
UCSF
UC San Francisco Previously Published Works

Title
Efficient Decoding of Multi-Dimensional Signals From Population Spiking Activity Using a 
Gaussian Mixture Particle Filter.

Permalink
https://escholarship.org/uc/item/1q8480x3

Journal
IEEE transactions on bio-medical engineering, 66(12)

ISSN
0018-9294

Authors
Yousefi, Ali
Gillespie, Anna K
Guidera, Jennifer A
et al.

Publication Date
2019-12-01

DOI
10.1109/tbme.2019.2906640
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1q8480x3
https://escholarship.org/uc/item/1q8480x3#author
https://escholarship.org
http://www.cdlib.org/


3486 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 66, NO. 12, DECEMBER 2019

Efficient Decoding of Multi-Dimensional Signals
From Population Spiking Activity Using a

Gaussian Mixture Particle Filter
Ali Yousefi , Anna K. Gillespie , Jennifer A. Guidera , Mattias Karlsson, Loren M. Frank ,

and Uri T. Eden

Abstract—New recording technologies and the potential
for closed-loop experiments have led to an increasing de-
mand for computationally efficient and accurate algorithms
to decode population spiking activity in multi-dimensional
spaces. Exact point process filters can accurately de-
code low-dimensional signals, but are computationally
intractable for high-dimensional signals. Approximate
Gaussian filters are computationally efficient, but are in-
accurate when the signals have complex distributions and
nonlinear dynamics. Even particle filter methods tend to be-
come inefficient and inaccurate when the filter distribution
has multiple peaks. Here, we develop a new point process
filter algorithm that combines the computational efficiency
of approximate Gaussian methods with a numerical accu-
racy that exceeds standard particle filters. We use a mixture
of Gaussian model for the posterior at each time step,
allowing for an analytic solution to the computationally ex-
pensive filter integration step. During non-spike intervals,
the filter needs only to update the mean, covariance, and
mixture weight of each component. At spike times, a sam-
pling procedure is used to update the filtering distribution
and find the number of Gaussian mixture components nec-
essary to maintain an accurate approximation. We illustrate
the application of this algorithm to the problem of decoding
a rat’s position and velocity in a maze from hippocampal
place cell data using both 2-D and 4-D decoders.

Index Terms—Decoding, point process, place field, state
space estimation, hippocampus.

I. INTRODUCTION

ADVANCES in neural recording technology are making
it possible to simultaneously record and manipulate the
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activity of large populations of cells [1], [2]. Numerous vari-
ables can influence this activity, and understanding how activity
patterns represent information and contribute to specific com-
putations requires analytical tools that are capable of extracting
high dimensional information from these data [3], [4]. Having
access to these patterns also makes it possible to use them in
Brain-Machine Interfaces (BMIs) and to design and implement
experimental interventions that can determine how specific pat-
terns contribute to downstream activity and to behavior [5], [6].
BMIs and pattern-based interventions further require that the
relevant multidimensional information be read out accurately
and in real-time, but at present, general methods that enable
real-time decoding of high dimensional structure from spike
trains are not well developed.

Point process filtering has emerged as a powerful tool for
estimating biological and behavioral signals from single and
multiunit neural spiking data [7]–[11]. It has been used suc-
cessfully to predict arm reaches from motor cortical ensembles
[10], to identify aberrant rhythms in the basal ganglia of Parkin-
son’s patients [11], and to decode the movement trajectories of
rats from hippocampal place cells [8], [9], among many other
applications. However, numerical computation of these filter al-
gorithms is currently only tractable when the signals to estimate
are very low dimensional. As a result, decoding using filter ap-
proaches is often done in a reduced 1D space, and decoding of
2D spaces is either very time consuming or uses more ad-hoc
methods.

While these low dimensional approaches have been very
useful, they cannot account for the high dimensional nature of
the data. The spiking activity of single neurons typically relates
to not one or two but many different covariates. As an example,
the spiking of hippocampal place cells relates not only to
animal’s position in space [12], but also to its velocity [13], and
past or intended future position [14], [15] among other vari-
ables. For higher dimensional data, approximate Gaussian [16],
[17] and Sequential Monte Carlo (SMC) methods [18]–[20]
are often used, but can suffer from substantial estimation bias
and extraneous variability when the signals have non-Gaussian
distributions or nonlinear dynamics. More recent techniques
such as the ensemble Kalman filter (EnKF) [21] and Gaussian
mixture filter [22]–[25] have been developed for non-linear and
high-dimensional estimation problems; however, these methods
do not fully address the issues discussed above [26]. The EnKF
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and Gaussian mixture filters assume additive normal noise
in the observation process, limiting their applicability in the
case in which the observation noise is not additive or normal.
Furthermore, Gaussian mixture filters are built using a pre-set
number of mixture components and lack a well-defined
mechanism to control the growth or shrinkage of approxi-
mate Gaussian mixture components given the content of the
observation process. These challenges led us to develop a
new multidimensional point process filter procedure that takes
advantage of the computational efficiency of Gaussian approx-
imate methods but retains the accuracy of direct numerical
computation of the filter distribution.

Two main advances contribute to the efficiency of this new
point process filter algorithm. First, it uses a mixture of Gaus-
sians approximation to the posterior filter distribution [23], [27],
which allows for an analytic solution to the traditionally compu-
tationally expensive integration step of solving the filter equa-
tions. Second, a major improvement in efficiency is gained from
treating spike and non-spike intervals distinctly. During non-
spike intervals, the Gaussian mixture model approximation can
remain accurate with updates only to the mean, covariance, and
mixture weights of each component. In contrast, at spike times,
we use a sampling procedure to update both the number of
components in the Gaussian mixture model and the parameters
for each component [28], [29]. Unlike in traditional particle fil-
tering, this more computationally intensive sampling step only
occurs at the fraction of time steps where spiking occurs.

To demonstrate the utility of this algorithm, we apply it to
the decoding of a movement trajectory of a rat on a multi-arm
track given the observed spiking activity of an ensemble of
hippocampal place cells [30], [31]. We show the efficacy of
the algorithm in 2 rats traversing the same track, each with an
ensemble of greater than 50 hippocampal neurons. We perform
the decoding using both a 2D position signal, which allows
us to compare to the numerical solution point process filter
equation, and using a 4D position and velocity signal, for which
accurate numerical decoding would not be computationally
feasible. The proposed algorithm can be applied to the general
filter problem in high-dimensional spaces; it is specifically well
suited to cases where the posterior distributions are multi-modal
and show a complex structure.

