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Abstract
Premise: Robust standards to evaluate quality and completeness are lacking in
eukaryotic structural genome annotation, as genome annotation software is developed
using model organisms and typically lacks benchmarking to comprehensively evaluate
the quality and accuracy of the final predictions. The annotation of plant genomes is
particularly challenging due to their large sizes, abundant transposable elements, and
variable ploidies. This study investigates the impact of genome quality, complexity,
sequence read input, and method on protein‐coding gene predictions.
Methods: The impact of repeat masking, long‐read and short‐read inputs, and de
novo and genome‐guided protein evidence was examined in the context of the
popular BRAKER and MAKER workflows for five plant genomes. The annotations
were benchmarked for structural traits and sequence similarity.
Results: Benchmarks that reflect gene structures, reciprocal similarity search
alignments, and mono‐exonic/multi‐exonic gene counts provide a more complete
view of annotation accuracy. Transcripts derived from RNA‐read alignments
alone are not sufficient for genome annotation. Gene prediction workflows that
combine evidence‐based and ab initio approaches are recommended, and a
combination of short and long reads can improve genome annotation. Adding
protein evidence from de novo assemblies, genome‐guided transcriptome assemblies,
or full‐length proteins from OrthoDB generates more putative false positives as
implemented in the current workflows. Post‐processing with functional and structural
filters is highly recommended.
Discussion:While the annotation of non‐model plant genomes remains complex, this
study provides recommendations for inputs and methodological approaches. We
discuss a set of best practices to generate an optimal plant genome annotation and
present a more robust set of metrics to evaluate the resulting predictions.

K E YWORD S

BRAKER, gene identification, genome annotation, MAKER, plant genomes, StringTie2, TSEBRA

The first published plant genome, Arabidopsis thaliana
(L.) Heynh., was released in 2000 (Arabidopsis Genome
Initiative, 2000). Its small size (135 Mbp) and minimal
repeat content stand in stark contrast to the plant genomes
sequenced and assembled today (Kress et al., 2022). The

National Center for Biotechnology Information (NCBI;
https://www.ncbi.nlm.nih.gov/) genome repository contains
the genomes of over 900 land plant species, and roughly half
of these are assembled to chromosome scale. The total
number of complete reference plant genomes has more than
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doubled in the past five years (Marks et al., 2021). Initiatives
like the Open Green Genomes (https://phytozome-next.jgi.
doe.gov/ogg/), 10KP (Cheng et al., 2018), and the Earth
BioGenome Project (Lewin et al., 2022) are improving the
phylogenetic representation of plant genomes by sampling
underrepresented clades. The plant genomes published
today are more likely to be polyploids and/or larger
genomes with substantial transposable element (TE) con-
tents (Sun et al., 2022). Recent high‐throughput sequencing
advancements, particularly long reads and chromosome
conformation capture approaches, have enabled the com-
pletion of these more challenging assemblies (Pucker
et al., 2022).

While genome assembly has seen substantial improve-
ments in accuracy and contiguity, structural annotation
remains challenging. This process delineates the physical
positions of genomic features, including protein‐coding
genes, promoters, and regulatory elements. It can be
followed by functional annotation, which assigns biological
descriptors to the identified features. The accurate classifi-
cation of these features provides the basis for questions
focused on species evolution, population dynamics, and
functional genomics. Errors in genome annotation are
frequent, even among well‐studied models, and are
propagated through downstream analyses (Deutekom
et al., 2019; Salzberg, 2019; Meyer et al., 2020). In most
eukaryotes, genome annotation is made more challenging
by the partial conservation of sequence patterns, variable
intron lengths, variable distances between genes, alternative
splicing, and higher densities of TEs and pseudogenes
(Kersey, 2019; Salzberg, 2019). As a result of these
complexities, the structural annotation process requires
more advanced informatic tools and skills that support the
integration and manipulation of large data sets (Mudge and
Harrow, 2016).

Structural and functional genome annotation proceeds
in three stages: identifying and masking noncoding regions
(repeats), predicting the physical positions of gene struc-
tures, and assigning biological information to the predic-
tions (Jung et al., 2020). Repeat regions are soft‐masked
(e.g., RepeatMasker [Smit et al., 2013–2015] and Repeat-
Modeler2 [Flynn et al., 2020]), which means these regions
are indicated but not obscured to annotation software. This
is followed by gene prediction, which may be ab initio
(evidence‐free) or evidenced‐based. Evidence‐based ap-
proaches use RNA sequencing (RNA‐Seq) and protein
sequence similarity search alignments. Evidence‐based
approaches are often used in combination with ab initio
approaches (e.g., AUGUSTUS [Stanke and Waack, 2003]) to
generate models trained on patterns associated with true
genes. Given the advanced state of high‐throughput
transcriptome sequencing, it is common to resolve tran-
scripts from RNA reads through genome‐guided ap-
proaches, such as using StringTie2 (Kovaka et al., 2019).
Long‐read cDNA sequencing through Pacific Biosciences
(PacBio) and Oxford Nanopore can provide additional
resolution and improve the identification of splice variants.

When extrinsic evidence from RNA‐Seq and protein
alignments are available, workflow packages such as
MAKER (Cantarel et al., 2008; Holt and Yandell, 2011;
Campbell et al., 2014a) and BRAKER (Hoff et al., 2016, 2019;
Brůna et al., 2021) can assist in training prediction tools ab
initio. These packages can leverage sequence data from the
target species, as well as external evidence from closely
related species. While these workflows can simplify the
integration across external evidence, downstream packages
are still required to select or modify the resulting
predictions (Haas et al., 2008; Banerjee et al., 2021; Gabriel
et al., 2021).

Here, we provide a comprehensive evaluation of plant
genome annotation workflows, intentionally selecting
beyond the typical model species to represent some of the
more complex genomes under investigation today. In doing
so, we evaluate the impact of repeat masking using two
different implementations of the RepeatModeler2 frame-
work (Flynn et al., 2020). This is followed by exploring the
role of read length and accuracy, and the impact of short‐
read and long‐read data. Finally, we examine the contribu-
tion of protein evidence, generated from the de novo
assembly of the RNA inputs and a genome‐guided
assembly. These variations are examined in the MAKER
and BRAKER frameworks to emphasize the importance of
defining benchmarks to guide downstream filtering ap-
proaches. Finally, the largest and most repetitive genome
assessed in this study, Liriodendron chinense (Hemsl.) Sarg.,
was used to demonstrate best practices to refine the
predictions.

