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Topology and arithmetic of resultants, II: the

resultant = 1 hypersurface

Benson Farb and Jesse Wolfson ∗

With an appendix by Christophe Cazanave

November 16, 2015

Abstract

We consider the moduli space Rn of pairs of monic, degree n polynomials whose re-
sultant equals 1. We relate the topology of these algebraic varieties to their geometry and
arithmetic. In particular, we compute their étale cohomology, the associated eigenvalues
of Frobenius, and the cardinality of their set of Fq-points. When q and n are coprime,
we show that the étale cohomology of Rn/Fq

is pure, and of Tate type if and only if q ≡ 1
mod n. We also deduce the values of these invariants for the finite field counterparts of
the moduli spacesMn of SU(2) monopoles of charge n in R3, and the associated moduli
space Xn of strongly centered monopoles.

An appendix by Cazanave gives an alternative and elementary computation of the
point counts.

1 Introduction

Consider two monic, degree n ≥ 1 complex polynomials

φ(z) = zn + an−1z
n−1 + · · · + a1z + a0

and
ψ(z) = zn + bn−1z

n−1 + · · ·+ b1z + b0.

A beautiful classical fact is that the condition for φ and ψ to have a common root is
polynomial in the coefficients ai and bj. More precisely, φ and ψ have a common root if and
only if

R(φ,ψ) := R(a0, . . . an−1, b0, . . . , bn−1) = 0 (1.1)

∗B.F. is supported in part by NSF Grant Nos. DMS-1105643 and DMS-1406209. J.W. is supported in
part by NSF Grant No. DMS-1400349.
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where R is the resultant, given by

R(φ,ψ) = det
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












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

a0 a1 · · · an−1 1 0 · · · 0
0 a0 · · · · · · an−1 1 · · · 0
...

...
...

...
...

...
...

...
b0 b1 · · · bn−1 1 0 · · · 0
0 b0 · · · · · · bn−1 1 · · · 0
...

...
...

...
...

...
...

...
0 0 · · · b0 · · · · · · bn−1 1
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




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











This is a homogeneous polynomial of degree n in the ai and similarly in the bi. It has
integer coefficients. Fix a field k, and denote by An the affine space over k. The resultant
can be thought of as a map

R : A2n
// A1

from the space A2n of pairs of monic, degree n polynomials to k. The resultant locusMn :=
A2n \ R−1(0) is a classically studied object. It is isomorphic to the moduli space of degree
n rational maps P1 // P1 taking ∞ to 1. Harder to understand is the “resultant = 1”
hypersurface Rn := R−1(1) in A2n.

Since the polynomial R has integer coefficients, we can extend scalars to C and consider
the complex points Rn(C), and we can also reduce modulo p for any prime p. This gives a
variety defined over Fp, and for any positive power q = pd we can consider both the Fq-points
as well as the Fq-points of Rn, where Fq is the algebraic closure of Fq. Three of the most
fundamental arithmetic invariants attached to a such a variety Rn are:

1. The cardinality |Rn(Fq)|.

2. The étale cohomology H∗
et(Rn/Fq ;Qℓ), where ℓ is a prime not dividing q.

3. The eigenvalues of the (geometric) Frobenius morphism

Frobq : H
∗
et(Rn/Fq ;Qℓ) //H∗

et(Rn/Fq ;Qℓ).

Our main theorems compute the étale cohomology of Rn as well as the associated eigen-
values of Frobenius, building on the topological work of Segal and Selby [SS96]. We then
apply this to compute the cardinality of finite field versions of these moduli spaces; that is,
of Rn(Fq) and Xn(Fq), where Fq is a finite field.

There is a canonical µn-action on Rn; see Section 2.1. This induces a µn-action on
H∗
et(Rn/Fq ;Qℓ). Since Qℓ has characteristic 0, it follows that H∗

et(Rn/Fq ;Qℓ) ⊗Qℓ C decom-
poses into a direct sum of irreducible representations of µn. The irreducible representations
of µn are parametrized by integers m with 0 ≤ m < n, corresponding to ξ 7→ e2πim/nξ;
denote this irreducible representation by Vm. Let H

∗
et(Rn)m denote the isotypic component

of H∗
et(Rn;Qℓ) ⊗Qℓ C corresponding to Vm. Denote by H i

et(Rn/Fq ;Qℓ)
µn the subspace of

µn-fixed vectors.
Denote by Qℓ(−i) the rank 1 Gal(Fq/Fq)-representation on which Frobenius acts by qi.

