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Abstract

This study describes a psychological experiment on
biases that people exhibit in refining probabilistic causal
knowledge. In the experiment, the effect of background
knowledge was shown by manipulating the causal
structure of prior knowledge provided to the subjects. It
was found that later training instances affected the
refinement of the background knowledge in different
ways depending on the causal model initially given to the
subjects. The two biases found in the current experiment
are (1) knowledge refinement was conservative in the
sense that background knowledge was modified as little
as possible to account for the observed data and (2)
weakening of an existing causal relationship resulted in
automatic strengthening of a related causal relationship.

Introduction

How do people revise their existing knowledge given new
observations that do not clearly fit with their initial
knowledge? In most natural situations, at least some prior
knowledge of relevant causal mechanisms is available to
explain external stimuli. In certain cases, some relevant causal
knowledge is available but new causal relationships may need
to be inferred in order to fully account for the observed data.
The current study investigates the specific nature of
knowledge refinement as a learner acquires new training
instances that cannot be fully explained by existing
knowledge.

Need for psychological studies on biases in
knowledge refinement

Research in both machine learning and psychology has
revealed the important role that prior knowledge plays in
learning. Psychological research has demonstrated that
subjects' learning is greatly affected by their naive theories
and existing domain knowledge (Murphy & Medin, 1985;
Ahn, Brewer, & Mooney, 1992; Pazzani, 1991). Depending on
the presence or absence of relevant background knowledge,
subjects learn different concepts from the same examples
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(Wisniewski, 1989). Meanwhile, machine learning
research has developed algorithms that learn more accurate
concepts from fewer examples when given relevant
background knowledge in the form of an approximate
domain theory (Mooney, 1993; Pazzani, 1991; Pazzani &
Kibler, 1992; Towell, Shavlik, & Noordewier, 1990).

Although these studies have clearly demonstrated that
prior knowledge greatly affects human learning, most of
this research have ignored how prior knowledge is
modified by experience. For example, Pazzani (1991)
presented empirical results on how prior causal knowledge
influenced categorization and also developed a
computational model of this process; however, he did not
address the issue of how existing causal knowledge itself
is affected by conflicting data.

Nonetheless, theories concerning biases of knowledge
revision are in great demand in knowledge engineering. It
is generally agreed that the primary difficulty with
developing robust knowledge-based systems is the
knowledge acquisition bottleneck (i.e., the complexity of
extracting and encoding the domain knowledge needed to
perform the task). Knowledge-based systems are typically
developed by first interviewing an expert in order to obtain
an initial set of rules. Next, the knowledge base is
incrementally improved in a laborious process referred to
as knowledge-base refinement. Typically, a set of sample
problems is used to detect errors in the knowledge base
and corrections are determined during a time-consuming
consultation with the expert. Recent research in theory
refinement attempts to automate the laborious process of
knowledge refinement by using various machine learning
techniques to automatically revise an existing, approximate
knowledge base to fit a set of empirical data (Ginsberg,
Weiss, & Politakis, 1988; Ourston & Mooney, 1990;
Towell et al., 1990; Koppel, Feldman, & Segre, 1994).

The current study provides initial data revealing
important biases that humans display in revising their
existing knowledge. Specifically, it focuses on the revision
of probabilistic causal knowledge, in which underlying
causes (e.g. diseases) probabilistically manifest certain
effects (e.g. symptoms). Such knowledge can be formally
represented as a Bayesian network (Pearl, 1988). The
question is how the strength of existing causal
relationships and the addition of new causal links are



affected by new evidence that is not fully consistent with
existing causal knowledge.

Main Claim

Our general predictions are that changes are conservative (i.e.,
background knowledge is modified as little as possible to
account for the observed data) and that changes in the
strengths of known causal links are preferred to inferring new
causal connections. Therefore, as long as existing knowledge
is consistent with the observed data, a new piece of causal
knowledge will not be acquired even if this new causal
explanation would be more parsimonious.

Ahn, Kalish, Medin, and Gelman (1995) have also
demonstrated a similar point using an information-seeking
paradigm in causal reasoning. In this study, subjects received
event descriptions and were instructed to ask questions in
order to explain the events. The subjects tended to seek out
information that would provide evidence for or against
hypotheses about underlying mechanisms with which they
were already familiar. In contrast, previous psychological
models on causal attributions have emphasized that the most
critical and necessary information in causal attributions is
information about covariation between candidate causes and
effects (e.g., Cheng & Novick, 1992; Kelley, 1967, 1971).
These models tended to focus on the bottom-up processes of
acquiring novel causal relationships rather than on the
top-down processes of utilizing existing causal knowledge.
However, Ahn et. al's results showed that people did not seek
out a novel causal relationship between arbitrary factors by
relying solely on covariation information. Rather, people
attempted to seek out evidence for causal mechanisms with
which they were already familiar, a result which supports the
idea that people are conservative in learning new causal
relationships.