METHODS

Gathering plant genome data sets

Five plant genomes were chosen for this study, including
the Chinese tulip tree (Liriodendron chinense) (Chen
et al., 2019), black cottonwood (Populus trichocarpa Torr.
& A. Gray ex Hook. version 3) (Tuskan et al., 2006),
Chinese rose (Rosa chinensis Jacq.) (Raymond et al., 2018),
thale cress (Arabidopsis thaliana TAIR 10) (Cheng
et al., 2017), and a bryophyte, the common cord‐moss
(Funaria hygrometrica Hedw.) (Kirbis et al., 2022) (Appen-
dix S1). The genomes were selected to represent two model
systems (Populus L. and Arabidopsis Heynh.) with well‐
curated structural annotations and three non‐model sys-
tems, for which computational techniques were exclusively
used to produce the annotations. Two of these non‐model
systems were also more divergent examples, representing
the only sequenced member of their genus (Funaria Hedw.
and Liriodendron L.). The publicly available assembly and
annotations for each species were accessed from NCBI, and
genome completeness was estimated by searching the
genome and annotation for the conserved single‐copy
orthologs in the Embryophyta odb10 BUSCO version
5.0.0 (Simão et al., 2015). The contiguity of the reference
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genomes was assessed using Quast version 5.0.2 (Gurevich
et al., 2013). The published annotation files were summa-
rized using gFACs (Caballero and Wegrzyn, 2019).

Read sets available through NCBI's Sequence Read
Archive (SRA) were accessed to provide transcriptomic
evidence for each species and included a variety of tissue
types. The Illumina short‐read libraries were sequenced
(100‐bp paired‐end) with a HiSeq 2500 (Illumina, San
Diego, California, USA). The read sets included at least four
libraries, 20–82 million reads before the quality control
(QC), and a minimum of 16 million reads after QC. Iso‐Seq
(PacBio, Menlo Park, California, USA) long reads were
accessed for Populus and Liriodendron, and PromethION
(Oxford Nanopore Technologies [ONT], Oxford, United
Kingdom) reads were available for Rosa and Arabidopsis.
The read sets for long‐read data ranged from 161,000 to 41
million total reads per species (Appendix S2).

Repeat masking and read alignment

RepeatModeler2 (Flynn et al., 2020) was used to construct
repeat libraries with default settings, and the repeats were
soft masked with the libraries constructed via RepeatMasker
version 4.0.6 (Smit et al., 2013–2015). The genomes of
Arabidopsis, Funaria, Populus, and Liriodendron were
additionally masked using RepeatModeler2 with additional
long terminal repeat (LTR) identification (‐LTRStruct flag).
A quality assessment of the Illumina short reads was
performed using FastQC version 0.11.7 (Andrews, 2010)
before and after trimming the low‐quality bases. Sickle
version 1.33 (Joshi and Fass, 2011) was used to trim low‐
quality bases, with 50 bp as the minimum read length
threshold. Single‐end reads generated post‐trimming were
excluded from the RNA alignments and assembly. The
trimmed short reads were aligned against their reference
genomes using HISAT2 version 2.2.0 (Kim et al., 2019).
HISAT2 was selected for its performance in recent
benchmarking studies and as the aligner of choice for input
to StringTie2 (Corchete et al., 2020; Musich et al., 2021).
Long‐read RNA data were obtained for four species:
Arabidopsis and Rosa were sequenced with ONT's Pro-
methION, and Populus and Liriodendron were sequenced
with PacBio Sequel. The long‐read data sets were aligned
against their respective genomes using Minimap2 version
2.1.7 (Li, 2018, 2021).

Generation of protein evidence

To generate protein evidence, Illumina short reads were
assembled de novo using Trinity version 2.8.5 (Grabherr
et al., 2011), with a minimum contig length of 300 bp. The
assembled transcriptomes for the multiple libraries were
combined, and putative coding regions were predicted using
TransDecoder version 5.3.0 (http://transdecoder.github.io).
TransDecoder is one of several frame‐selection methods

available and performs in a comparable manner but is not
always superior in all metrics (Bolger et al., 2018). For this
study, it was selected as the most widely used package for
this purpose. Redundancy in the predicted coding regions
was reduced after clustering at 98% identity using UCLUST,
a clustering algorithm of USEARCH version 9.0.2132
(Edgar, 2010). Frame‐selected transcripts shorter than
300 bp were removed. The remaining transcripts were
aligned to the genome using GMAP version 2019‐06‐10
(Wu and Watanabe, 2005). The predicted proteins (from the
same Transdecoder run) were aligned to the reference genome
using GenomeThreader version 1.7.1 (Gremme et al., 2005).

To provide protein evidence from genome‐guided
sources, the previously aligned Illumina short reads (via
HISAT2) were constructed into transcripts with StringTie2
version 2.2.0 (Pertea et al., 2015; Kovaka et al., 2019). Long
reads were treated similarly, along with a combination of
short and long reads. The predicted transcripts were
extracted using gffRead (Pertea and Pertea, 2020) and
frame‐selected with TransDecoder. The transcriptome
alignment annotation file (gff3) was passed to gFACs for
the evaluation of the gene model statistics. The complete-
ness of the aligned transcripts and protein sequences was
estimated using BUSCO. Finally, to provide evidence from
external sources (not derived from any transcriptomic
inputs), full‐length protein evidence from OrthoDB
(odb10_plants; Kriventseva et al., 2019) was provided for
BRAKER/TSEBRA runs.

Genome annotations

Each genome was tested in four primary open‐source
annotation softwares to predict the gene models (Table 1).
Several different runs of BRAKER version 2.1.5 (Hoff
et al., 2019) and BRAKER/TSEBRA (Gabriel et al., 2021) were
used with various combinations of RNA‐Seq (long‐ and short‐
read inputs) and protein evidence. MAKER version 3.1.3
(Cantarel et al., 2008) was run once with the transcript and
protein evidence. Finally, StringTie2 (Kovaka et al., 2019), with
TransDecoder, was used to generate genome‐guided predic-
tions from RNA evidence alone (Appendix S3).

MAKER annotation

MAKER (MK) was run on the soft‐masked reference
genomes of Arabidopsis, Populus, and Funaria, with repeats
estimated using the additional LTR detection method in
RepeatModeler2 (LTRStruct flag; RM2+). This was intended
to emulate the MAKER‐P (Campbell et al., 2014b) method
because the original repeat and pseudogene identification
protocols are deprecated. MK (RM2+) was executed (i.e.,
trained) twice. The annotations derived from MK (RM2+)
used protein evidence generated from de novo–assembled
RNA reads from Trinity. These models were used to train
the ab initio gene prediction software AUGUSTUS version
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3.3.3 (Stanke and Waack, 2003) and SNAP version 2006‐07‐
28 (Korf, 2004). The hidden Markov models (HMMs)
trained using AUGUSTUS and SNAP were used, along with
initial aligned evidence (est2genome and protein2genome
parameters) for the second MK (RM2+) run to generate the
final gene models.

