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While normally dormant, Hair Follicle Stem Cells (HFSCs) quickly become activated to divide 

during a new hair cycle. The quiescence of HFSCs is known to be regulated by a number of 

intrinsic and extrinsic mechanisms. Here we provide several lines of evidence to demonstrate that 

HFSCs utilize glycolytic metabolism and produce significantly more lactate than other cells in the 

epidermis. Furthermore, lactate generation appears to be critical for the activation of HFSCs as 

deletion of lactate dehydrogenase (Ldha) prevented their activation. Conversely, genetically 

promoting lactate production in HFSCs through mitochondrial pyruvate carrier (Mpc1) deletion 

accelerated their activation and the hair cycle. Finally, we identify small molecules that increase 

lactate production by stimulating Myc levels or inhibiting Mpc1 carrier activity and can topically 

induce the hair cycle. These data suggest that HFSCs maintain a metabolic state that allow them to 

remain dormant and yet quickly respond to appropriate proliferative stimuli.

Introduction

The hair follicle is able to undergo cyclical rounds of rest (telogen), regeneration (anagen), 

and degeneration (catagen). The ability of the hair follicle to maintain this cycle depends on 

the presence of the hair follicle stem cells, which reside in the bulge (Fig 1). At the start of 

anagen, bulge stem cells are activated by signals received from the dermal papilla, which at 

that stage abuts the bulge area 1,2. These stem cells exit the bulge and proliferate downwards, 

creating a trail that becomes the outer root sheath (ORS). Bulge stem cells are capable of 

giving rise to all the different cell types of the hair follicle. The ability of HFSCs to maintain 

quiescence and yet become proliferative for a couple days before returning to quiescence is 

unique in this tissue, and the precise mechanism by which these cells are endowed with this 

ability is not fully understood. While significant effort has produced a wealth of knowledge 

on both the transcriptional and epigenetic mechanisms by which HFSCs are maintained and 

give rise to various lineages 3,4, little is known about metabolic pathways in the hair follicle 

or adult stem cells in vivo.

Considering the fact that there are essentially no published data on metabolic states of any 

cell in the hair follicle, a detailed study of metabolism was necessary to understand the 

nature of HFSCs and their progeny. Several previous studies employed genetic disruption of 

the mitochondrial electron transport chain in the epidermis by deletion under the control of a 

pan-epidermal keratin promoter and found that mitochondrial function was essential for 

maintenance of the follicle5–8. However, these studies did not explore the metabolic 

requirements for specific cell types within the tissue, nor did they explore a role for 

glycolytic metabolism. In this study, we present methods to study the metabolism of HFSCs 

in vivo, and provide evidence that these cells take advantage of a distinct mode of 

metabolism not found in their progeny. In the process, we also define small molecules that 

can take advantage of the unique metabolism of HFSCs to ignite the hair cycle in otherwise 

quiescent follicles.

Results

Numerous studies have uncovered unique gene expression signatures in HFSCs versus other 

follicle cells or cells of the interfollicular epidermis 9–12. Many of these signatures are 
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regulated by transcription factors that were later shown to play important roles in HFSC 

homeostasis13. Lactate dehydrogenase is most commonly encoded by the Ldha and Ldhb 
genes in mammals, the protein products of which form homo- or hetero-tetramers to 

catalyze the NADH-dependent reduction of pyruvate to lactate and NAD+-dependent 

oxidation of lactate to pyruvate14. By immunostaining, Ldha appeared to be enriched in 

quiescent HFSCs in situ (telogen) (Fig 1a), IHC with an antibody that recognizes both Ldha 

and Ldhb showed that only Ldha appears to be localized to the HFSC niche (Supplementary 

Figure 1a).

HFSCs are known to go through successive rounds of quiescence (telogen) punctuated by 

brief periods of proliferation correlating with the start of the hair cycle (telogen-anagen 

transition) 4,15. Proliferation or activation of HFSCs is well known to be a prerequisite for 

advancement of the hair cycle. IHC analysis also showed Ldha expression was enriched in 

HFSCs (Sox9+) at three stages of the hair cycle (Fig 1a). Consistently, immunoblotting of 

lysates from sorted cells showed strong expression of Ldha in the basal HFSCs 

(α6HiCD34+), and suprabasal (α6LoCD34+) HFSC populations relative to total epidermis 

(Fig 1b)9 (Sorting strategy is outlined in Supplementary Figure 1b).

To determine whether Ldha expression patterns correlate with activity of the Ldh enzyme, 

we used a colorimetric-based enzymatic assay to assess Ldh activity capacity in situ. 

Typically performed on protein lysates or aliquots with a plate reader16, we adapted the Ldh 

activity assay to work in situ on frozen tissue sections. Note that since both the in situ and in 
vitro Ldh activity assays employ use of excess substrate (lactate), the results from these 

assays reflect the capacity for Ldh activity, and not the steady-state activity.

Applying this assay to skin samples demonstrated that Ldh activity capacity was 

significantly higher in HFSCs, consistent with the expression pattern of Ldha (Fig 1c). 

