a pair of

transitions. More involved still is the 6H stacking struc-

ture, Figure 1(e), requiring six CSs and six transitions.

Indeed, for each of the first five e-machines in Figure 1(a-

e), each CS allows only one outgoing transition, and the e-
machine describes periodicity. It should be apparent that

any such periodic repetition of CSs generates some crystal

structure and that crystal structures can only come from

this kind of causal architecture. Closed, finite, nonself-

intersecting, symbol-specific paths on an e-machine such

as these are referred to as causal state cycles, and they are

often specified by putting in square brackets [�] the

sequence of causal states visited.

The measures of intrinsic computation defined in ChC

quantify crystal structure and organization. Intuitively,

we expect that the 6H is more complex than say 3C+ and

indeed, by direct application of Eq. (3), we find the

statistical complexities to be Cm
(6H) = 2.58 bits and

Cm
ð3CþÞ ¼ 0 bits. Thus, as we might expect on purely

physical grounds, the 6H stacking structure requires more

computational memory than 3C+. Additionally, we

observe that for each of these three examples, direct

calculation of the Shannon entropy rate using Eq. (4)

finds that hm
ð3CþÞ ¼ hm

ð2HÞ ¼ hm
ð6HÞ ¼ 0 bits/ML, as we

would expect for perfect crystal structures. Lastly, we

might imagine that somehow the 6H stacking structure

requires coordination between MLs at a greater length

than that of either the 3C+ or 2H stacking structures. This

notion is captured by the memory length, and we find that

for these three structures, r
ð3CþÞ
‘ ¼ 0 ML, r

ð2HÞ
‘ ¼ 1 ML,

and r
ð6HÞ
‘ ¼ 3 ML, confirming our intuition.
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Nonperiodic stacking sequences: When one moves

beyond periodic stacking sequences, strict symmetries

are no longer maintained, but instead are approximate.

Mathematics based in the language of semi-groups —

specifically e-machines — is therefore more suitable than

that of groups, which describe strict symmetries.

We begin with a pedagogical example. Suppose that the

stacking of MLs is random, in the sense that other than

respecting the CPS stacking constraints, there is no

correlation between MLs. If we allow for a bias in the

stacking process — i.e., Pr(0) 6¼ Pr(1) — then the process

is described as being independent and identically distributed
(IID) [15]. This process has been studied, for example by

Guinier [4], as a simple model of disorder. The e-machine

for the IID process is shown in Figure 1(f). One notes a

striking similarity with two of the periodic processes,

namely the 3C+ and 3C� in Figure 1(a) and (b). The

one free parameter in the IID process is q 2 [0, 1], and

adjusting it lets one scan from q = 1, giving a 3C+ stacking

structure, to q = 1/2, giving an entirely disordered struc-

ture, to lastly q = 0, giving the crystal structure 3C�. From

a ChC point of view then, the crystal structures 3C+ and 3C�

are nothing more than special cases of a general IID model and

this same IID model can also generate completely disordered
stacking structures. This is perhaps the clearest illustration

of how perfectly crystalline and disordered materials may

be computationally similar. However, although they share

nearly identical causal architectures, measures of intrinsic

computation do distinguish them. While we find

Cm
ðrandomÞ ¼ Cm

ð3CþÞ ¼ 0, echoing their identical compu-

tational requirements; we also find hm
(random)(q = 1/

2) = 1.0 bit/ML 6¼ hm
ð3CþÞ ¼ 0. This also illustrates the

ease with which ChC seamlessly encompasses both crys-

talline and disordered structures.

Random versus nonrandom stacking faults: Many tech-

nologically useful materials, such as SiC and GaP, are

subject to stacking faults (SFs). And, considerable effort is

expended to characterize and understand them, often

with the intention of avoiding them during manufactur-

ing. Let’s see how the e-machines in the last three panels

of Figure 1(g), (h), and (i) characterize various SFs in

CPSs.

The e-machine in Figure 1(g) represents the random
growth fault (RGF) process. For b large, the RGF usually

oscillates between the two CSs, S0 and S1, giving 2H

crystal structure. With some small probability, an

additional 1 or 0 is inserted into the stacking sequence

and, physically, this corresponds to a growth fault of the 2H

structure [49��]. At the other extreme when b is small, the

RGF usually transits the state self-loops on each of the

CSs and, physically, repetition of each of these loops gives

one of the 3C stacking structures. (Compare with

Figure 1(a) and (b)). We recognize this as the 3C stacking

structure with randomly distributed twin faults. And, as
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7 We do not discuss the fault model in detail here, but we note that this

model is based on ClC, where one assumes a perfect crystal ‘corrupted’

by some fault structure [37��]. While often useful for weakly faulted

specimens, it is not tenable when the disorder is large, such that the

crystallographic symmetries are appreciably broken.
we saw before, ChC connects these two chaotic crystal

structures (2H with random growth faults and twinned

3C) into a common causal architecture, the only differ-

ence being in the transition probabilities. Transform-

ations between 2H and 3C are observed in ZnS [7]

and, while a more complex causal architecture is needed

to describe the transformation, we see that in principle

ChC provides very simple models to transform from one

crystal structure to another.