Assessment of gene predictions

The quality of genome annotations among the different
gene prediction methods was evaluated using three primary
metrics: (1) the mono‐exonic (single‐exon) and multi‐
exonic (multiple‐exon) ratio, (2) conserved single‐copy
orthologs queried from the predicted gene models using
BUSCO (embryophyta database version 10), and (3) gene
prediction assessment with EnTAP version 0.10.8 (Hart
et al., 2020) using a 70% reciprocal functional annotation
approach with NCBI's RefSeq Plant and UniProt databases.
The mono:multi ratio was calculated from the gFACs
summary report run with default parameters (Caballero and
Wegrzyn, 2019). We regard a mono:multi ratio near 0.2 to
be ideal and have further validated this with a larger set of

model plant genomes (Appendix S4) (Jain et al., 2008). The
gene prediction assessment was recorded as a percentage
of sequence similarity hits to the total number of genes. The
value of the reciprocal BLAST search will be dependent
on the phylogenetic relationships of the target species.
While higher annotation rates indicate better gene predic-
tion abilities, species‐specific genes will always be missed
(Armisén et al., 2008); therefore, a minimum annotation
rate of 80% is a reasonable threshold to expect when dealing
with most non‐models. Similarly, a higher BUSCO score
indicates a better annotation, as BUSCO utilizes OrthoDB
to form its conserved sets; the recommended target score is
>95% for land plants (Simão et al., 2015; Manni et al., 2021).

The sensitivity and precision of the runs for Arabidopsis
and Populus were assessed using Mikado version 2.3.2
(Venturini et al., 2018), by comparing the predicted gene
models to the current reference annotations.

Post‐processing filtering

The predicted gene models for Liriodendron were taken a
step further to refine the genome annotation. Post‐process

TABLE 1 Notations for the different runs performed for benchmarking.

Run Arabidopsis Funaria Populus Liriodendron Rosa

StringTie2

ST2 (SR) Short reads X X X X X

ST2 (LR) Long reads X X X X

ST2 (SR/LR) Short and long reads X X X X

BRAKER

BR (SR) Short reads X X X X X

BR (LR) Long reads X X X X

BR (SR/LR) Short and long reads X X X X

BR (SR/RM2+) Short reads with additional masking for LTRs X X X X

TSEBRA

TSB (SR/TRINITY) Short reads and de novo proteins X X X X X

TSB (SR/ST2) Short reads and genome‐guided proteins X X X X X

TSB (LR/ST2) Long reads and genome‐guided proteins X X X X

TSB (SR/LR/ST2) Short and long reads and genome‐guided proteins X X X X

TSB (SR/ST2/RM2+) Short reads and genome‐guided proteins with additional
masking for LTRs

X X X X

TSB (SR/OrthoDB) Short reads and OrthoDB proteins X X X X X

MAKER

MK (RM2+) Short reads with additional masking for LTRs X X X

Note: LR = long reads; LTR = long terminal repeats; RM2+ = RepeatModeler2 with the additional repeat masking; SR = short reads.
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filtering was performed using gFACs and assessed for
improvement using BUSCO completeness scores and
annotation rates. The mono‐exonic and multi‐exonic genes
predicted for Liriodendron were filtered for unique genes.
The mono‐exonic genes were further filtered for the
presence of protein domains using InterProScan version
5.35‐74.0 and Pfam (Quevillon et al., 2005; Jones et al., 2014).
Multi‐exonic genes that did not have an EggNOG (Huerta‐
Cepas et al., 2019) or a sequence similarity hit were
removed, and the final annotation was assessed using
gFACs and EnTAP.

RESULTS

Genome sizes, repeats, and published
annotations

The genome sizes of the five species assessed represented a
10‐fold difference between the smallest (Arabidopsis ~119
Mbp) and the largest (Liriodendron ~1.7 Gbp) (Figure 1A,
Table 2). Liriodendron and Rosa have higher levels of repeat
content (73.18% and 60.58%, respectively), and Arabidopsis
has the lowest (23.9%). Arabidopsis is the most complete
chromosome‐scale genome, with seven contigs reflecting its
five chromosomes and two organellar chromosomes. The
other genomes are assembled into pseudochromosomes
(except for Liriodendron). Once the genomes were

downloaded, contigs <500 bp were removed. The published
genome assemblies and annotations were compared in terms
of completeness using BUSCO (Figure 1, Table 2). When
BUSCO is run in genome mode, it searches the genome for a
set of 1614 single‐copy orthologs in the embryophyte
database. Aside from Funaria, which had the lowest
completeness score of 82.4%, the remaining plant genomes
ranged from 94% to 99% complete. When we evaluated the
published annotations for the same species and ran BUSCO
in protein mode, a slightly lower level of completeness was
observed in every species except Funaria and Arabidopsis
(Figure 1B). The largest reduction in BUSCO score was
observed in Liriodendron (98.6% vs. 75.1%). The discrepancy
between the estimated completeness at the genome‐level and
most of the published annotations speaks to the challenges of
achieving an accurate structural annotation.

RepeatModeler2 with and without the LTRStruct package
(the additional LTR masking module) (Flynn et al., 2020) was
used to soft‐mask the repeats in four of the genomes. The
increase in repeat content was marginal in all species, ranging
from 1% in Funaria to 5% in Populus. Comparisons using the
LTRStruct flag were denoted as RM2+ (Appendix S5).

Transcriptome evidence

For the subsequent genome annotation analysis, the
Illumina RNA short reads were first aligned to the genome.

F IGURE 1 Genome size, repeat content, and BUSCO completeness for the five plant genomes: Arabidopsis thaliana, Populus trichocarpa, Funaria
hygrometrica, Rosa chinensis, and Liriodendron chinense. Each pie represents the BUSCO completeness. Green denotes the completeness score, orange
indicates the fragmented score, and blue indicates the missing score from BUSCO. (A) BUSCO scores estimated from the published assemblies. (B) BUSCO
scores estimated from protein‐coding gene predictions from the published annotations.
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All libraries, ranging from four to 20 per species, aligned at
over 97%, apart from Rosa (92%) (Table 3, Appendix S6).
Long‐read RNA libraries were aligned with Minimap2 for
four species: Arabidopsis (ONT PromethION reads, 97.1%
aligned), Populus (PacBio Iso‐Seq reads, 92.01% aligned),
Liriodendron (PacBio Iso‐Seq reads, 95.5% aligned), and
Rosa (ONT PromethION reads, 99% aligned). The N50s for
the long reads range from 976 bp in Rosa to 4.6 kbp in
Liriodendron (Appendix S7).

