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Abstract: Globally, over 17 million people annually die from cardiovascular diseases, with heart
disease being the leading cause of mortality in the United States. The ever-increasing volume of data
related to heart disease opens up possibilities for employing machine learning (ML) techniques in
diagnosing and predicting heart conditions. While applying ML demands a certain level of com-
puter science expertise—often a barrier for healthcare professionals—automated machine learning
(AutoML) tools significantly lower this barrier. They enable users to construct the most effective
ML models without in-depth technical knowledge. Despite their potential, there has been a lack of
research comparing the performance of different AutoML tools on heart disease data. Addressing this
gap, our study evaluates three AutoML tools—PyCaret, AutoGluon, and AutoKeras—against three
datasets (Cleveland, Hungarian, and a combined dataset). To evaluate the efficacy of AutoML against
conventional machine learning methodologies, we crafted ten machine learning models using the
standard practices of exploratory data analysis (EDA), data cleansing, feature engineering, and others,
utilizing the sklearn library. Our toolkit included an array of models—logistic regression, support
vector machines, decision trees, random forest, and various ensemble models. Employing 5-fold
cross-validation, these traditionally developed models demonstrated accuracy rates spanning from
55% to 60%. This performance is markedly inferior to that of AutoML tools, indicating the latter’s
superior capability in generating predictive models. Among AutoML tools, AutoGluon emerged as
the superior tool, consistently achieving accuracy rates between 78% and 86% across the datasets.
PyCaret’s performance varied, with accuracy rates from 65% to 83%, indicating a dependency on the
nature of the dataset. AutoKeras showed the most fluctuation in performance, with accuracies rang-
ing from 54% to 83%. Our findings suggest that AutoML tools can simplify the generation of robust
ML models that potentially surpass those crafted through traditional ML methodologies. However,
we must also consider the limitations of AutoML tools and explore strategies to overcome them. The
successful deployment of high-performance ML models designed via AutoML could revolutionize
the treatment and prevention of heart disease globally, significantly impacting patient care.

Keywords: AutoML; machine learning; cardiovascular disease; coronary artery disease; diagnosis;
heart disease; prediction; AutoGluon; AutoKeras; PyCaret

1. Introduction

The term “cardiovascular disease” (CVD) applies to any disorder affecting the car-
diovascular system (heart and blood vessels) [1]. Over 17 million people die from CVD
annually globally [2], and heart disease specifically is the leading cause of death in the
United States, killing almost 700,000 people in 2020 [3]. Atherosclerosis, or the buildup
of plaque within the arteries, leads to coronary artery disease (CAD), one of the most
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common types of heart disease [3]. Risk factors for CVD include obesity, hypertension,
hyperglycemia, and “high alcohol intake” [4]. Doctors usually diagnose CAD through a
combination of physical examination, family history, and diagnostic tests including an-
giography, a type of contrast X-ray that measures the extent of narrowing of the blood
vessels [5–7]. Other diagnostic tools include electrocardiography, sonography, and blood
testing [4]. The public health importance of addressing heart disease, along with the
abundant and continuously growing data, means that machine learning (ML) techniques
could be utilized to find meaningful patterns in clinical data and predict the presence of
heart disease. Numerous researchers have explored applying ML to medical diagnosis
using many different techniques and ensembles, as discussed in the Related Work section
below. However, to apply ML, a certain level of computer science knowledge is required,
which may be a barrier to widespread use by healthcare professionals [8]. Steps in a typical
machine learning project include framing the problem, obtaining the data, conducting ex-
ploratory data analysis, preparing the data, exploring the different models, and fine-tuning
the models. AutoML tools allow for the implementation of complex models, including
feature engineering and hyperparameter optimization, requiring fewer lines of code and
less technical knowledge than traditional ML methods. AutoML can automate the steps
of data preparation, model selection, and the fine-tuning of models. By utilizing AutoML
frameworks, it is possible to develop a cost-effective way to predict heart disease, providing
health professionals with a powerful tool for heart disease prediction and diagnosis [4].
AutoML frameworks are machine learning tools that automate many of the more complex
machine learning processes to allow non-experts access. This enables someone with less
technical knowledge and with fewer lines to use powerful machine learning algorithms.
AutoML tools provide access to a range of ML models that make implementing machine
learning applications using various datasets much easier. Most AutoML tools are capable
of data preprocessing, hyperparameter tuning, and model training automatically without
extensive code or data manipulation [9–11].

This study aims to assess the efficacy of automated machine learning (AutoML) tools
in the diagnosis of heart disease—a domain where, to our current knowledge, there is yet
to be a comprehensive comparative analysis of various AutoML frameworks. We have con-
ducted a thorough investigation of three widely used AutoML Python libraries—PyCaret,
AutoGluon, and AutoKeras—across three distinct datasets: Cleveland, Hungarian, and a
synthesized dataset amalgamating four separate databases.

Given the grave implications of cardiovascular diseases, and with heart disease at
the forefront as a major global health concern, the need for advanced, accurate diagnostic
methods is more pressing than ever. Our research delves into the potential of AutoML
tools to meet this need, scrutinizing their capabilities in contrast to traditional machine
learning techniques. For a robust comparison, we meticulously engineered ten machine
learning models using conventional processes, such as exploratory data analysis (EDA),
data cleansing, and feature engineering, applying the comprehensive tools provided by the
sklearn library.

The ambition of our work is to illuminate the strengths and possible applications of
AutoML in refining the diagnosis of heart disease, thereby contributing meaningfully to
both the healthcare sector and the field of machine learning. Through this exploration, we
intend to delineate the extent to which AutoML tools can not only streamline the diagnostic
process but also potentially increase its precision, offering a significant step forward in
combating this global health challenge.

In the following sections, we provide a synthesis of pertinent literature, laying the
groundwork for the context of our research. Subsequently, we elucidate the methodology
adopted in our study, detailing the selection and application of AutoML tools, as well as
the datasets chosen for evaluation. Within our methodological exposition, we articulate the
conventional techniques implemented to construct a high-performing model manually.

We then proceed to delineate the results obtained, paving the way for an in-depth
discussion that interprets the findings within the broader scope of current knowledge and
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practice. Finally, we encapsulate the study by highlighting its key contributions and the
significance of our findings, drawing attention to the implications of our work in the field
of heart disease diagnosis through advanced machine learning technologies.