The remainder of this paper is organized as follows:
Section II describes the general formulation of the point process
filter in multi-dimensional spaces given population spiking
activity and develops the approximate Gaussian mixture particle
filter solution. In Section III, we demonstrate the decoding
result of the proposed filter solution in estimating a rat’s
movement trajectory during a memory-guided navigation task
on a W-shaped maze. We also compare the performance and
computational efficacy of the Gaussian mixture particle filter
with the numerically computed filter solution and Gaussian
approximation. In Section IV, we discuss the advantages and
challenges of the proposed filter solution and possible future
directions. The Appendix provides further discussion of place
cells’ receptive field properties, detailed derivation of gaussian
approximation method, covariance matrix estimation, and
methods to incorporate maze geometry constraints.

We use the following notation throughout this paper. Bold
lowercase and uppercase letters are used to represent vectors
and matrices, respectively. The state variable to be estimated is
presented by xk, where k is time index. xk consists of the po-
sition - (xk , yk ) - and later includes the velocity - (vx,k , vy ,k ) –
of the rat in the maze. Population spiking activity at time k is
given by Nk set. The set of parameters -(µ,Σ) - represents the
mean vector and covariance matrix of a multivariate normal,
N (µ,Σ). L(x;µ,Σ) is the likelihood of observing sample x
from a multivariate normal with µ and Σ parameters; simi-
larly, L(x;Nk ) is the likelihood of x given current observation
of population spiking activity. ∇ and ∇2 are the gradient and
Hessian operators.

II. METHODS

A. Problem Definition

We model spiking observations as a point process using the
conditional intensity, which defines the instantaneous probabil-
ity of observing a spike at time t by

λ (t|Ht) = lim
Δt→0

Pr (A spike in (t, t + Δt] |Ht) /Δt (1)

Here, Ht represents the full history of spiking from all
recorded neurons up to time t. The probability of the neuron’s
firing a single spike in a small interval [t, t + Δt) can be ap-
proximated as λ(t|Ht)Δt. This conditional intensity function is
a history-dependent generalization of the inhomogeneous Pois-
son rate function [32]. We model neural spiking as a function
of a covariate vector xt by writing the intensity for each cell -
λ(t|Ht) - as a function of xt. These intensity models may be
from a parametric class of models or based on non-parametric
kernel estimates.

Under the point process framework, the instantaneous like-
lihood when at coordinate xk of observing ΔNk total spikes
from an ensemble of C cells, with ΔN 1

k spikes from cell 1,
ΔN 2

k spikes from cell 2, . . . ., in the interval Δk = (tk−1 , tk ] is
defined by

L (xk;Nk ) ∝

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(−Δk Λ(tk |Hk )) ΔNk = 0
∏C

c=1
[λc(tk |Hk )Δk ]ΔNc

k

exp(−Δk Λ(tk |Hk )) ΔNk > 0

(2)

Nk = {ΔNc
k : c = 1 · · ·C} (3)

ΔNk =
∑

c

ΔNc
k (4)

where c refers to the cell index and λc(tk |Hk ) represents the
modeled intensity of cell c as a function of xk. In the definition
of the likelihood function [9], [33], we assume the time inter-
val is small enough that the likelihood of observing more than
one spike per cell is negligible. We define the population inten-
sity, Λ(tk |Hk ) as the sum of the individual cells’ conditional
intensities.

Λ (tk |Hk ) =
∑

c

λc (tk |Hk ) (5)
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We define the coordinate evolution xk - also called the state
process – as a Markov process, and the state evolution over time
is given by a one-step density

xk|xk−1 ∼ f(xk|xk−1 , θx) (6)

where θx is the model-free parameter. For example, the state
evolution can be a linear model, and θx might comprise the
process mean and covariance matrices.

Given the observation process and state evolution equation,
the exact posterior distribution of the state at time index k is
defined by

p (xk|N1···k ) ∝
L (xk;Nk ) ∫ p (xk|xk−1) p (xk−1 |N1···k−1) dxk−1 (7)

where the integral over xk−1 defines the one-step prediction in
the Bayes filter paradigm [7]. The term p(xk|N1···k ) is the filter
estimate at time k given {N1 , ..., Nk}.

The one-step prediction stage of the filtering solution – the
integral in equation (7) - presents a computational challenge.
As there is no closed form solution of the one-step prediction
for the point-process observation, a numerical approach is re-
quired. For a posterior distribution with a normal distribution
and a linear state process – with a normal noise process, the
one-step prediction has a closed form solution; however, for the
point process observation, the integral requires to be calculated
for each possible xk and this calculation requires an integral
over all possible values of xk−1 . When xk is multidimensional,
the integral requires to be calculated for each point of multi-
dimensional space xk and it also becomes a multidimensional
integral. Thus, the computational complexity of the numerical
solution of the integral grows exponentially with the dimension.
The computational cost will thus be of the order O(n2d), where
n is the number of samples over each axis of the state space and
d is the state dimension. Note that the computation is updated
at each time index, where these time steps are generally on the
order of milliseconds. Even for a decoding problem in only two
dimensions, with 1000 samples over each axis, the cost will be
of the order O(1012) per each time index. This rapidly becomes
computationally impractical for real-time applications. For com-
parisons below, this strategy is referred to as the exact solution.

To build a computationally efficient solution, we discuss prop-
erties of the likelihood function of a point process observation
given recordings of a neural ensemble. We then discuss how
the one-step prediction and the filter solution can be efficiently
approximated using a mixture model over time.

B. Approximate GMM Filter Solution

We assume that the posterior distribution of state at each time
point – k – can be approximated by a Gaussian mixture model
(GMM). The posterior of the state at time index k − 1 is defined
by

p (xk−1 |N1···k−1) ∝
∑

s

N (µs,Σs) πs (8)

where πs is the mixing weight and (µs,Σs) are the mean vector
and covariance matrix of the sth mixture component. We assume
there are S mixtures in total.

For simplicity, we begin with the assumption that the state
evolution can be described by a linear state process

xk = Axk−1 + wk wk ∼ N (0,Q) (9)

where A is the state matrix, wk is the process noise, and Q is
the process noise covariance matrix. Here, we assume that the
elements of matrix A and covariance matrix Q are known. For
a non-linear state transition process, we can use a multi-point
linearization of the state-equation at each update time step [20,
25–p214]. Generally, the state trajectory follows a continuous
and smooth path and its linearization gives an accurate approx-
imation of the state evolution. Under this linear state transition
process and the GMM approximation of the filter density from
the previous time point, the one-step prediction density given
by the integral on the right-hand side of equation (7) has an
analytic solution, given by

p (xk|N1···k−1) ∝
∑

s

N (µos,Σos) πos (10)

where µos=Aµs is called the one-step prediction mean and
Σos = A ΣsA

′ + Q is called the one-step prediction covari-
ance for the sth mixture component. Under the linear state
transition process, the mixing weights of one-step mixture
components will be the same as the previous time point com-
ponents, i.e., πos = πs . Notably, the GMM approximation sub-
stantially reduces the computational burden by eliminating the
need to compute the integral in equation (7).