Transcript‐derived annotations

The reads were assembled using StringTie2 (ST2) and
Trinity. The Trinity de novo assemblies of the Illumina
short reads generated longer transcripts, with N50s ranging
from 1.2 kbp (151,265 transcripts in total) in Funaria to 3.06
kbp (2,839,867 transcripts) in Liriodendron. Among the
genome‐guided assemblies with StringTie2 (ST2 (SR)), the
range was much smaller, with N50s ranging from 369 bp
(59,741 transcripts in total) in Funaria to 2.54 kbp (37,747
transcripts) in Arabidopsis (Appendix S7). The StringTie2
(ST2 (LR) and ST2 (SR/LR)) range was longer, with N50s
ranging from 1.07 kbp (20,633 transcripts in total) in Rosa
ST2 (LR) to 2.36 kbp (45,785 transcripts) in Liriodendron
ST2 (SR/LR) (Table 3, Appendix S7). The StringTie2 and
Trinity transcripts were aligned back to the genome using
GMAP after the frame selection. The BUSCO scores for the
aligned transcriptomes derived from short‐read data, run in
transcriptome mode, ranged from 73% in Funaria to 83% in
Rosa for Trinity, and 73% in Liriodendron to 97% in Rosa
using StringTie2 (Table 3). The BUSCO scores were the
lowest for the ST2 (LR) runs across all species, as compared
to the other StringTie2‐only runs. For ST2 (SR/LR), the
BUSCO scores were lower than for ST2 (SR), except for
Rosa, where the ST2 (SR/LR) was 97.2% as opposed to
97.0% in ST2 (SR). In all species, ST2 (SR/LR) had higher
BUSCO scores than ST2 (LR). Despite Trinity producing
more than double the total transcripts than StringTie2, the
BUSCO completeness scores of most StringTie2 runs were
much higher than that of Trinity. Liriodendron remained
the only exception, with a slightly higher BUSCO score
from Trinity.

Arabidopsis and Populus were further evaluated with
Mikado to compare the sensitivity and specificity of the

published annotations (Figure 2B, Appendix S8). Overall,
the StringTie2 predictions had higher sensitivity and
precision rates than the Trinity runs. From this point,
Trinity was excluded, and StringTie2 runs were compared
against the BRAKER and TSEBRA predictions (Figure 2B).

The mono:multi ratios produced by StringTie2 ranged
from 0.15 in Populus (ST2 (LR)) to 0.53 in Liriodendron (ST2
(LR)), which were an improvement over the mono:multi
ratios produced from the BRAKER annotations that ranged
from 0.37 in Arabidopsis (BR (LR)) to 1.27 in Funaria (BR
(SR/RM2+)). The BUSCO scores of the proteins predicted
from BRAKER were generally higher than the BUSCO scores
from StringTie2; for example, Arabidopsis StringTie2 runs
ranged from 85% (ST2 (LR)) to 95.5% in ST2 (SR), while
BRAKER runs ranged from 94% (BR (LR)) to 95.9% (BR
(SR)). Some runs are comparable, however; the ST2 (SR) run,
BR (SR) run, and the BR (SR/RM2+) run in Arabidopsis all
had a BUSCO score of 95%. StringTie2‐predicted models had
a higher annotation rate, in general, than BRAKER; for
example, the EnTAP annotation rate in Funaria was just over
40% post‐BRAKER but was near 60% from the StringTie2
runs (Figure 3).

Genome annotation with MAKER

To replicate the repeat pipeline of MAKER‐P, the RM2+
genome was used for the MAKER runs for Arabidopsis,
Populus, and Funaria. BUSCO completeness was low
compared with the BRAKER runs, ranging from 19.6% in
Populus to 90.4% in Arabidopsis (Figure 4A). The mono:
multi ratio of MAKER(RM2+) for Arabidopsis was compa-
rable to the BRAKER runs for the same species (0.22 for BR
(SR) and BR (SR/RM2+), 0.24 for BR (LR), and 0.23 for BR
(SR/LR)). The MK (RM2+) predictions for the total number
of genes in Arabidopsis (22,000) and Funaria (44,000) were
in the expected range for these species, whereas only 7000
genes were predicted for Populus. The average gene lengths
ranged from 1.8 kbp in Funaria to 2.3 kbp in Arabidopsis
(Appendix S9). The best MK (RM2+) run was for
Arabidopsis, with a mono:multi ratio of 0.22 and a BUSCO
score of 90.4%. On the other hand, the mono:multi ratio for
Populus was 0.07, and the BUSCO score was 19.6%.

The model systems, Arabidopsis and Populus, were
further evaluated with Mikado to compare the sensitivity

TABLE 2 Genome assembly and annotation statistics for the five published plant genomes.

Species Genome size (Mbp) Total scaffolds (chromosomes) N50 (Mbp) Repeat content
BUSCO completeness
Genome Annotation

Arabidopsis thaliana 119 7 (5) 23.46 23.6% 99.30% 99.60%

Funaria hygrometrica 327 687 (26) 1.48 42.35% 85.60% 86.60%

Liriodendron chinense 1742 3711 (21) 3.53 73.18% 98.60% 75.10%

Populus trichocarpa 434 1446 (19) 19.47 35.90% 98.80% 98.30%

Rosa chinensis 515 55 (7) 69.64 60.53% 98.80% 97.30%
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and specificity of the published annotations (Figure 2B,
Appendix S8). The sensitivity and precision scores for
gene predictions were lowest from MAKER, followed by
Trinity, and were highest from TSEBRA. StringTie2 and
BRAKER yielded similar sensitivity and specificity scores for
Arabidopsis, whereas for Populus the sensitivity score was
lower than those from the BRAKER runs. Given its overall
low scores, MAKER was excluded from the subsequent
comparisons. It should be noted, however, that some
protocols recommend using GeneMark in MAKER (Brůna
et al., 2021). With this addition to the training protocol,
MAKER was shown to have a higher accuracy in prediction.