2. Related Works

Medical data analysis and prediction is a critical research area, and dozens of research
groups have already applied non-automated ML techniques to heart disease specifically.
Hazra et al., Khan et al., and Marimuthi et al. have reviewed and summarized some
of the extant research and the accuracies achieved [12–14]. Applied techniques include
artificial neural networks (ANN), decision trees, K-nearest neighbor, naïve Bayes, logistic
regression, support vector machines (SVM), and association rules, with most researchers
obtaining high accuracies [12–14]. Decision trees, ANN, and SVM are three of the most
frequently used methods, and many groups had improved success using ensembles of
multiple methods [12–14]. Nagavelli et al. compared several different machine learning
algorithms in 2022 in their paper titled “Machine Learning Technology-Based Heart Disease
Detection Models.” The authors of the paper used SVM, the naïve Bayes weight approach,
and XGBoost algorithms. The Cleveland dataset and the Statlog dataset, which is a smaller
version of the Cleveland, were used for the machine learning algorithms. DBSCAN was
used to remove outlier data, and Python library XGBoost V0.81 was used to implement
the XGBoost portion of the algorithm. Their results showed that XGBoost had the highest
accuracy, with lower accuracy for the SVM and naïve Bayes approaches [15].

In another paper, titled “Heart Disease Diagnosis and Prediction Using Machine
Learning and Data Mining Techniques: A Review”, the authors reviewed a list of relevant
machine learning information [10]. The paper explained several different machine learning
algorithms that have been used in heart disease datasets, including decision trees, K-
means, SVM, naïve Bayes, artificial neural networks (ANN), Iterative Dichotomiser 3
(ID3), classification and regression trees (CART), random forest, a-priori, fuzzy logic, and
association rules. During this review, several tools and environments for data learning were
examined, including WEKA (Waikato Environment for Knowledge Learning), RapidMiner,
TANAGRA, Apache Mahout, MATLAB, Java, C, and Orange. These machine learning
algorithms and tools were extracted from a survey of 35 research papers and represent what
has been used in non-automated machine-learning research for heart disease [12]. Various
software systems (e.g., WEKA, RapidMiner, TANAGRA) and programming languages
(e.g., Java, MATLAB, Python) are available for the implementation of ML models. WEKA,
based on Java, was one of the more commonly referenced tools in the papers by Hazra
et al., Khan et al., and Marimuthi et al. [12–14]. Singh et al. used WEKA for predicting
heart disease, with a dataset of 303 records and a multilayer perceptron neural network
(MLPNN) with backpropagation [6,16–19].

It is important to note that new technologies are emerging for disease diagnosis
including heart disease diagnosis. For example, hyperspectral and multispectral imaging
systems are non-invasive diagnostic tools that capture and analyze a wide spectrum of light
to identify, assess, and map various biological materials. These systems are increasingly
being applied in the field of medical diagnosis, including for the detection and analysis
of diseases [16,17]. The data from these systems are also being utilized in machine/deep
learning models for improved diagnosis [18,19].

Pol et al. used Python and the AutoML tool PyCaret to predict the presence or absence
of heart disease [8]. Padmanabhan et al. used Python and Auto-Sklearn on the same Cleve-
land Heart Disease dataset as Pol et al. [20]. Valarmathi and Sheela used the AutoML tool
TPOT with the Cleveland dataset, but only when tuning the hyperparameters of their ran-
dom forest and XG boost classifier models [21]. With the growth of AutoML tools, there has
been a concern regarding if AutoML is comparable to previous machine learning methods.
A paper titled “Physician-Friendly Machine Learning: A Case Study with Cardiovascular
Disease Risk Prediction” compared the performance of the AutoML tool Auto-Sklearn
to that of more traditional manual machine learning techniques for accuracy [20]. In the
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paper, a graduate student who was experienced in creating machine learning models was
allowed one month to develop models using manual techniques using the scikit-learn
python library. Then, models were created using the Auto-Sklearn tool to automatically
create the model, which took around 30 min to complete and only required four lines of
Python code. The results showed comparable results of the models. The paper concluded
that their research strongly suggests that AutoML is a useful approach that allows less
experienced users to quickly create models that are competitive and comparable to models
created by experienced machine learning users [20]. Pol et al. used another popular Python
AutoML tool, PyCaret, in their paper titled “AutoML: Building A Classification Model with
PyCaret.” PyCaret was used with a heart disease dataset and trained on a 70/30 train/test
split with normalization turned on. PyCaret was then used to train the dataset with all
algorithms available in its library. The paper concluded the results were “favorable” for
classification with logistic regression for their heart disease dataset [8].

Romero et al. benchmarked the performance of the AutoML tools AutoSklearn, H2O,
and TPOT in disease prediction. They used medical claims data of more than 12 million
people to predict six different diseases. These did not include heart disease. While the
dataset used was large, the disease prevalence was very low, with the highest prevalence
being for chronic kidney disease at 0.63%. They found that the performance of the different
tools varied for different diseases, with prostate cancer prediction having some of the
highest accuracies and type 2 diabetes some of the lowest. Performance between the
tools themselves also varied. H2O produced some of the most accurate models across the
diseases examined, though Romero et al. noted that the variation between the tools was
not large [22].

In their 2021 paper, Ferreira et al. [9] compared the performance of eight open-source
AutoML tools. Like us, they used default settings for the different tools when possible.
Though they did not use the same datasets as we did, the tools they used included Auto-
Gluon and AutoKeras, two of the three used in this paper. AutoGluon was significantly
faster than the other tools. AutoKeras was one of the fastest deep learning/neural network
tools that they used. While it was the slowest tool used here, it was the only deep learning
tool used in this study. Ferreira et al. found that no single AutoML tool performed better
than the others across all datasets [9].

3. Methodology

In the following sections, available AutoML tools are introduced first, followed by
the ones included in this study and the inclusion criteria. Then, the existing datasets and
the details of the selected datasets are given, and the selected performance criteria are also
introduced in detail.

3.1. AutoML Tools

There are several open-source and proprietary AutoML tools available. The following
well-known AutoML tools (listed in alphabetical order) were considered for our study.
AutoGL is open source and was created at Tsinghua University for AutoML on graphs and
contains four modules, including auto feature engineering, model training, hyperparameter
optimization, and auto ensemble [23,24]. AutoGluon is an open-source tool created by
Amazon that can automate machine learning and deep learning algorithms for text, images,
and datasets [25–27]. AutoGluon evaluates and compares a variety of models and assists
in selecting the best model to utilize and fine-tune. It is developed to support very specific
problem types: regression and classification using tabular data, image classification, and
object detection. AutoGluon provides a user-friendly interface and tools that allow for
data to be trained effectively within a single line of code as it automatically balances
efficiency and performance, allowing for less headaches with hyperparameter editing [28].
AutoKeras is an AutoML system based on Keras and TensorFlow and was developed at
DATA Lab at the Texas AM campus [29–31]. AutoKeras allows for the building and training
of deep neural networks and automates the process of hyperparameter tuning and model
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selection with an easy-to-use interface [29]. Auto-Sklearn was built around scikit-learn and
automatically searches for the best machine learning algorithm for a dataset, along with
hyperparameter optimization [32,33]. Auto-Sklearn provides efficient processes to learn the
data and continue learning from similarly identified datasets through “meta-learning” and
a Bayesian optimizer, which learns from the preprocessed data, features, and classifier to
determine the best model approach [34]. While Auto-Sklearn can be an effective approach,
reliance on the data being large enough is a necessity [34,35]. MLBox is a library for Python
that offers powerful AutoML tools and predictive models for classification and regression.
It can use deep learning, stacking, and LightGBM and offers interpretations of prediction
models [36]. Neural Network Intelligence is an automated machine learning toolkit created
by Microsoft that searches for the best hyperparameters and neural architecture by running
trial jobs automatically [37]. PyCaret provides an ideal experience for productivity and low-
effort ML solutions and designs and launches quick prototypes [38,39]. PyCaret quickly
tests a variety of models, providing the data scientist with an effective understanding
of what models work efficiently and accurately between classification and regression
tasks [8]. TPOT (tree-based pipeline optimization tool) is another open-source automated
machine learning tool for Python, built on top of scikit-learn, that optimizes machine
learning pipelines [40]. TPOT is still in active development and can automate many
steps of the machine learning process, such as feature selection, feature preprocessing,
feature construction, model selection, and parameter optimization [40]. TPOT explores
thousands of possible pipelines using genetic algorithms and returns the best one for a
given dataset [40,41].

