UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Modeling Financial Behaviors Online

Permalink
https://escholarship.org/uc/item/1qc1f2zt

Author
Zhang, Xinyi

Publication Date
2019

Peer reviewed|Thesis/dissertation
Modeling Financial Behaviors Online

A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy
in
Computer Science

by

Xinyi Zhang

Committee in charge:

Professor Heather Zheng, Co-Chairperson
Professor Ben Y. Zhao, Co-Chairperson
Professor William Wang

September 2019
The Dissertation of
Xinyi Zhang is approved:

William Wang

Ben Y. Zhao, Co-Chairperson

Heather Zheng, Co-Chairperson

May 2019
To my grandparents, parents and my loved ones.
Acknowledgements

First of all, I would like to thank my wonderful advisors Ben Y. Zhao and Haitao Zheng for mentoring me throughout the PhD program. They are attentive to my progress, always able to give insightful comments while also making sure that I have an enjoyable PhD life. I’m thankful of the friendly and collaborative environment they established in SAND Lab, which makes the entire journey a delightful experience. Second, I would also like to thank my committee member, William Wang, for giving valuable advice on my projects and on choosing research directions. Finally, I want to thank my mentors in my previous internship: Ennan Zhai and Hongqiang Liu from Alibaba.

I am very grateful that I get to work with all my collaborators, without whom this thesis would never have been possible. First, I would like to thank the members of SAND Lab: Gang Wang, Shiliang Tang, Bolun Wang, Shawn Shan, Jenna Cryan, Zhijing Li, Ana Nika, Yanzi Zhu, Kevin Yao, Qinyun Liu, Yun Zhao, Xiaohan Zhao, Christo Wilson, Emily Willson and Olivia Sturman. Second, to Xiaojuan Ma and Ziming Wu from Hong Kong University of Science and Technology, to Da Yu from Brown University, to Chen Tian and Bingchuan Tian from Nanjing University, and to Miriam Metzger from the Department of Communications at UC Santa Barbara. Third, to our collaborators from the industry Xin Wu, Zhiming Ji, Qiaobo Ye and Ming Zhang from Alibaba, and Ulas Bardak at Whisper Inc. Fourth, to my collaborators during my undergraduate years, Weili Han, Zheran Fang, Yuliang Yin, Liangxing Liu and Tao Zhou from Fudan University, to Yan Chen, Zhengyang Qu and Vaibhav Rastogi from Northwestern University; I wouldn’t be taking this journey without you.

I would also like to express my thanks to the other members at SANDLab, Bimal Viswanath, Zhujun Xiao, Yibo Zhu, Yuxin Chen, Huiying Li, Max Liu, Zengbin Zhang, Megan McQueen and Divya Sambasivan. I have learned so many things through the
discussions we have had; thank you all for making SANDLab the great place it is.

Finally, I would like to thank my family, my friends, and my loved ones for your unconditional support. Thank you for always being there for me.
Curriculum Vitæ
Xinyi Zhang

Education
2014-2019 Ph.D. in Computer Science (Expected), University of California, Santa Barbara.
2010-2014 Bachelor of Engineering in Software School, Fudan University, Shanghai, China.

Conference Publications

Journals

Abstract

Modeling Financial Behaviors Online

by

Xinyi Zhang

Financial activities have been central to the survival and prosperity of human societies. In modern days, we humans are carrying out financial activities on a daily basis, from setting up retirement funds to purchasing a cup of coffee from the local store. Every financial decision we made is in some way contributing to the invisible hand that propels the market forward.

The studying of financial behavior has been a long and hard battle. Starting from the realization that participants in economic activities are human and thus not fully rational, researchers from many fields have tried to shed lights on the financial behavior of individuals, ranging from psychology, neuroscience and behavioral economics. However, for many years, due to the sensitive nature of financial information, and the resulting lack of large-scale data, the studies of financial behavior are typically in the forms of small-scale lab experiments, an environment that is quite different from real-world economic settings.

Fortunately, with the digital age, financial activities are increasingly moving online, exemplified by the proliferation of e-commerce and digital wallets. Research opportunities arise from the accompanying emergence of large-scale datasets about users’ online financial activities in the wild.

Yet challenges still remain as to how to effectively utilize such datasets to truly understand the financial behaviors. The first challenge is the scale of data. With millions or even billions of users involved, it is important to find the appropriate methodology to
make sense of such large-scale data. Second, the depth of understanding. Observational
studies are limited by what is observable while a full understanding requires one to touch
upon the hidden drivers behind the behavior. The third challenge is in how to transform
the understanding into actionable knowledge.

In this thesis, we tackle the challenges one by one, measuring and understanding
users online financial behavior and finally using our understanding in making financial
decisions. We begin with a series of measurement studies that explore the different
dimensions in online financial behavior, going from collaborative and friendly social pay-
ments to the competitive auction biddings. We show that the relationship between users
plays a key role in forming their behavioral patterns and that financial behaviors are
highly distinct even within the same system, potentially driven by different sets of moti-
vations.

Next, we deepen our understanding by exploring the underlying motivations behind
user behaviors. Leveraging existing works in social science and behavioral economics,
we develop hypotheses regarding users financial behavior and verify our hypotheses us-
ing surveys, interviews as well as empirical measurement. We uncover various aspects
that shape financial behaviors such as the cultural differences in user behaviors during
the adoption of digital wallets and how auction mechanisms affect users reactions to
competitions.

Finally, we explore how to use our models to guide financial decisions. By building a
faithful model of bid-by-bid behavior during penny auctions, we have essentially built a
testing platform to experiments with both prediction-based and learning-based decision
strategies. Using such models, we are able to identify a prisoners’ dilemma embedded in
the penny auction environment when multiple bidders adopt the same strategy.

In summary, this thesis presents how a combination of data-driven approach and be-
behavioral theories can help understand and guide financial behaviors. We have developed
methods to identify diverse sets of behavioral patterns in financial systems, introduced ways incorporate existing theories into the study of online financial behavior, and show how developed models can help navigate the vast decision space in the financial systems.
Contents

<table>
<thead>
<tr>
<th>Curriculum Vitae</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Dissertation Overview .. 2
1.2 Measuring Online Financial Behavior 3
1.3 Understanding Online Financial Behavior 4
1.4 Using Understanding to Guide Financial Actions 6
1.5 Contributions .. 6
1.6 Thesis Organization ... 9

2 Measuring Online Financial Behavior

2.1 The Interplay between Social and Financial Systems 11
 2.1.1 Introduction .. 11
 2.1.2 Background & Related Work 13
 2.1.3 Data & Initial Analysis ... 15
 2.1.4 Transaction & Social Graphs 20
 2.1.5 Users & Communities .. 26
 2.1.6 Payment Types & Dynamics 34
 2.1.7 Conclusion .. 37

2.2 Behaviors in Competitive Auctions 37
 2.2.1 Introduction .. 37
 2.2.2 Background & Related Work 39
 2.2.3 Initial Analysis ... 40
 2.2.4 Profiling User Bidding Behavior 43
 2.2.5 Discussion and Conclusions 46
3 Understanding Online Financial Behavior

<table>
<thead>
<tr>
<th>3.1 Understanding the Adoption and Experience of Digital Wallets</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Introduction</td>
<td>50</td>
</tr>
<tr>
<td>3.1.2 Background</td>
<td>52</td>
</tr>
<tr>
<td>3.1.3 Theoretical Background and Related Work</td>
<td>54</td>
</tr>
<tr>
<td>3.1.4 Research Methodology</td>
<td>58</td>
</tr>
<tr>
<td>3.1.5 Adoption and Usage of Digital Wallets</td>
<td>62</td>
</tr>
<tr>
<td>3.1.6 Social Ties Affect User Experience</td>
<td>65</td>
</tr>
<tr>
<td>3.1.7 Social Interactions Affect User Experience</td>
<td>68</td>
</tr>
<tr>
<td>3.1.8 Transactions Affect Social Relationship</td>
<td>73</td>
</tr>
<tr>
<td>3.1.9 Discussion</td>
<td>75</td>
</tr>
<tr>
<td>3.1.10 Conclusion</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2 Psychological factors behind Penny Auction Behaviors</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Introduction & Related Works</td>
<td>78</td>
</tr>
<tr>
<td>3.2.2 Hypotheses</td>
<td>80</td>
</tr>
<tr>
<td>3.2.3 Observing Psychological Phenomenon</td>
<td>81</td>
</tr>
<tr>
<td>3.2.4 Discussions & Conclusions</td>
<td>84</td>
</tr>
</tbody>
</table>

4 Using Understanding to Guide Financial Actions: The Case of Penny Auctions

<table>
<thead>
<tr>
<th>4.1 Introduction</th>
<th>87</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Background and Related Work</td>
<td>89</td>
</tr>
<tr>
<td>4.3 Profitability and Sustainability</td>
<td>92</td>
</tr>
<tr>
<td>4.3.1 Our Dataset</td>
<td>92</td>
</tr>
<tr>
<td>4.3.2 Inferring Retail Prices</td>
<td>93</td>
</tr>
<tr>
<td>4.3.3 Estimating Profits</td>
<td>94</td>
</tr>
<tr>
<td>4.3.4 Per-user Profits and Sustainability</td>
<td>95</td>
</tr>
<tr>
<td>4.4 Bid-level Simulation of Penny Auctions</td>
<td>97</td>
</tr>
<tr>
<td>4.4.1 Basic Bid Prediction Model</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2 Powering Simulation with LSTMs</td>
<td>100</td>
</tr>
<tr>
<td>4.4.3 Trace-based Simulator Validation</td>
<td>102</td>
</tr>
<tr>
<td>4.5 How to Bid and Win Penny Auctions</td>
<td>104</td>
</tr>
<tr>
<td>4.5.1 Automated Bidding Agents</td>
<td>105</td>
</tr>
<tr>
<td>4.5.2 Adversarial Strategies</td>
<td>106</td>
</tr>
<tr>
<td>4.5.3 Evaluating Strategies</td>
<td>108</td>
</tr>
<tr>
<td>4.5.4 Competitive Adversarial Bidding</td>
<td>110</td>
</tr>
<tr>
<td>4.6 Limitations and Ongoing Work</td>
<td>111</td>
</tr>
</tbody>
</table>

5 Conclusions and Discussions

<table>
<thead>
<tr>
<th>5.1 Summary</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Lessons</td>
<td>115</td>
</tr>
<tr>
<td>5.3 Future Directions</td>
<td>118</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Venn diagram: social and transaction network 15
2.2 Per user activity distribution:
 (a) transaction count. 16
 (b) friend count. 16
2.3 Distribution of active ratio of users. 16
2.4 Weekly growth trend of Venmo:
 (a) Number of new users. 18
 (b) Number of new transactions. 18
2.5 Distribution of clustering coefficient per user. 19
2.6 Average core level as a function of degree. 19
2.7 Comparing different clusters on 3 key features. We depict each distribution
 with box plot quantiles (5%, 25%, 50%, 75%, 95%). 29
2.8 Size distribution of communities. 30
2.9 Clustering coefficient of financial communities. 30
2.10 Transaction burstiness in financial communities. 31
2.11 Number of words per message. 34
2.12 Cumulated # of messages hit by top keywords. 34
2.13 Recurrence period distribution among user pairs. 34
2.14 Distribution of time waited until the next bid. 40
2.15 Bids placed per auction, for auctions winners or across all bidders. 40
2.16 Distribution of price paid relative to product value. 40
2.17 Distribution of time gap between each users’ first and last bid. 40
2.18 Distribution of feature value for each cluster and for short-term bidders.
 We depict each distribution with box plot quantiles (5%, 25%, 50%, 75%, 95%). . 43
2.19 Distribution of earnings per auction for different types of bidders. 43
3.1 Screenshots of Venmo (left) and WeChat Pay (right) apps on Android.

The Venmo screen shows public transactions visible to any user, while the WeChat Pay screen shows a single user’s recent transactions. We put translations of the transaction type as overlaid light blue text on the WeChat Pay screen.

3.2 Reasons for starting to use digital wallets.

3.3 Common usage scenarios.

3.4 Reasons for continuing to use digital wallets.

3.5 Users preferences on sharing transaction records on digital wallet systems. Options include sharing to the public as the default setting (Public-Default), sharing to the public as an optional setting, sharing with friends as the default setting (Friend-Default), and sharing with friends as an optional setting (Friend-Optional).

(a) Venmo Users

(b) WeChat Pay Users

3.6 Aspects to be improved to fully embrace digital wallets and eliminate cash

Venmo Users

4.1 Net returns per user. The large majority of users lose significant amounts of money vs. a tiny fraction of winners.

4.2 Net return vs. user lifetime. Each distribution plotted with box plot quantiles (5%, 25%, 50%, 75%, 95%).

4.3 Contributions to gross profit vs. user lifetime. DealDash loses $ to long-lived users and generates all of its profits from short-term novice users.