Genome annotation with BRAKER

In general, the BUSCO scores were improved in the
BRAKER and TSEBRA runs, with the TSB (SR/OrthoDB)
predictions scoring the highest. The best BUSCO scores
were from TSB (SR/OrthoDB), ranging from 98.9% (TSB;
SR/OrthoDB) in Arabidopsis to 82.2% in Funaria. Overall,
the TSEBRA runs fared better, with the annotation
completeness rates ranging from 99% in Arabidopsis (TSB;
SR/OrthoDB) to 53% in Funaria. On the other hand, the
TSEBRA runs had the worst mono:multi ratios; for
example, the highest TSB (SR/ST2/RM2+) ratio was 1.27
for Funaria (Figure 4).

Overall, the gene models generated for Arabidopsis by
BRAKER performed similarly across runs when evaluated
using BUSCO scores. The mono:multi ratios across
BRAKER runs ranged from 0.23 to 0.39, and the annotation
rates were consistently above 95%.

The annotation rates for Funaria were lower than
expected: 43% for BR (SR) and 53% for nearly all methods
that included protein evidence (TSB (SR/TRINITY) and
TSB (SR/OrthoDB)). The BUSCO completeness scores of
about 85% post‐BRAKER are comparable to those from
StringTie2.

In the case of the Liriodendron BRAKER and TSEBRA
runs, the mono:multi ratios were more variable when
compared to the StringTie2 runs, which ranged from 0.34
BR (SR) to 1.04 with BR (SR/RM2+). The annotation rates
for each run were around 75%, with BUSCO scores from
83% with TSB (SR/LR/ST2) to 90.8% for BR (SR). Populus
gene models post‐BRAKER without protein evidence had
mono:multi scores around 0.24, and with TSEBRA, the ratio
ranged from 0.4 to 0.5. The annotation rates also differed
between BR (SR) (75%) and TSB (SR/ST2) (88%). Rosa had
overall consistent scores (around 96%) for BUSCO post‐
BRAKER. TSEBRA runs had higher mono:multi ratios (0.75)
compared with the BRAKER runs (0.37) (Appendix S9).

Annotation with long reads

For BRAKER runs, the predicted gene lengths from the long
reads were comparable with those based on short reads,T
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except for some runs with long reads within Populus. The
average gene length for BRAKER with long reads for
Populus ranged from 2.7 kbp to 3.4 kbp, although some
transcripts exceed 6 kbp. The longest average gene lengths
were observed in Liriodendron (9.3 kbp; BR (SR/LR)). The
inclusion of long reads (exclusively) did not improve
BUSCO completeness for any species, apart from Arabi-
dopsis, where the BR (LR) BUSCO completeness was 1%
higher than for the BR (SR) run. The increase in BUSCO
completeness in Arabidopsis could be due to the large
number of long reads included (23 million across four
libraries); however, the quality of genome annotation does
not seem correlated with the depth of long‐read sequencing.
For example, Rosa had more reads (41 million across six
libraries), and the BR (LR) run had a similar BUSCO score
to BR (SR) (96%). It should be noted that the long reads for
Arabidopsis and Rosa were sequenced with ONT Pro-
methION. The PromethION reads had higher mapping
rates, compared with Iso‐Seq, to their respective genomes:
97.1% in Arabidopsis and 99% in Rosa (Appendix S6). The
long‐read inputs, regardless of depth or type, lowered the
BUSCO completeness (up to 10%) across all ST2 (LR) runs
(Appendix S10). Finally, we note that the combination of
short reads and long reads (BR; SR/LR and TSB; SR/LR/

ST2) is comparable to the BR (SR) reads in terms of BUSCO
completeness. Exceptions to this case are Arabidopsis and
Rosa, which had marginally higher BUSCO completeness
scores. BR (SR/LR) runs produced more genes (in total) for
Arabidopsis, Populus, and Rosa than BR (SR); however,
fewer genes were identified in the TSB (SR/LR/ST2) runs
than for BR (SR), apart from in Rosa. The annotation rate in
the BR (SR/LR) of Liriodendron was higher than its BR (SR).
The combination of proteins with SR and LR (TSB (SR/LR/
ST2)) resulted in higher annotation rates across all species.
The combination of SR and LR increased the mono:multi
ratios, which were therefore worse across all species.

Refining the genome annotation for
Liriodendron

The BRAKER runs for Liriodendron were filtered with
gFACs and InterProScan to remove unlikely gene models
(Table 4). The number of mono‐exonic genes was
drastically reduced post‐filter with InterProScan. Across
all runs, the mono‐exonic genes numbered 11,000 to 25,000.
After removing mono‐exonics without a protein domain
annotation from the Pfam database, they decreased from

F IGURE 2 Comparison of BUSCO, sensitivity, and false positive rates between the Arabidopsis and Populus annotations (Appendix S8). (A) BUSCO
completeness scores for the MK (SR/RM2+) and BR (SR/RM2+) runs of Arabidopsis and Populus. Green denotes the completeness score, orange indicates
the fragmented score, and blue indicates the missing score from BUSCO. (B) False positive rates and sensitivity scores from Mikado against published
annotations for Arabidopsis (red) and Populus (gold) for the MAKER, BRAKER, TSEBRA, Trinity, and StringTie2 runs. The scores were assessed using
Mikado. Multiple points per run reflect differences in input read type and repeat masking.
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13,000 to 5000. The decrease in false positive mono‐exonics
resulted in an improved mono:multi ratio that ranged from
0.16 for BR (SR) and BR (SR/RM2+), 0.16 and 0.23 for the
StringTie2 runs, to 0.43 for the TSEBRA runs. The BUSCO
scores decreased slightly post‐filtering (1–2%). EnTAP
annotation rates ranged from 66% to 86%, with the TSB
(SR/OrthoDB), which is an improvement from 59% to 68%
pre‐filtering.

In terms of BUSCO completeness and mono:multi
ratios, the two best‐performing runs (BR (SR) and BR
(SR/LR)) were further filtered (Table 4). In this step, multi‐
exonic genes without an EggNOG alignment or a sequence
similarity alignment through EnTAP were removed. These
filtered models were re‐assessed for their mono:multi ratio,
BUSCO completeness, and EnTAP annotations. The
BUSCO completeness remained the same for BR (SR), but
not for BR (SR/LR). The EnTAP annotation increased from
66% to 81% in BR (SR), and 67% to 87% in BR (SR/LR).