The next step in decoding is to update this one-step prediction
density using the most recent observations from the neural pop-
ulation. Here we improve the efficiency of the update compu-
tation by separately considering time steps that include spiking
and those that do not.

For any interval with no spiking observations, the likelihood
function in equation (2) is defined by the population intensity,
Λ(tk |Hk ), and not by the individual intensities from any par-
ticular neuron – note that ΔNk = 0. Over these intervals, the
filtering density diffuses slowly away from the local peaks of
Λ(tk |Hk ) [34], so that the difference between p(xk|N1···k ) and
p(xk|N1···k−1) is minor. For this reason, we choose not to update
the number of components in the GMM model for all these inter-
vals except long ones (described below), and instead only update
the mean, covariance, and mixture weight of each component.

To compute the updates to the mean, covariance, and mix-
ture weight, we multiply each mixture component of the GMM
one-step density given by equation (10) by the likelihood of ob-
serving no new spiking. Next, we Taylor expand the logarithm
of the likelihood about a different point for each mixture com-
ponent; specifically, for the sth mixture component, we expand
the log likelihood about the one-step prediction mean for that
component µos using a second-order Taylor expansion [32].
Finally, we complete the square to generate new Gaussian mix-
tures for each component, yielding the following updates for the
posterior mean, covariance, and mixture weight

Σ−1
s ← Σ−1

os +∇2Λ (µos) Δk (11)

µs ← µos −Σs ∇Λ (µos) Δk (12)
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πs ← πos

√
detΣs

detΣos
exp(−Δk Λ (µos)

+ 0.5 Δ2
k ∇Λ(µos)

T Σs ∇Λ (µos)) (13)

where ∇ and ∇2 are the gradient and Hessian of the log-
likelihood function evaluated at the mean of one-step prediction
mixture components. The gradient and Hessian can be calcu-
lated either numerically or analytically given how the condi-
tional intensity is defined. To make the posterior estimate a
probability distribution, we then normalize the sum of πs s to
one. Appendix A describes derivation of equations (11)–(13).
Here, the mixture of Gaussians approximation starts by updating
the component covariance matrices and then uses these updated
values to update the component means and weights. We also
check that each component’s variance is positive definite, re-
placing any that are not with their one-step prediction values.
In Appendix B, we propose a more robust Gaussian approxima-
tion method which guarantees the updated covariance matrices
to be positive definite. In practice, when there is a long non-
spiking period, we monitor the covariance of mixture compo-
nents to avoid generating non-informative mixture components,
for which the variance in each dimension significantly grows and
the mixture becomes flattened over the space. Specifically, we
check the mixtures’ largest eigenvalues and trigger a spike-time
procedure (described below) whenever this eigenvalue exceeds
a predefined threshold.

Our update procedure for intervals that contain any spiking
is fundamentally different, since spikes can cause substantial
changes in the filter density and may require a different number
of mixture components than the one-step prediction density.
In this situation, we build a new GMM by drawing samples
from a proposal distribution and approximating the samples’
weights using a new GMM, which may have a different number
of components.

The construction of the new GMM starts with a proposal
distribution with the same number of components as the one-step
prediction but with rescaled weights that reflect the likelihood
of the most recent spiking activity [35], [36]. The new weight
of the sth component is defined by

βs = L (x̂s;Nk ) πos (14)

where βs is the un-normalized weight of the sth component.
The x̂s is defined by a function of the sth component statis-
tics; here, we set x̂s to be the mean of corresponding mixture
component. The samples are drawn from this newly weighted
proposal distribution, and the individual weights of each sample
are defined by

wp = p (xp|N1···k ) /
∑

s

βsL(xp;µos,Σos) (15)

where xp is the pth sample from the proposal distribution, and
wp is the sample weight. We assume there are P samples in
total; we then run the re-sampling step to derive P samples
with equal weight. For the proposal distribution, we update
the one-step mixture components’ weights using the likelihood
of the observed spiking. We could also adjust the mean and

covariance of each mixture component in the proposal distribu-
tion, using the same update rule defined for non-spike time in
equations (11)–(13). By incorporating the current observation
in the proposal distribution, we tend to generate samples at lo-
cations where the posterior is larger, which potentially reduces
the number of particles needed by an order of magnitude and
avoids weight degeneracy [36].

Here, our focus is on solving the filter problem, assuming that
the parameters for the observation and state models are known.
When these parameters are unknown and need to be estimated
along with the state process, we may augment these methods
using recent techniques like SMC2 to dynamically update pa-
rameters of the observation and state processes [37]. Finally, in
building our proposal distribution, we focus on improving the
proposal density based on the one-step prediction density; for
future offline applications, we could utilize methodologies like
controlled SMC [38] which build proposal distributions that are
optimal over the whole processing period.

Finally, we run an Expectation Maximization (EM) algorithm
along with a Bayesian information criterion (BIC) to compute
a new GMM with an updated number of components that parsi-
moniously approximates the posterior filtering distribution [39],
[40]. To compute GMM, we need to know assignment of each
particle to different mixture components; this information is not
available and thus it becomes a latent variable in our GMM fit-
ting problem. We thus utilize EM to iteratively estimate the par-
ticles’ assignment to mixture components and update mixture
components. We use BIC to control growth of the mixture com-
ponents; without BIC penalty term, larger number of mixture
components provide a better fit no matter of the fit significance.
Under this EM algorithm, we run expectation (E-step) and max-
imization (M-step) steps recursively to update the parameters of
a mixture given that the number of components is known. In the
E-step, the expected assignment of each sample to the mixture
components is evaluated. In the M-step, mixtures’ parameters -
means, covariances, and component weights - are recomputed
given the expected assignment. The GMM estimation algorithm
iterates between this EM procedure and a procedure to modify
the number of mixture components as follows:

1) Run the EM to find a GMM with a conservatively
large number of mixture components, (µs,W s, πs) s =
1 · · ·S. The value of S can be a fixed large number, or
it can be determined based on the number of neurons
recorded or the number of peaks in the population inten-
sity Λ over the state space.

2) Check all possible pairs of the GMM to find a pair with
the lowest effect on the full likelihood. If we exclude
the si and sj components, we calculate the likelihood of
remaining components by

f−i,j (xp) =
1

(1−πsi
−πsj

)

∑

s/∈{si ,sj }
πs L (xp;µs,W s)

(16)

L−i,j =
∑

p

logf−i,j (xp) (17)
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We then pick the pair - (i, j) - that gives the highest value
of L−i,j .