4.4 ROC-curve for predicting whether an auction will end.

4.5 Predicting both bidder and time delay.

4.6 Distribution of number of distinct users in each auction.

4.7 Distribution of the length of the final bidding war.

4.8 Distribution of final price for each auctions.

4.9 % of auctions won against net gain for each auction.
List of Tables

2.1 Comparison between Venmo transaction graph and the interaction graphs in Facebook [1] and Twitter [2]. Venmo transaction graph is further divided into friend- and stranger-transaction graphs based on whether a transaction is made between friends. ... 47

2.2 Comparing Venmo, Facebook [1], Renren [3] social graphs. ... 47

2.3 Top keywords (after stemming) for user clusters. ... 48

2.4 Transaction categorization using keywords and emoji. Messages without any word or emoji are not included. If a transaction belongs to multiple categories, we count it multiple times. Thus the sum of each row may be greater than 100%. ... 48

3.1 Ratio of users who “Agree” or “Strongly Agree” on the social network related statements in mobile digital wallets. ... 75

3.2 Results of logistic regression model measuring pseudo-endowment effect (H1). Note: *** p<0.01, ** p<0.05, * p<0.1 ... 82

3.3 Results of logistic regression model measuring sunk cost fallacy and self-justification (H2). ... 82

3.4 Results of logistic regression model measuring competitive arousal and herding (H3). ... 82

3.5 Results of linear regression model measuring item value and overbidding. Bids are calculated as 12 cents each (H4). ... 82

3.6 Results of logistic regression model measuring all effects combined. ... 84

4.1 Average value of auctioned product in comparison to Buy-It-Now price. ... 91

4.2 Revenue generated in comparison to value of products auctioned/sold. ... 91

4.3 Distribution of users in DealDash and length of active lifetimes observed in our trace (101,936 users total). ... 96

4.4 AUC in predicting auction ending. Top-1 accuracy and perplexity in predicting next bidder. ... 98

4.5 Results of linear regression correlating auction metadata with # of unique bidders (‡p<0.01, †p<0.05). ... 103
4.6 Performance of learning-based strategy (without BidBuddy) when used by multiple bidders. 104
Chapter 1

Introduction

Financial behavior has long been a topic of interest for many different fields, ranging from behavioral economics, psychology to neural science. In behavioral economics, researchers look into what factors influence individual humans in their economic decisions. Using carefully designed experiments, they highlight how humans as economic agents are constantly under the influence of irrational value models. This observation is then used to guide of design of various real-world programs, like pension schemes, and organ donation systems. The field of psychology has also taken great interest in how people’s feeling governs their financial decisions. Professor Daniel Kahneman is one of the pioneers in this area and won a Nobel prize for his work on prospect theory, which helps explains many anomalous behaviors observed on economics. Even researchers from neural science are interested in how our brains work when dealing with money.

However, most of these studies are either looking at aggregated data or are based on small-scale surveys or lab experiments. This is partially due to inherent concerns with the privacy of financial data, which lead to the scarcity of large-scale datasets for peoples financial activities.

This gloomy picture has shifted significantly with the rise of the internet. Starting
with the emergence of e-commerce, users started to buy things and hold auctions online, leaving traces of their financial life on the internet. But it was not until the advance in mobile payment that things really started to change. People started paying for everyday things using their phones, which means a large portion of payment activities are moving online. Now, there are even these social payment apps like Venmo, which combines the functionality of social network with mobile wallet. These advances present great opportunities for researchers, as the digitalization of everyday financial activities presents a wealth of data that were previously hard to explore.

Key Challenges. During the attempts to understand financial behavior, we need to address a few key challenges. The *first* challenge is the magnitude of data. Today’s financial systems often involve millions or even billions of users and activity records, it is a vital to identify the appropriate measurement methodology suitable for the various questions we have about financial behavior.

The *second* challenge is depth of the understanding. Insights directly drawn from observed behavior may be may not be able to reach the underlying motivations behind the behavior exhibited. Hence, we need to apply methodologies that can help us gain insight into the hidden factors behind financial behavior.

Finally, there remains the question of how the behavioral models can be applied. By its nature, financial behaviors involve the exchange of money, making testing of in-the-wild behavioral models expensive and difficult to control. We need to address such challenge when putting our understanding to actual application.

1.1 Dissertation Overview

In this dissertation, we seek to further our understanding of users’ financial behavior by taking advantage of the vast number of behavioral traces brought about by the digital
Using data modeling techniques and behavioral theories, we extracted and made sense of highly distinct patterns in online financial behavior, applying it to guide future actions.

As described in this statement, we adopt two approaches that complement each other, the data-driven approach where we derive insights by designing large-scale measurements and analysis on behavioral traces; and the human-centered approach where we take a deeper dive into the underlying motives backed by psychology literature. Finally, we show how such understanding may be used guide further financial activities.

1.2 Measuring Online Financial Behavior

In Chapter 2, we demonstrate how large-scale online financial systems can provide user behavior records which contain rich information about users behavioral patterns. By measuring each financial system through a variety of approaches, we are able to answer some important questions with regard to the nature of users’ financial behavior. For example, how do social relationships factor into financial behavior? How users behave differently in a competitive setting?

Social payments. We study what are the characteristics of payment activities by looking at Venmo. Venmo is a popular person-to-person mobile payment app that incorporate the social elements into its payments. With the growing market of mobile payments, apps like Venmo presents a unique window into the daily activities of its millions of users. One of the key advantages of Venmo is that it has leveraged a symbiotic relationship between the financial system and the underlying social network. On one hand, social relationships among Venmo users facilitate its fast adoption [4], while the person-to-person payment system returns the favor by reducing the friction between
friends surrounding financial matters.

In this thesis, we adopt a measurement-based approach to identify what effects such symbiotic relationship has on the social and financial behavior of users. We show that there are two main types of activities on Venmo, the business-client payments and the social payment, which exhibit highly distinct structural patterns. The social payments form a graph structure denser than the typical social interactions. Meanwhile, communities of very different use cases are observed on Venmo, many driven by specific transaction types, e.g., rent, utilities, or betting pools, showcasing the diversity in Venmo.

Competitive Auctions. Penny auctions involves intense competition among users, with the final winner often able to obtain the auctioned item at a heavy discount. We examine a popular penny auction site DealDash to study users’ financial behavior in such a winner-take-all setting.

In this thesis, we perform similarity analysis to identify the common patterns in users’ bidding strategies and examine how each of the strategies fare for the adopter. Our analysis and experiments show that most users optimize their bid timing in accordance with the design of the penny auction system. In addition, by grouping together bidders with similar bidding behaviors, we identified five distinct categories, representing different bidding strategies, with the aggressive and persistent bidders winning a large share of auctions, and the budget bidders ending in losses.

1.3 Understanding Online Financial Behavior

In Chapter 3 we seek to further our understanding of financial behavior by borrowing techniques from social science to examine the underlying motivations. Building on established theories of behavioral models, we examine their applicability in online financial systems. In this thesis, we examine a range of topics from technology acceptance model
to prospect theory.

Adoption of financial systems. We examine the reasons behind users’ adoption of financial system using the example of mobile payments apps. Mobile payments apps have been expanding their user base at astonishing speed, with the prominent examples being Venmo from United States and WeChat Pay from China; both are person-to-person payments apps which have successfully taken advantage of their tight integration with the social network. However, other major attempts to connect social features with financial transactions by companying like Facebook [5], Snapchat [6] and Alipay [7] have been less than successful.

In this thesis, we seek to explain Venmo and WeChat Pay’s success through a deeper understanding of how the social factors affect the adoption of digital wallets. And how the digital wallets, in turn, shape users’ experience and social relationships. To answer these questions, we adopt a mixed method approach which include an online survey and an in-depth interview, from which we identified that social factors are central to the adoption of these wallets, while the wallets can then benefit the existing friendships by providing a smoother payment experience.

The (ir)rationalities in decision making. By examining penny auctions bidders, we seek to examine users’ less than rational mental models as described by prior literature in behavioral economics. It is suggested that one of the main drivers behind the successful operation of penny auction sites is the irrationalities of its users [8]. With factors like sunk cost fallacy and risk-seeking tendencies all potentially contributing to the revenue of penny auction sites, penny auction bidders become the prefect subject of our study.

In this thesis, we seek to validate or to reject hypothesis derived from behavior models using traces of penny auction observed in the wild. We identified supporting evidence for sunk cost fallacy and pseudo-endowment effect from auction records while rejecting
herding theory. Understandings derived from the analysis can be used to develop bidding strategies consistent with winning strategies in penny auctions. In addition, we have also observed mechanisms used by penny auction sites who can potentially serve to reinforce such fallacies.

1.4 Using Understanding to Guide Financial Actions

In Chapter 4, we address the gap between understanding of financial behavior and the application of such knowledge. By building highly faithful models of users’ behavior, we are able to learn the likely outcome our decisions and thus tests out different strategies.

Learning winning strategies. We build a faithful model of bidder behavior to win the game of penny auctions, showcasing how a good understanding of opponents can be useful in competitive economics environment.

In this thesis, we use deep learning techniques to learn the behavioral models of normal bidders and how they would react to incoming bids. The model is found to be able to predict the next bidder and the bidding time with high accuracy, which is then used to train and test various strategies in playing penny auctions. In the end, we are able to identify successful bidding strategies yielding a simulated average return of $18.7 per auction and uncover a prisoner’s dilemma underneath the penny auction system.

1.5 Contributions

In this dissertation, our key contributions show how computer science and social science can work synergistically together to obtain and utilize an understanding of financial behavior. We employ a variety of methodologies to organize vast quantities of data into meaningful structures and thus surfacing behaviors of different types, facilitating the dis-
covery of behavioral phenomena; on the other hand, established models in social science serve to guide us in the exploration. In addition, we are able to confirm or reject a number of existing theories around user behavior in the setting of economic activities. Finally, we build highly accurate models of users’ financial behavior and apply it to the development of decision strategies.

Pattern extraction techniques. We have applied a set of data mining techniques to extract common patterns from financial behaviors. In Chapter 2.1, we engineered three key features to capture users’ payment patterns and build a similarity graph based on these features. Due to the vast number of users involved, we developed an incremental clustering approach where we first perform clustering on a sampled set of users and then insert the remaining users into the cluster based on nearest neighbor. We validated this methodology using Kolmogorov-Smirnov test [9] and show that the approach is valid. To help interpret the resulting clusters, we used Chi-square statistics [10] to identify keywords associated with each of the cluster. In addition, we perform community detection on both the transaction graph and the social graph, identifying distinct types of communities showing completely different structural properties based on the purposed of the community. Also, in Chapter 2.2, we designed five different features to capture the different bidding patterns. Using an approach similar to the similarity graph-based approach in Chapter 2.1, we identified distinct bidding strategies and show that different strategies lead to vastly different auction outcomes. By applying pattern extraction techniques, we can effectively surface hidden patterns from behavioral traces there are worthy of further investigation, thus facilitating the analysis process.

Behavior and social relationships. Prior theories in social science have long argued that social relationships have significant impact on user behavior. In this thesis, we examine the impact of social relationships on financial behavior through data analysis,
surveys and interviews. In Chapter 2.1 we separate payment activities into two types based on the social relationship on which the transaction took place, the social payments and the non-social payments. Graph analysis on social payment graph and non-social payment graph shows surprisingly big structural difference, indicating users’ payment behavior is significantly governs by the underlying relationship. Similarly, when examining different communities, the communities knitted through social relationships display highly distinct behavioral patterns from the non-social communities. In Chapter 3.1 we employ a mixed-method approach of surveys and interviews to examine how social relationships impact users’ adoption behavior. We find that social relationships influence the usage experience of financial system and the experience in turn influences users’ social relationships.

Validating or rejecting existing behavioral theories. In this thesis, we have drawn from a number of established theories on user behavior and adapted them to the current economic setting, validating some while rejecting others. In Chapter 3.1, we employed technology acceptance model to the case of mobile wallets, identifying network effect in US users and cluster effect for Chinese users through surveys and interviews. In Chapter 3.2 we design hypothesis around users’ bidding behavior based on a number of theories in behavioral economics and find evidence supporting the sunk cost fallacy and pseudo-endowment effect while rejecting herding theory in penny auction.

Building behavior simulator. Finally, in Chapter 4 we discuss how we designed and trained deep learning models to learn the bidding behavior of penny auction bidders, to the point where we can accurately predict both the next bidder and the time of the next bid. To achieve this end, a novel model structure is designed as an adaptation of the traditional LSTM model, where the predicted bidder is used as the input to the timing prediction. The model is shown to be closely resembling real user behavior. We
are the first to empirically study the predictability penny auctions traces and to develop adversarial algorithms to win the auctions.

1.6 Thesis Organization

My dissertation consists of 5 highly related projects. In Chapter 2, we present two studies which measure users’ financial behaviors in a social [12] and a competitive setting [13]. Then, in Chapter 3, we examine how users’ mental models drive the adoption [4] and irrational actions [8] of financial systems. Finally, Chapter 4 demonstrates how we can apply the learned behavioral models to help users make better decisions in a competitive financial environment [8]. And in Chapter 5 we summarize the conclusions found, the lessons learned and the promising future directions in modeling online financial behavior.
Chapter 2

Measuring Online Financial Behavior

In this chapter, we introduce how large-scale online financial system can be used as a vantage point from which we can observe the characteristics of various online financial activities. By performing measurement on users’ online financial behavior we are able to answer several important questions regarding the nature of online financial activities. First, what are financial activities like in the social age? When financial systems are built on top of an online social network, what would from the interaction between the financial context and the social context? How would the resulting system shape users’ financial and social behavior? Second, how do users behave in a competitive financial environment? Are there distinct patterns in users’ competitive financial behavior and how does such behavior relate the final outcome of the competition?

In the following, we use two case studies to demonstrate how we are able to answer the above questions by measuring behavioral traces left by online financial activities. In particular, how graph analysis, clustering and text analysis can all be jointly used to present a more complete picture of financial behaviors.
2.1 The Interplay between Social and Financial Systems

2.1.1 Introduction

The mobile revolution has transformed how people handle financial payments, through a variety of mobile payment apps that are replacing cash and credit cards. These apps can be classified into several groups based on their target functionality. Digital wallets are essentially mobile wrappers around physical credit cards, including Apple Pay, Google Wallet, and Visa Checkout. Others, like PayPal, Stripe and Square focus on simplifying payments for vendors. Finally, apps like Venmo bring a unique blend of convenience and social interactions into payments, by supporting simple (and free) person-to-person payments [14].