Also, recall that the étale cohomology of a variety X is pure if the absolute values of the

eigenvalues of Frobq on H
i
et are all q

i
2 ; as Deligne showed, this is always the case when X is

smooth and projective. The group H i
et(XFq

;Qℓ) is of Tate type if the eigenvalues of Frobq
are all equal to powers of q.
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Theorem 1.1 (Étale cohomology of Rn). Let n ≥ 1. For all but finitely many primes p
not dividing n, and for all positive powers q = pd:

1. The ℓ-adic cohomology of Rn/Fq is pure.

2. The µn-invariants are concentrated in degree 0:

H i
et(Rn/Fq ;Qℓ)

µn ∼=

{

Qℓ(0) i = 0
0 i 6= 0

3. H2i+1
et (Rn/Fq ;Qℓ) = 0 for all i.

4. For i > 0, H2i
et (Rn/Fq ;Qℓ) is nonzero if and only if i < n and (n − i)|n. In this case,

it is of Tate type if and only if q ≡ 1 mod n
n−i . More precisely, let Oa := {1 ≤ m ≤

n | (m,n) = a}. Then we have a Frobq-invariant decomposition

H2i
et (Rn/Fq ;Qℓ)⊗Qℓ C

∼=





⊕

m∈On−i

C



⊗Qℓ(−i)

where Frobq acts on the direct sum by Cm
1

// Cqm mod n. In particular:

(a) If (n − i) ∤ n, then the rank of H2i
et (Rn/Fq ;Qℓ) is 0. If i < n and (n − i)|n, then

H2i
et (Rn/Fq ;Qℓ) has rank equal to Euler’s totient function φ( n

n−i).

(b) The Frobq action is given by the permutation representation coming from the
action of Frobq on On−i.

(c) When q 6≡ 1 mod n
n−i , the trace of this representation is 0.

(d) When q ≡ 1 mod n
n−i , Frobq acts on H2i

et (Rn/Fq ;Qℓ) by multiplication by qi, and

the trace is qi · φ( n
n−i ).

Remark 1.2.

1. The variety Rn/Fq is smooth (so long as (q, n) = 1), but not projective, and thus purity
does not follow from Deligne.

2. The failure ofH2i
et (Rn/Fq ;Qℓ) to be Tate type is precisely the failure of the group-scheme

µ n
n−i

to be Tate type over Fq. See below for details.

Corollary 1.3 (Isotypic decomposition when q ≡ 1 mod n). Let n ≥ 1 as above. Then
for q ≡ 1 mod n, the isotypic decomposition of H∗

et(Rn/Fq ;Qℓ) is Frobq-invariant, and for
any 1 ≤ m ≤ n− 1:

H2i
et (Rn/Fq )m

∼=

{

Qℓ(−i)⊗ C gcd(m,n) = n− i
0 else

Thus, for each i ≥ 0:

H2i
et (Rn/Fq ;Qℓ) ∼=

⊕

{m∈On−i}

Qℓ(−i)

3



Note that for n prime and q ≡ 1 mod n,

H i
et(Rn/Fq ;Qℓ)







Qℓ(1− n)
⊕(n−1) i = 2n− 2

Qℓ(0) i = 0
0 else

Theorem 1.1 gives not only the étale cohomology of the varieties Rn, but it also computes
the eigenvalues of Frobenius acting on these varieties over Fq. Applying the Grothendieck-
Lefschetz trace formula, we conclude the following.

Corollary 1.4 (Cardinality of Rn(Fq)). Let n ≥ 1. Then for all but finitely many primes
p ∤ n, for each positive power q of p, let

F(q, n) : {a : a|n and q ≡ 1 mod
n

a
}.

Then

|Rn(Fq)| = q2n−1





∑

a∈F(q,n)

φ(
n

a
) · qa−n



 .

In particular, for (q − 1, n) = 1,
|Rn(Fq)| = q2n−1,

and for q ≡ 1 mod n,

|Rn(Fq)| = q2n−1

(

n−1
∑

i=0

φ(
n

n− i
) · q−i

)

.

where we define Euler’s totient function to be identically 0 on Q \ N. When n is prime and
q ≡ 1 mod n, this gives

|Rn(Fq)| = q2n−1 + (n− 1)qn.

We also include an appendix, by Cazanave, in which the above point count (as well as the
case when (q, n) 6= 1) is deduced by elementary means, i.e. without using étale cohomology.

The results of this paper provide an example of a broader program applying this viewpoint
to make concrete calculations for various moduli spaces. For more, see [FW]. The varieties
Rn are closely related to some moduli spaces studied in physics, namely moduli spaces of
magnetic monopoles. In §3 we apply the results above to deduce similar theorems for these
moduli spaces.

Remark on the proofs. One novelty of the proofs in this paper is that we obtain informa-
tion about various algebraic varieties Z defined over Z by traversing, in different directions,
a “triangle” of viewpoints: arithmetic (|Z(Fq)|); topological (H∗(Z(C);Q)); and geometric
(Frobq acting on H∗

et(Z/Fq ;Qℓ)). As an example, the logic of the starting point of the proofs
of Theorem 1.1 and Corollary 1.4 is as follows:

4



Compute |Mn(Fq)| =⇒=⇒ deduce H∗
et(Mn/Fq

;Qℓ)

Grothendieck-Lefschetz and e-values of Frobq
trace formula on it

⇓ transfer
⇓

obtain |Rn(Fq)| ⇐=⇐= Compute H∗
et(Rn/Fq ;Qℓ)

Grothendieck-Lefschetz and e-values of Frobq
trace formula

The upper horizontal deduction is a special case of the results of the first paper in this series
[FW]. We take this as a starting point in order to make the remaining deductions.