3) Replace the removed pair with a new mixture component
that maximizes the following cost function

max
µe,W e,α

∑

p

log((1− α)f−i,j (xp) + αL(xp;µe,W e))

(18)
where, (µe,W e) are the mean vector and covariance
matrix of the new mixture, which require estimation.
α ∈ [0, 1] is the mixing weight between f−i,j (·) and
L(xp;µe,W e). The cost function is convex in α and
the maximum occurs in the open interval (0, 1) for a
known (µe,W e). The initial values of (µe,W e, α) are
defined by

µe =
πi

πi + πj
µi +

πj

πi + πj
µj (19.a)

W e =
πi

πi + πj
W i +

πj

πi + πj
W j

+
πiπj

(πi + πj )2 (µi − µj)(µi − µj)T (19.b)

α = πi + πj . (19.c)

In Appendix C, we describe how these terms are esti-
mated.
The weight and shape parameters of the new component
are updated by an EM procedure to maximize the cost
function with the following E- and M-steps.
E-step:

p(ce |xp) =
α
∑

p L(xp;µe,W e)
∑

p αL(xp;µe,W e) + (1− α)f−i,j (xp)
(20)

where p(ce |xp) is the expected assignment of xp to the
new mixture component, ce .
M-step:

µe =
∑

p

p(ce |xP )xp/
∑

p

p(ce |xp) (21)

W e =
∑

p

p(ce |xp)(xp−µe)(xp−µe)T /
∑

p

p(ce |xp)

(22)

α =
∑

p

p (ce |xp) (23)

This EM procedure estimates the mean and covariance
of only one mixture component plus its mixing weight;
this suggests that numerical methods like gradient as-
cent can be utilized for simultaneous estimation of the
(µe,W e, α) parameters.

4) Calculate the reduced model BIC and compare it with the
original model. If the reduced model BIC is lower than
the original one, replace the model with the updated one
and go to step 2. Stop if the BIC criterion fails to reduce.
The BIC for a GMM model with S mixture components

- with (µs,W s, πs)s = 1 · · ·S parameters - is equal to

BICS = −2
∑

p

log

(
∑

s

πs L (xp;µs,W s)

)

+ ln (P )Dg (24.a)

Dg = S

(
d2 − d

2
+ 2d + 1

)

− 1 (24.b)

where, P is the number of samples and d is the dimension
of xp.

We perform steps 1 to 4 iteratively to find a minimum number
of mixture components that properly approximate the posterior
distribution of state at the spike time.

In this section, we developed an approximate GMM fil-
ter solution for both non-spiking and spike time periods. In
Appendix D, we have summarized the processing steps of the
complete solution. The resultant GMM comprises a minimum
number of components which generally lie within a small spread
and are evenly distributed over space. Through our analysis, we
found these mixture components tend to better follow the state
trajectory than do mixture components with a larger spread over
space. Other choices of GMM might be examined depending on
the problem definition.

III. APPLICATION TO DECODING SPIKING ACTIVITY

OF PLACE CELL ENSEMBLE

We applied the GMM point process filter to neural data con-
sisting of sorted spiking activity of ensembles of hippocampal
place cells recorded from rats navigating a multi-arm track. Due
to the close relationship between the firing of hippocampal place
cells and spatial location of the animal in an environment, spike
trains from multiple neurons can be used to decode a rat’s loca-
tion during behavior [30], [12]. Because the rat’s position is also
measured using video tracking software, we can assess decod-
ing accuracy by comparing decoded position to the ground truth
video-tracked position. For each of approximately 15 minute-
long recording sessions, we use the first 85% of the session to
build encoding models for each place cell, and we decode the
remaining 15% of the recording session. For the 2D decoding,
we compare performance metrics obtained with our GMM de-
coder to those obtained with the numerical computation of the
exact solution filter, a standard particle filter, and a more tra-
ditional single Gaussian approximation. For the exact solution,
we perform the computation using a coarse (2 cm) grid on both
the x and y dimensions.

We also demonstrate 4D decoding, which additionally pro-
vides an estimate of the rat’s velocity in the x and y direction.
Because some place cells demonstrate directional firing - place
fields that are specific to the rat traversing a region of track
in a particular direction [40], we can also gain insight into the
velocity of the animal by decoding the firing patterns. Using
the velocity information, we are able to achieve greater accu-
racy in the decoded position compared to the 2D decoding.
In the 4D case, we only report the performance of the GMM
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approximation solution, because estimating the exact solution
in 4D is infeasible even for a coarse resolution in each axis.

A. 2-D Decoding

We use a non-parametric kernel method to build each cell’s
place field model in 2D space; xk = (xk , yk ) where xk and
yk are the x and y coordinates at the time index k [41]. The
conditional intensity per each cell is defined by

g(xk , yk |Hk ) =
∑N

i=1 K (xk − xu i, yk − yu i ; sx, sy )

Δt
∑T

j=1 K (xk − xj , yk − yj ; dx, dy )
(25.a)

K (x, y; sx, sy ) =
1

2π sx sy
exp

(

− x2

2 s2
x

)

exp
(

− y2

2 s2
y

)

(25.b)

where xj is the x position of the rat at time step j, yj is the
y position of the rat at time step j, and there are N spikes
at times 0 < u1 < · · · < ui < · · · < uN ≤ T in the training
session period, (0, T ]. Note that we assume conditional intensity
is stationary over the course of an experiment; this means we
can use a pre-defined time window to estimate g(xk , yk |Hk ).
Given this assumption, g(xk , yk |Hk ) ≡ g(x, y). K is a two-
dimensional Gaussian-shaped kernel with a smoothness over
space defined by the parameters (sx, sy ) – sx and sy correspond
to the kernel standard deviations in x and y directions. sx and
sy represent a cell’s place field and are set empirically given the
cell response. The occupancy term, a measure of the time the
rat spends at a specific coordinate, is defined by the same two-
dimensional Gaussian kernel with a different smoothness term,
(dx, dy ). Δt is the observation update time, which is defined by
the length T of the training session period divided by the number
of observed samples in this period. In Appendix E, we show
several examples of place cell spatial receptive fields as well
as the likelihood function for non-spike intervals. Generally, dx

and dy are set equal to or slightly larger than sx, sy to account for
variability of the rat occupancy over the maze. Here, we set sx

and sy to 6 and set dx and dy to 6. A more accurate estimation of
these parameters can be attained by maximizing the likelihood
of place cells activity using the g(xk , yk |Ht) model, but this is
beyond the scope of this research.