The Venmo model for interpersonal payments has had tremendous success in the last few years. Venmo has 11 million users as of May 2016, and has seen transaction volume triple in 2015, reaching $1 billion USD in monthly transactions as of January 2016. Its success in the US has led to the very recent development of Zelle, a competing system created by major US banks including Chase, Citi and Bank of America [15], as well as similar systems from Square [16], Apple, and Facebook. In China, a similar person-to-person payment system exists in WeChat, which now includes more than 400 million users and $11 billion RMB ($1.65B USD) in transactions in 2014.

Beyond the convenience of a mobile app, what makes person-to-person payment apps like Venmo interesting is their tight integration with a *symbiotic* social network. On one hand, there is ample evidence that usage in social groups is a critical component of Venmo’s fast adoption [17]. Friends who are users provide free advertising and awareness, and even peer pressure whenever payments are involved (e.g. sharing a meal). On the
other hand, Venmo reduces friction between friends in financial matters, and its social features (comments on transactions) serve to reinforce social links with creativity and inside jokes.

But how has this symbiotic relationship affected users’ social and financial behavior? This is the key question we seek to answer. In the first part of this chapter, we report the results of a large-scale analysis of Venmo transactions, analyzing all public transactions in Venmo totalling 91 million transactions over 6 years, all in the context of an underlying social network connecting 10.5 million users (all friend relationships are public in Venmo). From these traces, we can analyze both the Venmo social graph (composed of friendship links connecting Venmo users) and the Venmo transaction graph (composed of links representing transactions between users).

Our results include a number of surprising findings. First, we find that both normal users and businesses populate the Venmo transaction graph, and exhibit dramatically distinctive (and easy to identify) patterns in their transactions with others. Second, Venmo users form exceptionally dense communities in the transaction graph, with much higher than expected clustering coefficients. Using k-core decomposition, we find that Venmo transaction communities are similar to or denser than to all available datasets of user interactions (Twitter retweets, Facebook messages). Third, analysis of properties of communities show that many are “niche groups” that revolve entirely around a single type of transaction, e.g. rent, utilities, gambling or betting pools. Some of these groups are ephemeral and users turn dormant once the specific event (e.g. NFL Super Bowl) passes. This suggests Venmo is used by many as a specific application-driven utility rather than a social payment network.

To the best of our knowledge, this is the first large-scale analysis of financial transac-

1By default, Venmo users have privacy settings set to share transactions (users, time, comments but no amounts) with all users.
tions on person-to-person payment systems like Venmo. In the remainder of this section, we give background on mobile payments and the Venmo app, then describe our data collection and initial analysis. Next, we analyze the structure of Venmo’s social and transaction graphs and show how they overlap. We use unsupervised learning to classify users by their transaction and social behavior; identify and study patterns found in communities in the transaction graph. Finally, we analyze Venmo transactions by both payment types and temporal dynamics.

2.1.2 Background & Related Work

Mobile Payments. Mobile payments fall into two general categories, one being mobile extension of credits cards, the other being mobile wallet services. For contact-less extensions of credit cards like Apple Pay, Samsung Pay and Android Pay, they only act as a wireless layer over credit cards. In comparison, mobile wallet services are heavier in functionality. Traditional mobile wallets such as PayPal and Alipay are spawn from large online shopping sites, with ecosystems built around merchants and customers.

Usage on mobile wallet services also attracts extensive research efforts. A lot of studies focus on the use case of different services in different countries, e.g. M-PESA in Kenya [18], Bristol Pound in England [19], bKash in Bangladesh [20], and mobile money offered by Network Operators in Uganda [21]. These studies typically deploy survey or interview to gather user data. Other study leverages on a theoretical framework called Technology Acceptance Model [22], and looks at how different factors affect user adoption of these services [23].

In recent years, there emerges a new trend of social payments where a wallet builds a social network within itself. These services are eating into the market of traditional mobile wallets, examples being Venmo and WeChat Pay. Known for its convenient peer-
to-peer transfer, Venmo quickly spread through word of mouth. In the year 2015, Venmo increased its transaction volume by 200% [24], taking up 19% of the market share of mobile user-to-user payments in US [25].

The Venmo App. Venmo has two main functions: making transactions and socializing. First, Venmo lets user pay each other simply by specifying the receiver’s Venmo ID, the amount, and a short descriptive text message associated to the payment. Transaction is made easy as users can quickly locate the receiver by searching among her Venmo friends. Second, Venmo users have the option to share their payments with their friends or with the public. Once shared, these transactions are streamed into a feed with the time, recipient, and message displayed to the audience. Fortunately, Venmo provides APIs to query public transactions and social connections, which makes it feasible to gather a dataset of all public activities on Venmo, and thus performing large-scale quantitative analysis on financial behaviors.

Interactions on Social Network. As a payment platform built on a social network, Venmo introduced a brand-new type of social interaction: making transactions. There have been extensive works studying different types of interactions in Online Social Networks. Interactions being studied including wall-post on Facebook [1, 26], retweets on Twitter [27], reblog on Pinterest [28] and Tumblr [29], editing on Wikipedia [30], just to name a few. There are also works using detailed clickstreams to study latent behavior that are not directly visible online, e.g., profile browsing [31, 32, 33]. Our work differs from theirs because our topic of study is a combination of financial activity and social activity, which introduces an interaction incentive that has long been present in the financial world, yet never seen in social networks.

Digital Transactions. Besides Venmo, Bitcoin is the only source of large-scale public records of transaction data. Most previous works utilizing this dataset is oriented
towards the anonymity in Bitcoin [34, 35]. Ron et al. analyzed graph properties in Bitcoin [36]. They provide basic distribution statistics for transactions on Bitcoin, and perform detailed studies on 364 transactions. These works struggled with the anonymous nature of Bitcoin, and did not perform behavior analysis beyond case studies. In contrast, transactions on Venmo are associated with real accounts and support in-depth analysis of user behavior. Finally, prior work has also analyzed the impact of social connections on the Overstock marketplace [37].

2.1.3 Data & Initial Analysis

In this sub-section, we start by describing our data collection methodology and datasets. Then we perform preliminary analysis to understand Venmo’s user activities and growth trend. This provides context for studies in later sub-sections.

Data Collection

We collect a complete set of public transaction records on Venmo over 6 years and its social network graph through public APIs [38]. We received approval from our local IRB for our study, and carefully anonymized userIDs and user names in the collected
dataset. We limited query rates to avoid disruption to Venmo’s services. While the data we obtained is publicly accessible via Venmo’s APIs, we are cognizant of deanonymization risks from releasing the entire dataset to the public. We are reaching out to Venmo to negotiate a possible release of a subset of the dataset.

Public Transaction Records. Venmo API allows us to query the *historical* public transaction stream of the entire network by specifying a time range. We use the API to sweep through the timestamps from Venmo’s initial launch to May 5, 2016, and collect a complete set of public transaction records. In total, we obtain 91,355,414 transactions over 6 years from April 15, 2010 to May 5, 2016. Venmo went online in August 2009 as beta, posted its first public transactions in 2010, and was open to public users in March 2012. Each transaction record contains a transaction ID, sender, receiver, transaction
type, transaction time and related social activities (messages, likes, comments). For each user involved in the transaction, the record contains user profile information including user ID, account creation time, and the first and last name of the user. In total, we extract 7,091,915 unique user IDs.

Note that all the transactions have a message to indicate the purpose of the transaction. Comments and likes, however, are less prevalent: only 2.7% transactions have comments and 11.3% of transactions have likes.

The Venmo Social Graph. Venmo’s dual functionality as a payment network and a social network means that the two networks only overlap partially. Some users participated in transactions have no friends in Venmo, others have friends but have not participated in transactions. To build Venmo’s social graph, we began by using public APIs to query each user’s friend list. We observed that Venmo uses sequential numbers for user IDs (starting from 1). We validate this by creating a burst of 10 new accounts within 20 seconds, and confirming that the resulting user IDs are sequential integers. Thus, we can use a newly created user ID to estimate the number of total registered users. As of May 5, 2016, the estimated total number of users is 10,586,252. We build a list of the entire Venmo user population by sequentially scanning the user ID space, downloading each user’s friend list for the complete social graph.

We crawl the social graph with focus on users registered before May 5, 2016, which gives us 10,568,274 users. Note that this number is slightly smaller than the total number of registered users (10,586,252) as of May 5, 2016. This is because 0.17% of user IDs are reported as “invalid” by the API, possibly due to account deletion. After excluding another 806,625 (7.6%) users who have no friends, the final social graph contains 9,761,649 users.

Coverage Estimation. Our social graph is complete, but our transaction data only
cover public transactions. First, based on the sequential userID, we estimate there are 10,586,252 registered users as of May 5, 2016. Our public transaction dataset covers 67% of the user population. The rest of the users either did not make any transactions or only made private transactions.

Second, we estimate the number of private transactions. Just like the userIDs, we find the transaction IDs are also sequentially assigned. We validate this by creating 10 private transactions interleaving with 10 public transactions within 20 seconds. We find that the transaction IDs also increase monotonically. Based on the maximum transaction ID, we infer that there are 185,270,948 transactions up to our data collection time, and our dataset covers 49.3% of all transactions. The rest 50.7% of transactions are private. In this study, we seek to leverage the public transactions as a proxy to study the digital payment activities of Venmo users.

Preliminary Analysis

Social and Financial Activities. We first examine user participation in social and financial activities. Figure 2.1 uses a Venn diagram to show the overlap between users in the social graph and users in the transaction dataset. Most users (6.86M) participate in both financial transactions and social friending. This is only a lower bound — the
3,710K users who have no public transactions may still have private transactions. Only 224K users (2.1%) use Venmo for financial transactions but do not have any friends.

Figure 2.2(a) shows the number of transactions per user, which follows a long tail distribution. Most users (57%) have made less than 10 transactions, while certain users have made more than 10,000 transactions. A closer examination shows that these super active users are charity organizations and business owners. Compared to making transactions, Figure 2.2(b) shows users are more active in adding friends. Half of the users have at least 40 friends, and 30% of users have more than 100 friends.

Long-term vs. Short-lived Users. To examine the level of user engagement, we measure a user’s *lifetime* which is the time difference between a user’s first and last transaction. Only users with at least one transaction are considered. We find that 22.5% users used Venmo for less than a day. These are “try-and-quit” users who installed the app to make a transaction and then quickly abandoned it. In contrast, 30% of users have actively used Venmo for over a year.

To better depict the long-term and short-lived users, we calculate *active ratio*, which is the ratio of a user’s active lifetime over her longest possible lifetime (time difference between the first transaction and the last day of our data collection). Figure 2.3 shows a clear bimodal distribution where most users are distributed to the two extremes. This
indicates users would either like Venmo thus stay on the network for a long time, or quickly give it up after the initial try.

Venmo’s Growth. Finally, we examine the growth trend of Venmo. In Figure 2.4, we can observe a *super linear* growth for both Venmo user population and the transaction count. The total number of registered users over time follows a power series model \(P(x) \propto ax^b \) with \(b=3.05 \) \((R^2 = 0.9999)\). The total number of transactions follows a power series model with steeper increase, \(b=4.30 \) \((R^2 = 0.9999)\). The growth of transaction count is highly consistent \((R^2 = 0.997)\) with the reported growth in transaction volume (2013–2016) [39], showing that our dataset is a faithful reflection of Venmo activities.

When measuring per user activity, we find users’ average transaction frequency almost tripled in the four years since Venmo came exited beta in April 2012. Venmo is showing healthy growth in both overall scale and user engagement.

2.1.4 Transaction & Social Graphs

We now analyze our data to study the interplay between social relationships and financial transactions on Venmo. We seek to understand the role of social relationships in the adoption and usage of Venmo. In the rest of the section, we focus on three sets of related questions. First, how much has Venmo’s social component affected its functionality and design? What are the key differences between Venmo and other online social networks? How do social relationships shape the way users make financial transactions? We address these questions in this sub-section. Second, how much do users’ social friends and transaction patterns reveal about their identity as vendors or normal users? What drive users to form distinct social and financial communities? We answer these questions in the next sub-section, Users & Communities. Third, what do users use Venmo to pay
for? How does such spending pattern change over time? These questions are discussed in the sub-section after, Payment Types & Dynamics.

In this sub-section, we focus on the first set of questions, to examine whether and how Venmo differs from traditional online social networks. We build both a social graph and a financial transaction graph from Venmo, and compare the graph properties with those of existing online social networks. To further explore how social relationships impact financial transactions, we use social connections to divide Venmo’s transaction graph into a friend-only transaction graph, and a stranger-based transaction graph. We examine the key differences between the two and their implications.

Transaction Graph

We start by constructing a financial transaction graph for Venmo, where each node is a user and each edge (directed) represents a payment relationship between two users. The weight of the edge represents the total number of (directed) financial transactions between the two users. While building the graph, we find 0.35% of the transactions reported their target as “a phone number” or “an email address,” thus cannot be directed to any single entity. We omit these transactions from the graph.