DISCUSSION

BRAKER (Hoff et al., 2019; Brůna et al., 2021) and MAKER
(Cantarel et al., 2008) are currently the most popular eukaryotic
structural annotation tools, cited 475 and 1010 times,
respectively, since 2021, as referenced in Google Scholar
(https://scholar.google.com/). Processes that select frommultiple
ab initio or aligned forms of evidence are gaining popularity as
well, although they add both time and complexity to the
analyses (FINDER cited 22 times [Banerjee et al., 2021];
EVidenceModeler cited 381 times [Haas et al., 2008]). Finally, as

high‐throughput transcriptomics, in the form of both short‐ and
long‐read evidence, become more accessible, rapid approaches
such as StringTie2 (cited 451 times [Kovaka et al., 2019]) are
occasionally used as the exclusive approach, although they are
more often used in combination with the options listed above.

Regardless of the methods selected, recently published
benchmarks demonstrate the challenge of achieving high
values for gene sensitivity in larger genomes (Brůna et al., 2021).
Within smaller and less complex model systems such as
Caenorhabditis elegans and Drosophila melanogaster, the ab
initio prediction results in gene sensitivities of 49.8% and
59.5%, respectively (Brůna et al., 2021). In well‐studied
complex organisms, such as humans, the gene‐level sensitivity
and specificity hovers at 48% and 43%, respectively (Banerjee
et al., 2021). While generating benchmarks with model systems
(A. thaliana, C. elegans, and D. melanogaster) provides more
reliable metrics for comparison, they do not fully represent the
diversity of their respective clades (Chang et al., 2016).

This study focused on four gene prediction workflows,
StringTie2, MAKER, BRAKER, and BRAKER/TSEBRA, and
examined the process across a variety of evidence inputs.
Both model and non‐model plant genomes were considered
to highlight the challenges and reinforce the need for
downstream filtering.

Genome annotation benchmarks for both
models and non‐models

Among plant genomes, the total number of genes is
relatively conserved and ranges from 20,000 to just over

F IGURE 3 Comparing metrics between BRAKER (blue) and StringTie2 (red) predictions. (A) Mono:multi ratios, (B) BUSCO comparisons, and
(C) EnTAP annotation rates of the gene models. The yellow region indicates the ideal value for each of the metrics.
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40,000. As such, the total gene number provides an
accessible preliminary benchmark; however, the number
of genes in the reference annotation cannot be used to assess
the overall quality of the annotation. To measure this, we
should consider additional metrics. Here, we describe the
utility of the BUSCO score, mono:multi‐exonic ratio, and
sequence similarity assessment.

BUSCO allows us to identify complete, duplicated,
fragmented, and missing single‐copy orthologs shared by
most seed plants (Simão et al., 2015; Seppey et al., 2019).
This provides a reliable benchmark in the absence of a

high‐quality reference annotation. Poor BUSCO scores are
immediately indicative of a larger issue; however, a high
BUSCO score is not sufficient to estimate the quality of an
annotation (Figure 4B). Six of the 18 BRAKER runs and
four of the 17 StringTie2 runs exceeded 95% completeness,
but their total gene number, gene length, and structure
varied considerably.

Repeat content, especially in the form of LTRs, and
pseudogenes can lead to inflated gene model estimates,
especially for mono‐exonic genes (Scott et al., 2020;
Trouern‐Trend et al., 2020). We expect that eukaryotes

F IGURE 4 Comparison of scores across all species between the runs of different input types and software. (A) BUSCO completeness scores.
(B) Mono:multi ratios. (C) EnTAP annotation rates. MAKER is shown in green, BRAKER is light blue, TSEBRA is dark blue, and StringTie2 is red. The
yellow rectangle represents the target scores for each benchmark. RM2+, RepeatModeler2 with LTRStruct.
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maintain 20% or less of their gene space as mono‐exonics
(Jain et al., 2008; Appendix S4). Although the BUSCO
scores were consistent, we note tremendous variation in the
mono‐ to multi‐gene model ratios post‐BRAKER. In
practice, having a worse mono:multi ratio is preferable to
having a lower BUSCO score, as missing genes, especially
those thought to be conserved, cannot be easily rectified,
while putative false positives may be filtered out through
other means.

Sequence similarity search metrics are more complex to
interpret, but can provide a benchmark when used with
high‐quality and curated databases that contain full‐length
proteins (e.g., NCBI RefSeq). Specifically, a reciprocal
BLAST search requires that both the query and target in
the search retain a minimum level of coverage in the
alignment. For new plant genomes in the darkest branches

of the tree of life, this might be a less reliable metric. Some
species may fare poorly in database comparisons, so
searches for protein domains could provide some level of
confidence. We demonstrate this as a filter to reduce the
mono‐exonics in Liriodendron (Table 4).

Repeat masking is important but may not
require additional LTR resolution to improve
performance

Plant genomes typically contain many repeats, mostly in the
form of TEs, averaging around 46% of the genome (Luo
et al., 2022). Given the abundance of TEs in genomes, it is
important to mask these in advance of gene prediction. Soft
masking involves changing nucleotides identified as repeats
to lowercase letters (Yandell and Ence, 2012), signaling
downstream programs to ignore these sequences. Of the five
genomes included in this study, Liriodendron had the largest
genome size and highest repeat content. Running down-
stream analyses on an unmasked genome of Liriodendron
resulted in a four‐fold increase in gene predictions
(Figure 5A, Appendix S11). Many repeats were identified
as putative gene models, resulting in a large increase in the
total number of genes (Figure 5B, Appendix S11).

RepeatModeler2 is a widely used tool for TE discovery
(Flynn et al., 2020). The recent release of RepeatModeler2
includes an optional module for more robust LTR structural
detection (LTRStruct module) that includes the LTRharvest
(Ellinghaus et al., 2008), LTRDetector (Valencia and
Girgis, 2019), and LTR_retriever packages (Ou and
Jiang, 2018). This is particularly useful in identifying more
divergent LTRs in the genome that may exist in fewer copies
(Ou and Jiang, 2018; Valencia and Girgis, 2019). Among the
default packages included, RepeatScout serves as a fast
method for detecting young and abundant repeat families in
the genome. RECON, on the other hand, is more
computationally intensive and is sensitive enough to detect
older TE families. The LTRStruct module is run on the
unmasked genome to identify LTR families that may be
redundant with the families identified by the default
package; this creates redundancy that is resolved through
clustering with CD‐HIT (Flynn et al., 2020).

In the four species compared, additional repeat masking
did not significantly improve gene predictions (Figure 4,
Appendix S10). The mono:multi ratios across species were
consistent before and after additional LTR masking
(Figure 5A). The BUSCO completeness scores remained
relatively the same, with BR (SR/RM2+) being 1% higher
than BR (SR) in Arabidopsis, Funaria, and Populus. The
marginal improvement observed in these genomes could be
related to the structure and type of LTRs, such as the better
identification of divergent Ty1‐copia elements described in
the Funaria genome (Kirbis et al., 2022). Although we did
not include genomes with excessive repeat estimates
(>70%), our results indicated that the optional LTRStruct
module was not beneficial.