Furthermore, Ldh activity was enriched in HFSCs across the hair cycle (Fig 1c). As a 

control, assays conducted without the enzymatic substrate (lactate) or on acid-treated tissue 

yielded zero activity (Supplementary Figure 1c). To further validate these results, we sorted 

epidermal populations, generated cell lysates on the sorted cells, and performed a similar 

colorimetric-based enzymatic assay on the sorted cell lysates, which also showed increased 

Ldh activity in HFSCs (Fig 1d). To better characterize the metabolism of HFSCs, we 

performed metabolomics analysis on sorted populations from mouse skin by liquid 

chromatography-mass spectrometry (LC-MS) (Fig 1e). Several glycolytic metabolites, 

including glucose/fructose-6-phosphate, fructose-bisphosphate, dihydroxyacetone 

phosphate, 3-phosphoglycerate, and lactate, were routinely higher in HFSCs relative to total 

epidermis across three independent experiments (isolated from different mice on different 

days). Conversely, most TCA cycle metabolites were not consistently different between the 

epidermis and HFSCs (Fig 1e). Collectively these results suggest that while all cells in the 

epidermis use the TCA cycle extensively to generate energy, HFSCs also have increased 

Ldha expression, Ldh activity, and glycolytic metabolism.

Measuring metabolism across the hair cycle therefore would capture any dynamic changes 

that occur in HFSCs that correlate with activation or quiescence. Analysis of RNA-seq data 

from HFSCs isolated during either telogen or the telogen-anagen transition demonstrated not 
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only that Ldha is the predominant Ldh isoform expressed in HFSCs (Fig 2c), but is also 

induced during the telogen-anagen transition (Fig 2a and b (NIHGEOGSE67404 and 

GSE51635). To confirm that the cells analyzed by RNA-seq were indeed either in telogen or 

the telogen to anagen transition, important markers of this transition were assessed including 

the Shh and Wnt pathways (Gli1, 2, 3; Lef1, Axin1, Axin2, Ccnd1) as well as proliferation 

markers (Ki-67, Pcna and Sox4) (Supplementary Figure 2a).

The in vitro Ldh activity assay on lysates from sorted HFSCs uncovered a modest induction 

of Ldh activity correlating with the telogen to anagen transition (Fig 2d). Hair cycle staging 

was validated by Ki-67 immunostaining to determine HFSC activation (Supplementary 

Figure 2b). Additionally, measurements of steady-state metabolites extracted from sorted 

HFSCs showed an increase in lactate in HFSCs as they transition from telogen to telogen-

anagen transition, and then decrease again in anagen as HFSCs return to quiescence (Fig 

2e).

To determine whether Ldh activity is functionally related to the ability of HFSCs to remain 

quiescent or to activate at the start of a hair cycle, we deleted Ldha specifically in the 

HFSCs. Taking advantage of mice with floxed alleles of Ldha17, this enzyme was deleted in 

HFSCs by crossing to mice bearing the K15CrePR allele11, known to be inducible by 

Mifepristone specifically in HFSCs. Deletion of Ldha in HFSCs was initiated by 

administration of Mifepristone during telogen (day 50) and led to a typically mosaic 

recombination of the floxed alleles across the backskin11,18. Mice with HFSC-specific 

deletion of Ldha failed to undergo a proper hair cycle, with most follicles remaining in 

telogen across at least 33 pairs of littermates 3–4 weeks after Mifepristone treatment (Fig 

3a). A complete list of transgenic animals including birthdate, sex, and genotype is provided 

in Supplemental Table 1.

Histology showed that WT hair follicles entered into the telogen to anagen transition 

typically by day 70, and this was accompanied by typical expansion of the hypodermis 

below (Fig 3b). However, in backskin with deletion of Ldha, the hypodermis did not expand, 

and the telogen to anagen transition was severely abrogated (Fig 3b). In areas of strong 

phenotypic penetrance, Ldh activity was severely abrogated in the HFSC compartment (Fig 

3c), demonstrating that the Ldha allele is critically important for Ldh activity in HFSCs and 

consistent with the fact that the ‘a’ isoform of Ldh is expressed at the highest level. 

Quantification of hair cycle progression across numerous animals indicated that most 

follicles lacking Ldha remained in telogen (Fig 3d).

In addition, to confirm the phenotypes, we also deleted Ldha with an independent HFSC-

specific Cre strategy. Lgr5-CreER has been used for lineage tracing in a variety of adult stem 

cell models, and has been shown to mark cells with high regenerative capacity, including 

HFSCs19. Lgr5CreER;Ldhafl/fl mice, treated with tamoxifen at post-natal day 50 prior to a 

synchronized hair cycle, also failed to activate anagen across at least 20 littermate pairs (Fig 

3g). in situ Ldh assay and metabolomics confirmed the successful deletion of Ldha in these 

animals (Fig 3h and 3i).
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We also monitored the effect of loss of Ldha activity in K15+ cells over a six month period 

and found that deletion of Ldha led to a mosaic, but permanent block of HFSC activation in 

some portions of the backskin (Supplementary Figure 3a). These data confirm that Ldh 

activity is required for HFSC activation, and is not simply a marker of HFSCs. A closer look 

at these long term Ldha deletions showed that Ldha-null HFSCs continued expressing 

typical markers, but lacked Ldh activity, and failed to initiate new hair cycles, while those 

follicles that escaped deletion continued to express Ldha and to cycle normally 

(Supplementary Figure 3b and c).