We compare key graph properties of the Venmo transaction graph with interaction graphs of Facebook wall-posts [1] and Twitter retweets [2] in the top half of Table 2.1. We find that Venmo’s transaction graph shows strong “small-world” properties [40] with high degree and clustering coefficient, small average path length and densely connected core user groups. These properties are commonly observed in social networks where a group of friends closely interact with each other. More importantly, compared to pure social interactions, Venmo displays a much higher local clustering, reflecting the structure of stronger friendships often required by financial relationships. Next, we briefly explain and compare key graph properties.
Clustering Coefficient. Clustering coefficient is the number of edges between a user’s immediate neighbors divided by all possible connections that could exist among them. It measures the level of local connectivity between users. Venmo’s clustering coefficient (0.147) is much higher than Facebook (0.059) and Twitter (0.048) (Figure 2.5).

However, even in Venmo, a significant number of users have clustering coefficients of 0. One major reason is that transactions in Venmo follow a long-tail distribution, with many Venmo users (29.34%) partaking in only one transaction, resulting in a clustering coefficient of 0. Despite that, we find 39.09% of Venmo users have clustering coefficients more than 0.1, whereas the numbers are only 12.84% and 9.42% for Facebook and Twitter, indicating that Venmo users are more likely to make financial transactions within tightly connected groups or communities.

K-core Decomposition. K-core decomposition examines network connectivity by recursively stripping off peripheral nodes from the network. K-cores exist when users at level k have made transactions with at least k peers who are also at level k. Figure 2.6 compares K-core connectivity of Venmo, Twitter retweets and Facebook wall posts. Venmo and Twitter both show very dense local interaction groups of highly active users, while the local clusters for Facebook are much weaker. Prior analysis has shown that Twitter retweets form densely connected groups that capture real-world social relationships [41]. The similarly dense local clusters in Venmo’s transaction graph suggest a strong correlation between real offline friendships and transactions.

Average Path Length. Average path length is the average shortest path length between all node pairs in the largest connected component. To estimate average path length, we randomly sample 1000 nodes and compute their shortest path to all the nodes in the graph. Venmo’s average path length (6.98) is higher than Twitter’s 5.52, indicating more focus on local connectivity; yet it is lower than Facebook’s 10.13, possibly a result.
of Facebook’s lower average degree.

Average Reciprocity. Reciprocity measures how likely interactions occur on both directions for a user pair. Venmo’s reciprocity (0.147) is similar to Facebook (0.126) and higher than Twitter (0.025). This shows Venmo users are more likely to engage in bidirectional interactions — both sending (and receiving) money to (from) the other user, suggesting that person-to-person transactions are more prevalent than customer-vendor payments.

Assortativity. Assortativity measures the probability for nodes to connect to other nodes of similar degrees. A more positive assortativity indicates users tend to interact with other users of similar degrees. Venmo’s assortativity is nearly zero (-0.0022) and lower than friend-only graphs like Facebook (0.116). This because interactions exist between both similar-degree nodes (e.g., friends) and dissimilar-degree nodes (e.g., Vendors).

Additional Validation. Since the above analysis uses the interaction graphs from Facebook and Twitter covering only a three-month period, we further validate the conclusions by constructing a smaller Venmo graph using Venmo transactions in the most recent three months of our dataset. Both average degree and tie strength for Venmo show a notable dip (due to the reduced data volume); for all other features, we obtain the same conclusions as above.

Social Graph

Next, we compare Venmo’s social graph with those datasets of existing online social networks, Facebook and Renren (Chinese Facebook), provided by [1,32]. We also compare it to a more recent and complete Facebook social graph [42], leading to similar results (omitted for brevity). We did not include Twitter since its asymmetric follow re-
relationships do not reflect offline friendships. Table 2.2 lists the key graph properties. We see that Venmo’s social graph is very similar to traditional online social networks in clustering coefficient and average path lengths, with a slightly higher average degree. This can be partially attributed to the fact that Venmo allows users to import their Facebook friends to bootstrap their social network.

Notably, Venmo’s social graph has an extremely high assortativity (0.38) compared to Facebook (0.17) and Renren (0.0045). This indicates that Venmo users have a strong inclination to befriend users of similar degree. This high level of local homophily is also a key property of offline social relationships [43]. In addition, its assortativity is much higher than that of the financial transaction graph (-0.0022). This is likely because users might have transactions with high-degree nodes like merchants and vendors, but typically do not add them as friends.

Transactions Between Friends

Venmo’s social and transaction graphs resemble existing online social networks in some metrics, but differ in other key metrics. Next, we seek to better understand such differences by further exploring the impact of social relationships on financial transactions, examining key differences in transactions made between friends and strangers.

We first compare and contrast social and transaction graphs to see what portion of transactions take place between friends. Among all edges in the social graph, only 3.55% overlap with the transaction graph. Even accounting for the possible private transactions, this still indicates users only make transactions with a small portion of their friends. In fact, most users (70%) only transfer money to or from less than 10% of their friends. On the other hand, among all edges in the transaction graph, 80% of them overlap with the social graph. This indicates transactions among friends are more common than those among strangers. This also explains why Venmo transactions exhibit similar properties.
To understand the different transaction patterns among friends and strangers, we divide the transaction graph into two subgraphs: a friend transaction graph that captures transactions between social friends, and a stranger transaction graph that captures transactions between non-friends (strangers). Key graph properties are shown at bottom of Table 2.1. The friend transaction graph shows clear person-to-person transaction patterns with strong network effects, while the stranger graph captures a customer-vendor model.

Degree and Tie Strength. Tie strength measures the average number of transactions for all edges. The friend transaction graph has a much higher degree (7.83) and tie strength (3.82) than the stranger graph (4.75 and 1.92). This indicates sustainable financial relationships among friends. In contrast, transactions between strangers are more likely one-time payments between customers and vendors.

Assortativity. The friend transaction graph has an extremely high assortativity (0.389). This suggests a network effect on Venmo where users’ financial transactions are heavily influenced by their friends, leading to strong local homophily. And the stranger graph’s assortativity is close to zero (−0.00552), indicating no significant influence from strangers. It is worth noting that, while most Venmo transactions take place between friends, the high assortativity of friend transaction is hidden when inspecting the overall transaction graph (−0.0022). This demonstrates the benefit of integrating social information into transaction analysis.

Clustering Coefficient. The clustering coefficient of the stranger graph (0.036) is much lower than that of the friend graph (0.140). This is likely the result of customer-vendor relationships in the stranger graph. Intuitively, a vendor’s customer is unlikely to have financial transactions with other customers. Similarly, different vendors of the
same customer are unlikely to transact with each other.

Average Reciprocity. The low reciprocity of the stranger graph (0.087) is only half of the friend graph (0.164), indicating a vendor-customer relationship: financial transactions between a customer and a vendor are highly directional. This also suggests the possibility of identifying distinct roles (*e.g.*, users vs. vendors) in the Venmo network.

Dynamics. Venmo also shows an increasing trend in stranger transactions, growing from 5.5% from the start of 2014 to 24.4% by May 2016, highlighting the importance of studying the different natures of interaction.

2.1.5 Users & Communities

Our graph analysis showed distinctive patterns in how social relationships affected user behavior. In this section, we explore whether and how much users’ social relationships and transaction patterns *reveal who they are*.

In the following, we use various techniques to profile (or classify) users into semantically meaningful user groups. By analyzing these groups, we seek to understand different user types and communities on Venmo. More specifically, we experiment with three different ways to group users. First, we group users based on their behavioral features. By clustering users with similar behavioral patterns, we identify distinct user types in Venmo. Second, we search for communities in the financial transaction graph that capture frequent transactions within a group. We explore key factors that drive users to form such communities. Third, we use similar methods to identify communities in the social graph, and examine differences between social and financial communities.
Clustering Users based on Behavior

To identify prevalent user types in Venmo, we cluster users based on their behavior. Then we analyze identified clusters to infer and understand different user types.

Behavior Clustering via Similarity Graph. We cluster distinct user behaviors by constructing and partitioning a behavioral similarity graph \[44\]. Each node is a Venmo user and each edge captures the similarity in behavioral traces of its two endpoints. We can identify groups of users with similar behavior by partitioning this similarity graph, with no need of pre-defined labels.

To build the similarity graph, we need to measure the behavioral similarity between any two users, capturing key aspects of user behavior. Based on results in the previous section, we select three key features:

- **Activity Level**: The number of transactions the user had.
- **Local Connectivity**: Clustering coefficient of the user in the transaction graph.
- **Transactions w/ friends**: Portion of the user’s transactions that involved friends.

We compute a feature vector for each user (min-max normalized) and measure the similarity between any two users based on the Euclidean distance of their feature vectors and construct the similarity graph.

We detect clusters in the similarity graph by partitioning it using the Divisive Hierarchical Clustering algorithm \[45\]. This algorithm divides the similarity graph into small subgraphs by minimizing edge weight cut. We stop the graph partitioning process when the overall clustering quality, measured by modularity, plateaus.

We apply this clustering methodology to all Venmo users except those “try-and-quit” users (active ratio <0.23 in Figure 2.3), leaving 5,046,348 users. Directly clustering all
5 million users is computationally challenging. Instead, we apply incremental clustering. We first randomly sample 100K users, and perform clustering to generate the initial clusters. Then we incrementally assign the remaining users to existing clusters based on their nearest neighbors in the sampled set. To validate our results, we calculate probability distributions of all features before and after incremental clustering. Results from the Kolmogorov-Smirnov test \cite{10} show that the difference of distributions is insignificant (p > 0.18 for all features).

Understanding Behavior Clusters. Our clustering algorithm produces five clusters. We manually label each cluster leveraging two information sources: 1) feature distribution of each cluster and 2) keyword analysis for messages in users’ transaction records. The distribution of the three features for each cluster is shown in Figure \ref{fig:cluster_features}.

For keyword analysis, we rank keywords for each cluster based on Chi-square statistics \cite{11}, after stemming \cite{12} and stop words filtering\footnote{\url{http://www.textfixer.com/resources/common-english-words.txt}}. Chi-square statistics measures how strongly (or exclusively) a keyword is associated to a particular cluster. Table \ref{tab:top_keywords} shows the top 15 keywords for each cluster. Combining Figure \ref{fig:cluster_features} and Table \ref{tab:top_keywords}, we label the five major user types as:

- **Regular Users** (35.64%). Common user type on Venmo, with a large number of transactions, mostly with their friends. Keywords show they use Venmo to pay for utility, drink, transportation and other daily expenses.

- **Occasional Users** (35.66%). They use Venmo infrequently, but almost always transact with friends. Payments are often limited to occasional events like birthdays, tickets or sports betting (e.g., fantasy football).

- **Niche Users** (7.97%). These users almost exclusively make transactions with their
friends in tight-knit communities. Payments focus on utility bills and groceries, indicating they are groups of close friends or even roommates.

- **Business Owners** (1.78%). These users are likely to transact with strangers. However, people they interact with are also making transactions with each other (high clustering coefficients). We suspect these are “small business owners” dealing within a group of customers.

- **Diverse Users** (18.95%). These users mostly make transactions with strangers, and the people they interact with don’t interact with each other (low clustering coefficient). We suspect they are mostly vendors.

Case Studies. Although Venmo is designed for person-to-person payments between friends, we find distinct clusters that may represent vendors and business owners. For more insights on these users, we take a closer look at related behavior clusters (Business Owners and Diverse Users).

The *Business Owners* cluster contains small business owners. For example, one user we examined had 88 transactions, a clustering coefficient of 0.81 and 51% transactions conducted with friends. Since September 2015, this user started to charge fees from 7 other users (possible tenants) on a monthly basis. Many transactions are related to
utility bills: 16 for the Internet, 21 for electricity, 10 for water, and 15 for TV services. The rest are related to personal expenses. We notice that a small number of non-business owners are grouped into this cluster because they did not bother to add social friends on Venmo.

Second, the *Diverse Users* cluster contains a mixture of large business owners, vendors and normal users who use Venmo for diverse purposes. For example, one user has 65 transactions, a clustering coefficient of 0.08, and 55% transaction with friends. She not only splits fees with her friends on food and groceries, but also use Venmo to make business payments, e.g. Airbnb.

There are also large vendors in *Diverse Users*. For example, Ibotta[^1] is a business that uses Venmo to send cash rebates to customers. It has 119,123 transactions, with a clustering coefficient of 3×10^{-5}, and 0.85% of its transactions are with friends. All transactions have the same message (“Cashed out from Ibotta.”). Possibly because these large vendors are relatively rare, the clustering algorithm did not make them a separated cluster.

[^1]: https://ibotta.com/
Community on Transaction Graph

During behavior clustering, we are able to identify distinct groups of users, separating merchants and customers, according to their behavior. We next analyze user groups (communities) based on their interconnectivity in the transaction graph, leveraging community detection algorithms. Our goal is to identify distinct types of financial communities and understand the roles they play in Venmo’s ecosystem.

Identifying Communities. A community on the transaction graph represents a group of people who constantly make financial transactions among each other but barely interact with the rest of the world. We apply Louvain [49], a popular modularity-based community detection algorithm, on the transaction graph. We tested alternative algorithms such as Infomap [50], and the overall results are consistent, thus omitted for brevity.

Our community detection produces 815 communities with modularity 0.836. In practice, modularity > 0.3 already indicates meaningful community structures [51]. Venmo’s transaction graph has an extremely high modularity, with 85.7% of the transactions taking place within communities. The sizes of communities are skewed, shown as the dotted...
red line in Figure 2.8.

Categorizing Communities. We characterize different communities based on various graph metrics in Table 2.1 and find there are two major community types (business-driven and friend-driven), most effectively identified using clustering coefficients. As shown in Figure 2.9, these two types are located near clustering coefficients of 0 (business) and 0.2 (friend). Simple parameter testing shows a threshold of 0.11 can identify the type of community with 90% accuracy on manually labeled sample set of 100 communities.