The state process evolution is defined by
[
xk

yk

]

=

[
1 0
0 1

]

×
[
xk−1

yk−1

]

+ q q ∼ N
([

0
0

]

,

[
6 0
0 6

])

(26)
where q is the process noise. The covariance matrix terms of
q were estimated from the rat’s movement statistics during the
training session. Namely, they were set close to the average co-
variance of speed in the x and y directions during periods of
rat mobility. The average x− y covariance term was close to
zero, and thus it is set to zero in the process noise covariance
matrix in equation (26). The movement model defined here does
not consider maze topology; in Appendix F, we discuss an ad-
dition to the decoder model that incorporates maze topology.
Note that the 2-D random walk model proposed here provides
minimal information about the exact movement trajectory of

TABLE I
PERFORMANCE METRICS USING DIFFERENT

2-D AND 4-D DECODER METHODS

RMSE is a measure of error between the decoded and actual rat position. 95% HPD is
the coverage of the 95% highest probability density region of the computed posterior
distribution of the rat’s actual position. The last row shows performance of the 4D
GMM decoder in both 2D and 4D spaces. The gaussian approximation uses our
proposed methodology, limited to a single gaussian component at each time point.
total runtime provides the whole processing time to run the decode over all 4099
sample data points. Note that the exact solution runs with a coarse resolution of 2 cm
over each axis.

the rat; thus, we expect the observation process (the population
spiking activity) provides enough information for the decoder
to accurately estimate the rat movement trajectory. As previ-
ously mentioned, maze topology may also be factored into the
observation process. However, building the exact model of the
movement trajectory is complex, and is beyond the scope of
this paper. We have defined the state model so that the observa-
tion process provides most of the information for decoding, and
the state equation serves to constrain the movement to smooth
trajectories. Note that although the state equation can be time
varying, defining it as linear and state-independent allows us to
build a more computationally efficient algorithm.

The approximate GMM, exact solution, particle filter, and
Gaussian approximation were used to decode the position of a
rat during the final 15% (2.2 minutes) of a 15-minute recording
session. This testing dataset includes 4099 time points at a time
resolution of 33 milliseconds (Δt = 0.033). The spatial resolu-
tion for the numerical solution of the exact filter in both the x
and y dimensions is 2 cm; given the maze dimension, we have 50
samples in the x direction and 58 samples in the y direction. For
the approximate GMM solution, we draw 4000 particles at each
spike time and begin with 15 mixture components. The number
of EM iterations for the first step of the EM algorithm is 250, and
for the following steps is 50. For the Gaussian approximation,
we use the same procedure with only a single component.

Table I shows the performance of different solutions in terms
of the root mean squared error (RMSE) in cm, the percentage of
time that the 95% highest posterior density (HPD) region [42] of
the estimated filter density contains the rat’s true position (95%
HPD coverage), the average number of mixtures for the approx-
imate GMM solution, and the 95% HPD area normalized by
the 95% HPD area of the exact solution. Table I also shows the
total runtime per each method; this time includes all necessary
processing steps required to estimate the rat position posterior
distribution for each processing timestep including conditional
intensity of each cell using the non-parametric kernel –
equation (25).
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Fig. 1. 2-D decoding result using three different estimation methods
at two different time points (a) and (b). The leftmost figures show the
instantaneous likelihood at that time point given the observed spiking
activity. The second figures from left show the exact solution computed
using a 2 × 2 cm grid. The third figures show the decoding result us-
ing the Gaussian approximation, and the rightmost figures show the
approximate GMM solution. Each + represents the mean of a mixture
component, and numbers in parentheses denote the number of mix-
tures. The red circle denotes the rat’s actual video-tracked position on
the maze, and the grey lines represent the rat’s entire path throughout
the session. In these figures, areas with a higher likelihood are shown in
yellow while areas with a lower likelihood are shown in dark blue.

Figure 1 illustrates the decoding accuracy summary reported
in Table I. At both time points, the Gaussian approximation
tends to have a large covariance and provides a larger bias in
estimating the rat’s position. The approximate GMM estimate
is close to the exact solution; the mixture components better
capture the rat’s actual position and the GMM estimate has a
similar density to the exact solution. For this dataset, the RMSE
for the (standard) particle filter is larger than GMM method,
using the same number of particles. For the particle filter; the
lower performance is likely due to the inability of this filter
to capture multimodal distributions [36]. In Appendix D, we
replicate the performance of these methods using data from an
additional rat and multiple sessions.

B. 4-D Decoding

We again use a non-parametric kernel method similar to that
used in equation (22) for 2D decoding to build each cell’s condi-
tional intensity in 4D given by xk = (xk , yk , vx,k , vy ,k ), where
(vx,k , vy ,k ) represents the velocity of the rat’s movement in the
x and y directions respectively, computed using first differences
of positions. The state equation is defined by

⎡

⎢
⎢
⎢
⎣

xk

yk

vx,k

vy ,k

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 0 Δt 0
0 1 0 Δt
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦
×

⎡

⎢
⎢
⎢
⎣

xk−1

yk−1

vx,k−1

vy,k−1

⎤

⎥
⎥
⎥
⎦

+ q

q ∼ N

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

0
0
0
0

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

6 0 0 0
0 6 0 0
0 0 12 0
0 0 0 12

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

(27)

where Δt is the update time step, and q is the process noise. For
the covariance matrix terms of the process noise q, we assume
that the position and velocity state variables are uncorrelated.

Fig. 2. 4-D decoding result using the approximate GMM filter. The left
panel shows the marginal distribution over position, and the right panel
shows the marginal distribution over velocity. The red circles denote the
rat’s actual position and velocity. The + signs indicate the means of the
11 mixture components for this time point.

We use the same covariance terms for position as were used in
the 2D problem, and we set the velocity covariance matrix terms
based on the descriptive statistics of velocity during periods of
movement in the training period.

The last row of Table I shows the decoding performance in
4D on the same data set used in the 2D decoding problem, also
performed with 4000 particles. The decoding performance over
position (x, y) surpasses that of the exact 2D solution, consistent
with the notion that place cells also encode velocity.

Figure 2 shows the 4D decoder result at a single time point.
Mixture components are centered around the rat’s actual position
(left) and velocity (right), consistent with the decoder accurately
capturing position and velocity.

IV. COMPUTATIONAL EFFICIENCY

The computational complexity of numerical integration of
the exact filter solution [9] in a d dimensional space through
Riemann summation is on the order of O(n2d), where n is the
size of the partition in each dimension. The factor of 2 in the
exponent comes from the one-step prediction density computa-
tion, which requires for each value of xk integrating over all
values of xk−1 . This is the rate limiting step for complexity.

In contrast, for the Gaussian approximate filter [35], the com-
putation of the one-step prediction distribution only requires
matrix multiplication using a one step-prediction matrix that
grows linearly with d. Conservatively, this has a computational
complexity on the order of O(d3).

For the Gaussian mixture model approach described here,
computation of the one-step prediction distribution still only
involves matrix multiplication, but now for each mixture com-
ponent separately. With s mixtures, this would be conservatively
of order O(sd3). While s could depend on the dimensionality
of the problem in principle, we are mostly only interested in
posterior solutions that have a limited number of distinct peaks.
For the GMM approach, the limiting step for computational
complexity may come from the Monte Carlo estimation of the
posterior at the spike times, rather than the one-step prediction
computation. In that case, the computation would scale with the
number of particles, p, used for estimation. Once again, p could
scale with dimensionality, but if the posteriors in which we are
interested have a limited number of peaks, we should be able to
limit the number of particles used.
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We also benefit from the closed form solution in non-spike
time points in our proposed solution. The GMM method may
excel when decoding with finer time resolutions so that the
number of time steps that include spikes is relatively small.