After sorting HFSCs from animals with or without Ldha deletion, LC-MS-based 

metabolomics analysis demonstrated that lactate levels, as well as levels of other glycolytic 

metabolites, were strongly reduced in the absence of Ldha (Fig 3e), functional evidence that 

the targeting strategy was successful. The fact that glycolytic metabolites upstream of lactate 

were also suppressed suggests that HFSCs could be adapting their metabolism to account for 

the loss of Ldh activity. Immunostaining for markers of HFSC activation and proliferation 

indicated a failure of HFSC activation. Ki67 and pS6 have been clearly demonstrated to be 

abundant in the HFSC niche at the start of the hair cycle20, and both of these markers were 

absent in Ldha deleted backskin (Fig 3f). Immunostaining for Ldha also confirmed 

successful deletion of this protein, while staining for Sox9, a marker of HFSCs indicated 

that these cells remained in their niche, but just failed to activate in the absence of Ldha (Fig 

3f). Induction of the hair cycle is also thought to be regulated by signaling from the Shh, 

Wnt and Jak-Stat pathways. We assayed each of these by IHC in normal or Ldha deletion 

follicles and found that in general these pathways were not activated in Ldha-null HFSCs 

that failed to enter a telogen-anagen transition (Supplementary Figure 3d).

To determine whether induction of lactate production could affect HFSC activation or the 

hair cycle, we crossed K15CrePR animals to those floxed for mitochondrial pyruvate carrier 

1 (Mpc1) (K15CrePR;Mpc1fl/fl). Mpc1, as a heterodimer with Mpc2, forms the 

mitochondrial pyruvate carrier MPC, a transporter on the inner mitochondrial membrane 

required for pyruvate entry into the mitochondria21. Loss of function of Mpc1 has been 

shown to drive lactate production through enhanced conversion of pyruvate to lactate by 

Ldh 22.

In animals with Mpc1 deletion in HFSCs, we observed a strong acceleration of the ventral 

and dorsal hair cycles with all the typical features of a telogen-anagen transition (Fig 4a) (n 

= 12 littermate pairs). Mifepristone treated K15CrePR;Mpc1fl/fl animals were the only to 

show any signs of dorsal anagen by day 70. Western blotting on sorted HFSCs validated the 

loss of Mpc1 protein (Fig 4b). Importantly, purified HFSCs lacking Mpc1 showed a strong 

induction of Ldh activity (Fig 4c). Quantification of the dorsal hair cycle across three pairs 

of littermates showed a strong induction of anagen in backskin lacking Mpc1 (Fig 4d, right), 

and histology showed that the anagen induction was normal in appearance with a typical 

hypodermal expansion (Fig 4d). Immunostaining demonstrated the induction in Mpc1-null 
HFSCs of various markers of hair cycle activation such as Ki-67 and pS6, while Sox9 

expression was unaffected (Fig 4e). Long term deletion of Mpc1 did not lead to aberrant 

follicles or exhaustion of HFSCs as judged by pathology and staining for Sox9 

(Supplementary Figure 4a). Furthermore, deletion of Mpc1 with Lgr5CreER showed a very 
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similar phenotype as deletion with K15CrePR (Fig 4f and g), validating the fact that deletion 

of this protein in HFSCs leads to their activation (n = 12 pairs of littermates). Finally, 

immunofluorescence for the Ires-GFP of the Lgr5CreER transgene along with Ki-67 and 

lineage tracing with K15CrePR;Mpc1fl/fl;lsl-Tomato mice also demonstrated that the HFSCs 

were indeed proliferative following induction of Mpc1 deletion by tamoxifen or 

mifepristone (Supplementary Figure 4b).

On the other hand, deletion of Mpc1 in the top of the follicle (infundibulum, sebaceous 

gland progenitors) and a limited number of interfollicular cells with Lgr6CreER 23 did not 

appear to affect the hair cycle (Lgr6CreER;Mpc1fl/fl) (n = 10 littermate pairs) or general skin 

homeostasis over at least 2 months (Fig S4c). Ldh activity assay on Lgr6+ cells sorted from 

wildtype or deletion skin demonstrated that the Mpc1 deletion was effective (Supplementary 

Figure 4d). Together, these results indicate that increasing lactate production through the 

blockade of pyruvate into the TCA cycle has a strong effect on the ability of HFSCs, but not 

other cells in the hair follicle, to become activated to initiate a new hair cycle.

UK-5099 is a well-established pharmacological inhibitor of the mitochondrial pyruvate 

carrier and is known to promote lactate production as a result in various settings24. Topical 

treatment of animals in telogen (day 50) with UK-5099 led to a robust acceleration of the 

hair cycle, as well as minor hyperproliferation of the interfollicular epidermis (Fig 5a). 

Quantification of the hair cycle across at least 6 pairs of animals (vehicle vs UK-5099) 

indicated a strong acceleration of the hair cycle, in as few as 6–9 days (Fig 5b). Similar to 

genetic deletion of Mpc1, pharmacological blockade of the mitochondrial pyruvate carrier 

by UK-5099 for 48 hours during telogen promoted increased Ldh activity in HFSCs and the 

interfollicular epidermis, consistent with increased capacity for lactate production (Fig 5c). 