Experiment

The current experiment investigates under what conditions
people add new causal connections to prior domain knowledge
as opposed to modifying the strength of existing
connections.

Methods

Subjects received background knowledge in the form of one
of three causal models as shown in Figure 1. In these models,
A, B, C and/or D are symptoms caused by two new diseases,
X and Y. In all of the conditions, subjects were told that
disease X caused symptoms A and B 70% of the time
(indicated by solid arrow lines in the figure) and symptom C
20% of the time (indicated by dotted arrow lines in the figure)
and that disease Y caused symptoms B and C 70 % of the time
and symptom A 20% of the time. The difference between the
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three causal structures lies in the causal relationship
between symptom D and the diseases. In the indirect-cause
condition, symptom D was caused by symptom B, and
therefore also indirectly caused by diseases X and Y in the
direct-cause condition, symptom D was caused directly by
diseases X and Y; and in the no-cause condition, there was
no known cause for D. Finally, the subjects were told that
both diseases were equally likely to occur a priori.

After learning these causal structures, the subjects
judged the likelihood of various and in the no-cause factors
given various configurations of other factors. There were
six test items; P(X|B), P(Y|B), P(X|B and no D), P(Y|B and
no D), P(X|A), and P(Y|C). For example, for P(X|B), the
subjects were asked, "What is the probability that a person
who exhibits symptom B has disease X? %"

No Cause Condition

<€—— 70 % causal relationship
<€ - - - - 20 % causal relationship

Figure 1. Causal models used in each condition



Then, subjects in all conditions received information on
aset of training cases which were described as data gathered
afterwards. These training cases were constructed in such a
way that symptom D was more associated with disease X than
with disease Y. The actual description of the training cases
was;

70% of patients with symptom D had disease X; 30%
had disease Y.

75% of patients with symptoms D and B had disease X; 25%
had disease Y.

60% of patients with symptoms D and C had disease X; 40%
had disease Y.

20% of patients with symptom C but not D had disease X,
80% had disease Y.

After that, the subjects judged the likelihood of the test
items again. While making
these judgments, the subjects were provided with the figure of
the initial causal structure and the description of the new
training cases. Therefore, in making all these judgments, there
was no demand on memory.

Prediction

The basic prediction was that subjects in the indirect-

cause condition would not construct a new causal link betw
X and D because D could already be explained as an indi
effect of X through B. On the other hand, subjects in
no-cause condition would infer a new direct causal connec
between X and D in order to account for the data. "
difference would be reflected in the increase in the estimat
P(X|D, not B); More specifically, the increase should be
in the indirect-cause condition than the no-cause condit
since the absence of B would indicate that D did not cc
about as a side-effect of X causing B; whereas the absenc
B would not affect a direct connection between X and D
the no-cause condition.

As in the indirect-cause condition, the subjects in
direct condition would not need to construct a new |
between X and D because this relationship is alre:
explained by the existing causal link. Therefore, the incre
in the estimate of P(X|D, not B) should be similar in
indirect-cause and the direct-cause condition. In addition
the no-cause condition had acquired a direct causal |
between X and D through the training instances, their secc
rating on P(X|D, not B) should be similar to the second rat
of the direct-cause condition. As a result, the direct-ca
condition serves as a baseline group for the other t
conditions.

Table 1. Results of the No-cause condition

P(X|B) P(Y|B) P(X|D,noB) P(Y|D,noB) P(X|A) P(Y|C)
Testl 55.3 553 19.4 19.4 62.4 60.6
Test2 65.0 424 58.5 37.9 61.2 65.6
Testl - Test2 9.7 -12.9 39.1 18.5 -1.18 5.0

Table 2. Results of the Indirect-cause condition

P(X|B) P(Y|B) P(X|D,noB) P(Y|D,noB) P(X|A) P(Y|C)
Testl 57.4 55.0 37.9 33.2 64.7 65.3
Test2 68.4 414 41.9 29.4 70.0 59.1
Testl - Test2 11.1 -13.7 3.9 -3.8 5.3 -6.2
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Table 3. Results of the Direct-cause condition

P(X|B) P(Y|B) P(X|D,noB)

P(Y|D,noB)

P(X|A) P(Y|C)

Testl 57.3 53.5

45.8

44.6

65.0 50.2

Test2 582 42.9

53.7

36.9

58.8 71.2

Testl - Test2 0.5 -10.5

7.9

-1.7

-6.2 20.92

Results and Discussion

Tables 1-3 summarize the results. Each table shows mean
probability judgments by each condition. In each condition,
the second row indicates mean ratings on the

first test, the third row indicates the mean ratings on the
second test after the training instances, and the fourth row
indicates the differences between the second and the first
tests.