We apply this threshold to all the communities and identify 592 friend-driven communities and 223 business-driven communities. We observe that most business-driven communities have a “star” structure with the business owner in the center. This is reflected in business-driven communities’ assortativity ($-0.52, \text{SD}=0.24$) being much lower compared to that of friend-driven communities ($-0.16, \text{SD}=0.32$). In addition, we also observe a significant difference in user active ratio, defined in the Initial Analysis section to measure how long users actively use Venmo to make payments. Business-driven communities have a much lower median user active ratio (0.43, SD=0.32) compared to friendship-driven communities (0.69, SD=0.26). This indicates friendship-driven communities have a higher level of stickiness, better able to keep users in the system, consistent with previous finding that social ties play an important role in retaining and engaging users [52]. We find most friendship-driven communities are mesh-like, built for friends to split fees on food and rent.

Case Studies. Next, we discuss examples for specific communities and examine what drives their formation. Many business-driven communities are formed because of major events. For example, one community (186 users) revolves around the “New Year Event” in Chicago and Rochester, where two sellers formed two connected star-shapes.
Measuring Online Financial Behavior Chapter 2

(low clustering coefficient 0.079). These two sellers are grouped into one community because some users purchase tickets from both. The community is ephemeral, gets active around the new year in both 2015 and 2016. Here, 104 out of 186 users only used Venmo once to buy the tickets, and almost half of all transactions take place within one-month before the new year.

We take a closer look at the ephemeral nature of communities. We locate for each community i the 30-day period that has the maximum transaction count T_i, and study two metrics: the ratio of T_i and all the transactions of the community, and the ratio of 30 days and the lifespan of the community. Figure 2.10 plots these two metrics across all the communities. Here a community with a constant rate of transactions will produce a point on the diagonal line. The further away a community is from the diagonal line, the more bursty the community is. When we look closer, these outlier communities are generally formed because of specific events, e.g. graduation, sports betting, group trips.

Communities on Social Graph

Applying Louvain on the social graph produces 925 communities, with a modularity of 0.56. The sizes of communities exhibit a highly-skewed distribution, as shown in Figure 2.8. To further understand the nature of these communities, we manually examine all 62 communities with more than 30 users, labeling 26 of them as business-driven and 25 as friendship-driven, while the remaining 11 are not identified due to lack of information. We discovered that these business-driven communities tend to be smaller in size, with only one business-driven community having more than a thousand users whereas only 3 friendship-driven communities fall below this size. This is likely because merchants rarely add their customers as friends. In general, business-driven communities tend to have very low assortativity (-0.727, SD=0.271), forming a star shape around businesses. Whereas friendship-driven communities display strong social influence, as indicated by
Figure 2.11: Number of words per message.

Figure 2.12: Cumulated # of messages hit by top keywords.

Figure 2.13: Recurrence period distribution among user pairs.

their high assortativity (0.265, SD=0.214).

2.1.6 Payment Types & Dynamics

In this section, we analyze the types of payments to understand what people use Venmo for. We first classify payment types based on text/emoji in each transaction message, and then examine the dynamics of these different types.

Classifying Payment Scenarios

Inferring payment types from messages is challenging due to the extremely short message length. As shown in Figure 2.11, 99% of messages have less than 10 words.
Meanwhile, emojis are very helpful for classifying transactions: 34% messages contain at least one emoji. Here, we analyze both keywords and emoji to classify payment types.

We first identify key categories of payments by manually examining top keywords and all the emojis. Six most used categories are thus identified:

- **Food & drink**: dining, groceries, liquor, etc.
- **Transportation**: gas, parking, airfare, etc.
- **Utilities**: cleaning, electricity, phone, etc.
- **Entertainment**: game, sports, movie, music, etc.
- **Life**: gifts, clothing, insurance, medical, etc.
- **Home**: electronics, furniture, rent, etc.

We use a list of keywords and emojis for each category to classify transactions. We build the keyword list by manually assigning the most frequently used 500 English words in Venmo into the above categories. For example, we have keyword “food” under **Food & Drink** category, and “uber” under **Transportation**. 165 words out of 500 were classified, and the remaining words were generic terms such as “thanks” and “great.” For emojis, we manually assign categories to 247 emojis and emoji combinations. For example, “🏠🔑” is interpreted as “rent” and thus belongs to **Home**.

Using keywords and emojis, we are able to classify 47% of all transaction messages (results in Table 2.4). Note that a single message can be classified into multiple categories, e.g. “gas + rent” belongs to both **Transportation** and **Home**. Remaining unidentified messages either have no English words/emojis or refer to inside jokes or acronyms. Even labeling a thousand more keywords still would not significantly increase classification coverage (Figure 2.12).
The most popular category is *Food & Drink*, with 19 million transactions, more than half of all identified transactions. This often corresponds to splitting bills after a group gathering or dinner out; *Transportation* is also very popular and often related to carpools or Uber rides. Least popular is *Home*, which involves infrequent payments such as rent.

Transaction Dynamics

We then study the temporal dynamics of different types of transactions. We start by studying periodic patterns of global trends, then turn our focus to the user-level to analyze the dynamics of recurring payments between users.

Global Periodic Trends. We find many types of transactions have clear periodic patterns, by looking at monthly transaction count for each category (figure omitted for space constraints). Clear annual patterns are visible for transactions under *Life*, *Entertainment* and *Food & Drink*. *Life* related payments have significant increase in the end of each year, likely matching gift exchanges for the holidays. *Entertainment* has significant increases every March and August, related to social betting on sports. To validate this, we examine the daily transactions of major sports in 2015, and find that events like “Super Bowl” and “March Madness” create huge spikes in February and March, while “Fantasy Football” is responsible for most betting activities in August. Finally, transaction numbers in *Food & Drink* are at their lowest during summers and winter breaks each year, when students are traveling or otherwise away from friends.

User-Level Transaction Dynamics. Next, we focus on the user-level, and examine how likely transactions between two users exhibit periodicity. We detect periodicity using an off-the-shelf algorithm [53] for all user pairs with at least ten transactions (1.54 million pairs in total). Among them, 48,188 (3.1%) exhibit periodicity. The recurring frequencies are shown in Figure 2.13, with the most common recurrence frequencies being weekly and
monthly. Monthly transactions are highly tied to rent (26.1%) and utility bills (20.3%). Weekly recurring transactions are more diverse, involving activities like baby-sitting, pet walking or dining out, and no single category stands out.

2.1.7 Conclusion

Our analysis on Venmo provides several interesting observations that would benefit the research community and application developers. First, Venmo’s transaction graph provides a close representation of strong real-world friendship, demonstrated by the higher clustering effect and higher reciprocity compared to interaction graphs of traditional online social networks. Venmo’s friend transaction graph can be seen as a stronger and more meaningful dataset of social relationships. Second, Venmo transactions exist between both friends and strangers. The two types of transactions exhibit drastically different graph properties that are hidden when analyzing transactions as a whole. Finally, for application developers, the ability to identify different user types provide grounds for targeted advertisement. We demonstrate that user types, e.g. businesses and niche users, can be identified using clustering and community detection.

2.2 Behaviors in Competitive Auctions

2.2.1 Introduction

Penny auctions, also known as pay-per-bid auctions, are auctions in which all participants must pay a bidding fee each time they place an incremental bid. Each auction starts with a small reserve price, and a countdown timer. Each new bid increments the current price by a small fixed amount and resets the timer. When the timer expires, the participant who placed the last bid wins the auction and purchases the item with the final
auction price. Penny auctions are often criticized for their misleading advertisement [54] where they use an auction’s final price as the cost of the auctioned item, when, in fact, the majority of the revenue comes from the prices paid for each bid.

The unique structure of penny auctions is designed to generate revenue from all users, both winners and losers. They are seen as exploiting human psychological tendencies such as risk-seeking behavior [55] and the sunk-cost fallacy [56]. However, the mechanisms used, i.e. short bid timer and small incremental bids, impose specific constraints on the auction process itself. A natural question arises, do these mechanisms encourage the formation of fundamental processes driving bidding behavior?

Our work tries to answer this initial question, by studying empirical traces of bids in auctions on DealDash, the largest and one of the oldest penny auctions online today. We record details of bids and outcomes for all DealDash auctions over a 166-day period, totaling 134,568 auctions with 174 million bids from 101,936 unique users.

Using analysis of these traces, we want to understand what, if any, common strategies exist in bidding behavior, and how such strategies fare in quantifiable terms. We want to identify the most successful strategies, as a first step towards developing adversarial bidding algorithms for penny auctions.

Our analysis and experiments produce some surprising results. First, our analysis shows that most users optimize their bids in accordance with the pay-per-bid auction structure. Nearly all bids come at the last possible second before timer expiration. Second, we use similarity analysis to cluster bidders by their bidding behavior, and identify five key categories, defined by the dominant bidding strategy most commonly observed in their bidders. Mapping these bidding behaviors to auction outcomes shows that, unsurprisingly, aggressive and persistent bidders win a disproportionately high number of auctions, and earn significant gains per auction. In contrast, low-activity bidders or those limited by budget win fewer auctions per user, and generally have trouble recouping their
losses from paying for bids, resulting in net loss.

2.2.2 Background & Related Work

DealDash. DealDash [57] is one of the largest and longest-running penny auction websites (since 2009). Its functionality is typical of other penny auctions. On DealDash, the typical bid fee is 12-15 cents, and the fixed price increment is restricted to 1 cent. The countdown clock expires in 10 seconds. DealDash supports a buy-it-now function, by which a losing bidder can purchase the item with a posted retail price and have all the previously placed bids refunded. DealDash also provides a helper function called BidBuddy, which is a script that takes a fixed amount of budget from the participant and automatically place bids whenever the countdown clock reaches 1 second and someone else holds the last bid.

Related Work. Prior work noted that penny auctions are very profitable for the sellers [55, 56]. Most studies of penny auctions aim at finding theoretical explanations of the high revenue, e.g., information asymmetry [58], risk-loving nature of bidders [55] and sunk cost fallacy [56]. Other studies have made great effort to predict the final price of an auction, either statically [59, 60] or dynamically [61, 62], using machine learning and various modeling tools.

While significant progress has been made on developing economic models on auction process and auctioneer profits, few have examined individual bidder behavior in these systems. In contrast, our work predicts whether a bid will appear and who will place the bid, which is more similar to individual behavior models for sequence synthesis done on small-scale English auctions [63, 64].

Some studies have identified different types bidding behavior in “traditional” auction settings such as English or Dutch auctions. The behaviors identified include jumping [65],...
snipping [66, 67], evaluating [68], participatory [68], strategic exiting [69] and shilling [70].

To the best of our knowledge, our work is the first to systematically identify bidding behavior used in penny auction settings.

2.2.3 Initial Analysis

We begin by describing our data collection methodology and our dataset. Then we perform preliminary analysis to understand the bidding activities on DealDash. This provides the context for in-depth studies in later sections.
Data Collection

We collect all observed auctions from DealDash over a 166-day period, from October 19th, 2017 to April 3rd, 2018. In total, we obtained complete history for 134,568 auctions. Each auction contains the name of the item, the buy-it-now price, the starting time and each bid placed during the auction. For each bid, we record the ID of the user placing this bid, and the time of the bid. We extracted 101,936 unique users from a total of 174,076,943 bids.

To verify the completeness of our dataset, we launched two sets of crawlers from two distinct sets of IP addresses. We find that 99.7% of all observed auctions are identified by both crawlers. It is thus safe to conclude that we have covered most or all of the auctions that a typical DealDash user would see.

Preliminary Analysis

For an initial understanding of the user behaviors in penny auctions, we start by answering a few basic questions.

When are bids placed? In DealDash, the countdown timer expires in 10 seconds. When looking at how long users waited before placing their bids, Figure 2.14 shows that the majority of bids (81.6%) are placed at the very last second. The reason of this is twofold. First, it is in the users’ best interest to wait until the last seconds in hope of someone else being impatient enough to do the bidding for them. Second, DealDash provides a functionality called BidBuddy which automatically place bids for the user at the last second.

How many bids do you need to win? We look at the number of bids placed by users in an auction, as well as the winning users. As shown in Figure 2.15, half of the users place more than an average of 20 bids per auction. To win an auction, more bids
need to be placed. Only 8.1% of the users can win an auction with less than 10 bids. In half of the auctions, more than 21.3% of all bids are placed by the auction winner. This shows that winning an auction is more than being at the right place at the right time. It takes repeated bids to convince the other bidders to give up. In Section 2.2.4, we delve into detail about the behavior patterns of auction winners.

How much does an auction winner gain? As discussed in Section 4.1, the actual savings from penny auction are often unclear to users. We examine how much money is “won” in each DealDash auction. When calculating the value of the item won, we estimate the retail price using the price of the same item offered on Amazon.com. Note that the price of each bid ranges from 12 to 15 cents. Here we use 12 cents as an estimation of the bid cost for each user. Using 13, 14 or 15 cents per auction produces similar results.