Finally, metabolomic analysis demonstrated that topical application of UK-5099 increases 

total levels of lactate in sorted HFSCs (Fig 5d).

Because alteration of lactate production in HFSCs appeared to regulate their activation, we 

attempted to identify other small molecules that could take advantage of these findings to 

induce the hair cycle. Ldha is known to be transcriptionally regulated by Myc, which has 

been shown to play an important role in HFSC activation and the hair cycle25–27. RNA-seq 

on sorted HFSCs indicated that Myc is induced during the telogen-anagen transition (Fig 

6a). Western blotting for both c-Myc and n-Myc in sorted HFSCs versus total epidermis 

showed a strong increase in Myc protein in the nuclei of HFSCs (Fig 6b).

Taking advantage of a molecule with the robust ability to promote Myc expression through 

binding of GP130 and activation of Jak/Stat signaling, we topically treated mice for 48 hours 

to determine the effect of RCGD423 on Stat signaling and Myc expression. We found that 

RCGD423 induced levels of both c-Myc and n-Myc as well as Ldha (Fig 6c), consistent 

with activation of Stat3 signaling leading to induction of Myc and Ldha protein expression. 

In vitro measurement of Ldh activity on lysates from total epidermis showed an increase in 

activity by RCGD423 (Fig 6d). In situ staining for Ldh activity showed a strong induction 

upon treatment with RCGD423 in both the epidermis and even in the dermis, as expected 

with topical treatment (Fig 6e). LC-MS-based metabolomics on epidermis isolated from 
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vehicle or RCGD423 showed a large increase in lactate as well, even after just 48 hours (Fig 

6f).

RCGD423 binds to GP130, a co-receptor for Jak-Stat signaling, and activates Stat-3. We 

found that Stat-3 was activated in HFSCs by RCGD423 after topical treatment by 

immunostaining with phospho-Stat3 antibody (Fig 6g). This also correlated with induction 

of Ki-67 in HFSCs in the same tissue (Fig 6g). IHC for pStat1 and pStat5 suggested that 

RCGD423 does not dramatically affect these other Stat family members (Supplementary 

Figure 5). Topical treatment of animals in telogen (day 50) with RCGD423 led to a robust 

acceleration of the hair cycle (Fig 6h), as well as minor hyperproliferation of the 

interfollicular epidermis.

Discussion

Together, these data demonstrate that the production of lactate, through Ldha, is important 

for HFSC activation, and that HFSCs may maintain a high capacity for glycolytic 

metabolism at least in part through the activity of Myc. Our data also demonstrate that a 

genetic or pharmacological disruption of lactate production can be exploited to regulate the 

activity of HFSCs. It is possible that these results have implications for adult stem cells in 

other tissues. In an accompanying manuscript, the Rutter lab describes a role for Mpc1 in 

adult intestinal stem cells28. Consistent with data presented here on HFSCs, deletion of 

Mpc1 led to an increase in the ability of intestinal stem cells to form organoids.

Previous work showed that hematopoietic stem cells (HSCs) show higher glycolytic activity, 

but disruption of glycolysis in the HSCs led to activation of their cycling29–32, contrary to 

what we find with HFSCs. While the distinction could be biological, there are technical 

reasons for potential discrepancies as well. First, there are no Cre transgenic lines that can 

delete genes specifically in HSCs, as opposed to HFSCs (K15+ or Lgr5+). Second, to block 

glycolysis in HSCs, the previous study deleted PDK enzyme, which would only indirectly 

regulate glycolysis, whereas here we deleted Ldh enzyme specifically. In addition, HSCs and 

HFSCs are functionally distinct in that HFSCs only cycle at well-defined moments (telogen 

to anagen transition), while the timing of HSC activation is not as well established or 

synchronized. Instead, we hypothesize that increased glycolytic rate in HFSCs allows them 

to respond quickly to the barrage of cues that orchestrate the onset of a new hair cycle. This 

has also been proposed to be the case for neural stem cells based solely on RNA-seq data33, 

but as of yet no in vivo functional evidence exists to confirm this possibility.

The fact that small molecules could be used to promote HFSC activation suggests that they 

could be useful for regenerative medicine. This is not only the case for hair growth, but 

potentially for wound healing as well. While HFSCs do not normally contribute to the 

interfollicular epidermis, in a wound setting, HFSCs migrate towards the wound site and 

make a contribution, as measured by lineage tracing34. Whether activation of Ldh enzyme 

activity by Mpc1 inhibition (UK-5099) or Myc activation (RCGD423) can promote wound 

healing will be the subject of intense effort going forward.
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Materials and Methods