TABLE 4 Gene model statistics for Liriodendron after two rounds of
structural and functional filters.

Liriodendron
annotationa

Total
genes

Mono:multi
ratio BUSCO % EnTAP %

Published
annotation

35,261 0.7 75.1 63

Mono‐exonic filters

BR (LR) 39,031 0.21 87.4 69

BR (SR) * 41,065 0.16 90.2 66

BR (SR/LR) * 40,420 0.16 90.3 67

BR (SR/RM2+) 40,740 0.17 88.2 67

ST2 (SR) 51,804 0.16 86.5 80

ST2 (LR) 27,012 0.23 65 84

ST2 (SR/LR) 36,345 0.24 70.6 82

TSB (LR/ST2) 33,132 0.43 82.3 84

TSB (SR/
LR/ST2)

33,964 0.43 82.4 84

TSB (SR/ST) 32,898 0.41 83.4 84

TSB (SR/
ST2/
RM2+)

33,637 0.45 82.8 84

TSB (SR/
TRINITY)

34,646 0.42 84 83

TSB (SR/
OrthoDB)

33,667 0.43 86.5 86

+Multi‐exonic filters

BR (SR) 30,219 0.24 90.3 81

BR (SR/LR) 30,035 0.23 86.9 87

Note: BR = BRAKER; BUSCO % = completeness percentage; EnTAP % = annotation
rates after reciprocal BLAST; LR = long reads; RM2+ = RepeatModeler2 with
LTRStruct; SR = short reads; ST2 = StringTie2; TSB = TSEBRA.
aAsterisks denote the two best annotation sets.
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Transcripts derived directly from alignments
are not sufficient to annotate reference
genomes

Transcriptome assemblers are designed to work with
primarily short RNA‐Seq reads to construct full‐length
transcripts. In the presence of a high‐quality reference
genome, genome‐guided approaches are preferred, as the
reads are aligned directly to the target genome in advance.
Aligned RNA evidence provides resolution on exon
boundaries, and aids in the identification of splice variants.
De novo approaches build graph models directly from the
short (or long) reads to generate transcripts. The latter is

much more challenging, computationally intensive, and
prone to error.

We compared the accuracy of annotations produced by
StringTie2, the accuracy of de novo–assembled transcripts
with Trinity, and the accuracy of annotations produced by
BRAKER. The selected packages are top performers when
compared in their respective categories of genome‐guided
and de novo transcriptome assembly (Sahraeian et al., 2017;
Venturini et al., 2018). As expected, Trinity produced a
higher number of transcripts than StringTie2, and BUSCO
completeness was consistently lower (Table 3), except for
Liriodendron. The gene models generated by StringTie2
were more numerous than the BRAKER gene models,

F IGURE 5 The effect of soft masking on gene prediction in Liriodendron (Appendix S11). (A) Performing structural annotation on the unmasked
Liriodendron genome results in the identification of more mono‐exonic genes as opposed to multi‐exonic genes. Blue denotes the BRAKER (BR) runs for
both genomes, SR denotes short reads, and LR denotes long reads. The lighter shade represents mono‐exonics, and the darker shade represents the multi‐
exonics. (B) More genes predicted using the unmasked genome (blue), as compared with only one gene predicted in this region with the masked genome
(red). The green track shows the long terminal repeat elements in the genome as identified by RepeatModeler2. The RNA alignment reads show a read
pile‐up at the predicted gene (masked track).
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resulting in more than was expected for each species. It
should be noted, however, that StringTie2 identifies splice
variants by generating a splice graph and resolving conflict
between multiple potential splice sites (Kovaka et al., 2019),
whereas BRAKER trains an internal algorithm, GeneMark‐ET,
to find specific genes with complete support among all introns
to be further used in training AUGUSTUS (Hoff et al., 2019).

The StringTie2 runs resulted in lower BUSCO com-
pleteness than the BRAKER and/or TSEBRA runs
(Figure 4A, Appendix S12). This outcome is supported by
the lack of ab initio prediction with genome‐guided
approaches. Inflated mono‐exonic predictions (and lower
BUSCO scores) were also observed in the StringTie2
genome annotation of the water strider (Microvelia longipes)
(Toubiana et al., 2021). In our study, the Rosa ST2 (SR/LR)
run was closest to the BRAKER runs, with a BUSCO score
of 97.2%, BR (SR/LR) of 96.9%, and TSB (SR/ST2) of 98%
(Appendices S10, S12).

Genome annotations are improved when
combining published full‐length protein
sequences and read data

The performance of StringTie2 and the Trinity‐derived
protein evidence was assessed on the predicted gene models
using BRAKER and TSEBRA. In this context, the genome‐
guided or de novo–assembled transcripts were translated
into proteins and provided as evidence to train the ab initio
component of the pipelines. Adding protein evidence to
genome annotations can target protein‐coding genes,
leading to more accurate predictions than RNA‐Seq
evidence alone (Bruna, 2022). This study specifically
focused on using protein evidence derived in some fashion
from the transcriptomic inputs, but also evaluated the
recommendation to include clade‐specific OrthoDB protein
inputs to the BRAKER/TSEBRA approach.

The TSEBRA runs of the model species Arabidopsis and
Populus were compared with the reference annotations. These
runs were the best for the model species in terms of sensitivity
and specificity as compared to the MAKER, StringTie2,
Trinity, and BRAKER runs (Figure 4B). The model genomes
also had very similar BUSCO completeness scores, but
different mono:multi ratios with the addition of protein
evidence. As expected, the model genomes benefited the most
from the inclusion of the external OrthoDB proteins in terms
of annotation rate and BUSCO score (both Arabidopsis and
Populus reference proteins are contained within this resource);
however, mono:multi ratio challenges remained consistent
across the TSEBRA runs with varying inputs.

In the case of non‐model plant genomes, TSEBRA
contributed to higher mono:multi ratios, which was very
evident in Liriodendron; however, the BUSCO scores of the
non‐protein runs were lower across all runs of Liriodendron
than for all runs using protein evidence. The Rosa TSB (SR/
OrthoDB) had the highest BUSCO score across all runs,
which we believe may have been greatly influenced by the

addition of OrthoDB, given the phylogenetic placement of
Rosa in comparison to Arabidopsis. On the other hand, the
annotation rate of TSB (SR/OrthoDB) was similar to that of
the other runs in Rosa. The higher quality of the Rosa
genome assembly, compared with the other two non‐
models, could also influence the utility of the protein
evidence; however, the mono:multi ratios remained high,
and annotation rates were similar to those of the runs
without OrthoDB proteins.