Acknowledgements. We are grateful to Sasha Beilinson, Weiyan Chen, Jordan Ellenberg,
Matt Emerton, Nir Gadish, Jackson Hance, Sean Howe, Peter May, Joel Specter, Shmuel
Weinberger, and Melanie Wood for helpful conversations. We thank Joe Silverman for helpful
comments on an earlier draft. Finally, we would especially like to thank Christophe Cazanave,
not only for contributing the appendix, but also for his many comments, corrections and
suggestions; they have greatly improved this paper.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Throughout this section we fix n ≥ 1 and a prime
power q = pd, d ≥ 1.

2.1 Comparison and base change

We will use information about the singular cohomology of the complex points of a variety to
obtain information about the étale cohomology of the variety over Fq, for all prime powers
q of all but finitely many primes p. This rests on a pair of results. The first, due to Artin
[Art66], establishes an isomorphism between the singular cohomology of the complex points
of a variety and the étale cohomology of the complex variety. The second, following from
Deligne’s “Theorem de Finitude” [Del77, Theorem 6.2], establishes that, for any variety
defined over Z, for all prime powers q of all but finitely many primes p, the compactly
supported étale cohomology of the associated complex variety is isomorphic to that of the
the variety over Fq. Together with Poincaré Duality, these give the following.

Theorem 2.1 (Comparison and base change). Let X be a smooth scheme over Z. Then
for all but finitely many primes p, and all positive powers q of p, there is an isomorphism

H i
et(X/Fq

;Qℓ)⊗Qℓ C
∼= H i(X(C);C).
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The µn-action on Rn. The multiplicative group Gm acts onMn by1

λ · (φ,ψ) := (ψ + λ(φ− ψ), ψ).

Because the resultant is a homogeneous of degree n with respect to this action, this induces
an action of the group µn of nth-roots of unity on Rn. We study this action on the étale
cohomology of Rn.

2.2 Proof of Theorem 1.1

We now prove Theorem 1.1. Recall that the resultant gives a morphism R : A2n //A1. Note
that

R1 = {
z + a0
z + b0

: a0 − b0 = 1} ∼= {
z + a0

z + (a0 − 1)
} ∼= A1

as Fq-varieties. Thus the theorem is true when n = 1. We now show the theorem for n > 1.
Our analysis proceeds in a series of steps.

Step 1 (The µn-isotopic decomposition of H i
et(Rn/Fq ;Qℓ)): For each i ≥ 0 there is a

decomposition of H i
et(Rn/Fq ;Qℓ) into µn-isotypic components :

H i
et(Rn/Fq ;Qℓ) ∼= H i

et(Rn/Fq ;Qℓ)
µn
⊕

H i
et(Rn/Fq )

µ⊥n (2.1)

where

H i
et(Rn/Fq ;Qℓ)

µ⊥n ⊗ C :=

n−1
⊕

m=1

H i
et(Rn/Fq )m.

The decomposition (2.1) is invariant under the action of Frobq. However, for m > 0 the
subspace H i

et(Rn/Fq )m is in general not Frobq-invariant. In fact, this failure of invariance is
at the crux of the proof of the theorem. We begin by finding the Frobq-invariant subspaces.

To this end, for any factor a of n, define

Oa := {m | 1 ≤ m ≤ n− 1, (m,n) = a}

and define
H i
et(Rn/Fq )a :=

⊕

m∈Oa

H i
et(Rn/Fq )m.

Fix n ≥ 1 and assume that (q, n) = 1. We claim that for each i ≥ 0 the splitting

H i
et(Rn/Fq ;Qℓ)

µ⊥n ⊗C ∼=
⊕

a|n

H i
et(Rn/Fq)a (2.2)

is Frobq-equivariant. To see this, note that since (q, n) = 1, multiplication of q acts by an
automorphism of Z/nZ, and so preserves the order of elements in Z/nZ. For m ∈ Oa, the
order of m in Z/nZ equals n/a. Thus the order of qm in Z/nZ is also n/a, and thus the
greatest common divisor of qm mod n and n equals a, proving the claim.

1Note that this action is isomorphic to the one considered by [SS96] under conjugation by the Möbius
transformation z 7→ z + 1.
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Step 2 (The µn-invariant part of H
i
et(Rn/Fq

;Qℓ)): First note that R−1 is an irre-

ducible polynomial. Indeed, R is an irreducible polynomial [vdW50, Section 77] and

Lemma 2.2. Let Φ(x1, . . . , xn, y1, . . . , ym) be an irreducible, bi-homogeneous polynomial of
bi-degree (p, q). Then Φ− 1 is irreducible.

Proof. Suppose Φ − 1 = PQ. Without loss of generality, we can assume that P and Q are
of total degrees c and d. Write P = P0 + P1 where P0 is homogenous of total degree c and
deg(P1) < c, and, similarly, write Q = Q0 +Q1. Then c+ d = p+ q, and

Φ = P0Q0, and

−1 = P0Q1 + P1Q0 + P1Q1

The irreducibility of Φ implies that, without loss of generality, P0 = 1 and thus P1 = 0.
Therefore, we have that Q = Φ− 1 with Q0 = Φ and Q1 = −1.