Mice

Several of the animal strains came from Jackson Labs (K15-CrePR, Lgr5-CreER and Lgr6-
CreER), while others were generated in the Rutter (Mpcfl/fl) and Seth Labs36 (Ldhafl/fl) and 

maintained under conditions set forth by IUCUC and UCLA ARC. For experiments that 

include analysis of the telogen stage of the hair cycle, animals were harvested at post-natal 

day 50, for telogen-anagen transition animals were harvested at day 70, and for anagen 

animals were harvested at post-natal day 90. For experiments that include analysis of 

transgenic animals, K15-CrePR animals were shaved and treated by injection of 

mifepristone and Lgr5-CreER and Lgr6-CreER animals were shaved and treated with 

tamoxifen (10 mg/ml dissolved in sunflower seed oil, 2 mg per day for 3 days) during 

telogen (post-natal day 50), and monitored for hair regrowth following shaving. For Figs. 5 

and 6, wildtype C57BL/6J animals were shaved at post-natal day 50 and treated topically 

with Transderma Plo Gel Ultramax Base (TR220) (vehicle), UK-5099 (Sigma PZ0160) 

(20uM) or RCGD423 (50uM) for indicated periods of time. Both male and female animals 

were used in this study in approximately equal numbers with no apparent difference in 

phenotype between genders. All animal experiments were done in compliance with ethical 

guidelines and approved by the UCLA Animal Research Committee (ARC) according to 

IACUC guidelines in facilities run by the UCLA Department of Laboratory Animal 

Medicine (DLAM).

Histology, Immunostaining and Immunoblotting

Tissues were isolated from the indicated genotypes and embedded fresh in OCT compound 

for frozen tissue preparations, or fixed overnight in 4% formalin and embedded in paraffin. 

For frozen tissue, sectioning was performed on a Leica 3200 Cryostat, and fixed for 5 

minutes in 4% paraformaldehyde. Paraffin embedded tissue was sectioned, de-paraffinized, 

and prepared for histology. All sections prepared for staining were blocked in staining buffer 

containing appropriate control IgG (Goat, Rabbit etc.). Immunohistochemistry was 

performed on formalin-fixed paraffin-embedded tissue with citrate or Tris buffer antigen 

retrieval with the following antibodies: Ki67 (Abcam ab16667, 1:50), p-S6 (Cell Signaling 

CST2215, 1:50), Sox9 (Abcam ab185230, 1:1000), Ldha (Abcam ab47010, 1:100), Ldh 

(Abcam ab125683, 1:100), p-Stat3 (Abcam ab68153, 1:200), p-Stat1 (Abcam ab109461, 

1:200), p-Stat5 (Abcam ab32364; 1:50), Gli3 (Abcam ab6050; 1:100), β-catenin (Abcam 

ab32572; 1:500). The DAKO EnVision+ HRP Peroxidase System (Dako K400911-2) and 

Dako AEC Substrate Chromogen (Dako K346430-2) was used for detection. Images were 

collected on an Olympus BX43 Upright Microscope and Zeiss Model Axio Imager M1 

Upright Fluorescence Microscope. Protein samples for western blots and enzymatic assays 

were extracted from FACS sorted epidermal populations in RIPA lysis buffer (Pierce) with 

Halt protease and phosphatase inhibitors (Thermo-Fisher) and precipitated in acetone for 

concentration. The following antibodies were used: β-actin (Abcam ab8227; 1:1000), β-

actin (Santa Cruz sc-47778; 1:1000), C-Myc (Abcam ab32072; 1:1000), N-Myc (Santa Cruz 

sc-53993; 1:200), H3K27Ac (Abcam ab177178; 1:200), Mpc1(Sigma HPA045119).
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Cell isolation and FACS

Whole dorsal and ventral mouse skin were excised and floated on trypsin (0.25%) for 1 h at 

37° or overnight at 4°. The epidermis was separated from dermis by scraping and epidermal 

cells were mechanically dissociated using a pipette. Epidermal cells were filtered with a 70 

μM cell strainer into 20% BCS, collected at 300g and washed twice with PBS. The cells 

were then filtered through a 40 μM cell strainer and stained for FACS processing with CD34 

Monoclonal Antibody (RAM34), FITC, eBioscience™ (Catalog #:11-0341-82) and CD49d 

(Integrin alpha 4) Monoclonal Antibody (R1-2), PE, eBioscience™ (Catalog #:12-0492-81). 

Gating strategy shown in Suppl Fig 1b. Cells sorted using BD FACSAria high-speed cell 

sorters. Single positive and double positive populations were collected into 20% BCS, RIPA 

lysis buffer (Thermo Scientific, Pierce), or 80% methanol for enzymatic assays, western 

blots or mass spec analyses respectively.

Cell lines

No cell lines were used in this study.

Plate-reader Ldh assay

Ldh activity was determined in cell lysates by measuring the formation of soluble XTT 

formazan in direct relation to production of NADH over time at 475 nm at 37°C using a 

Synergy-MX plate reader (Biotek Instruments). Lysates were prepared in RIPA Buffer 

(Thermo Scientific Pierce). Protein content was determined using the BCA Protein Assay 

Kit (Thermo Scientific Pierce). 10 μg of protein were used per well. The staining solution 

contained 50 mM Tris buffer pH 7.4, 150 μM XTT (Sigma), 750 μM NAD (Sigma), 80 μM 

phenazine methosulfate (Sigma) and 10mM of substrate lactate (Sigma). Ldh activity was 

determined in cell lysates by measuring the change in absorbance of their common substrate 

or product, NADH, over time at 340 nm at 25°C using a Synergy-MX plate reader (Biotek 

Instruments).