Figure 2.16 shows a CDF of the proportion of money paid by the winners and all participants during each auction. In the majority of the cases, even after accounting for the price of bids, the winner pays significantly less than retail for the item won. Half of the winners win the item after spending 12.3% of the retail price. Even accounting for bids placed by the losing bidders, DealDash is only able to generate profit out of 32.5% of the auctions. One thing to note is that certain bidders will pay more than the retail price to win auctions. For example, a user called “leilani2” placed 169,223 bids on a Lawn Mower with retail price of $3,099. The bids would cost approximately $20,307. This behavior is commonly associated with power bidders [71]. Power bidders establish a reputation by not giving up an auction even when the price goes unreasonably high. They hope that experienced users will learn to avoid the power bidders, and they can then win auctions at a very low price. We show in Section 2.2.4 that in the case of DealDash, most power bidders still need to put in a large number of bids to win auctions.
Figure 2.18: Distribution of feature value for each cluster and for short-term bidders. We depict each distribution with box plot quantiles (5%, 25%, 50%, 75%, 95%).

Figure 2.19: Distribution of earnings per auction for different types of bidders.

2.2.4 Profiling User Bidding Behavior

To identify behavior patterns underlying how users bid, we cluster users based on similarity in statistical features of their bidding history, and then analyze the bidding performance of each cluster.

Clustering Methodology

Users’ bidding patterns manifest only when there is sufficient bidding history. With 19.3% of users joining only one auction, user activity is highly skewed. As shown in Figure 2.17, users fall into two distinct types. The ones who played for a short period
and quit, and those who are active for most of the crawling period. This high user churn is common in penny auction sites [72]. Using Figure 2.17, we thus filter out users who are active for less than 128 days, which we call short-term bidders. This leaves us with 9,105 users.

We quantify user behavior using the following features with the aim of capturing behaviors relevant to bidding performance while removing correlation between features.

- **Number of auctions.** Activity level of a user defined by number of auctions user has participated in.
- **Bids per auction.** Average number of bids placed by the user in each auction.
- **Bid response time.** Average time gap between a user’s bid and the prior bid.
- **Max bid ratio.** Maximum ratio of value of bids placed against the value of the product, across all auctions participated in by the user. A value above 1 means the bidder paid more in bids than the value of the product in at least one auction.
- **Bid-back rate.** Bid-back is when a user is out-bid and she places the immediate next bid. This measures the user’s aggressiveness in auctions.

We compute the feature vector for each user (z-score normalized), and measure the Euclidean distance between user pairs. We then applied Divisive Hierarchical Clustering [45] to cluster the 9,105 active users. When breaking the users into five clusters, we achieves the best clustering quality as indicated by modularity [73].

Cluster Analysis

We manually label each cluster based on the feature values they exhibit, as shown in Figure 2.18. To measure performance, we show, in Figure 2.19, on average how much
each user is winning from each auction. Each user’s net return is calculated as the total worth of items won in auctions minus the final auction price and minus the cost of bids.

- Impulse Bidders (9.79% of users). Contrary to common practice, these users do not wait until the last second to place their bids. Instead, their bids are placed at random points during the countdown, with a median wait time of 4.4 seconds. Most in this group failed to make money from auctions, losing a median of $0.20 per auction.

- Budget Bidders (55.8%). They only place a few bids in each auction, and rarely bid back when outbid. These users are not aggressive enough, and most win less than 1% of the auctions they join. This is the user cluster with the largest median net loss, losing more than $0.47 per auction.

- Bursty Bidders (19.6%). These users avoid spending too many bids in any auction, but are still able to maintain a high bid-back rate. They tend to concentrate their bids to a short period, either ending in winning the auction or running out of bids. Most users in this group produce net gains, with a median return of $0.48 per auction.

- Heavy Bidders (12.5%). These users join a lot of auctions and are willing to place substantial number of bids to win the auction. Median return per auction is $0.63.

- Power Bidders (2.22%). They are similar to heavy bidders, but place an order of magnitude more bids, characterized by a high max bid ratio. Given more bids placed per auction, it is unsurprising that they are much more likely to win their auctions, with a median of 14.8% chance of winning. Median return per auction for these users is $9.38.
By observing the clusters, we find that most DealDash bidders are actually losing money, while a small number of winners earn significant profit. The most successful users (power bidders and heavy bidders) win 13.08% and 27.00% of all auctions, despite making up less than 15% of the long-term user population. While other groups win their share of auctions, they lose far more auctions, and are generally unable to recoup their losses from the cost of bids.

2.2.5 Discussion and Conclusions

Our analysis of penny auctions and their users focused identifying common bidding behaviors in penny auctions and the results of these behaviors.

We find that most bidders tend to fall into one of a handful of clear behavioral categories, based on how patient they are, how aggressive they are, and how much money they have and are willing to use to win. We show that the large majority of users lose money, and the winnings go disproportionately to a small portion of the users (mostly power bidders willing and able to use large bid volumes to win auctions).

Finally, our results suggest that penny auctions themselves could possibly be gamed adversarially. It seems intuitive that drawing from our results, a reasonably complex model could emulate power bidder behavior while avoiding unnecessary bids. In Chapter 4, we achieve exactly that by modeling the bidder behavior using a modified LSTM model and identified winning strategies that bear striking resemblance to the power bidder model.
Table 2.1: Comparison between Venmo transaction graph and the interaction graphs in Facebook [1] and Twitter [2]. Venmo transaction graph is further divided into friend- and stranger-transaction graphs based on whether a transaction is made between friends.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Venmo Transactions</th>
<th>Facebook Wall Post</th>
<th>Twitter Retweet</th>
<th>Venmo Friends Transactions</th>
<th>Venmo Strangers Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>7.08M</td>
<td>707K</td>
<td>4.32M</td>
<td>6.36M</td>
<td>4.26M</td>
</tr>
<tr>
<td>Number of Edges</td>
<td>35.0M</td>
<td>1.26M</td>
<td>17.0M</td>
<td>24.9M</td>
<td>10.1M</td>
</tr>
<tr>
<td>Average Degree</td>
<td>9.89</td>
<td>3.57</td>
<td>7.86</td>
<td>7.83</td>
<td>4.75</td>
</tr>
<tr>
<td>Tie Strength</td>
<td>3.22</td>
<td>1.77</td>
<td>2.07</td>
<td>3.82</td>
<td>1.92</td>
</tr>
<tr>
<td>Clustering Coefficient</td>
<td>0.147</td>
<td>0.059</td>
<td>0.048</td>
<td>0.14</td>
<td>0.036</td>
</tr>
<tr>
<td>Average Path Length</td>
<td>6.98</td>
<td>10.13</td>
<td>5.52</td>
<td>8.64</td>
<td>7.84</td>
</tr>
<tr>
<td>Assortativity Coefficient</td>
<td>-0.0022</td>
<td>0.116</td>
<td>-0.025</td>
<td>0.389</td>
<td>-0.00552</td>
</tr>
<tr>
<td>Average Reciprocity</td>
<td>0.147</td>
<td>0.126</td>
<td>0.025</td>
<td>0.174</td>
<td>0.087</td>
</tr>
<tr>
<td>Largest Strongly Connected Component</td>
<td>56.10%</td>
<td>21.20%</td>
<td>14.20%</td>
<td>54.49%</td>
<td>34.43%</td>
</tr>
<tr>
<td>Largest Weakly Connected Component</td>
<td>95.50%</td>
<td>84.80%</td>
<td>97.20%</td>
<td>93.69%</td>
<td>87.27%</td>
</tr>
</tbody>
</table>

Table 2.2: Comparing Venmo, Facebook [1], Renren [3] social graphs.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Venmo</th>
<th>Facebook</th>
<th>Renren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Nodes</td>
<td>9.8M</td>
<td>10.7M</td>
<td>10.6M</td>
</tr>
<tr>
<td>Number of Edges</td>
<td>544M</td>
<td>408M</td>
<td>200M</td>
</tr>
<tr>
<td>Average Degree</td>
<td>111</td>
<td>76.3</td>
<td>37.8</td>
</tr>
<tr>
<td>Clustering Coefficient</td>
<td>0.13</td>
<td>0.164</td>
<td>0.142</td>
</tr>
<tr>
<td>Average Path Length</td>
<td>4.3</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Assortativity Coefficient</td>
<td>0.38</td>
<td>0.17</td>
<td>0.0045</td>
</tr>
</tbody>
</table>
Table 2.3: Top keywords (after stemming) for user clusters.

<table>
<thead>
<tr>
<th>Category</th>
<th>Word (68,292K)</th>
<th>Emoji (31,475K)</th>
<th>Word+Emoji (81,278K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-identified (%)</td>
<td>47,592K (69.69%)</td>
<td>13,233K (42.04%)</td>
<td>433,64K (53.35%)</td>
</tr>
<tr>
<td>Food & Drink (%)</td>
<td>9,552K (13.99%)</td>
<td>10,291K (32.70%)</td>
<td>19,358K (23.82%)</td>
</tr>
<tr>
<td>Transport (%)</td>
<td>3,745K (5.48%)</td>
<td>2,716K (8.63%)</td>
<td>6,325K (7.78%)</td>
</tr>
<tr>
<td>Utilities (%)</td>
<td>3,187K (4.67%)</td>
<td>1,910K (6.07%)</td>
<td>4,974K (6.12%)</td>
</tr>
<tr>
<td>Entertainment (%)</td>
<td>2,009K (2.94%)</td>
<td>2,674K (8.50%)</td>
<td>4,755K (5.85%)</td>
</tr>
<tr>
<td>Life (%)</td>
<td>1,707K (2.50%)</td>
<td>1,269K (4.03%)</td>
<td>2,928K (3.60%)</td>
</tr>
<tr>
<td>Home (%)</td>
<td>1,386K (2.03%)</td>
<td>441K (1.40%)</td>
<td>1,807K (2.22%)</td>
</tr>
</tbody>
</table>

Table 2.4: Transaction categorization using keywords and emoji. Messages without any word or emoji are not included. If a transaction belongs to multiple categories, we count it multiple times. Thus the sum of each row may be greater than 100%.
Chapter 3

Understanding Online Financial Behavior

In the previous chapter, we have discussed how empirical measurements can be used to create a clear picture of online financial behaviors. In this chapter, we discuss how we to incorporate methods commonly used in social science to go one step further, and examine the underlying motivations behind financial behaviors.

In the following, we present two case studies employing two different approaches to further our understanding. First, we use a survey-and-interview-driven discovery to identify hidden motivations and rationalities behind the adoption and usage of social wallets. Second, we seek to examine existing theories in behavioral science, using empirical data to either verify or reject hypothesis about the psychology behind behaviors in auctions.
3.1 Understanding the Adoption and Experience of Digital Wallets

3.1.1 Introduction

Today’s Internet has dramatically reshaped the way in which people make payments and transfer money. The biggest paradigm shift is the emergence of online and mobile payment services, which have started to replace cash and/or credit cards around the globe. For example, PayPal, which began as an offshoot of eBay in 1998, has built up a 210 million user base by 2017. Alipay, PayPal’s counterpart in China reached 450 million users in 2017.

More recently, Venmo (USA) and WeChat Pay (China) entered the market as digital wallet services that target peer-to-peer (P2P) payments, where users send and receive money from each other digitally. These new services quickly gained significant market shares, surprising many in the finance industry with their rapid growth. WeChat Pay has reached 200 million users in only three years, and Venmo (acquired by PayPal in 2013) has attracted 10 million active users within the same time span. Compared to conventional online payment systems, the most distinctive feature that distinguishes P2P digital wallets is the integration of established social networks to facilitate payments between friends.

There have been many attempts to connect social features with financial transactions, by leveraging the potential power of social networks in attracting and retaining users. The results have been mixed at best. For example, Facebook has integrated P2P payments into Facebook Messenger [5]; Snapchat also offers a money transfer feature in their messaging app [6]; and Alipay is experimenting with a new social network service over its already successful e-commerce system [7].
Other than Venmo and WeChat Pay, most attempts to integrate social links into financial payments have met limited success. Questions then arise: what are the universal and culture-specific factors that contribute to the rapid adoption of Venmo and WeChat Pay? What roles do the social network and financial interactions play in this process? Many prior works focus on transactions between strangers \[19, 74\]. Nevertheless, transactions via peer-to-peer digital wallets often involve parties that already know each other, i.e., friends, which leads to different behaviors. For example, Venmo users tend to create unambiguous messages when sending money to strangers but would write funny and clever transaction descriptions to friends \[75\]. In this section, we aim to discover answers to the above questions by taking social factors into consideration. To be more specific, we seek to understand how social factors, such as social ties and interactions, affect the adoption of digital wallet systems as well as the users’ experience on those platforms, and meanwhile, how transaction activities would affect social relationships in turn.

We conduct a mixed-method study that consists of an online survey (380 Venmo users in the US and 499 WeChat Pay users in China), and an in-depth interview (21 US Venmo users and 20 Chinese WeChat Pay users). From the survey and interview results, we obtain key insights into why and how users adopt a P2P digital wallet, users’ perceptions, behaviors, and experiences when using the services, and their projection of the future directions moving forward. We find that the integrated social features drive the adoption of digital wallets and affect users experiences of making peer-to-peer payments. In the meantime, online transaction activities may benefit friendship of existing ties, although it can hardly help foster new social connections. We further report the concerns about social disclosure and privacy of interviewees from different cultural backgrounds. The derived implications can shed light on mobile software adaption for the research community and industrial practitioners.
3.1.2 Background

In recent years, digital wallet systems such as Venmo (US) and WeChat Pay (China) are undertaking tremendous growth [76, 77]. The most significant difference between Venmo / WeChat Pay and traditional digital wallets is their emphasis on social aspects (Figure 3.1). The increasing market share of Venmo and WeChat Pay indicates a new trend that online social network is infiltrating into mobile payment services. Known for their user-to-user payments and social components, Venmo and WeChat Pay have taken significant market shares from traditional online payment systems (e.g., PayPal and Alipay), forcing them to make changes.