It follows that H0
et(Rn/Fq ;Qℓ) ∼= Qℓ(0). Since this group is generated by the constant

function 1, it follows that H0
et(Rn/Fq ;Qℓ) ⊆ H i

et(Rn/Fq ;Qℓ)
µn . We now prove the reverse

inclusion.
Recall that we have definedMn := A2n \ R−1(0). The variety Mn admits a free action

of the multiplicative group Gm = GL1 via λ · φψ := λφ
ψ . This gives a Zariski-locally trivial

fibering
Gm

//Mn
//Mn/Gm

∼= Rn /µn. (2.3)

whereMn/Gm is a fiber bundle over Pn−1.2

Transfer now gives:

H i
et(Rn/Fq ;Qℓ)

µn ∼= H i
et(Rn /µn/Fq ;Qℓ) ∼= H i

et(Mn/Gm/Fq
;Qℓ).

It is therefore enough to prove that H i
et(Mn/Gm/Fq

;Qℓ) vanishes except when i = 0, in which

case(as observed above) it is isomorphic to Qℓ(0). To this end, we apply the Serre spectral
sequence in étale cohomology 3 to the fibering (2.3). This spectral sequence has

Ei,j2 =

{

H i
et(Mn/Gm/Fq

;Hj
et(Gm/Fq

;Qℓ)) if i, j ≥ 0

0 else

and the spectral sequence converges to H i
et(Mn/Fq

;Qℓ). This cohomology is computed as

a special case of Theorem 1.2 of [FW], where in the notation of [FW] the variety Mn was
called Polyn,21 . It is as follows:

H i
et(Mn/Fq

;Qℓ) ∼=







Qℓ(0) i = 0
Qℓ(−1) i = 1
0 else

(2.4)

2Note that the projection φ
ψ

7→ φ induces a Gm-equivariant fibering Mn
// (An − {0}), and

Mn/Gm // Pn−1 is the quotient of this Gm-action.
3The Serre spectral sequence is a special case of the Leray spectral sequence with sheaf coefficients in étale

cohomology. One reference for this spectral sequence is Theorem 12.7 of [Mil13].
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We use this to computeEi,j2 . To start, we claim that the monodromy action onHj
et(Gm/Fq

;Qℓ)
is trivial. To see this, first recall

Hj
et(Gm/Fq

;Qℓ) ∼= Qℓ(−0)

for j = 0, 1 and equals 0 for j > 1. Over C, π1(Mn/Gm) ∼= π1(Rn /µn) ∼= µn since
π1(Rn) = 0. Now use the fact that the µn action on Hj

et(Gm/Fq
;Qℓ) is the restriction of the

action of Gm induced by left multiplication. Over C, since C∗ is connected, this action is
trivial. Thus, after perhaps throwing away finitely many primes, naturality of base change
(Theorem 1.1) implies that the µn action on Hj

et(Gm/Fq
;Qℓ) is trivial. We have thus shown:

Ei,j2 =

{

H i
et(Mn/Gm/Fq

;Qℓ(−j)) if j = 0, 1

0 else

The differential di,j2 : Ei,j2
//Ei+2,j−1

2 thus gives, for each i ≥ 0, a homomorphism

di,12 : H i
et(Mn/Gm/Fq

;Qℓ(−j))) //H i+2
et (Mn/Gm/Fq

;Qℓ(1− j)).

Since Ei,j2 = 0 for i > 1 and j < 0, the only nontrivial differentials occur on the E2 page,
and, for each i > 0:

H i
et(Mn/Fq

;Qℓ) ∼= ker(di−1,1
2 )⊕H i

et(Mn/Gm/Fq
;Qℓ(0))/ image(di−1,1

2 ) (2.5)

while H0
et(Mn/Gm/Fq

;Qℓ(0)) ∼= H0
et(Mn/Fq

;Qℓ) ∼= Qℓ(0).

Equation (2.4) now gives that H i
et(Mn/Fq

;Qℓ) ∼= Qℓ(−i) for i = 0, 1 and equals 0 for

i > 1. Now, the target of d on Ei,j2 is 0 for i = 4n, 4n − 1, so these entries vanish. Working
backwards, starting at i = 4n and working down to i = 1, we can apply apply Equation (2.5)
using that the left-hand side equals 0, to conclude that H i

et(Mn/Gm/Fq
;Qℓ) = 0 for i ≥ 1.

This concludes the computation of H i
et(Rn/Fq ;Qℓ)

µn .

Step 3 (The H i
et(Rn/Fq )a): In this step we analyze the individual summandsH i

et(Rn/Fq )a
of the decomposition in Equation (2.2). We will prove:

H i
et(Rn/Fq)a

∼=

{ (
⊕

m∈Oa
Qℓ(0)

)

⊗Qℓ(a− n)⊗ C j − 2(n − a) = 0

0 j 6= 0

Given this claim, the bijection

Oa
∼=

// {m′ ≤
n

a
| gcd(m′,

n

a
) = 1}

m 7→
m

a

implies that H i
et(Rn/Fq ;Qℓ)) has rank φ( n

n− i
2

). To prove the claim, recall that for a|n we

defined
Oa := {m | 1 ≤ m ≤ n− 1, (m,n) = a}.