In situ Ldh assay

Cryostat sections of mouse skin were briefly fixed (4% formalin for 5 min), washed with 

PBS pH 7.4, and then incubated with the appropriate solution for LDH activity. Staining 

medium contained 50 mM Tris pH 7.4, 750 μM NAD (Sigma), 80 μM phenazine 

methosulfate (Sigma), 600 μM Nitrotetrazolium Blue chloride (Sigma), 10 mM MgCl2 

(Sigma) and 10mM of the substrate lactate (Sigma). Slides were incubated with staining 

medium at 37°C until they reached the desired intensity, then counterstained using Nuclear 

Fast Red (Vector, Burlingame, CA) and mounted using VectaMount (Vector, Burlingame, 

CA). Control reactions were performed by using incubation medium that lacked the 

substrate mixture or NAD.

Mass spectrometry-based metabolomics analysis

The experiments were performed as described in 36. To extract intracellular metabolites, 

FACS sorted cells were briefly rinsed with cold 150 mM ammonium acetate (pH 7.3), 

followed by addition of 1 ml cold 80% MeOH on dry ice. Cell suspensions were transferred 

into Eppendorf tubes and 10 nmol D/L-norvaline was added. After rigorously mixing, the 

Aimee et al. Page 9

Nat Cell Biol. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suspension was pelleted by centrifugation (1.3*104 rpm, 4 °C). The supernatant was 

transferred into a glass vial, metabolites dried down under vacuum, and resuspended in 70% 

acetonitrile. For the mass spectrometry-based analysis of the sample, 5 ul was injected onto 

a Luna NH2 (150 mm × 2 mm, Phenomenex) column. The samples were analyzed with an 

UltiMate 3000RSLC (Thermo Scientific) coupled to a Q Exactive mass spectrometer 

(Thermo Scientific). The Q Exactive was run with polarity switching (+3.50 kV / −3.50 kV) 

in full scan mode with an m/z range of 65–975. Separation was achieved using A) 5 mM 

NH4AcO (pH 9.9) and B) ACN. The gradient started with 15% A) going to 90% A) over 18 

min, followed by an isocratic step for 9 min and reversal to the initial 15% A) for 7 min. 

Metabolites were quantified with TraceFinder 3.3 using accurate mass measurements (≤ 3 

ppm) and retention times. Normalized metabolite data is available at figshare.com (https://

figshare.com/s/e2d8445b3ec37b5f2c33).

Statistics and Reproducibility

Experiments were performed on male and female animals in approximately equal numbers 

with no apparent difference in phenotype between sexes. All phenotypes described are 

representative of a minimum of n = 3 littermate pairs as indicated in the description of each 

experiment. For analysis of the hair regrowth phenotype no statistical measure was used to 

determine the sample size beforehand, nor were statistics used to measure effects, as the 

results were essentially positive or negative as represented in the figures. The results 

described include data from all treated animals. Investigators were not blinded to allocation 

during the experimental data collection. Experiments were not randomized. All results 

shown were representative images from at least three independently treated animals, and 

genotyping was performed both before and after animal treatment for confirmation. For 

graphs, all comparisons are shown by Student’s two-tailed unpaired t-test and all graphs, 

bars or lines indicate mean and error bars indicate Standard error of the mean (s.e.m).

Data Availability

Previously published transcriptomics data that were re-analysed here are available under 

accession code GSE67404 and 5163537,38.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lactate dehydrogenase activity is enriched in HFSCs
a, IHC staining for Ldha expression across the hair cycle shows Ldha protein confined to the 

HFSC niche, the bulge, indicated by the bracket. IHC staining for Sox9 on serial sections 

demarcates the HFSC population. Scale bar indicates 20 micrometers. b, Immunoblotting on 

FACS-isolated HFSC populations (α6low/Cd34+ and α6hiCd34+) versus total epidermis 

(Epi) shows differential expression of Ldha in the stem cell niche. Sox9 is a marker of 

HFSCs, and β-actin is a loading control. c, Colorimetric assay for Ldh enzyme activity in the 

epidermis shows highest activity in the bulge (brackets) and subcuticular muscle layer 

(bracket). This activity is enriched in the bulge across different stages of the hair cycle. 

Activity is indicated by purple color; pink is a nuclear counterstain. Note also that 

developing hair shafts in pigmented mice show strong deposits of melanin as observed here; 

hair shafts never displayed any purple stain indicative of Ldh activity. Scale bars indicate 50 

micrometers. d, Ldh activity in sorted cell populations, measured using a plate reader-based 

assay, also shows the highest Ldh activity in two separate HFSC populations (α6hi/Cd34 

and α6low/Cd34) compared to epidermal cells (Epi) and fibroblasts (FBs). Each bar 
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represents the average signal for each cell type where n=9 mice pooled from 3 independent 

experiments. Shown as mean ± SEM. Paired t-test was performed, p < 0.05 shown for each 

cell type versus epidermal cells e, HFSCs and epidermal cells were isolated during telogen 