The e-machine in Figure 1(h) represents the random
deformation faulting (RDF) process as it models random

deformation faults in the 2H crystal structure [49��]. The

introduction of deformation faults in 2H crystals is often

modeled by Glauber dynamics [38�,52] that corresponds to

changing 1 to 0 or 0 to 1. The e-machine for the RGF does

this randomly, with some small probability a.

The e-machine in Figure 1(i) is similar to the previous

one, since for small h it too represents deformation

faulting in the 2H structure, but now the SFs are dis-

tributed nonrandomly through the stacking sequence. We

call this the Nonrandom deformation faulting (NRDF)

process. It is a simplified version of a previous model

obtained from simulation experiments of the 2H ! 3C

transformation in ZnS [38�]. The critical difference be-

tween the RDF and the NRDF processes is the addition

of two CSs ‘on the wings’ of the 2H CSs — U and

V. These extra CSs have the effect of preventing

sequences that have an even number of 1s or 0s. Physically

this implies that the occurrence of one deformation fault

suppresses the occurrence of an adjacent deformation fault,

and this is observed in experiment [53]. Also, as the fault

parameter h grows, the chaotic crystal becomes increas-

ingly dominated by odd-length sequence domains of 1s

and 0s. Thus, this e-machine reflects that the chaotic

crystal transforms into a nonrandomly twinned 3C crystal.

Here then, we see two important points: (i) the causal

architecture of the e-machines for chaotic crystals can

sensitively reflect the structural organization of the stack-

ing process; and (ii) the e-machine seamlessly connects

apparently different kinds of stacking processes into a

single causal architecture, facilitating the study of solid-

state phase transitions. A major task in ChC is the

interpretation of the e-machine in terms of physical

mechanisms that result in observed stacking processes.

e-Machine spectral reconstruction theory: A significant

source of information about crystals is X-ray diffraction,

and ChC has a method of discovering intrinsic compu-

tation from this source, much as ClC uses X-ray diffrac-

tion studies to determine crystal structure. eMSR

[28��,37��,39��,40�] employs Fourier analysis over a unit

interval in frequency space to extract information about

the pairwise correlations between the MLs and then

solves a set of equations for sequence probabilities.
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The algorithm initially considers low-order Markov pro-

cesses and compares the diffraction pattern calculated

from the model with the experimental one. If the agree-

ment is unsatisfactory, the order of the Markov model is

increased, and the comparison is repeated. This incre-

mental process has been accomplished up to third-order

Markov models. The most general order-3 Markov model

is shown in Figure 2(a).

The triangles (~) in Figure 2(d) show the diffraction

pattern (corrected for experimental effects) along the

10.‘ row of an as-grown disordered specimen of ZnS

[39��]. The degraded Bragg reflections at ‘ � �0.67 and

‘ � �0.33 are highly suggestive of twinned 3C struc-

ture, but there is also considerable diffuse scattering,

especially in the region near ‘ � �0.5. This is where

one would expect to observe a Bragg reflection if 2H

structure were present, suggesting that in the disorder

there may be some stacking sequences reminiscent of

2H character. eMSR was performed on this diffraction

pattern over the interval ‘ 2 [�0.80, 0.20], and the

resulting reconstructed e-machine is shown in

Figure 2(b). The diffraction pattern calculated from

the reconstructed e-machine is shown in a solid line

(—) in Figure 2(d) as well as the diffraction pattern

calculated from a competing model of disorder, the fault

model,7 in a dashed line (- - -). Clearly, the e-machine is

successful in capturing the broadband scattering near

‘ � �0.5 and it also reproduces the Bragg-like reflec-

tions near ‘ � �0.67 and ‘ � �0.33, though the peak

intensities are somewhat less than that observed in

experiment. From other processes reconstructed from

diffuse diffraction patterns, it is known eMSR can

sometimes have difficulty faithfully reproducing the

line profiles [39��].