3.2. Details of the Selected AutoML Tools

Effective AutoML modeling choices for the various heart disease datasets were nar-
rowed down to AutoGluon, AutoKeras, and PyCaret. AutoGluon was chosen due to its
high performance and ease of use [38]. It evaluates several different machine learning
algorithms to find the best model for the data. These algorithms include ExtraTreeEntr,
RandomForestEntr, WeightedEnsemble-L2, ExtraTreesGini, RandomForestGini, XGBoost,
KneighborsUnif, and KNeighborsDist. Random forest is a machine learning algorithm that
uses multiple randomized decision trees (an algorithm based on splitting binary decision
nodes) to make predictions. The extra trees algorithm is similar to random forest except
that the split in the decision trees is randomly selected. The models with the Gini and Entr
suffixes indicate the measures used to determine how a decision tree node splits. These
measures are referred to as the Gini index and Entropy, which is a measure of the purity of
the split [42]. XGBoost is an extreme gradient-boosted tree with an ensemble algorithm,
with each tree boosting misclassified attributes of the previous tree [43]. K-nearest neighbor
is a machine learning algorithm that uses classification based on data points that are close
to each other. Weighted ensemble algorithms combine multiple model predictions, where
each model’s contribution is weighted based on how accurate the model is, creating a single
model based on the combination [44].

AutoKeras trains deep neural networks and performs model selection and hyper-
parameter tuning, with little user input required [29]. Some of the highest accuracies
achieved by previous research groups predicting heart disease using traditional methods
were obtained using neural networks [12,13]. Due to AutoKeras’s ease of use and other
researchers’ success using neural networks, AutoKeras was another tool that was selected.
AutoKeras offers classification and regression tools for image, text, and structured data.
It also offers a TimeSeriesForecaster and more advanced tools for multi-modal and multi-
task analyses and customized model development [29]. Default settings were used for
the AutoKeras StructuredDataClassifier, including max-trials = 100, epochs = 1000, and
validation-split = 0.2.

PyCaret, being built from the sklearn groundwork, allows for more adaptability and
model evaluation but relies more on the strength of the dataset and preprocessing prepa-
ration. PyCaret operates by applying multiple machine learning models and algorithms



AI 2023, 4 1041

to either preprocessed or unprocessed data to determine which machine learning model
best applies to the data given and grants the most accurate model to utilize [39]. A variety
of models are used within PyCaret [45], which include logistic regression, quadratic dis-
criminate analysis (QDA), light gradient boosting machine, linear discriminant analysis
(LDA), SVM, naïve Bayes (NB), and several other classifiers. PyCaret functions with a user
setup that establishes what the target variable for prediction is amongst all models that
are given within the PyCaret utility. PyCaret has various performance metrics embedded
that allowed the authors to compare the various algorithms, including a confusion ma-
trix, class prediction error, and precision–recall curve [8]. Post-data preprocessing enables
significantly better results within the model evaluation step and leads to model tuning,
which further refines the best-selected model and prepares it for prediction analysis [46].
The prediction function best operates after the best-selected model undergoes tuning and
then proceeds to test the given model with the test data that split after data preprocessing.
PyCaret does not just focus on singularly labeled data but also works within multiclass data,
which expands the capacity that it can operate with and provides further data analysis [47].

The selection criteria prioritized open-source tools that were compatible with the latest
version of Python. Compatibility ensured that the selected tools were actively maintained
and could be seamlessly used in Google Colab, our chosen analysis environment. To
provide a diverse range of approaches, we aimed to include a variety of tools. Auto Gluon
is predominantly based on decision tree methods, while Pycaret incorporates other machine
learning algorithms such as QDA, LDA, SVM, and NB, along with ensembles. Given the
limited availability of deep learning approaches for small datasets, only one neural network
tool, AutoKeras, was included [9,35]. Although it is possible to use the tools collectively, in
this study, we evaluated each tool as an independent solution.

3.3. Dataset

Multiple resources are available for datasets, such as Google [48], IEEE [49], Mende-
ley [48–50], Kaggle [50], and the University of California, Irvine (UCI) [51]. However,
patient privacy is an important consideration when handling health data, with HIPAA
requiring “IRB waiver or patient authorization for research” use of protected health in-
formation [52–55]. Some datasets are freely accessible, while others require a research
request or an access fee. Two open-access heart disease datasets available from UCI are the
Cleveland Heart Disease [54] and the Statlog (Heart) datasets [56]. Most of the previous
studies utilizing ML to predict heart disease used the Cleveland Heart Disease dataset
when training and testing their models, including Marimuthu et al. [14], Pol et al. [8],
Valarmathi et al. [20], Padmanabhan et al. [20], six research groups reviewed by Hazra
et al. [9], and three different research groups surveyed by Khan et al. [12]. Researchers
Dangare et al. [5], El Bialy et al. [55], Nagavelli et al. [15], Sarra et al. [56], and Ahmed [57]
used both the Cleveland and Statlog datasets in their analyses.