For each test item, an ANOVA was conducted with the
condition as a between-subject variable and the two tests as a
within-subject variable. The focus of the current study is the
interaction between the increase of the probability estimates
and the three conditions; that is, does the increase or decrease
of the causal strength changes as a function of existing causal
knowledge? Only three out of the six test items resulted in a
reliable interaction effect at p <.05; P(X|D, not B), P(Y|D, not
B), and P(Y|C). The following figures illustrate the direction
of the interaction effect on these three items.

As can be inferred from the figures, the indirect-cause
and the direct-cause condition did not significantly increase or
decrease their estimates for P(X|D, no B) and P(Y|D, no B),
whereas the no-cause condition significantly increased their
estimates. Also, prior to training, the estimate for P(X|D, no
B) in the no-cause condition is significantly less than the
indirect-cause condition, whereas after training it is
significantly greater than the indirect-cause condition. These
results indicate that only the no-cause condition established a
new causal link between X and D and a somewhat weak,
direct link between Y and D. Although the subjects in the
indirect-cause condition could have established a new causal
link between X and D based on the same training instances,
they presumably applied their existing knowledge to account
for the association between X and D (i.e., X causes B and
therefore causes D). Because of this interpretation of the
association between X and D, it mattered much more for the
indirect-cause condition not to have symptom B compared to
the no-cause condition, since B's absence blocks the known
causal path between X and D.

Another interesting but unexpected result came from
the changes in the estimate of P(Y|C). The direct-cause
condition's estimate significantly increased after the training
instances compared to the other conditions. This is an

mean %
estimate

70 -
60 -
o
40 -
30 -

20{

P(X|D, no B)

mean %
estimate

P(Y|D, no B)

7

First

mean %
estimate

70

P(YIC)

First

Secbnd F ifst Second

8- -.m Direct-Cause
~ o— -e Indirect-Cause

o—e No-Cause

Second

Figure 2. Results from the three conditions
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unexpected finding because as far as the link between disease
Y and symptom C is concerned, all three conditions were
initially the same and they all received exactly the same
training instances.

Our interpretation is as follows: Note that in the training
instances, the association between symptom D and disease Y
is somewhat weakened whereas the association between
symptom C and disease Y is somewhat strengthened. In the
direct-cause condition, which is the only condition who
started out with a direct link between Y and D, this causal link
must have been weakened by the training instances. Then, this
weakened link might have actually increased diagnostic
values of other symptoms. In other words, as one symptom
became less diagnostic of disease Y, the other symptom
automatically became more diagnostic.

This new phenomenon can be considered a converse of
the "discounting effect” or “explaining away" for the revision
of causal strengths. According to the discounting effect
proposed by Kelley, people tend to discount a candidate cause
if we find out that one cause is already responsible for the
effect. For example, if Mary finds out that her brother took
her radio away, she might wonder whether it was because his
radio was broken or he was mad at her. Finding out that her
brother's radio was actually broken, she is less likely to
believe that her radio was taken because he was mad at her. In
Artificial Intelligence, this phenomenon is called "explaining
away" and is computationally implemented in Bayesian
networks (Pearl, 1988), providing a normative account of this
psychological principle.

The current results on P(Y|C) in the direct-cause
condition seem the converse of the discounting effect. That is,
initially, one starts out with a belief that a cause has two
effects. As one of the causes is weakened through later
observations, people automatically boost up the strength of
the other causal relationship. To give a more real-life example
of this phenomenon, suppose one initially believed that
having an extra X-chromosome caused a person to have a
high-pitched voice and to be agreeable. If the later
observations indicated that there was no genetic ground for
being agreeable, then having a high-pitched voice would gain
a more diagnostic value for the existence of an extra
X-chromosome.

Conclusion

The current study had demonstrated two interesting biases in
refinement of causal background knowledge as a function of
its initial causal structure and training instances. First, the
refinement occurred in a conservative manner. People would
not construct a new causal link as long as their existing causal
knowledge can explain the new training instances even when
this causal explanation was less direct and parsimonious. This
phenomenon is consistent with processes underlying
stereotype formation; Even if there can be many alternative
ways of accounting for one's behavior, people would rather
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apply their existing knowledge than take a new perspective
on the observation and learn a new possible causal
connection. Second, weakening an existing causal strength
might actually strengthen the causal strength of an
alternative effect.

In the future, we hope to explore additional biases that
people exhibit when revising probabilistic causal
knowledge by examining the effect of different types of
data on a larger variety of initial causal structures. In
addition to inferring the revisions subjects made to their
knowledge based on their subsequent judgements, we plan
to more directly inquire into the exact changes they make
to prior causal knowledge in order to account for
conflicting data.

We also hope to develop and test a computational
model of revising probabilistic causal knowledge based on
revising both the parameters and structure of a Bayesian
network to make it consistent with a set of training data.
This model will attempt to integrate methods for revising
existing causal strengths (Schwalb, 1993) with methods
for inducing new causal structures (Cooper & Herskovits,
1992).
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