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Genome Sequence for Candida albicans Clinical Oral Isolate 529L
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ABSTRACT The diploid heterozygous yeast Candida albicans is the most common
cause of fungal infection. Here, we report the genome sequence assembly of the
clinical oral isolate 529L. As this isolate grows as a commensal, this genome will
serve as a reference for experimental and genetic studies of mucosal colonization.

Candida albicans is a major cause of bloodstream infections in immunocompromised
individuals but is more commonly found in the human mycoflora. Here, we

sequenced and assembled the genome of the 529L isolate, which was collected from
a patient with oral candidiasis at Guy’s Hospital, United Kingdom (1). In a model of
persistent oral and vaginal colonization, the 529L isolate colonized these sites for over
5 weeks with higher fungal burden than with other clinical strains, including SC5314 (1).
The 529L isolate has been used in mouse models of oral and vaginal colonization (1–4).

Cells were grown overnight at 30°C in four 4-ml cultures of YPD broth (1% [wt/vol]
Difco yeast extract, 2% [wt/vol] Bacto peptone, 2% [wt/vol] dextrose) with shaking. DNA
was prepared with the Qiagen Genomic-tip 100/G (catalog number 10243) using the
Qiagen genomic buffer set (catalog number 19060), following the manufacturer’s yeast
protocol. Cell wall digestion was accomplished with lyticase (catalog number L2524;
Sigma). DNA preparations from the four cultures were pooled.

For genome sequencing, two libraries were constructed from genomic DNA. For
an �180-base-insert library, 100 ng of genomic DNA was sheared to a median size
of �250 bp using a Covaris LE instrument; the resulting fragments were cleaned
using SPRI AMPure XP beads, followed by end repair, A-base addition, and adapter
ligation (New England BioLabs) (5). A �3-kb insert library was prepared using the
2- to-5-kb-insert mate pair library prep kit (V2; Illumina). Libraries were sequenced
on the Illumina HiSeq 2000 platform to generate paired 101-base reads totaling
35,388,222 reads of average quality 34.4 for the 180-base library and 52,230,472
reads of average quality 36.7 for the 3-kb library. Based on an evaluation of assemblies
of C. albicans genomes at different coverage levels (6), a subset of approximately
100� sequence coverage of both libraries (28,316,832 total reads) was error
corrected, filtered, and assembled using ALLPATHS (7) version R45597 with param-
eters HAPLOIDIFY�True and ASSISTED_PATCHING � 2.1. The quality of the assem-
bly was evaluated using GAEMR v0.1.0 (https://github.com/broadinstitute/GAEMR);
sequencing coverage appeared to be even across the assembly, with no large regions
of aneuploidy noted. Three contigs that GAEMR identified as having sequence similarity
to mitochondrial sequences were removed from the assembly. The final assembly
with 176� read depth includes 87 scaffolds consisting of 608 contigs, with a
scaffold N50 value of 1.2 Mb and a contig N50 value of 65.5 kb. The total scaffold
length is 14.7 Mb, and the average GC content is 33.5%; this is similar in size and GC
content to other C. albicans genomes (6, 8).
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The genome was annotated by transferring gene coordinates from the SC5314
reference version A21-s02-m01-r01 curated by the Candida Genome Database (9) using
unique NUCmer (MUMmer v3 [10]) alignments. In cases where the alignment-based
mapping resulted in a gene with internal frameshifts, a transcript predicted by Prodigal
v2.5 (11) or the longest overlapping open reading frame was substituted if it was longer
than the mapped gene. For reference genes not mapped by this method, BLAST v2.2.25
alignments were used to identify missing loci, and gene structures were added using
Prodigal v2.5 and GeneWise v2.2.0 (12). A total of 6,211 protein-coding genes were
predicted using this approach, similar to the gene content of other C. albicans genomes
(6, 8).

Data availability. The C. albicans 529L assembly and annotation reported here are
available in GenBank under accession number ASHC00000000. Raw sequence reads
have been deposited in the NCBI Sequence Read Archive under accession numbers
SRX276261 and SRX276262.
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