3.4. Details of the Selected Datasets

The Cleveland and Statlog datasets were both considered for use in this research due to
them being easily accessible and having been used by other researchers, allowing for direct
comparisons of results. However, when performing preliminary exploratory analysis, we
observed very similar patterns in the histograms and attribute distributions. This suggested
the possibility that the Statlog dataset is a subset of the Cleveland dataset, despite other
researchers having used both datasets in their analyses. The source of the Statlog dataset is
not clear in its documentation, so we compared the datasets and confirmed that Statlog is a
subset of Cleveland, making it unsuitable and redundant for our use. The second dataset
chosen was the Hungarian Heart Disease dataset, which is available from the same UCI
repository location as Cleveland. The Cleveland and Hungarian datasets are of a similar
size, with 303 and 294 observations, respectively, but Cleveland is more complete, with
fewer missing values: 6 versus 781. Besides these two datasets, two additional datasets,
UCI: Switzerland (123 samples) and Long Beach, CA (V.A. Medical Center) (200 samples)
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were utilized to form a larger third dataset containing 920 total samples. All datasets use
the same 13 attributes and a label, as shown in Table 1. General statistics for the datasets
are in Tables 2 and 3. Distributions for the different attributes for the combined dataset are
shown in Figure 1, 2 and 3 and are separated by heart disease status: HD positive versus
HD negative.

Table 1. Attribute descriptions of datasets.

Attribute Description

Age Age in years
Sex Sex (1 = male; 0 = female)
Cp Chest pain type
Trestbps Resting blood pressure (in mm Hg on admission to hospital)
Chol Serum cholesterol in mg/dL
Fbs Fasting blood sugar > 120 mg/dL (1 = true; 0 = false)
Restecg Resting electrocardiographic results
Thalach Maximum heart rate achieved
Exang Exercise-induced angina (1 = yes; 0 = no)
Oldpeak ST depression induced by exercise relative to rest
Slope The slope of the peak exercise ST segment
Ca Number of major vessels (0–3) colored by fluoroscopy
Thal 3 = normal; 6 = fixed defect; 7 = reversible defect
Num Diagnosis of heart disease (angiographic disease status)

Table 2. Number of missing values per attribute by dataset.

Attribute Cleveland Hungarian Switzerland VA

Trestbps 0 1 2 56
Chol 0 23 0 7
Fbs 0 8 75 7

ReThalach 0 1 1 53
Exang 0 1 1 53

Oldpeak 0 0 6 53
Slope 0 190 17 102

Ca 4 290 118 198
Thal 2 266 52 166

Attributes not shown were complete.

Table 3. Attribute correlations with label.

Attribute Cleveland Hungarian Combined

Thalach −0.417167 −0.331074 −0.385972
Fbs 0.025264 0.162869 dropped

Chol 0.085164 0.202372 -0.234679
Trestbps 0.150825 0.139582 0.103828
Restecg 0.169202 −0.031988 0.062304

Age 0.223120 0.159315 0.282700
Sex 0.276816 0.272781 0.307284

Slope 0.339213 dropped dropped
Cp 0.414446 0.505864 0.471712

Oldpeak 0.424510 0.545700 0.373382
Exang 0.431894 0.584541 0.443433

Ca 0.460033 dropped dropped
Thal 0.522057 dropped dropped
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Figure 1. Histograms of five continuous attributes from the combined dataset, filtered for heart
disease (+) positive and (−) negative patients.

Table 2 shows the number of missing values per attribute for each of the datasets used.
Age and sex are omitted from the table as they were complete in all datasets. The number of
missing values varied between datasets, with Cleveland being the most complete. Certain
attributes, like ca, thal, and slope, were excluded from analyses using the Hungarian,
Switzerland, or VA datasets due to very few observations being available. In addition to
the number of major vessels colored by fluoroscopy (ca), thalassemia, and slope, fasting
blood sugar (fbs) was also excluded from the combined dataset due to the large number of
missing values in the Switzerland dataset.

Histograms of the continuous attributes are shown in Figure 1, with heart disease-
positive patients on the right and negative on the left. The histograms clearly show the
differences between heart disease-positive and -negative patients. First of all, when the age
data were examined, it was seen that the age of positive patients was higher than that of
negative patients. This situation reflects that positive patients’ age distribution is skewed
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compared to negative patients. It was observed that trestbps (resting blood pressure) data
were generally reported in ten-unit increments. While it is noteworthy that the trestbps
values of negative patients were close to values such as 120, 130, and 140, an abnormal
outlier value of 0 was observed in positive patients. In Chol (serum cholesterol) data, there
were many outliers close to 0 in positive patients, while there were fewer outliers in negative
patients. These outliers were not specified in the dataset documentation, with missing data
denoted by “−9” or NaN. However, it is physically impossible for cholesterol or blood
pressure to be 0. Considering these outliers, the trestbps and cholesterol data appeared to
have similar skewness and kurtosis characteristics in positive patients compared to negative
patients, with higher mean values in positive patients. While Thalach (maximum heart
rate reached) data showed an approximately symmetrical distribution for positive patients,
the distribution was negatively skewed in negative patients and had a higher mean value.
Oldpeak (ST depression caused by exercise) data contained many 0 values. These 0 values
appeared to be actual observations and not missing values, given the magnitude of the
neighboring observations, but this was not noted in the data documentation or a quick
literature search. Additionally, approximately twice as many 0 values were observed in
positive patients than in negative patients. These data are presented in detail in Figure 1
and reveal significant differences in the datasets.

Figures 2 and 3 show the differences in different characteristics between heart disease-
positive and negative patients. Female patients (0) constituted a significant proportion
(about one-third) of the heart disease-negative group, while representing a smaller pro-
portion (about one-tenth) of heart disease-positive cases. The “cp” feature indicated that
patients with heart disease predominantly experience asymptomatic chest pain (4), while
typical angina (1) was rarely seen in heart disease-negative cases. Compared with other
individual features, the differences in “fbs” (fasting blood glucose) and “restecg” (resting
electrocardiography results) between the two groups of patients were less pronounced.
“Exang” (exercise-induced angina) was rare in heart disease-negative patients but common
in more than half of heart disease-positive cases. By understanding these complex patterns
between different characteristics, changes in factors affecting the diagnosis of heart disease
could be clearly observed, as shown in Figures 2 and 3.

Discrete attributes are shown in Figures 2 and 3. Women (0) were found to make
up less than a quarter of all patients but almost a third of heart disease-negative patients
and only about a tenth of heart disease (+) positive patients. In analysis, this makes sex
an important feature. Results obtained from analyses where data are not combined with
sex may be very different. Cp describes chest pain. Heart disease patients were found
to predominantly exhibit asymptomatic chest pain (4), while little typical angina (1) was
seen among negative patients. The differences in fasting blood sugar (fbs) and resting
electrocardiographic results (restecg) between heart disease (+) positive and (−) negative
patients were not as large as those for other discrete attributes. Very few heart disease (−)
negative patients were found to experience exercise-induced angina (exang), while more
than half of positive patients did.