8



For any m ∈ Oa note that the order of e2πim/n is n/a. For each a|n, define

Yn,a := {
φ

ψ
∈ Rn : ψ(z) = χ(z)n/a for some χ(z) ∈ k[z], deg(χ) = a}.

Over any field K containing a primitive nth root of unity, Segal and Selby [SS96, Proposition
2.1] construct an isomorphism4

Yn,a/K ∼= µn ×µa (Ra/K ×A
n−a
K ). (2.6)

In fact, as we now show, these varieties are isomorphic over K = Fq for any q.

Proposition 2.3. The isomorphism (2.6) is defined over Fq, i.e.

Yn,a ∼= µn ×µa (Ra×A
n−a)

as Fq-varieties.

Proof. The homogeneity of the resultant implies that R(φ, χn/a) = R(φ, χ)n/a. Thus, for
any φ

ψ ∈ Yn,a, R(φ,ψ) is an n/a
th root of unity. Over Fq, this gives a decomposition

Yn,a ∼=
∐

λ∈µn/a

Yn,a,λ

where Yn,a,λ = R−1(λ) ∩ Yn,a. Following Segal and Selby, given φ
χn/a

∈ Yn,a we can write

φ = φ0χ+ φ1

where deg(φ0) < n− a and deg(φ1) < a. Using this, the assignment

φ

χn/a
7→ (

φ1
χ
, φ0)

defines an isomorphism over Fq

Yn,a,λ ∼= R
−1
a (λ)× An−a.

Now a primitive nth root of unity ζ gives an isomorphism of Fq-varieties

R−1
a (ζja)

ζ−j

∼=
// Ra

φ

ψ
7→

ζ−jφ

ψ
.

Taken together, these isomorphisms define a µn-equivariant map

Yn,a
∼=

//

∐

λ∈µn/a

Yn,a,λ
∼=

//

∐

λ∈µn/a

R−1
a (λ)× An−a

⊔jζ
−j

// Ra×A
n−a (2.7)

4While Proposition 2.1 of [SS96] is stated only over the field C, the proof works verbatim over any field K
containing a primitive nth root of unity.
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where the µn action on R−1
a (λ) factors through the action of µa. It suffices to show that the

map (2.7) is Frobq-equivariant. But, by the definition of Frobenius, we have

Frobq(
ζ−jφ

ψ
) = ζ−jq Frobq(

φ

ψ
)

which shows that, for any λ ∈ µn/a the square

Yn,a,1 Yn,a,1
Frobq

//

Yn,a,λ

Yn,a,1

λ−1/a

��

Yn,a,λ Yn,a,λq
Frobq

// Yn,a,λq

Yn,a,1

λ−q/a

��

,

and thus the map (2.7) is Frobq-equivariant, and thus defined over Fq. Combining this with
the resultant

R : Yn,a // µn/a

we obtain a map of Fq-varieties

Yn,a
π

// µn/a × (Ra×A
n−a).

By inspection, this is an isomorphism over Fq, and because π is Frobq-equivariant, π
−1 is as

well. Thus we conclude that π is an isomorphism over Fq.
By inspection, we see that π induces an isomorphism of µn-varieties over Fq

Yn,a ∼= µn ×µa (Ra×A
n−a).

Remark 2.4. We remark that we are using here, in a crucial way, the condition thatR(φ,ψ) =
1 (as opposed, say, to R(φ,ψ) = 2), since R(φ,ψ) = R(φ, χ)a, and so R(φ, χ) is an ath root
of unity.

Proposition 2.3 implies that, as µn-representations,

H i
et(Yn,a/Fq ;Qℓ) ∼= Indµnµa H

i
et(Ra/Fq ;Qℓ) (2.8)

for each i ≥ 0.

Lemma 2.5. For any a | n and for all but finitely many primes p, we have for every positive
power q of p:

H∗
et((Rn−Yn,a)/Fq)a :=

⊕

m∈Oa

H∗
et((Rn−Yn,a)/Fq)m = 0.

Proof. The analogous theorem over C is Proposition 2.2 in [SS96]. The lemma now follows
from the comparison theorem and base change, i.e. Theorem 2.1.

10



Remark 2.6 (Throwing away primes). Lemma 2.5 is the only instance in the proof of The-
orem 1.1 where we need to exclude finitely many primes not dividing n.5 We need to do
this because the only proof we currently know of Lemma 2.5 is that of Segal-Selby, and this
proof is inherently non-algebraic. Because of this we must quote base change (Theorem 2.1)
to convert a statement about singular cohomology of complex points to étale cohomology.
Since the varieties in question are not projective, finitely many primes must be excluded.
If a direct proof of Lemma 2.5, completely within the theory of étale cohomology, could be
found, then the rest of our proof of Theorem 1.1 would give the statement for all primes not
dividing n.