The GMM method gives a parametric distribution at each
time point. Using parametric distributions, the time required
to complete post-processing computations – e.g., distribution
statistics such as mean, variance, or mode – is significantly less
than that of the exact solution. These calculations are embedded
in the GMM computation cost, and as a result, the GMM method
becomes a more suitable method for real-time applications.

A. Computational Cost for Our Example Decoders

One goal in developing more computationally efficient
decoders for problems with multiple dimensions is to enable
real-time estimation and closed-loop experiments that use the
decoder output to influence stimulation. While we have yet to
perform the optimization of code and computing resources to
achieve real-time estimation, a simple comparison on our exist-
ing system suggests that this GMM can reduce computational
cost substantially.

Here we present results from our current algorithms written
in MATLAB 2016a and run on a Dual Core Intel i7 3.4 GHz
processor with 64 GB RAM. We further used the MATLAB
profiler to determine the computational time of different pro-
cessing steps in the numerical computation of the 2D exact and
GMM solutions. We focused on the computation of the one-
step prediction density and the Monte Carlo estimation of the
posterior, excluding the computation time for the point process
intensities and likelihoods. We are concurrently working on the
development of modeling methods to make these components
more computationally efficient. Excluding the conditional in-
tensity estimation, the exact solution with 2 cm resolution in x
and y directions – 58 × 50 grid points – takes about 7.476 sec-
onds to run per time point. The processing time using the GMM
method using 2900 particles (a number equal to the number of
grid points in the exact solution) for a spike interval is about
7.745 seconds. The GMM processing time for a non-spike time
step is much faster: 0.186 seconds. With 1-msec time resolution,
93.2% of intervals are non-spike timesteps. While we must run
the exact solution for every time point, we only need to run the
full GMM method on 6.8% of data points. The average compu-
tational time is 682 msec per each time point using the GMM
method compared to 7.476 seconds in the exact method. This is
about 11 times faster than the exact solution.

These computational savings will scale up for higher dimen-
sion problems. For the 4D decoder, the GMM average compu-
tation time using 4000 particles is about 1.21 seconds, 0.285
seconds on non-spike times and 13.9 seconds on spike
times, where the numerical exact decoder is computationally
infeasible.

V. DISCUSSION

Point process filtering has been successfully applied to a wide
variety of neural data analysis problems, including decoding
biological and behavioral signals from population spiking [8],
[9], [12], tracking adaptation in neural coding properties [11],

[32], and estimating parameters of biophysical neural models
[9], [11], [33], [32]. With the development of new experimental
methods and increasing interest in real-time and closed-loop
experiments, the need for accurate and computationally efficient
estimation algorithms from neural spiking data has grown
tremendously. Here, we present a novel algorithm for solving
the point process filter problem that combines computational
benefits of approximate Gaussian methods with the potential
accuracy in the face of multimodal filter distributions and
nonlinear signal dynamics of exact numerical solutions.

The algorithm achieves these benefits by combining a Gaus-
sian mixture model approximation to the filter distribution with
an intermittent Monte Carlo sampling procedure that need only
be conducted in intervals where the number of mixture com-
ponents is likely to change substantially. Here, we chose to
perform the resampling and update the number of mixtures only
at times when spikes occurred because each spike can cause
large changes in the filter density. Alternatively, we could have
selected other periods for resampling; for example, we might re-
sample only at periods where the spiking was unexpected given
the current filter distribution, or we could be more conservative
by resampling during some subset of non-spike times as well.

Our proposed algorithm improves the computational effi-
ciency of the traditional point process filter procedure (the exact
solution) in three ways. First, the GMM approach makes the
integration step analytically solvable. Second, the update pro-
cedure at non-spike times has approximate analytic solutions
that require simple computations. Finally, the more costly sam-
pling procedure and computation of the appropriate number of
mixture components occurs over only a fraction of time points.
Though not explored here, these more costly steps are also
readily parallelizable [43], allowing for the use of multicore
computers or GPUs.

We applied the approximate GMM to decode the position
(2D and 4D decoders) and velocity (4D decoder) of a rat based
on the firing of hippocampal place cells. For 2D decoding, we
compared performance metrics for decoded position using the
approximate GMM with those obtained using the exact solution,
standard particle filter, and the Gaussian approximation. Perfor-
mance metrics were slightly better with the exact solution, but
using more particles for approximate GMM may bridge that
gap, and importantly the approximate GMM has the potential
to be less computationally costly than the exact solution. The
Gaussian approximation shows a larger RMSE and lower 95%
HPD coverage that reflect bias and increased variability in the
estimated posterior filter distribution. For 4D decoding, which
involved estimation of position and velocity simultaneously,
only the approximate GMM was used, as 4D decoding would
be computationally infeasible with the exact filter. The decoding
accuracy in terms of RMSE is comparable to the exact solution
in the 2D problem. The 95% HPD coverage in 4D decoding
reaches 88%, which is close to the exact solution in 2D. Us-
ing a larger number of particles may further increase the HPD
coverage of the 4D approximate GMM.

The algorithm we developed here is broadly applicable to
the general point process filter problem in high-dimensional
spaces. The algorithm may be particularly useful for processes
that produce complex and multi-modal distributions. While we
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foresee this approach being useful for a number of applications,
one immediate direction we are pursuing is its use in develop-
ing closed-loop experiments. Particularly, we are interested in
decoding replay events which will be used to stimulate a hip-
pocampal population to better understand the role of replay in
rule learning and memory formation.

There are several modeling challenges which might be in-
vestigated in future research. Methods for optimally selecting
the initial number of mixture components in the EM algorithm
would be helpful. Algorithms that can modify the number of
mixture components in batch rather than sequentially would
also improve performance. We demonstrated our approach us-
ing a linear state equation process; extending the idea developed
here for non-linear state processes would be important for task
with complex state dynamics. Further, extending this algorithm
to datasets with more state variables (such as decoding during
an arm reaching task) may highlight the pros and cons of this
decoding framework.