(day 50) by FACS, and metabolites were extracted and analyzed by LC-MS. Heatmaps show 

relative levels of glycolytic and TCA cycle metabolites from cells isolated from different 

mice in independent experiments with cells from three animals in each. Asterisks indicate 

significant difference in metabolite levels between epidermal cells and HFSCs. For e, paired 

t-test was performed; * denotes p < 0.05, ** denotes p <0.01, *** denotes p < 0.001, ns 

denotes p > 0.05, and n=9 mice pooled from 3 independent experiments. Unprocessed scans 

of blots are shown in Supplementary Figure 6.
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Figure 2. Ldh activity increases during HFSC activation
a, GSEA on RNA-seq transcriptome data from HFSCs versus total epidermis shows 

enrichment for Glycolysis related genes in HFSCs (NES = 1.72). b, GSEA on microarray 

transcriptome data from HFSCs versus total epidermis shows enrichment for Glycolysis 

related genes in HFSCs (NES = 1.45). Results were generated from three mice of each 

condition. c, RNA-seq data from HFSCs sorted during telogen or telogen-anagen transition 

show induction of Ldha35. Data represent the average of three separate animals at each 

timepoint (n = 3), and subjected to students t-test for significance (p < 0.05). d, Ldh activity 

in sorted stem cell populations, measured using a plate reader-based assay, shows elevated 

Ldh activity as stem cells become activated in telogen to anagen transition (Tel-Ana). Each 

bar represents the average signal for each condition where n=9 mice pooled from 3 

independent experiments. Shown as mean ± SEM. Paired t-test was performed, p < 0.05. e, 

Heatmap showing relative levels of glycolytic and TCA cycle metabolites extracted from 

quiescent (Telogen, day 50), activated (Telogen-Anagen, day 70) and HFSCs that have 

returned to the quiescent state (Anagen, day 90). Data shown were generated from n=3 

animals per timepoint in 3 independent experiments.
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Figure 3. Deletion of Ldha blocks HFSC activation
a, Ldha+/+ animals enter the hair cycle synchronously around day 70 as measured by 

shaving and observation beginning at day 50. K15CrePR;Ldhafl/fl animals treated with 

Mifepristone show defects in anagen entry. Results are representative of at least 33 animals 

of each genotype. b, Skin pathology showing that K15CrePR;Ldhafl/fl animals showed 

neither and remained in telogen. Scale bars indicate 50 micrometers. c, Ldh enzyme activity 

assay showed that K15CrePR;Ldha fl/fl animals lacked this activity in the HFSCs (indicated 

by bracket). Scale bars indicate 20 micrometers. d, Graph showing percentage of follicles in 

telogen, telogen to anagen transition and anagen in K15CrePR;Ldha+/+ mice versus 

K15CrePR;Ldhafl/fl mice (n = 225 follicles from 3 mice per genotype). Shown as mean ± 

SEM. Paired t-test was performed, p < 0.05, e, Heatmap showing relative levels of glycolytic 

and TCA cycle metabolites extracted from Ldha+/+ HFSCs and Ldhafl/fl HFSCs and 
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measured by LC-MS. Asterisks indicate significant difference in metabolite levels between 

genotypes. For e, paired t-test was performed,* denotes p < 0.05, ** denotes p <0.01, *** 

denotes p < 0.001, ns denotes p > 0.05, and n=9 mice pooled from 3 independent 

experiments. f, Immunohistochemistry staining for Ki-67, a marker of proliferation is absent 

in Ldhafl/fl HFSCs. Phospo-S6, a marker in HFSCs at the beginning of a new hair cycle, is 

absent in Ldhafl/fl HFSCs. Staining for Ldha protein shows specific deletion in HFSCs. 

Brackets indicate bulge. Staining for Sox9 shows that HFSCs are still present in Ldha 
deleted niche. Scale bars: 20 micrometers. g, Animals with Ldha deletion in their HFSCs as 

controlled by Lgr5CreER, show profound defects in the entry into anagen. right, Skin 

pathology showing that Lgr5CreER;Ldhafl/fl animals mostly remained in telogen. Scale bars: 

100 micrometers. Results are representative of at least 12 animals of each genotype. h, Ldh 

enzyme activity assay in the epidermis shows that Lgr5CreER;Ldhafl/fl animals lacked this 

activity in the HFSCs. Scale bars: 20 micrometers. i, LC-MS analysis of metabolites from 

indicated mice. Data were generated from n=3 animals per condition pooled from 3 

independent experiments.
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Figure 4. Deletion of Mpc1 increases lactate production and activation of HFSCs
a, Mpc1fl/fl animals show pigmentation and hair growth, consistent with entry into the 

anagen cycle at 8.5 weeks, whereas Mpc1+/+ animals do not show dorsal pigmentation and 

hair growth this early. Animals shown are representative of at least 12 animals of each 

genotype. b, FACS isolation of HFSC bulge populations in Mpc1+/+ versus Mpc1fl/fl mice 

followed by western blotting shows successful deletion of Mpc1 protein in the stem cell 

niche. β-actin is a loading control. c, Plate reader assay for Ldh activity on sorted HFSC 

populations shows elevated activity in Mpc1fl/fl HFSCs compared to Mpc1+/+ HFSCs. 