The correlation function for the probability that two

MLs at separation n have the same absolute orientation

(either A, B, or C) extracted from the experimental

diffraction pattern (&) are shown in Figure 2(c), along

with those from the reconstructed e-machine (&) and an

alternative description of the disorder, the fault model

(	). For small n, the agreement between the correlation

function calculated from the e-machine and experiment

is rather good, but becomes less so at larger n. One

explanation for this is that there are correlations between

MLs that a third-order Markov model has difficulty

reproducing. Indeed, simulation studies on solid-state

phase transitions in ZnS [38�] suggest that no finite-order

Markov model is capable of exactly capturing all the

structure.
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(a) The most general r = 3 e-machine, with several of the more common causal state cycles shown in color: in green, [S7] and [S0] give the 3C+

and 3C� crystal structures, respectively; in blue, [S5S2] gives 2H; in cyan, [S3S6S4S1] gives 4H; and in red, [S7S6S4S0S1S3] gives 6H. (Adapted

from Varn et. al. [28��], used with permission.) (b) The e-machine that results from eMSR when the experimental diffraction pattern (~) in panel (d)

is analyzed. (From Varn et al. [39��], used with permission.) (c) A comparison of the pairwise correlation function between MLs as obtained from

experiment (&), the reconstructed e-machine (&) and an alternative description of the disorder, the fault model (	). The Qs(n) are the probabilities

that two MLs at separation n have the same absolute orientation (either A, B or C.) The correlation functions are only defined for discrete values of

n, and the line connecting adjacent points serves as an aid for the eye. (From Varn et al. [39��], used with permission.) (d) Comparison of the

diffraction pattern calculated from the reconstructed e-machine (—) and the fault model (- - -) to the experimental diffraction pattern (~). (From

Varn et al. [39��], used with permission.)
Examining the reconstructed e-machine in Figure 2(b) we

observe the high state probabilities for the CSs S0 and S7

as well as their large self-loop transition probabilities,

confirming that this is a twinned 3C crystal, albeit with

considerable disorder. Notably, the next most visited CSs

are S2 and S5, and they do have a relatively small but

nonetheless nonnegligible inter-state transition prob-

ability between them. This causal state cycle would give

2H crystal structure, if it were more strongly represented.

So, there does seem to be some 2H character in the

stacking process, although it is weak. The remaining

states represent transitions between these two structures;

i.e., they are faulting structures. For highly disordered

specimens, such as this one, it is often difficult to unam-

biguously assign a particular fault or crystal structure to

specific architectural features [37��,39��] and a more

nuanced investigation, coupled with simulation studies

is required. It is clear that for many real crystals, however,

that the disorder can be profound and not as simply

represented as the processes of Figure 1 might imply.
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This is an example of the kind of analysis that is possible

with ChC. Close coupling between experimental inves-

tigations, simulation studies, and theoretical reconstruc-

tion procedures is promising as a highly effective tool for

discovering, characterizing, and explaining disordered

stacking structures.

Future directions
While ChC is still in its infancy, it has potential to

significantly impact the way disordered structures are

understood, discovered, and described. Since the model-

ing procedure is based in the mathematics of (probabil-

istic) semi-groups, it can naturally accommodate inexact

or approximate symmetries such as those found in dis-

ordered materials, where ClC loses applicability.

Future directions include expanding on recent develop-

ments in understanding spectral properties of e-machines

[16,35,36,41��], where they can be a powerful quantitat-

ive tool. In particular, calculating material properties,
www.sciencedirect.com
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such as thermal and electronic transport through disor-

dered media via their e-machine representation, offers a

way to systematically search the space of disordered pro-

cesses for interesting and useful phenomena. Additionally,

measures of intrinsic computation, so closely linked to

structure, are likely to strongly correlate with material

properties.

Another research direction is applying ChC to materials

in higher dimensions; i.e., treating 2D materials.

Although the formalism as reviewed here concentrated

on quasi-one-dimensional materials, the basic notions

transfer to higher dimensions, and this is an area of

current research.

Lastly, we return to one of the initial motivations of

crystallography, as encapsulated in the question we began

with — Where are the atoms? ClC gives an unambiguous

answer in the form the material’s crystal structure. In its

use of probabilities, it seems perhaps that ChC has failed

to reach this goal. The answer offered by ChC, however,

is at once both new and informative in a different way.

ChC finds and examines the process that describes the

material, and this may not only be a more convenient, but

a more insightful answer. From the process, compu-

tational and physical parameters are calculable; and the

space of possible configurations is given a kind of order,

permitting systematic investigation. This is because ChC

does not necessary tell where each and every atom is

(although it does in the case of periodic processes), but

rather it defines an ensemble of configurations, as speci-

fied by the e-machine, that statistically represents the

material. And often, this is enough.
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