VI. CONCLUSION

In this research, we proposed a computationally efficient
point-process filter solution for multi-dimensional spaces. The
methodology has been applied to decode a rat movement trajec-
tory in a W-shaped maze. For the 2D decoding, we estimate the
rat position given an ensemble of spiking activity. For the 4D
decoding, we estimate the rat position and movement velocity
given the same ensemble of spiking activity. In the 2D problem,
we compared the performance of the proposed approximate
GMM filter with that of an exact filter, standard particle filter,
and Gaussian approximation in 2D. The approximate GMM
solution shows a similar performance to the exact solution,
whereas its computational cost is significantly lower than the ex-
act solution. The Gaussian approximation shows a large RMSE
and lower 95% HPD coverage that suggest a poor estimation of
the posterior distribution. For the 4D decoding problem, the per-
formance on position trajectory is close to the exact solution in
the 2D problem. The 95% HPD coverage in 4D decoding reaches
87.8%, which is close to the exact solution even with a small
number of particles used in this analysis. We utilized GMM to
approximate multi-modal distributions and proposed a compu-
tationally efficient update rule to estimate the filter solution on
different observation times. In approximating the posterior dis-
tribution, we used a hybrid update rule given different dynamics
of the observed signal. We used a modified Gaussian approx-
imation on the non-spiking time points, and a Monte Carlo
method combined with revised GMM estimation procedure on
the spike time points; using this hybrid methodology, we are
able to build a fast decoder algorithm without losing accuracy.
The proposed methodology is applicable to the general filter
problem in high-dimensional spaces, specifically for observa-
tion processes showing a complex and multi-modal distribution.

APPENDIX

A. Gaussian Approximation on a Non-Spike Time

For the sth mixture component, we require to approximate
the following term with a new mixture component
πsL (xk;µs,Σs) ∼= πosL (xk;µos,Σos) exp (−Λ (xk) Δk )

(A.1)

We first start by taking logarithm of both sides of (A.1).

− 1
2
(xk − µs)

T Σ−1
s (xk − µs)

∼= −1
2
(xk − µos)

T Σ−1
os (xk − µos)− Λ (xk) Δk + E

(A.2)

where, E consists of all other terms not including xk. To find
the update rule for the mixture mean and covariance, we take
the first and second derivative of both sides of (A.2) with respect
to xk. The first derivative is defined by

−Σ−1
s (xk − µs) = −Σ−1

os (xk − µos)−∇Λ (xk) Δk

(A.3)
and the second derivative is defined by

Σ−1
s = Σ−1

os +∇2Λ (xk) Δk (A.4)

We assume that (A.1) and (A.2) are valid for any values of
xk; thus, we set xk to µos [32]. By setting xk to µos, we
can get equations (11) and (12). Here, we need to update the
covariance matrix first and then the mean vector. The other
possible solution is setting xk to µs; under this assumption, we
get another solution where the update rule starts by updating the
mean and then covariance matrix.

We also need to estimate updated mixing weight, πs . We
assume that the likelihood of the new normal distribution should
be the same of the right over possible xk including µos; though
it can be estimated on any other point, µos represents the most
probable point of the one-step prediction and thus update rule
for mixing weight - πs - is defined by sett xk to µos

πs

√
det (2πΣs)exp

(

−1
2
Δ2

k∇Λ Σs∇Λ (xk)
)

= πos

√
det(2πΣos)exp(−Λ(µos) Δk ) (A.5)

where, the left side is calculated using the multivariate normal
with mean and covariance of µs and Σs . The update rule for
mixing weight defined in equation (13) is derived by (A.5).

B. Revised Gaussian Approximation With Guaranteed
Positive Definite Covariance

When Gaussian approximation is used during non-spike time
periods to update the posterior distribution, it is important to
ensure that the covariance estimate of posterior mixture com-
ponents remains positive-definite. The conditional intensity es-
timation and likelihood function are multi-modal, which may
cause the posterior covariance estimation of some of the mixture
components to be non-negative. One solution is to avoid updat-
ing these mixtures, but a better solution is to control eigenvalues
of these covariance matrices to ensure all are positive.

Here, we will discuss the idea for one mixture component,
and its extension for multiple mixtures is trivial. The objective is
to approximate the posterior using a multivariate Gaussian with
a guaranteed positive-definite covariance matrix. Logarithm of
the posterior is defined by

log xk|N 1 ···k ∝ log xk|N 1 ···k−1 + log exp (−Λk Δt) (B.1)

Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on September 29,2022 at 15:15:04 UTC from IEEE Xplore.  Restrictions apply. 



YOUSEFI et al.: EFFICIENT DECODING OF MULTI-DIMENSIONAL SIGNALS FROM POPULATION SPIKING ACTIVITY 3495

Now, we use Taylor expansion around mk|k−1 to approximate
the posterior distribution with a Gaussian distribution

log xk|N 1 ···k ∝

− 1
2
(
xk −mk|k−1

)T Σ−1
k|k−1

(
xk −mk|k−1

) · · ·

− ∇Λk

(
mk|k−1

) (
xk −mk|k−1

)
Δt · · ·

− 1
2
(
xk −mk|k−1

)T∇2Λk

(
mk|k−1

)

× (
xk −mk|k−1

)
Δt + C (B.2)

where∇ and∇2 are the gradient and Hessian of the conditional
intensity at mk|k−1 . Variable C is the remainder of the Taylor
series.

To make sure that the posterior covariance is positive-definite,
we use the following approximation.

log xk|N 1 ···k ∝

− 1
2
(xk −mk|k−1)T

(
Σ−1

k|k−1 + r ∇2Λk (mk|k−1)Δt
)

× (xk −mk|k−1)−∇Λk (mk|k−1)
(
xk −mk|k−1

)
Δt . . .

− 1
2

(1− r)
(
xk −mk|k−1

)T∇2Λk

(
mk|k−1

)

× (
xk −mk|k−1

)
Δt + C (B.3)

Equation (B.3) can be rewritten as

log xk|N 1 ···k ∝ −
1
2
(
xk −mk|k−1

)T

×
(
Σ−1

k|k−1 + r ∇2Λk

(
mk|k−1

)
Δt

) (
xk −mk|k−1

)

− (∇Λk

(
mk|k−1

)
+

1
2
(1− r)

(
xk −mk|k−1

)T

×∇2Λk

(
mk|k−1

)
)

× (
xk −mk|k−1

)
Δt + C (B.4)

The update rule for the posterior covariance matrix is defined
by (11) – we assume the posterior is multivariate normal with
mean mk|k and covariance Σk|k. Here, we work to rewrite
the right side of equation (A.4) using a multivariate normal
distribution with mean mk|k and covariance Σk|k.

Σ−1
k|k = Σ−1

k|k−1 + r ∇2Λk

(
mk|k−1

)
Δt (B.5)

where we can find the largest r – 0 < r < 1 – that keeps the up-
dated covariance positive definite. We check the eigenvalues of
Σk|k, and select the largest value of r when all the correspond-
ing eigenvalues are positive or larger than a minimum threshold.
Given the posterior covariance, we build the update rule for the

posterior mean by

mk|k = mk|k−1 −Σk|k(∇Λk

(
mk|k−1

)
+

1
2

(1− r)

×∇2Λk

(
mk|k−1

) (
mk|k −mk|k−1

)
)Δt (B.6)

Solving equation (B.6) gives

mk|k

(

I +
1
2

(1− r)Σk|k∇2Λk
(
mk|k−1

)
Δt

)

= · · ·mk|k−1 −Σk|k

×
(

∇Λk (mk|k−1)−1
2
(1−r)∇2Λk (mk|k−1)mk|k−1

)

Δt

(B.7)

Thus, we first run equation (B.5) to estimate the covariance
matrix and then run equation (B.7) to update the posterior mean.
Note that by setting r to zero, the posterior covariance becomes
equal to the one-step covariance matrix. On the other end, an
r equal to one causes a smoother change for the likelihood
function around mk|k−1 , which is the usual behavior when the
Gaussian approximation is utilized.