Venmo. Venmo is a digital wallet app with 27 million users as of November 2018 [78]. First launched in 2009, Venmo has been growing tremendously. In a single year of
2015, Venmo increased its transaction volume by 200%, and reached 19 billion dollars in quarterly transaction volume in 2018 [76]. On Venmo, users can transfer money to each other and build social links. Users can either pay or charge another user for some given amount, and attach a short message (e.g., “my rent”). A unique feature of Venmo is social sharing. For each transaction, users can choose to share the transaction record to the “public” (default) or with “friends.” The transaction information, excluding the actual amount, will be visible in the public stream or their friends’ news feed. Other users can like or comment on shared transactions. Finally, users can use the app to pay for online/offline services (e.g., restaurants) that have registered Venmo accounts.

WeChat Pay. WeChat Pay is another fast-growing social digital wallet. It has gained 900 million users in only five years since its launch in 2013 [79]. WeChat Pay is built into WeChat, the largest social messaging network in China, which has more than one billion monthly active users [80]. Similar to Venmo, WeChat Pay allows users to transfer money with friends and pay for various online or offline services from e-commerce sites to hospitals and taxis. Usually, a user starts a transaction by posting a message in another user’s chatbox or scan the user’s payment QR code. Unlike Venmo, WeChat Pay does not support social sharing of transaction records. Instead, WeChat Pay has a unique feature called “Moment” that supports sharing feature within a limited social scope. Besides, it develops a feature called “Red Packet” which mimics the Chinese tradition that people give red envelopes (with cash in it) to friends and family members for best wishes. This WeChat Pay feature allows users to send digital red envelopes to friends or use the money to start a lottery draw among a group of friends (each gets a random amount). During the Chinese New Year of 2018, 688 million users sent and/or received red envelopes through WeChat Pay [81].

Impact on Traditional Online Payment Systems. Traditional payment systems
like PayPal (US) and Alipay (China) are taking actions in response to Venmo and WeChat Pay’s launch. PayPal acquired Venmo (in 2013), and launched another user-to-user payment service called *PayPal.Me* targeting global users. In China, Alipay’s market share dropped from 82% to 68% during 2014 to 2015 when the 1-year old WeChat Pay doubled its own market share [77]. As a response, Alipay also launches its own social network function, which is very similar to that in WeChat [82]. However, the reason behind the popularity of Venmo and WeChat Pay is still overlooked, especially when they are also serving as social platforms. In this section, we thereby would like to study the adoption of those payment systems and their symbiosis relationship to the underlying social network.

3.1.3 Theoretical Background and Related Work

Social Factors Drive Technology Adoption

One of our key goals is to understand how P2P digital wallets become so widely-adopted in a short period of time, especially how social aspects contribute to the adoption process. Theories in diffusion and adoption of technology may provide possible insights into this question.

Diffusion of Innovation (DOI) theory [83] postulates the detailed mechanisms of how a newly innovated technology spreads across populations. It identifies four elements of diffusion: (1) the innovation itself, (2) channels through which it is communicated, (3) over time, and (4) among members of a social system. Designs related to each of these elements may speed up or slow down the diffusion process. In this section, we are particularly interested in the role that the integration of social functions into digital wallets may play in this process.

Literatures on social science and marketing have shown that an online social net-
work (element 2 in DOI) can impact users’ decision-making process, as exemplified by the word-of-mouth [84] and herding phenomena [85]. Zsolt et al. further suggested that social network can exert two key effects on people’s decisions to take up a technology: degree effect and cluster effect [86]. The former indicates that individuals are inclined to follow the decisions of their connected friends, while the latter suggests that people are influenced by the majority decision of others around them. Especially when encountering uncertainty of new technologies, users would always take their social network as informative and trustworthy referents [87].

The involvement of members of an established social system (element 4 in DOI) may have additional benefits for the spread of P2P digital wallets. For one thing, public sharing in the social system can serve as a mass media for information and opinion dissemination [83]. For another, interpersonal messaging in the social system is an effective means of persuasion [83, 88]. Both communication channels have the potential to increase user acceptance of P2P digital wallets.

In this section, we are interested in verifying whether the role of social systems played in the spread of Venmo and WeChat Pay services is consistent with the DOI theory. Previously, Wang et al. found that perceived social influence and networking ability of WeChat Pay contribute to its adoption [89]. Zhang et al. quantitatively showed that Venmo’s social network structure is denser than traditional social networks [12]. Compared to prior works, this thesis aims to use the Diffusion of Innovation (DOI) theory as a lens to gain a deep understanding of (1) how social features in a digital wallet affect adoption of digital wallets, and (2) how the perceptions and mechanisms vary in different cultural contexts. We hypothesize that the adoption of Venmo and WeChat Pay propagates through their internal social network by a mixed effect of degree effect and clustering effect (H1).
Social Relationships Impact Transaction Experience

According to a generic model of trust in e-commerce settings [90], for a user to join a transaction, their level of trust needs to exceed perceived risk. In the face of high levels of uncertainty and opportunism, people tend to conduct financial activities (e.g., mobile banking [91]) with social ties of greater trust and confidence in seek of some security, as explained in the Social Exchange Theory (SET) [92]. In this section, other than studying how relationship affects transactional behaviors, we are interested in examining if social relationships have an effect on user retention using Social Exchange Theory, especially from the perspective of trust building. We hypothesize that social relationships between users help build trust and increase user retention of Venmo and WeChat Pay (H2).

On top of existing social relationships, P2P digital wallets also facilitate social interactions through built-in social network functions. It is suggested that interpersonal interactions during a transaction help users build and fortify bonds with their trading partners [19], which ultimately strengthen the trust relationships [93, 94]. To service providers’ interest, customers’ social activities also affect their retention behavior [95]. It has been suggested that lightweight socialization and successful early social experience [96, 97] may prevent members from leaving an (online) community. In a recent qualitative study, Gui et al. showed that interactions over pre-existing social network boost the retention rate of fitness-tracking applications [98].

However, given the sensitive nature of financial system, social activities, especially social sharing, within the system can be boosting user engagement at the cost of users’ long-term interests. Recently, Caraway et al. showed that social awareness stream in Venmo provides users with the opportunities for familiarizing with the app and keeping up with friends, sometimes at the cost of privacy and comfort [75]. In this section, we explore from the perspective of both Venmo and WeChat Pay users, to see how they weigh
the costs and benefits of engaging in social activities in digital wallets. We hypothesize that users enjoy participating in social activities on digital wallets, but only when their privacy is not at risk (H3).

Social Function of Currency

Aside from being a depersonalized and asocial means of exchange [99, 19], money can serve as a medium that bears social and cultural meanings [100]. In other words, money can shape how people behave in social settings, and its usage can be affected by social relationships. Such effect varies under different culture contexts.

In recent years, the emergence of electronic payment/exchange services in different forms has provoked discussions about the socio-cultural role of money and other alternative and complementary currencies in new contexts. There have been competing views on how electronic payment systems can affect social relationships. On the one hand, prior research suggested that cashless exchange processes may undermine social sensitivity and increase social isolation [101, 93, 102]. For example, Pritchard et al. showed that cashless practice of London buses reduced the potential interaction between drivers and passengers compared to cash payment [103]. On the other hand, alternative payment systems can benefit social relationships in various ways. Ferreira et al. examined how the slow and cumbersome procedure of cashless payment system stimulates interpersonal connections [19]. Mainwaring et al. showed how the design of e-cash in Japan ties to Japanese moral virtue of smooth flow and avoidance of commotion [104]. In some cases, electronic payments are used as means to show care for friends and families at a distance [105].

Venmo and WeChat Pay, representatives of emerging digital wallet services, intend to expedite peer-to-peer money-based payment while promoting social interactions among users, which seem to be two conflicting goals according to the aforementioned findings. In this section, we aim at studying whether (and how) the new paradigm of p2p digi-
tal wallets succeeds in supporting easy and positive social experiences with clear social benefits for targeted users, a recommendation for peer systems [106], despite its utilitarian commitment. We hypothesize that transaction experiences brought by Venmo and WeChat Pay bring positive value to user social connections (H4).

3.1.4 Research Methodology

To test our hypotheses, we conduct mixed methods research to explore user perceptions and behaviors in P2P digital wallets. Mixed methods research is a methodology widely used in social and behavioral studies [107, 108]. It involves collecting, analyzing and integrating close-ended quantitative (e.g., experiments and surveys) and open-ended qualitative (e.g., focus groups and interviews) research data. In this way, we can offset weaknesses inherent to using a single type of research activity, triangulate findings, and extend the breadth and depth of insights [109, 75]. More specifically, we first conducted a large-scale survey on both Venmo and WeChat Pay users to understand their usage of mobile digital wallet. Then, based on the survey results, we conducted interviews to further obtain more details about their usage scenarios, and their perception about social relationship and financial activities.

Survey

We conducted surveys to understand the success of mobile digital wallets, exploring the underlying role of social functions. We framed our questions around the components of Diffusion of Innovation theory: how digital wallet is used and propagates through social network. Our survey contains four main sections: First, we asked users about their digital wallet usage including how they got started, their usage frequency and usage scenarios. Second, we focused on the social features to understand how the users perceive the value
of social transactions and sharing. Third, we asked about users’ perspective on different aspects of making a better digital wallet in the future. Finally, we collected demographic information. We deployed the same survey for both Venmo users (in English) and WeChat Pay users (translated to Chinese). For each survey, we used multiple channels to obtain a more diverse population.

Our Venmo survey was hosted on SurveyMonkey\(^1\). We recruited users by directly contacting Venmo users via the Venmo app (220 participants), and through Amazon Mechanical Turk (160 participants).

- **Venmo-Direct:** We first recruited participants by directly contacting Venmo users. We got in touch with users by making a one-cent transaction to them on Venmo and attached a short request for participation in our survey. As compensation, we paid each participant who completed the survey $1 and added them to a random drawing for $300. In total, we randomly sent 2,381 requests and received 220 valid responses, giving us a response rate of 9.24%. This is a reasonable response considering Venmo is not a typical survey platform, and some of the sampled users may no longer be using Venmo.

- **Venmo-MTurk:** We augmented our Venmo user population by crowd-sourcing on Amazon Mechanical Turk (MTurk)\(^2\). We confirmed that each crowdworker is indeed a Venmo user through their ID. We paid each worker $0.5 via MTurk and paid another $0.5 through their Venmo account (for account verification). We received submissions from 176 MTurk workers, from which we removed 16 (9.1%) responses from workers who registered their Venmo accounts after our HIT had been published.

\(^1\)http://www.surveymonkey.com/
\(^2\)https://www.mturk.com/
Our WeChat Pay survey was hosted on the survey platform WenJuanXing, a Chinese counterpart to SurveyMonkey. We advertised our survey on social media accounts (209 participants) and made use of WenJuanXing’s own user recruitment service (290 participants). Again, respondents who didn’t use WeChat Pay were filtered out during analysis.

- **WeChat-Social Media**: Since there was no way to randomly contact WeChat Pay users, we advertised our survey requests on our social media accounts (e.g., WeChat and Weibo) to invite our friends to participate and spread the survey. In total, we collected 217 valid responses. We identified and removed 8 users who claimed they have never used WeChat Pay, leaving us with 209 valid responses.

- **WeChat-Recruit**: We also recruited participants by leveraging WenJuanXing’s user recruitment service. Although WenJuanXing could not explicitly target WeChat Pay users, the wide adoption of WeChat Pay in China means this was an efficient way to reach WeChat Pay users. In total, 290 out of the 300 purchased responses were from valid WeChat Pay users.

It is worth noting that we recruit users from two difference channels for surveys in each country. To test whether it is reasonable to combine surveys responses from two recruitment methods, we broke down the pools and examined results for all the survey questions. All of our statements are consistent between samples from different recruiting methods, so all following analysis will be based on a combination of responses from two recruitment methods.

The demographics of respondents are listed below. Among all 380 Venmo survey participants, 52.9% were female, 45.8% were male, and 1.3% chose “Others”. The majority of participants (67.4%) were between age 21 to 30, 15.0% were younger than 21, 4.5%
were older than 40, and the rest fell between 31 to 40. For WeChat survey participants, 42.5% were female and 57.5% were male. Similarly, the majority of users (49.5%) were between age 21 to 30, 9.4% were younger than 21, 16.2% were older than 40, and the rest fell between 31 to 40.

Interview

Finally, we conducted in-depth interviews to understand user experience on digital wallet usage, perceptions on the social networks in digital wallets, and their opinions on financial activities. Our interview is semi-structured, primarily to explore users’ personal experiences with Venmo or WeChat Pay.

We recruited participants by advertising publicly through our social media accounts and via word-of-mouth. In total, 21 Venmo users from the US and 20 WeChat Pay users from China participated in the interviews conducted by two of the authors, either face-to-face or over Skype. We find the sample size to be sufficient since few new topics emerged in the last few participants of the interview [110].

Each user took part in two interview sessions with a total length of 45 to 60 minutes, first discussing their perception and expectation of P2P digital wallets in general and then sharing their experiences with social interactions in these services. We took audio recordings of each interview session (with user consent). After conducting all interviews, two of the authors transcribed and conducted a thematic analysis of the interview responses using open coding. A third author audited the coding process and helped resolve different opinions.

The demographics of our interview participants roughly match the demographics of our survey participants. In China, 11 out of the 20 participants were female, with 80% aged from 21 to 30, 5% below 20, and 15% above 30. In US, we had 13 female interviewees out of 21, with 71% between the age of 21 and 30, 10% below 21 years old, and 19%
above 30.