The slope was flat (2) for most positive patients and rarely downsloping (3) for neg-
ative patients. The number of major vessels colored by fluoroscopy, ca, was seen to be
predominantly 0 for negative patients, but it is not known if this value is an observation
or only represents a missing observation. It was observed most heart disease (−) nega-
tive patients were normal for thalassemia, and most heart disease-positive patients had
a reversible defect. Num was the label, for which 0 indicated heart disease (−) negative
and 1 through 4 indicated heart disease-positive. All prior research we found using the
Cleveland dataset used a binary label. We chose to do the same for our analyses.
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Figure 2. Distributions of the first four of the eight discrete attributes from the combined dataset,
filtered for heart disease (+) positive and (−) negative patients, excluding the binary label.

Table 3 shows the correlations of the different attributes with the dependent variable,
num. The attributes chosen for analysis for each of the datasets are shown with unused
features marked as “dropped”. The number of major vessels colored by fluoroscopy (ca)
and thalassemia were both highly correlated with num in the Cleveland dataset, meaning
their exclusion in the Hungarian and combined datasets may have negatively impacted
prediction accuracy. Slope also had a correlation above 0.2 for the Cleveland dataset, though
not as high as for the number of major vessels colored by fluoroscopy (ca) or thalassemia.
The slope may be worthy of inclusion in future analyses with larger datasets, provided
there is an adequate number of observations available, as it has been found to be a useful
predictor in other applications [54]. The exclusion of fasting blood sugar (fbs) from the
combined dataset was supported by the relatively low correlations in the Cleveland and
Hungarian datasets.
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3.5. Performance Metrics Used

Accuracy and F1 score metrics were used to evaluate the performance of the AutoML
tools. Accuracy (ACC) is a measure of how well the model predicts the outcome. The
formula for accuracy is the number of correct predictions divided by the total number of
predictions (Equation (1)). This metric, however, can be biased due to data imbalances and
thus lead to skewed results.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

One metric that takes this into account and is commonly used for machine learn-
ing is the F1 score. The F1 score is the harmonic mean between precision and recall
(2 times the product of precision and recall divided by the total sum of precision and
recall) (Equation (4)). Precision is defined as the number of true positives divided by the
sum of true positives and false positives (Equation (2)). The recall metric is the num-
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ber of true positives divided by the total number of true positives and false negatives
(Equation (3)) [58].

Precision =
TP

(TP + FP)
(2)

Recall =
(TP)

(TP + FN)
(3)

F1 score = 2
(precision × recall)
(precision + recall)

(4)

3.6. Applying Traditional Steps of Manually Generating the Well-Performing Model

To benchmark the performance of AutoML-generated models against those produced
by traditional manual techniques, we meticulously followed a series of steps to develop
a classification model using sklearn libraries for heart disease using the Cleveland Heart
Disease dataset:

(1). Data Cleaning: Rows with missing information in the “ca” and “thal” columns were
removed to ensure data integrity.

(2). Data Type Conversion: All fields were converted to numeric data types to facilitate
subsequent analysis and modeling.

(3). Correlation Analysis: The correlations between the fields and the target label were
analyzed. Four fields (“chol”, “fbs”, “trestbps”, “restecg”) with correlations below 0.2
were identified and subsequently dropped from the dataset.

(4). Data Scaling: The remaining data were scaled to normalize the feature values and
ensure comparability across different variables.

(5). Cross-validation: Cross-validation (k = 5) accuracy scores were calculated for 10 dif-
ferent machine learning algorithms. The algorithms used were stochastic gradient de-
scent (SGD), logistic regression, support vector machine with a linear kernel, support
vector machine with an RBF kernel, decision tree classifier, random forest classifier,
extra trees classifier, AdaBoost classifier, gradient boosting classifier, and XGBoost.

(6). Hyperparameter Tuning: The top-performing algorithms (AdaBoost, rando forest,
gradient boosting, XGBoost) were selected for further improvement through hy-
perparameter tuning. A grid search was performed using various combinations of
hyperparameters, including n-estimators (100, 200, 300, 400, 500), learning-rate (0.3,
0.1, 0.05), max-features (1, 0.7, 0.5, 0.4, 0.3), subsample (1, 0.5, 0.3), max-samples (1,
0.5, 0.3, 0.2), and bootstrap (True, False).

(7). Ensemble Voting Classifier: Based on the fine-tuned estimators (AdaBoost, random
forest, gradient boosting, XGBoost) and the other top-performing estimators (SVC,
SGD, logistic regression), an ensemble voting classifier was constructed. This ensem-
ble classifier combined the predictions of multiple models, leveraging their collective
knowledge to make a final classification decision.

By following these steps, we conducted a comprehensive analysis and model selection
process to generate the most effective machine learning model utilizing the machine-
learning algorithms listed above and forming an ensemble learning model for classifying
heart disease using the Cleveland Heart Disease dataset. The outcome of the above steps is
shared and compared in the Results section and the code is available on GitHub [58].

4. Results

The datasets were analyzed using PyCaret v3.0, AutoGluon v0.7.0, and AutoKeras
v1.1.0. Default settings were used for all AutoML tools. Missing values were imputed to
the respective attribute’s mode, if discrete, and mean, if continuous. Attributes ca, thal,
and slope were excluded from the Hungarian data analyses due to missing more than
half of each of these attributes. Data were split with 80% for training and 20% for testing,
using stratified sampling by sex. Stratified sampling was used due to the difference in
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representation by sex. This difference was less pronounced in the Cleveland and Hungarian
datasets, but it was more significant in the Switzerland and VA datasets. We verified that
the representation of heart disease-positive patients was approximately the same for both
the training and testing subsets of the Cleveland, Hungarian, and combined datasets: 46%,
36%, and 55%, respectively. We also verified that the data were successfully split using
stratified sampling. The testing and training datasets were both approximately 33%, 27%,
and 21% female for the Cleveland, Hungarian, and combined datasets, respectively.

As described in the previous Methodology section, we performed traditional steps
to develop a well-performing machine learning model using the sklearn libraries on the
Cleveland dataset to compare the manually generated models with the models generated by
the AutoML tools. The manual steps included cleaning the data, reducing the data based on
correlation analysis, exploring the performance of 10 machine learning algorithms, selecting
top-performing models and applying hyperparameter fine-tuning, and then ensembling
various top-performing models to form a well-performing model. The results of this
manual approach are in Table 4.

Table 4. ML model generation using traditional manual steps on the Cleveland dataset.