We apply the long exact sequence of a pair in étale cohomology; see Corollary 16.2 of
[Mil13], and then we take the direct sum of them-isotypic components form ∈ Oa. In Milne’s
notation, setting c = n− a;Z = Yn,a;X = Rn;U = Rn−Yn,a, for any 0 ≤ j ≤ 2(n − a)− 2,
we obtain that

Hj
et(Rn/Fq )a

∼= Hj
et((Rn−Yn,a)/Fq )a

and, above degree 2(n− a)− 2, we have a long exact sequence

0 //H
2(n−a)−1
et (Rn/Fq )a

//H
2(n−a)−1
et ((Rn−Yn,a)/Fq )a

//

H0
et(Yn,a/Fq )a ⊗Qℓ(a− n) //H

2(n−a)
et (Rn/Fq )a

//H
2(n−a)
et ((Rn−Yn,a)/Fq)a · · ·

· · ·H
j−2(n−a)
et (Yn,a/Fq )a ⊗Qℓ(a− n) //Hj

et(Rn/Fq)a
//Hj

et((Rn−Yn,a)/Fq )a · · ·

Lemma 2.5 gives that, for all but finitely many primes, the terms H i
et((Rn−Yn,a)/Fq)a vanish.

It follows that Hj
et(Rn/Fq)a = 0 for j ≤ 2(n − a)− 1, and that, for j ≥ 2(n − a),

Hj
et(Rn/Fq)a

∼= H
j−2(n−a)
et (Yn,a/Fq )a ⊗Qℓ(a− n) (2.9)

We therefore have

Hj
et(Rn/Fq )a

∼= H
j−2(n−a)
et (Yn,a/Fq)a ⊗Qℓ(a− n) by (2.9)

∼= (Indµnµa H
j−2(n−a)
et (Ra/Fq)a ⊗Qℓ(a− n) by (2.8)

∼= Homµn(
⊕

m∈Oa
Vm, Ind

µn
µa H

j−2(n−a)
et (Ra/Fq)⊗Qℓ(a− n))

where Vm is the m-isotypic irrep

∼=
⊕

m∈Oa
Homµa(Res

µn
µaVm,H

j−2(n−a)
et (Ra/Fq )⊗Qℓ(a− n))

by Frobenius Reciprocity

∼=
⊕

m∈Oa
Homµa(V0,H

j−2(n−a)
et (Ra/Fq)⊗Qℓ(a− n))

since a divides m

∼=
⊕

m∈Oa
H
j−2(n−a)
et (Ra/Fq)

µa ⊗Qℓ(a− n)

5We excluded finitely many primes above in the monodromy computation in Step 2, but this was for
convenience, not necessity.
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which is, as we have shown above,

∼=

{ (
⊕

m∈Oa
C
)

⊗Qℓ(a− n) j − 2(n − a) = 0

0 j 6= 0

as claimed above.

Step 4 (The permutation action of Frobq): We complete our analysis of H i
et(Rn/Fq )a

as a Frobq-module. The analysis of Step 3 shows that Frobq acts by q
n−a times the action of

Frobq on the factor
⊕

m∈Oa
C of H

2(n−a)
et (Rn)a. We claim that this is given by a permutation

action

Frobq : Cm
1

// Cqm mod n. (2.10)

Granting this, we conclude that the variety Rn is pure. Further, we see that Rn is of
Tate type if and only if if q ≡ 1 mod n.

To prove the claim, recall that the actions of µn and of Frobq on H i
et(Rn/Fq) do not

commute. This is because Frobq acts on µn(Fq) as an automorphism. For any vector v ∈
H i
et(Rn/Fq ) and any σ ∈ µn:

Frobq(σ · v) = Frobq(σ) · Frobq(v). (2.11)

To be more explicit, let λ be any primitive nth root of 1 in Fq. Then we can write each element
of µn as λj for some 0 ≤ j ≤ n − 1. The action of Frobq on µn is given by Frobq(λ

j) = λjq

where jq is taken mod n, and so

Frobq(λ
j · v) = λqj · Frobq(v) (2.12)

for any 0 ≤ j ≤ n − 1. This, combined with Step 3 and Proposition 2.3 above prove the
claim.

Step 5 (Computing the trace of Frobq): To conclude the proof we must compute
the trace of Frobq, which by the analysis above equals qn−a times the number of Frobq-fixed
vectors. The permutation action given in Equation (2.10) has a fixed vector precisely when
(q−1)m ≡ 0 mod n, i.e. when (q−1)m/a ≡ 0 mod n/a. If q ≡ 1 mod n/a then this equation
has no solutions since by assumption (m,n) = a. It follows in this case that Frobq acts with
trace 0. If q ≡ 1 mod n/a then this equation has φ(n/a) solutions, where φ is Euler’s totient

function. In particular, in this case Frobq acts on H
2(n−a)
et (Rn;Qℓ) by multiplication by qn−a.

3 Moduli space of magnetic monopoles

The varieties Rn are closely related to some moduli spaces studied in physics, and the results
above can be used to deduce arithmetic properties of these spaces, as we now explain.