TSEBRA runs with proteins sourced from genome‐
guided predictions performed similarly, but had lower
BUSCO scores, higher mono:multi ratios, and lower total
gene numbers when compared with the short read–only
runs (Figure 4A, Appendix S10). Among the TSEBRA runs,
Trinity fares better only for Liriodendron, which could
indicate that genome‐guided proteins are not a suitable
choice for a more repetitive genome. This is consistent with
the independent assessments between the de novo tran-
scriptome assemblers and genome‐guided assemblers with
complex genomes with fragmented genome assemblies (e.g.,
in Aedes albopictus [Huang et al., 2016]). TSEBRA with full‐
length proteins sourced from OrthoDB had lower BUSCO
scores when compared to BR (SR) for the non‐model
species Liriodendron and Funaria.

The total number of genes predicted by the TSEBRA
and BRAKER runs remained largely the same across all
species (Appendix S10). However, it should be noted that
the number of mono‐exonic genes increased, whereas the
multi‐exonic genes decreased, across all TSEBRA runs
relative to the BRAKER runs without proteins across all
species. The average gene lengths also decreased, while the
average lengths of mono‐exonics remained the same, and
the lengths of multi‐exonics were higher.

Our initial examination of the EnTAP reciprocal BLAST
assessment revealed high annotation rates for the non‐
model species when protein evidence was included,
particularly the multi‐exonics (whereas the mono‐exonic
percentage remained the same) (Appendix S10). However,
this increase in multi‐exonic annotation proved to be an
artifact resulting from the reduced numbers of these genes
using this approach. Direct comparisons of the predictions
revealed that 40–52% of the multi‐exonics were split into
mono‐exonic predictions when comparing the BR (SR) to
the TSB (SR/ST2) and TSB (SR/OrthoDB) gene models
predicted using Liriodendron (Appendices S13, S14).

Long reads can be paired with short reads to
improve model quality

Long reads generated from platforms such as ONT or
PacBio have the potential to resolve splice variants and
assemble transcripts more accurately than traditional
Illumina RNA‐Seq (Amarasinghe et al., 2020). While long
reads can independently generate transcriptomes, it is
recommended to have a combination of short and long
reads to achieve greater depth, improved error profiles, and
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more evidence for splice site resolution (Gonzalez‐Ibeas
et al., 2016; Watson andWarr, 2019; Amarasinghe et al., 2020).

In this study, we utilized both ONT PromethION and
PacBio Iso‐Seq long reads. In the latter, we relied on raw
reads (not the error‐corrected circular consensus sequenc-
ing reads) in our comparisons for genome annotations.
In all cases, long reads (alone) did not outperform short
reads for the BRAKER runs; however, in some cases, the
combination of short‐read and long‐read inputs was
beneficial. The Iso‐Seq reads from Populus and Liriodendron
had a higher error rate and produced comparable, but
lower, BUSCO scores than the BR (SR) runs. By contrast,
the ONT PromethION long reads used for Arabidopsis and
Rosa in the combined runs (BR (SR/LR)) had slightly better
BUSCO completeness than the BR (SR) runs, and similar
mono:multi ratios. Overall, the lower error profile of using
ONT PromethION reads, supplemented with short‐read
data, as well as the use of high‐quality reference genomes,
support the higher BUSCO completeness scores.

Best practices for plant genome annotation

From the existing tools, we recommend that investigators
utilize RepeatModeler2 to mask their genome of interest
with the default settings (Flynn et al., 2020). Following soft
masking, RNA‐Seq short reads (between 4–10 libraries,
minimum 15 million paired‐end reads per library) are
generally sufficient for annotation. While we did not
comprehensively investigate the impact of tissue type, it is
recommended to sample from multiple tissues when
possible (Kress et al., 2022). In our study, we did not
observe a difference in the annotation completeness among
species with a higher number of short‐read libraries,
although we did not comprehensively evaluate the effect
of using fewer libraries within a single species.

Sequencing long‐read libraries remains more expensive
than generating deep Illumina short‐read RNA‐Seq cover-
age. In most cases, the short reads were a sufficient input.
The notable exceptions include the BR (SR/LR), as they
were comparable, and in some cases slightly better than, the
BR (SR) runs across all species. The PromethION reads had
a lower error profile and were more beneficial when
combined with short reads; however, current long‐read
technologies available from both platforms may provide
different results.

BRAKER and TSEBRA outperformed runs of MAKER,
StringTie2, and Trinity with default settings. It should be
noted that we did not comprehensively benchmark MAKER
with more than two training runs of AUGUSTUS (Appen-
dix 15), as is recommended, which could have further
improved results; however, previous benchmarking studies
also reported a lower performance for MAKER (Banerjee
et al., 2021; Brůna et al., 2021). Among the BRAKER runs
executed in the model plants Arabidopsis and Populus, the
TSEBRA runs were best. TSEBRA, especially TSB (SR/
OrthoDB), performed best for Rosa but would require

substantial filtering to remove false positives. Among the
less contiguous and more evolutionary distant species
(Funaria and Liriodendron), the BR (SR) runs performed
best in terms of BUSCO completeness and mono:multi
ratios. The overall EnTAP annotation rates were greatly
improved in runs where OrthoDB proteins were included as
evidence; however, when considering BUSCO scores and
mono:multi ratios, especially for non‐model species, the BR
(SR) runs performed best. For more divergent species (as
defined by current public databases), BRAKER runs with
short reads, or short reads and long reads, are advised.

Regardless of approach, the existing pipelines do not
provide appropriate summary statistics or robust methods
for filtering unlikely gene models. All methods produce
more putative false positives than desired. We recommend
utilizing reciprocal BLAST searches with well‐curated
databases containing targets with full‐length proteins (such
as NCBI's RefSeq) to identify fragmented models. We also
recommend filtering and removing mono‐exonics that do
not have a protein domain. Finally, we recommend
structural filters to remove unlikely gene structures (e.g.,
splice sites, start sites, incompletes).

In this study, we demonstrated the impact of post‐
filtering on the most complex genome assessed in this study,
Liriodendron. We improved the published annotation across
all benchmarks evaluated in this study following a new BR
(SR) run (Table 4) (Chen et al., 2019). The filters reduced
the overall number of putative false positives and increased
the overall rate of annotation, with minimal reduction to
BUSCO completeness.
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