Machine Learning Algorithm Accuracy (Correlated) Accuracy (Unreduced)

Stochastic Gradient Descent (SGD) 0.59 0.58
Logistic Regression 0.59 0.59
Support Vector Machine (SVM)
(Linear Kernel) 0.55 0.57

Support Vector Machine (SVC)
(RBF Kernel) 0.57 0.56

Decision Tree 0.52 0.49
Random Forest 0.62 0.59
Extra Trees 0.57 0.57
AdaBoost 0.58 0.57
Gradient Boosting 0.60 0.59
XGBoost 0.55 0.56
Ensemble of the following:
AdaBoost, Random Forest,
Gradient Boosting, XGBoost,
SVM-Linear, SGD, Logistic
Regression

0.60 0.58

As shown in Table 4, the best-performing models were based on ensemble algorithms
such as random forest, gradient boosting, and our custom ensemble model that combined
seven models. When the dataset was processed by reduction based on correlated fields,
it tended to perform better, as can be noticed by comparing accuracy scores using the
correlated and unreduced datasets in Table 4. Results from analyses using the three different
AutoML tools on the three different datasets are in Tables 5 and 6. Data in the “correlated”
row are for the outcome performed on datasets using only features that correlated with
the label of at least 0.2. The “unreduced” data are for the outcome where all features were
used. The top three models from the leaderboard are listed for PyCaret and AutoGluon
in Tables 5–7. Results from a single analysis for AutoKeras for each dataset are shown.
Accuracies for repeat analyses using AutoKeras are shown in Table 8.

PyCaret accuracies were generally in the low eighties with slightly lower F1 scores.
AutoGluon accuracies were the highest of all three AutoML tools. Its accuracies for the
unreduced dataset were in the mid-to-high eighties and its F1 scores were the same or
higher. The correlated dataset results were slightly lower, in the mid-eighties, except for
the results achieved by the top model on the leaderboard, which were only around 78%.
The accuracy for the unreduced dataset, when analyzed using AutoKeras, was comparable,
about 80%, with a slightly higher F1 score. The AutoKeras accuracy for the Cleveland
correlated dataset was only 54%. The F1 score was still poor but substantially better at
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approximately 67%. Other analyses using the same data and input conditions produced
much higher accuracies (see Tables 5–7).

Table 5. Cleveland dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Cleveland

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.8525
0.8215
0.8180

0.8037
0.7998
0.7939

1. Linear Discriminant Analysis
2. Ridge Classifier
3. Naïve Bayes

AutoGluon
0.8688
0.8688
0.8524

0.8709
0.8709
0.8524

1. WeightedEnsemble_L2
2. RandomForestGini
3. RandomForestEntr

AutoKeras 0.8033 0.8182 N/A

Correlated:

PyCaret
0.8137
0.8048
0.8008

0.8012
0.7814
0.7775

1. Logistic Regression
2. Linear Discriminant Analysis
3. Ridge Classifier

AutoGluon
0.7868
0.8524
0.8360

0.7796
0.8474
0.8333

1. WeightedEnsemble_L2
2. RandomForestGini
3. RandomForestEntr

AutoKeras 0.5410 0.6667 N/A

Table 6. Combined dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Combined

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.6873
0.6833
0.6832

0.6678
0.6839
0.6484

1. Logistic Regression
2. Linear Discriminant Analysis
3. Ridge Classifier

AutoGluon
0.8478
0.8478
0.8423

0.8691
0.8691
0.8651

1. WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesGini

AutoKeras 0.8152 0.8365 N/A

Correlated:

PyCaret
0.7826
0.7459
0.7432

0.7311
0.7168
0.7260

1. Random Forest Classifier
2. Ridge Classifier
3. Logistic Regression

AutoGluon
0.8423
0.8423
0.8369

0.8638
0.8638
0.8369

1. WeightedEnsemble_L2
2. RandomForestEntr
3. RandomForestGini

AutoKeras 0.8315 0.8545 N/A

Table 7. Hungarian dataset analysis using PyCaret, AutoGluon, and AutoKeras.

Hungarian

Accuracy F1 Score Best Model

Unreduced:

PyCaret
0.6976
0.6806
0.6766

0.6465
0.6092
0.6334

1. Logistic Regression
2. Ridge Classifier
3. Linear Discriminant Analysis

AutoGluon
0.8475
0.8474
0.8305

0.7804
0.7804
0.7619

1.WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesEntr

AutoKeras 0.8305 0.7059 N/A
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Table 7. Cont.

Hungarian

Accuracy F1 Score Best Model

Correlated:

PyCaret
0.8304
0.8303
0.8263

0.7516
0.7506
0.7470

1. Ridge Classifier
2. Log. Regression
3. Linear Discriminant Analysis

AutoGluon
0.8983
0.8983
0.8644

0.8500
0.8500
0.8095

1. WeightedEnsemble_L2
2. RandomForestEntr
3. ExtraTreesGini

AutoKeras 0.8305 0.7059 N/A

Table 8. Run times and accuracies from repeat analyses using AutoKeras.

Run 1 Run 2 Run 3 Mean σ st. dev.

Accuracy Run Time Accuracy Run Time Accuracy Run Time

Cleveland Unreduced 0.8197 40 m 51 s 0.7705 6 m 5 s 0.8033 6 m 35 s 0.7978 σ 0.0251
Correlated 0.7541 18 m 47 s 0.8197 6 m 29 s 0.7705 11 m 10 s 0.7814 σ 0.0341

Hungarian Unreduced 0.8644 7 m 36 s 0.7966 10 m 29 s 0.6610 52 m 27 s 0.7740 σ 0.1035
Correlated 0.8136 5 m 34 s 0.8644 7 m 55 s 0.6610 7 m 23 s 0.7797 σ 0.1059

Combined Unreduced 0.8478 18 m 24 s 0.8207 15 m 57 s 0.8478 12 m 54 s 0.8388 σ 0.0156
Correlated 0.7989 35 m 51 s 0.8152 10 m 41 s 0.7880 24 m 02 s 0.8007 σ 0.0137

PyCaret’s performance on the unreduced Hungarian dataset was significantly worse
than that on the Cleveland dataset, with accuracies in the upper 60% and lower F1 scores.
Although PyCaret accuracies for the correlated dataset were back in the eighties, the F1
scores were much lower at only about 75%. Accuracies resulting from AutoGluon were
all in the mid-to-upper eighties, but its F1 scores were also lower than was seen when
using the Cleveland dataset. AutoKeras results were similar, with 83% accuracies and 71%
F1 scores.

When analyzing the combined dataset, PyCaret’s results were similar to those it
achieved when analyzing the Hungarian dataset and lower than those for the Cleveland.
Results were below seventy for the unreduced dataset and in the mid-to-low seventies for
the correlated.

AutoGluon performed well, with accuracies around 84% and most F1 scores around
86%. AutoKeras results for these runs were also greater than 80%. The code used to obtain
the above results is shared on the GitHub page [58]. The open-source code includes ex-
ploratory data analysis; AutoML implementation for AutoGluon, PyCaret, and AutoKeras;
as well as the code that performed model generation by following the traditional steps.

5. Discussion

The AutoML tools in question function by autonomously testing various embedded
algorithms and subsequently presenting the most effective model. As users, we lacked
the facility to specify a particular model for application; instead, the tools independently
determined the optimal choice. Our comparative analysis, therefore, did not stem from
a selection of models we wished to evaluate side by side. Rather, it arose from assessing
the peak-performing model provided by one AutoML tool against the counterpart from
another, essentially comparing the pinnacle of what each tool asserted to be its most
proficient solution.