The moduli spaceMn of SU(2) monopoles of charge n in R3, and the associated moduli
space Xn of strongly centered monopoles, have a rich geometric and topological structure.
These complex algebraic varieties have been studied both by physicists and mathematicians;
see [SS96] and the references therein.
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Let Mn be the moduli space of based SU(2) monopoles in R3 of charge n. Elements of
Mn are pairs (A,Φ), where A is a smooth connection on the trivial SU(2) bundle E //R3,
and Φ is a smooth section of the vector bundle associated to E via the adjoint representation.
The pair (A,Φ) is a monopole if it satisfies two conditions. First, it must give a solution to
the Bogomolnyi equation

∗FA = DAΦ

where ∗ is the Hodge star operator, DA is the covariant derivative operator defined by A, and
FA is the curvature of A. Second, (A,Φ) must satisfy a regularity and boundary condition.
See, e.g. Chapter 1 of [AH88] for details. These spaces connect to the present paper because
of a different description ofMn, due to Donaldson.

As explained for example by Manton and Murray, there are many ways of describing
Mn, each of which leads to the moduli space of degree n rational maps P1 // P1. This is
summarized in [MM94] by the following diagram:

Monopoles ←→ Holomorphic bundles
ց ւ

l Rational Maps l

ր տ
Nahm data ←→ Spectral curves

The moduli spaceMn is a 2n-dimensional complex manifold. Donaldson [Don84] proved
that there is a diffeomorphism of Mn with the moduli space of degree n rational maps
P1 // P1 that send ∞ to 0:

Mn
∼=
{φ

ψ
=

an−1z
n−1 + · · ·+ a1z + a0

zn + bn−1zn−1 + · · · + b1z + b0
: φ,ψ ∈ C[z] have no common root

}

(3.1)

Thus the diffeomorphism (3.1) endows Mn with the structure of a smooth, complex-
algebraic variety of (complex) dimension 2n. There is a subvariety Xn of Mn, called the
reduced moduli space of SU(2) monopoles of charge n in R3, or the moduli space of strongly
centered monopoles, given by

Xn
∼=
{φ

ψ
∈ Mn : bn−1 = 0 and R(φ,ψ) = 1

}

The algebraic variety Xn is a smooth hypersurface in C2n−1. It admits an action by
algebraic automorphisms, of the cyclic group µn of nth roots unity. Segal–Selby [SS96]
computed the isotypic components under this action of the rational singular cohomology
groups H∗(Xn;Q).

When n is invertible in Fq there is a Zariski-locally trivial fibration Ga
// R1

//Xn.
This together with Theorem 1.4 implies the following.

Corollary 3.1. With notation as above, when gcd(q, n) = 1,

H∗
et(Xn/Fq

;Qℓ) ∼= H∗
et(Rn/Fq ;Qℓ)
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as given in Theorem 1.1 and

|Xn(Fq)| = |Rn(Fq)|/q

as given in Corollary 1.4.

A An elementary count of the cardinality of Rn(Fq)

We present a more direct approach to count the cardinality of the setRn(Fq). It is elementary
(no use of étale cohomology is needed) and we obtain a formula valid for all values of q and
n.

Our main tool is the “addition law” ⊕ of pointed rational functions that was introduced
in [Caz12, Proposition 3.1]. For sake of completeness, we first recall it briefly.

Let Fn denote the scheme of degree n rational functions which send∞ to∞.6 Given two
degrees n1, n2 ≥ 0, we define a map

⊕ : Fn1 ×Fn2
// Fn1+n2

as follows. Two rational functions Ai
Bi
∈ Fni , for i = 1, 2, uniquely define two pairs (Ui, Vi)

of polynomials with degUi ≤ ni − 2 and deg Vi ≤ ni − 1 and satisfying Bzout identities
AiUi + BiVi = 1 (this is true over any ring because Ai is monic). Define polynomials
A3, B3, U3 and V3 as:

[

A3 −V3
B3 U3

]

:=

[

A1 −V1
B1 U1

]

·

[

A2 −V2
B2 U2

]

.

One easily checks that A3
B3

is in Fn1+n2 . Over a field, this addition law is closely related to
continued fraction expansion of rational functions. This gives:

Lemma A.1. Let k be any field and let A
B be a element of Fn(k). Then there exists a unique

family of monic polynomials P1, . . . , Pr and a unique family of scalars a1, . . . , ar ∈ k× such
that

A

B
=
P1

a1
⊕ · · · ⊕

Pr
ar
.

Moreover:

1. Let ni denote the degrees of the Pi. Then n = n1 + . . .+ nr.

2. There exists a sign ε(n) = ±1 (depending only on the ni’s) such that

R(A,B) = ε(n)an1
1 · · · a

nr
r .

Proof. The decomposition of A
B as a ⊕-sum of polynomials is explained in [Caz12, Exam-

ple 3.3]. The formula expressing the resultant R(A,B) in terms of the resultants R(Pi, ai)
can be seen by induction by noting that if P is a monic polynomial of degree d, a ∈ k× and
A
B ∈ Fn(k) one has

R

(

P

a
⊕
A

B

)

= (−1)ndadR(A,B).

6Note that Fn is isomorphic to Mn under the Möbius transformation A(z)
B(z)

7→ B(z)−A(z)
B(z)

.
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Remark A.2. The precise expression of the sign ε will not be needed in the sequel. It will be
enough note that when all the ni are even the sign ε(n) is equal to 1.