C. Mean and Variance Update Rule

Here, we want to replace the two mixture components
(µi,W i, πi) and (µi,W i, πj) with a single mixture component
with mean and covariance parameters equal to those derived by
a mixture model constructed using these two mixture compo-
nents. These two mixture components are a subset of larger set
of mixture components and thus the sum of πi and πj – their
mixing weights - is not necessarily one. α which is the sum of πi
and πj represents the weight of the new mixture component. We
first build a new GMM consisting of these two mixtures with
normalized mixing weights of π i

π i +π j
and π j

π i +π j
. This new GMM

distribution – represent by Xe random variable, is defined by

Xe ∝ πi

πi + πj
N (µi,Σi) +

πj

πi + πj
N (

µj ,Σj
)

(C.1)

Using this distribution, we can define the mean and covariance
of Xe . Mean of Xe is defined by

µe = E [Xe] =
πi

πi + πj
µi +

πj

πi + πj
µj (C.2)

which is the mean over space given by Xe distribution. Xe

covariance is defined by

Σe = E
[
XeX

T
e

]− µeµT
e =

πi

πi + πj

(
Σi + µiµ

T
i

)

+
πj

πi + πj

(
Σj + µjµ

T
j

)− µeµT
e (C.3)

where, by replacing μe from (C.1) - or (19.a), we get Σe defined
in (19.b).

Now, µe and Σe define the mean and covariance of the new
mixture component. This component weight - α - is the sum of
πi and πj .
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TABLE II
COMPLETE SOLUTION PROCESSING STEPS FOR TIME STEP k

D. Complete Solution Processing Steps

Table II provides pseudo-code detailing each processing step
of the filter solution on both spike and non-spike time points. In
Table II, other parameters of the solution are reset to their initial
value at a new time step.

E. Place Cell Receptive Fields

Figure 3 shows several examples of place cell spiking pat-
terns. For each cell, we display the location of the rat at the time
of each spike as well as the smoothed estimates of the contri-
bution to the spatial likelihood in 2D at a spike time for that
neuron. As established in prior literature, place cells’ receptive
fields have diverse locations, extents, and topologies, and are
often not unimodal [13], [14], [44]. This suggests that the pos-
terior estimate of the position given these cells’ spiking activity
can also have a multi-modal distribution [45].

Figure 4 shows the likelihood function over space on non-
spike intervals. The likelihood is non-zero over the entire maze
and becomes relatively flat when there are many place cells
covering the maze area. Note that we have less than 100 putative
cells in our experiments, out of which a limited number of
cells show consistent neural activity and distinct receptive field
activity. When there are many place cells, the likelihood on non-
spike times becomes flat, suggesting that the posterior estimate
simply broadens at non-spike times.

Fig. 3. Spiking patterns of multiple place cells and their corresponding
likelihood functions. (a) Spiking pattern of three different place cells.
Each cell fires on a different section of the maze, and its receptive field
has a different topology. In the figure, blue marks represent spikes and
gray curves are the rat’s movement trajectory through the maze. (b) The
contribution to the likelihood function over position when each of these
place cells fire. The topology of place cells’ receptive fields is different,
and they are not necessarily unimodal.

Fig. 4. Likelihood function on non-spike times. The likelihood expands
over the whole maze, and it is non-zero on almost every point on the
maze. Note that because of the penalty term, the likelihood everywhere
outside of the maze is close to zero.

F. Including Maze Information in the Decoder

We modeled the rat’s movement as a random walk over 2D
space, and thus the movement model does not take into account
maze topology. However, in reality, the rat’s position is con-
strained to the track area. Although it is possible to incorporate
maze boundaries into the movement model, we prefer to include
minimal information about it in our encoder model. This allows
us to see how much information is embedded in the place cells
spiking activity, and how well our decoder can trace the rat’s
movement with minimal assumptions about its movement pat-
tern. However, we imposed the maze topology in the likelihood
function. To do this, we define a penalty term which becomes a
small number (�1) for any point outside the maze, and equal
to one for any point inside the maze. The likelihood function is
then multiplied by this value. This modified likelihood function
is defined by eq. (F1), (F2) shown at the bottom of this page.

L̂ (xk;Nk ) ∝ L (xk;Nk ) g (xk) (F.1)

g (x) =
{

1 x ∈ {xk : xk are the coordinate of points inside the maze}
ε x /∈ {xk : xk are the coordinate of points inside the maze} (F.2)
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Fig. 5. The red area shows the penalty area used in the likelihood
function to impose a topology constraint. In the penalty area, the penalty
term is set to a small number.

TABLE III
PERFORMANCE RESULT USING MULTIPLE DATA SESSIONS

2D and 4D decoding results using different methodologies are presented for 4 different
datasets (2 rats, 4 sessions). Sessions 1 and 2 for rat 1 occur on different days and thus
we might have a different number of cells. The number of cells identified from the first
rat in the second session dropped from 63 to 54.

where g(x) is the penalty term. The penalty term pushes the
posterior estimate to the area inside the maze, and as result
reflects the maze topology.

Figure 5 shows the penalty area, which includes all coordi-
nates farther than a pre-defined minimum distance (3.5 cm) from
the training trajectory points. The penalty term was set to 10−6

for both 2D and 4D decoders. The term only carries information
about the maze topology, not velocity constraints.

G. Performance Results in Multiple Datasets

Table III shows the decoding results for neural data from
two rats over four experimental sessions. For each rat, we as-
sessed the decoding algorithm on two separate recording ses-
sions, which occurred on different days and may include distinct
neural populations. The results for rat 2, session 1 are the ones
reported in Table I. The performance results for the additional rat
and sessions are consistent with the general findings presented
in the main text.

H. Source Code and Sample Data

A copy of the source code written to implement the decod-
ing methodologies presented in this paper are available at the
GitHub repository https://github.com/Eden-Kramer-Lab/Multi-
Dimensional-Decoder. The repository also includes a copy of

the data analyzed in this paper. Beside the decoding result, the
code provides performance metrics of different methods. The
source code also provides options to change number of particles
in the particle-filtering and GMM method, and percentage of
training and testing dataset. In GitHub repository, we also in-
cluded a movie, which shows the decoding result for a complete
session of the experiment.
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