Our analysis operated under the assumption that tool developers had carefully chosen
the best hyperparameters to enhance their tool’s performance. Respecting their expertise,
we did not modify these parameters, trusting that the default settings were optimized for
peak performance. We analyzed each tool in its default state, mirroring typical user experi-
ence without advanced machine learning knowledge. This approach provided valuable
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insights into the performance of each tool with minimal customization—important for
users unfamiliar with algorithm intricacies or specific tuning options. AutoML tools have
diverse adjustable settings, complicating any attempt to standardize them with identical
algorithms. For example, AutoKeras focuses on neural architecture search (NAS) to find
the most effective neural network configuration, but it does not inherently support tradi-
tional models like SVM, decision trees, or random forests. This makes a direct comparison
using the same algorithms and parameters across different tools both complex and often
impractical.

By following examples on the AutoKeras website, building and evaluating a basic
model was easy, requiring little to no data preprocessing. However, while model customiza-
tion and tuning are possible, the website resources could be more in-depth and accessible
to an inexperienced user. Performance inconsistency between runs was an issue during
the analysis. Repeat analyses took different run times and produced models with different
accuracies. Run times and accuracies, including means and standard deviations, obtained
from three sets of analyses are shown in Table 8.

The model produced from one of these runs (on the unreduced Cleveland dataset,
run 3) is shown in Table 9. The resulting model and number of parameters varied widely
for the various runs, sometimes having fewer than 1500 parameters and sometimes more
than 50,000. Models always consisted of some dense layers and sometimes also included
one or more normalization/batch-normalization layers and/or dropout layers. The number
of dense layers varied between models, but ReLU activation functions were always used
for the hidden layers. The official website documentation for AutoGluon was fairly easy
to follow and contained several tutorials on how to use the tool. However, in-depth
explanations of how to use and interpret results were lacking and would require the user
to have a prior understanding of machine learning. The user would need to look to other
resources for a better understanding of machine learning concepts. AutoGluon also tends
to default to the best model when displaying results; however, this can be changed with
input options. Models with the best validation scores also did not always provide the best
accuracy on the test data; however, with more test data, this may have changed and thus
more datasets would be needed for testing. Advanced custom metrics are also possible with
AutoGluon, but this requires an in-depth understanding of statistics and machine learning
that is likely beyond the basic user. A useful feature with AutoGluon is the leaderboard,
which displays models based on validation score by default with no inputs or by accuracy
if test data are inputted. An example leaderboard of the AutoGluon tool is presented in
Table 10.

Table 9. Example neural network produced by AutoKeras.

Layer (Type) Output Shape Param

Input1(InputLayer) [(None, 13)] 0
MultiCategoryEncoding (None, 13)

(MultiCategoryEncoding) 0 0
Normalization

(Normalization) (None, 13) 27

Dense (Dense) 0.150825 896
Relu(ReLU) 0.169202 0

Dense1(Dense) 0.223120 16,640
Relu1(ReLU) 0.276816 0

Dense2(Dense) 0.339213 32,896
Relu2(ReLU) 0.414446 0

Dense3(Dense) 0.424510 129
Classificationhead1 0.431894 0

(Activation) 0.460033
Total params: 50,588

Trainable params: 50,561
Non-trainable params: 27
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Table 10. Example AutoGluon leaderboard (unreduced combined dataset).

Model Score_Test Score_Val Pred_Time_Tes Pred_Time_Val Fit_Time Pred_Time_
Test_Marginal

Pred_Time_
Val_Marginal

Fit_Time_
Marginal

0 RandomForestEntr 0.847826 0.797297 0.036896 0.024798 0.2945 0.036896 0.024798
1 WeightedEnsemble_L2 0.847826 0.810811 0.123012 0.074949 0.979291 0.001744 0.000401
2 RandomForestGini 0.842391 0.77027 0.037669 0.025544 0.297175 0.037669 0.025544
3 ExtraTreesGini 0.842391 0.783784 0.041508 0.024531 0.28753 0.041508 0.024531
4 ExtraTreesEntr 0.826087 0.77027 0.046702 0.024206 0.282546 0.046702 0.024206
5 XGBoost 0.809783 0.722973 0.005913 0.003386 0.023183 0.005913 0.003386
6 KNeighborsDist 0.690217 0.668919 0.00367 0.001662 0.004442 0.00367 0.001662
7 KNeighborsUnif 0.690217 0.662162 0.014753 0.002047 0.012023 0.014753 0.002047
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PyCaret documentation is well labeled and defined, making it quick to understand the
capacity of utility that it has available to offer, covering several machine learning techniques
(classification, regression, anomalies, clustering, and time series). Opening any one of the
tabs for the desired technique immediately gives insight into the higher workings and
functions of the chosen function, which makes it appear convoluted, but those familiar with
machine learning will be able to understand all that they provide and the freedom of its
utility for these AutoML tools. Functionally, when PyCaret runs with the chosen technique,
it provides a leaderboard like other AutoML tools, which displays the top-ranked models
by various scores (F1, accuracy, etc.) that best apply to the data that it was given. Across
the leaderboard, it usefully highlights the best scores in each given category; however,
the ranking will sometimes find better scores for different models as opposed to the best
model across the leaderboard. Testing the PyCaret AutoML tool with the Heart Disease
datasets was proven to have successful results in identifying efficient models that can be
utilized, especially after implementing data preprocessing and reducing the dataset to
focus on the parameters that matter more. In some circumstances, there have been less
promising results, giving lower accuracy, and this could be because of the differing size of
the data in some cases, as well as potentially not reducing the datasets to isolate the more
correlated features.

The impact of feature selection performed when reducing the datasets based on corre-
lation was not clear. When using AutoGluon, the accuracy, after reducing for correlation,
was worse for the Cleveland dataset, better for the Hungarian, and almost the same for
the combined. Results for the unreduced and correlated versions were similar for all three
datasets when AutoKeras was used. Interestingly, the accuracy obtained by AutoGluon for
the “correlated” Cleveland dataset is among the lowest in Table 4. This could be a case of
underfitting for this particular dataset and the model combination. Other than this result,
AutoGluon produced consistent results and some of the highest accuracies. The best model,
based on validation accuracies, for each analysis was WeightedEnsemble-L2.

Unlike PyCaret and AutoGluon, repeat analyses using AutoKeras produced different
models and different accuracies. In addition to the disadvantage of inconsistent results,
AutoKeras took the longest to run, with some of its shortest run times still longer than
those for the other two tools. The datasets used here were small. The time required by
AutoKeras could be a prohibitive problem for large datasets.