Each bar represents the average signal for each genotype where n=9 mice pooled from 3 

independent experiments. Shown as mean ± SEM. Paired t-test was performed, p < 0.05. d, 
Histology on WT versus Mpc1 deletion skin shows induction of anagen in absence of Mpc1. 

Scale bars indicate 100 micrometers. Quantification of phenotype at right shows percentage 

of dorsal follicles in telogen, telogen to anagen transition and anagen in Mpc1 +/+ mice 
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versus Mpc1fl/fl mice (n = 250 follicles from 3 mice per genotype). Shown as mean ± SEM. 

Paired t-test was performed, p < 0.05. e, Immunohistochemistry staining for Ki-67, a marker 

of proliferation that is only active in HFSCs at the beginning of a new hair cycle, is only 

present in Mpc1fl/fl HFSCs at 8.5 weeks, consistent with their accelerated entry into a new 

hair cycle. Phospo-S6, another marker that is only active in HFSCs at the beginning of a new 

hair cycle, is only present in Mpc1fl/fl HFSCs. Staining for Sox9 shows that HFSCs are 

present in Mpc1 deleted niche. Images taken at 60X magnification. f, Deletion of Mpc1 in 

mice bearing the Lgr5CreER allele shows strong induction of the hair cycle. Note that red 

boxes indicate areas of new hair growth. Results are representative of at least 9 animals per 

genotype. g, Quantification of pigmentation in the indicated genotypes across three 

independent litters (n = 5 mice per genotype). Unprocessed scans of blots are shown in 

Supplementary Figure 6.
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Figure 5. Pharmacological inhibition of Mpc1 promotes HFSC activation
a, Animals treated topically with UK-5099 (20uM) show pigmentation and hair growth, 

indicative of entry into anagen, after 8 days of treatment. Full anagen, indicated by full coat 

of hair, is achieved after 14 days of treatment. Mice treated topically with vehicle control do 

not show pigmentation nor hair growth even after 12 days of treatment. right, Skin 

pathology showing that UK-5099 animals enter an accelerated anagen at 8 weeks typified by 

down growth of the follicle and hypodermal thickening, while vehicle control treated 

animals showed neither and remained in telogen. Images shown are representative of at least 

14 mice from 7 independent experiments. Scale bars indicate 100 micrometers. b, Graph 

showing time to observed phenotype in vehicle versus UK-5099 treated mice. n = 6 mice per 

condition. Shown as mean ± SEM. c, Ldh enzyme activity assay in the epidermis shows 

strong activity in HFSCs in vehicle control and UK-5099 treated animals. Ldh enzyme 

activity also seen in interfollicular epidermis of UK-5099 treated animals. Ldh activity is 

indicated by purple stain; pink is nuclear fast red counterstain. Scale bars indicate 50 

micrometers. d, Metabolomic analysis of Lactate on HFSCs isolated from UK-5099 treated 

skin for 48 hours; Each bar represents the average signal for each condition where n=9 mice 

pooled from 3 independent experiments. Shown as mean ± SEM. Paired t-test was 

performed, p < 0.05.
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Figure 6. Stimulation of Myc levels promotes HFSC activation
a, RNA-seq data from sorted HFSCs in telogen and telogen-anagen transition35. n=3 mice 

per timepoint. Shown as mean ± SEM. Paired t-test was performed, p < 0.05. b, Nuclear 

protein fractions show expression of n-Myc and c-Myc in HFSCs compared to epidermal 

cells. H3k27ac is a loading control for nuclear proteins. c, Total protein preps from skin 

treated with 2 topical doses of RCGD423 (50uM) show increased c-Myc, n-Myc and Ldha 

protein levels compared to animals that received 2 topical doses of vehicle control. β-actin is 

a loading control. d, Plate reader assay for Ldh enzyme activity in the epidermis. Each bar 

represents the average signal for each condition where n=9 mice pooled from 3 independent 

experiments. Shown as mean ± SEM. Paired t-test was performed, p < 0.05. e, Ldh enzyme 

activity assay in the epidermis in vehicle control and RCGD423 treated animals. Scale bar 

indicates 50 micrometers. f, Metabolomic analysis of Lactate on HFSCs isolated from 

RCGD423 treated skin for 48 hours. Each bar represents the average signal for each 

condition where n=9 mice pooled from 3 independent experiments. Shown as mean ± SEM. 

Paired t-test was performed, p < 0.05. g, Immunohistochemistry staining for Ki-67 and 

Aimee et al. Page 21

Nat Cell Biol. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phospo-Stat3, a downstream marker of RCGD423 activity. Scale bar indicates 20 

micrometers. h, Animals treated with RCGD423 (50uM) show pigmentation and hair 

growth, indicative of entry into anagen, after 5 doses. Images shown are representative of at 

least 14 mice from 7 independent experiments. Scale bar indicates 100 micrometers. 

Quantification of phenotype showing time to observed phenotype in vehicle versus 

RCGD423 treated mice. n = 6 mice per condition. Shown as mean ± SEM. Unprocessed 

scans of blots are shown in Supplementary Figure 6.
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