Over a field k, specifying a pointed degree n rational function f = A
B such that R(A,B) =

1 is thus equivalent to specifying:

• an integer 1 ≤ r ≤ n

• an ordered decomposition n = n1 + · · ·+ nr (with integers ni ≥ 1)

• monic polynomials P1, . . . , Pr of degrees n1, . . . , nr

• units a1, . . . , ar ∈ k× such that an1
1 · · · a

nr
r ε(n) = 1.

We now specialize to k = Fq. For x ∈ F×
q , let us denote by C(n, x) the cardinality of the

finite set {(a1, . . . , ar) ∈ (F×
q )

r, an1
1 · · · a

nr
r = x}. We therefore have:

|Rn(Fq)| =
n
∑

r=1

∑

n=n1+···+nr

qnC(n, ε(n))}.

(The factor qn = qn1+...+nr counts the choices for the polynomials Pi.)

The following lemma is useful:

Lemma A.3. Let n = {n1, . . . , nr} as above. Then

1. One has C(n, 1) = (q − 1)r−1 gcd(q − 1, n1, · · · , nr).

2. If one of the ni is odd, the one has the equality C(n, 1) = C(n,−1).

Proof. 1. Recall that the group of units F×
q is cyclic of order q − 1. Therefore, C(n, 1) is

also the number of solutions (x1, . . . , xr) ∈ (Z/(q − 1)Z)r of the linear equation

n1x1 + · · ·+ nrxr = 0.

To count the number solutions of this equation, one can use the invertible changes of
variables dictated by the Euclidean algorithm to reduce it to the equivalent equation
gcd(n1, . . . , nr)x1 = 0.

2. Suppose ni is an odd integer. Then one has an explicit bijection between the two sets
in question given by ai 7→ −ai.

Combining Remark A.2 and Lemma A.3, we get rid of the signs ε(n) to obtain:

|Rn(Fq)| = qn
n
∑

r=1

∑

n=n1+···+nr

(q − 1)r−1 gcd(q − 1, n). (A.1)

For a fixed r, all decompositions n with same gcd contribute equally, so we regroup these
as follows.
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Notation A.4. Let n, r ≥ 1 be two integers.

• Let πr(n) be the number of decompositions of n of length r. One has πr(n) =
(n−1
r−1

)

.

• For d a divisor of n, let πr(n, d) be the number of length r decompositions of n with
gcd equal to d. One has πr(n, d) = πr(

n
d , 1).

From the identity πr(n) =
∑

d|n

πr(n, d) =
∑

d|n

πr(
n
d , 1), the Mbius inversion formula gives

πr(·, 1) = µ ⋆
( ·−1
r−1

)

, where µ is the Mbius function and ⋆ denotes the Dirichlet convolution
product. Inserting this into equation (A.1) leads to :

|Rn(Fq)| = qn

[

µ ⋆

(

n
∑

r=1

qr−1

(

· − 1

r − 1

)

)

⋆ gcd(·, q − 1)

]

(n) = qn
[

µ ⋆ q·−1 ⋆ gcd(·, q − 1)
]

(n).

We have thus proved the following theorem.

Theorem A.5. Let n be any positive integer and let q be any prime power. Then

|Rn(Fq)| = qn

(

∑

abc=n

µ(a)qb−1 gcd(c, q − 1)

)

.

We end up briefly showing that the point count of Theorem A.5 coincides with that of
Corollary 1.4. The two formulas are similar. The only point is to check the following lemma.

Lemma A.6. Let m ≥ 1 be an integer and let δm : N // N be the function

δm : n 7→

{

1 if n |m

0 otherwise.

Then whe have the identity δmφ = µ ⋆ gcd(·,m).

Proof. Let n ≥ 1 be an integer. We prove that these two functions agree on n. We distinguish
cases according to whether n divides m or not.

In the first case, the function gcd(·,m) coincides with the identity and the equality follows
from φ = µ ⋆ id.

In the second case, we have to show that:

∑

d |n

µ(d) gcd(d,m) = 0.

Replacing m by gcd(n,m) does not change the value, so one can assume that m divides
(strictly) n. Let p be a prime dividing n

m . We conclude noting that:

• in the above sum, only the divisors without square factor have a non-zero contribution;

• the remaining divisors can be split into those divisible by p and those not. These two
sets have opposite contributions in the sum.
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Remark A.7. Given x ∈ F×
q , we could in the same way write a formula for the number of

pointed degree n rational functions A
B ∈ Fn(Fq) with resultant R(A,B) = x. This number

equals

qn

(

∑

abc=n

µ(a)qb−1g(c)

)

where o is the order of x in F×
q and g : N // N is the function

g : n 7→

{

gcd(n, q − 1) if gcd(n, q − 1) divides q−1
o

0 otherwise.

However, it is interesting to note that, as a function of x, this cardinal always reaches its
maximum for x = 1. This is because the functions C(n, r) also reach their maximum at x = 1.
The reason comes from linear algebra: a homogeneous linear equation a1x1+. . .+arxr = 0 has
always at least as many solutions as the corresponding inhomogeneous one a1x1+. . .+arxr =
k.
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