Traditional manual steps were applied to create ML models utilizing ten machine
learning algorithms and an ensemble model that merged seven well-performing models,
and the results are presented in Table 4. When these results are compared with the results
achieved using the AutoML tools, it can be noticed that the AutoML tools generated
ML models that could perform much better than manually created models. The top-
performing models created manually performed with around 60% accuracy, while the
top-performing AutoML-generated models performed with around 85% accuracy on the
same Cleveland dataset.

In addition to comparing results with those of conventional machine learning models
that were generated using sklearn libraries, deep learning models could be manually devel-
oped using libraries such as Tensorflow, Keras, or PyTorch to compare with them with the
AutoKeras AutoML tool’s models. This comparison could include a detailed explanation of
parameters and FLOPS used during the training. In the literature, researchers have claimed
to achieve up to 95% accuracy on heart disease datasets [12–22,59,60]. However, we did
not have a chance to repeat the results of these studies since the code and configurations
were not shared. To let other researchers compare their results with ours, we open-sourced
our code that utilized AutoML tools and applied traditional model generation steps on
GitHub [58]. Accuracies and F1 scores are the key metrics in Tables 5–7; however, accuracy
alone should not be considered a true metric as it may not provide a complete picture of
a model’s performance. It does not consider the nuances of different classes, class imbal-
ances, or the cost associated with misclassification. Relying solely on accuracy may lead to
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misleading conclusions, especially in scenarios where the dataset is imbalanced or the costs
of the false positives and false negatives differ significantly.

When utilizing a machine learning tool to aid in medical diagnosis, it is critical that
expert knowledge is employed in both judging the soundness of the medical results and
the relevance of a wide range of relevant model metrics. While accuracy measured the
overall correctness of the predictions, precision focused on the proportion of true positives
among all predicted positives, and recall focused on the proportion of true positives among
all actual positives. In scenarios where class imbalance exists, optimizing for high accuracy
may result in low precision or recall as the model may favor the majority class. Therefore,
a trade-off exists between accuracy and precision/recall, and the choice depends on the
specific requirements of the application. F1 scores combine precision and recall into a single
metric, providing a balance between the two. However, optimizing for F1 score may not be
suitable in all scenarios. In some cases, precision or recall may be more important, and a
trade-off exists between F1 score and precision/recall. We decided to utilize accuracy and
F1 score metrics since many of the comparable studies utilized these metrics. However,
sensitivity and specificity are also important metrics generally used in the medical domain.
Further studies should consider utilizing sensitivity and specificity as well. In the process
of optimizing a model, it is important to consider that as models become more complex
and accurate, they often require more computational resources and longer inference times.
There is a trade-off between achieving higher accuracy and the computational cost required
for inference. There is also the risk of overfitting. Overfitting occurs when a model performs
well on the training data but fails to generalize to unseen data, while underfitting occurs
when a model is too simple to capture underlying patterns in the data. These represent
opposite ends of a trade-off. Increasing model complexity may reduce underfitting but
increase the risk of overfitting, while reducing model complexity may reduce overfitting
but increase the risk of underfitting.

In addition to model evaluation metrics, essential to account for are the limitations of
the data, assumptions made, and constraints applied. We acknowledge and discuss/explain
these uncertainties to help readers gain a more nuanced understanding of the limitations
and potential sources of error associated with the evaluation metrics. We hope this will
promote transparency and help readers interpret the results more accurately. Dataset
limitations included size, quality, representativeness, and potential biases. The datasets
used in this paper were very small. Although they have been used in numerous other
studies, allowing for easier comparison of results, small size means the datasets are not
likely to be representative of large populations and may be more susceptible to selection
biases. There were also a large number of missing values in all but the Cleveland datasets.
A key assumption made during this analysis was that these datasets and tools can be used
to effectively predict heart disease. This is a huge assumption, and it should be noted that
employing machine learning, particularly black-box tools like AutoML, requires caution
and diligence. The data used here included both male and female patients. However, this
may have led to the importance of other features being suppressed. Different features
may have different levels of importance for male and female patients as well. This is
not accounted for in this paper, but female under-representation in medical research is a
well-known and persistent problem. Of the 41,622 participants in US government clinical
trials analyzed by Mayor et al., only about 27.5% of them were female. [54] Future research
should explore how sex impacts feature importance and model performance. Moreover,
larger datasets could be used to assess model performances, including accuracies, precision,
recall, and inference times.

Some features were excluded from our analyses using the combined dataset due to
missing data. The inclusion of these, as well as other previously unused variables, may
have had a significant impact on tool performance. The binary classification was used here;
however, all three AutoML tools have the ability to perform multilabel classification, and
their performances at this task could be compared in the future. Two previous examples we
referenced of AutoML tools being used to analyze heart disease data were from 2021 [8,15].
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New studies are needed to comprehensively test the performance of these and additional
AutoML tools as these tools continue to be developed and improved. Two AutoML tools
that were developed specifically for the medical field were found while working on this
project [61–63]. AutoPrognosis was first released in 2018 and uses Bayesian optimization to
create and optimize pipeline ensembles [60]. An updated version of the tool, AutoPrognosis
2.0, was released in 2022 [63–65]. Pharm-AutoML was developed by Genentech employees
Liu, Lu, and Lu in 2020 [65]. If using csv-formatted data, Pharm-AutoML can handle steps
from data preprocessing through model selection and evaluation for multiclassification
problems [61]. AutoPrognosis 2.0 and Pharm-AutoML are both open-source and have been
used to analyze heart disease datasets, though different from the data we used [62–66].

6. Conclusions

This study ventured into the effectiveness of automated machine learning (AutoML)
tools for heart disease diagnosis and discovered that AutoGluon consistently outperformed
its peers, with accuracy rates ranging from 78% to 86%. PyCaret’s performance was found
to vary depending on the dataset, with accuracy rates from 65% to 83%, suggesting a
nuanced relationship between tool efficacy and dataset characteristics. AutoKeras showed
the most variation in results, with accuracies between 54% and 83%, indicating the potential
for high performance but also a significant dependency on the dataset used.

Compared to traditional machine learning methods, which yielded accuracy rates of
55% to 60% via standard practices like exploratory data analysis (EDA), data cleaning, fea-
ture engineering, and various modeling algorithms from the sklearn library, the advantage
of AutoML tools is clear. This discrepancy illustrates the promising potential of AutoML
to revolutionize diagnostic accuracy and make sophisticated analyses more accessible to
healthcare practitioners.

The insights from this study suggest that AutoML tools, especially AutoGluon, have
the capacity to significantly refine and expedite the diagnostic process, with profound
implications for the treatment and prevention of heart disease internationally. Nevertheless,
this investigation serves as an initial step towards a broader and more detailed exploration
of AutoML’s capabilities, underscoring the necessity for future research that includes
larger and more varied datasets as well as a wider array of AutoML tools, potentially
revolutionizing patient care in the process.
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