3.1.5 Adoption and Usage of Digital Wallets

Our first question is why Venmo and WeChat Pay get popular so quickly. We find that both degree effect and cluster effect in Diffusion Of Innovation theory play a role in the adoption of P2P digital wallets (H1), but their effects are different for Venmo and WeChat Pay.

Degree Effect Contributes to Venmo’s Adoption

For Venmo users, “friends” is the most voted reason for starting to use the digital wallet (79.2%, Figure 3.2). As shown in Figure 3.3, “making transactions with friends”
is also the most common usage scenario voted by Venmo users (93%). In particular, 37% of users chose “making transactions with friends” as their only usage case of Venmo, indicating the importance of social network in their wallet usage.

We further explore how social influence affects adoption in the interviews. The result is straightforward: many Venmo users accepted the app because of direct recommendations from their friends (US except 2, 8, 9, 14, 15).

A bunch of us have gone on a trip, so we wanted to split expenses. A few of them were already using Venmo, so they were just like “oh, there is this app you can download, and it’s super easy to send money to each other.” (US10, female, age 21-30)

In other words, the adoption in Venmo largely fits the description of degree effect, _i.e._, individuals are inclined to follow the decision of their connected friends.

Cluster Effect Contributes to WeChat Pay’s Adoption

Unlike for Venmo, our survey results show that WeChat Pay users do not feel strongly that they embrace the service because of their friends’ usage. However, in the interviews, we find that social effect does exist in the adoption process of WeChat Pay, but in a more implicit manner. It hides largely behind a cultural feature called “red envelope”.

To be more specific, in our survey, more WeChat Pay users stated that their primary intents to use the service were “easy to use” and “avoid carrying cash”, rather than “friends” (Figure 3.2). This seems to suggest a less powerful network effect on the initial adoption of WeChat Pay. We also find that, although “making transactions with friends” is one of the most common activities on WeChat Pay (Figure 3.3), only 8% of users put it as the sole usage scenario. This may be because in addition to P2P transactions WeChat
Pay supports many Customer-to-Business payment activities, which relate less to users’ social network.

However, when we try to verify this finding in the interview, we discovered that WeChat Pay also benefits greatly from the social network effect, through its “Red Packet” feature. It turns out that most people became aware of the payment system in WeChat because they received Red Packets from others or got involved in Red Packet grabbing activities in WeChat groups (CN2, 3, 4, 7, 8, 9, 10, 11, 13, 15, 20).

At the beginning, lots of my friends sent red envelopes in WeChat groups to celebrate Spring Festival. It looked interesting and entertaining which got me attracted to participating in those activities. But it required me to bind a bank card to WeChat Pay. I did so. And after that, I found it convenient to use WeChat Pay to pay and transfer money. (CN3 female, age 21-30)

Red envelope activities in this sense raised user awareness of its payment function, lowering the entry barriers. This phenomenon fits the description of cluster effect, *i.e.*, users start using a technology under the influence of the majority decision of others around. WeChat Pay users built a sense of “community usage” when the Red Packet became a national fad during the Chinese New Year.

Overall, we reveal that the social features help to accelerate the adoption of both Venmo and WeChat Pay, but the underlying mechanisms are slightly different for the US and Chinese users. More specifically, Venmo users build their confidence in the system based on actions and opinions of their close friends (strong ties), while the Chinese users are likely to be influenced by the community (Red Packet usage in various discussion groups).
3.1.6 Social Ties Affect User Experience

Besides initial adoption, we find that social relationships also impact user interactions with and through the digital wallets in several aspects. In general, social relationships help build trust and increase user retention (H2), but the user experiences can be different between different types of social relationships.

Social Relationship Builds Trust During Transactions

According to a generic model of trust in e-commerce settings, for users to join a transaction, their level of trust needs to exceed the perceived risk.

In the context of digital wallets, first, social relationships help users overcome security concerns in digital wallets and establish trust in the control mechanism. Our interviews show that some users hesitated to use digital wallets at first (US1, 17, 20, 21, CN 3, 4, 5, 7, 8, 9, 12, 15). People worried that digital wallets make money transfer too easy (US12, 13, 17). Chinese users (CN1, 5, 7, 9, 15, 18) mentioned that WeChat Pay gives them a sense of “insecurity” because it grows out of an open social network service. It is the trust on other digital wallet users, e.g., faith in the friend who recommended the service or confidence built upon the app’s large user base, that turned apprehension into acceptance (US1, 3, 7, 10, 13, 14, 17, 19, 21, CN 11, 13).

I trusted it [Venmo] because the person who suggested it to me is very knowledgeable about computer security, so I trusted his opinion. (US7, female, age 31-40)

Second, trust developed in offline social relationships can be transferred online, adding an additional layer of protection against potential risks. People felt that even if an online payment was unsuccessful, they could still find the associated friend offline and fix the transaction (US5, 7, 21).
I don’t need to worry about how to recall the money back. I can just knock on his door. If I know this person well, I don’t really worry about Venmo’s safety issue. (US21, male, age 21-30)

Social Ties Affect Retention

“Friends” is one of the most important reasons for Venmo users to keep the app (Figure 3.4). Those who reported “making transactions with friends” to be the sole purpose of Venmo claimed that they would definitely leave the service if their friends stopped using it (US except 2, 5, 11, 18).

It’s just like any other social network. If more people are on one thing than another, then I will just end up switching. I just use whatever people are using. Because you have to connect them, rather than convert them. (US9, female, age 31-40)

However, social ties do not seem to play as significant a role in WeChat Pay as they do in Venmo. Convenience seems to be a stronger incentive for WeChat Pay users to stay engaged. They put “easy to use” and “replacing cash” over “friends” as the top two reasons for retaining the service (Figure 3.4). On the one hand, 90% of the Chinese respondents claimed that they will still use WeChat Pay even if some friends drop the service. It is because WeChat Pay provides other convenient payment functions that they use quite frequently, e.g., paying phone bills, calling taxi, etc. (CN2, 3, 4, 6, 14).

On the other hand, one of the WeChat Pay users indicated that if a considerable number of people stop using the service round them or even across the country, she would consider terminating it, thinking that there are some problems with the system (CN17).
In a word, user feedback suggests that degree effect occurs in the retention of Venmo users, while user engagement in WeChat Pay exhibits signs of cluster effect, which is similar to the findings about adoption.

Types of Social Relationships Impact Transactional Experiences

Although social ties bring trust to the digital service, they may experience social awkwardness during transactions. We hypothesize that social intimacy affects the ease with which users undertake transactions. In our interview, we define three groups of people based on their social distance to the interviewees, *i.e.*, close friends, normal friends and acquaintances, from strong to weak ties. For each of our participants, we asked them about their transaction experience with the three groups respectively. We focused on how their perceived level of comfort varies with the strength of each social tie. We find that people feel different levels of comfort when receiving or issuing payments with persons in each social group.

First, discussing money and participating in transactions with acquaintances – those with weak social ties – are generally considered comfortable (US1, 10, 15, 19, 20, CN6, 7, 20), involving little social obligation:

> For people I don’t really know, for strangers, for landlords, I am very comfortable to talk about money. Because I think those are fair transactions. (US19, female, 21-30)

These transactions only happen when necessary, *e.g.*, paying rent each month. Users generally do not build social connections with these acquaintances. They do not add them to Venmo/WeChat Pay contact lists, or talk about topics beyond the ongoing transaction itself (US1, 2, 10, 21, CN 1, 2, 5, 6, 7, 9, 10, 11, 12, 13, 15, 17).
On the other end of the social spectrum are close friends. Participants replied that their transaction frequency with close friends was much higher than with acquaintances. Close friends almost always add each other to their contact lists, in case they want to send/receive money in the future. Although awkwardness arises from time to time when people are unsure of whether money should be involved in dealings with friends (US1, 14, 15, 19, 20, CN6, 10), most participants feel that making transactions with close friends is comfortable and natural (US2, 7, 10, 13, 15, 17, 21, CN1, 2, 8, 9, 11, 13, 19).

Finally, participants mentioned that they feel most uncomfortable when talking about money with normal friends, i.e., day-to-day friends who fill the gap between close friends and mere acquaintances (US2, CN2, 3, 11). They cannot chat naturally as they do with close friends. They cannot directly talk about money as they do with acquaintances, because there are potential negative social consequences. Thus, dealing with normal friends about money requires some initial social lubrication, i.e., small talk.

It feels odd to pay ordinary friends on WeChat since you have to start with conversations while often you just want to make the payment. But it is not the case when paying close friends with whom you often chat. (CN11, female, under 20)

The results show that the respondents tend to be comfortable with transferring money with close friends or mere acquaintances, while transactions between ordinary friends are perceived to be more socially awkward.

3.1.7 Social Interactions Affect User Experience

Social interactions in Venmo go beyond communication between transaction partners. A very important social feature in Venmo is sharing transaction records with the public or with Venmo friends only. In WeChat, there is no equivalent mechanism, but WeChat
is like a traditional social network (e.g., Facebook) with a normal sharing feature (a.k.a. Moment). We specifically look into how social sharing plays a role in those platforms. We discover that social sharing, if happened, is effective in promoting user engagement. However, both Venmo and WeChat Pay users are reluctant to share their own transactions due to concerns about privacy risks (H3). It is worth noting that, the US and Chinese participants exhibit different perceptions towards social disclosure and privacy.

User Preference on Social Sharing about Transactions

We start by exploring users’ general attitude towards sharing their transaction records socially, by scoping out what is considered acceptable and what is not.

In our survey, we ask users if they are willing to share transaction records to the public or friends, under circumstances that this is a default or optional function. The results (Figure 3.5) show that people are against sharing in general, whether publicly or privately with friends only. For Venmo users, the idea of sharing with friends is slightly more acceptable if it is optional.

One explanation to the “optional friend sharing” preference is that users want to control the types of information to share. We find that the respondents are more comfortable with sharing certain types of information than others. For Venmo users, they are comfortable to share the purpose (95%) or the recipient (72%) of transactions rather than the actual amount of money (24%) or when the transaction happened (43%). In the current Venmo design, only the transaction amount is omitted, and users have no choice but to share transaction time. This shows Venmo’s honest yet not satisfactory effort at meeting users’ sharing preference. In comparison, the WeChat Pay users are more comfortable sharing the purpose (65%) and amount (63%) of the payment, while less so about the time (45%) and recipient (30%).
Figure 3.5: Users preferences on sharing transaction records on digital wallet systems. Options include sharing to the public as the default setting (Public-Default), sharing to the public as an optional setting, sharing with friends as the default setting (Friend-Default), and sharing with friends as an optional setting (Friend-Optional).
Concerns about Social Disclosure and Privacy in Different Cultural Contexts

Given the general disinclination to share transaction records, we conduct interviews to explore the underlying reasons behind such reluctance, finding privacy and security to be the main concerns. Interestingly, the specific reasons provided by participants from US and China are different. Some Venmo users consider transaction records may be too personal or too detailed [75]. They emphasized the sensitive nature of financial transaction data, which deserved better privacy protections (US2, 4, 6, 8, 9, 15).

I think that financial transactions should be private. Just like I think of my own bank account, what if other people just look at it. Not that there is anything bad in it. But it just seems like intrinsically it is a private information.

(US6, male, age 41-50)

Our Chinese participants, however, seem to be less concerned about privacy than their US counterparts and trust the privacy protection promises of the services more. Instead, as noted by a few interviewees in China, their privacy concerns are more related to security issues such as telecom scam and fraud on WeChat. They are worried that their private information such as location (CN4, 6, 9), phone numbers (CN12), names and birthday (CN7, 12) can be used by attackers to carry out targeted scam against them (*e.g.*, spear phishing and telecom scams [111]).

I’m worried that sharing transaction records may get my personal information exposed to public, for example, my name, phone number and purchasing information. I often receive scam calls, some of them can even tell my name.

I am pretty worried about that. (CN12, male, age 21-30)

These differences are consistent with existing findings on the general privacy preferences of the US and Chinese users [112]. In addition, one point only raised by Chinese
interviewees is that, many Chinese people feel that sharing financial information is a form of “showing off.” A possible interpretation is that China’s collectivist culture discourages conspicuous display of wealth, considering it as an overemphasis on individual value [113].

Social Sharing Promotes Engagement

Despite users’ reluctance towards sharing, whenever it happens, it helps to boost user engagement (US1, 3, CN11, 13). As users observe their friends sharing, they feel better about sharing themselves:

If my friends around are sharing their transaction information, I would feel more comfortable doing so. Since others are fine with it, I don’t need to worry much about the security problem either. (CN13, male, age 21-30)

Such effect is only reported by a few interviewees, potentially because this feeling is rather subtle and may not be registered consciously until careful contemplation.

Also, Venmo’s transaction sharing carries information that are not caught by traditional social network. For example, by reading other people’s shared transactions, users catch up with their friends’ activities, which are usually not posted on Facebook (US1, 3, 7, 8, 10, 18, 19, 21).

I remember sometimes I see people buying milktea, then I would know there is a very famous milktea restaurant around, so I will check it out. (US21, male, age 21-30)

Thus, even in cases where social sharing does not trigger active participation in social activities, it is able to establish the digital wallets as a unique source of social information that is capturing users’ attention.
3.1.8 Transactions Affect Social Relationship

It has been shown that social relationships among users influence their transaction behaviors. It drives us to investigate the effect in the opposite direction; that is, whether and how transaction behaviors affect users’ social relationships. We find that digital transactions may not help build new social connections, but it may strengthen existing social ties (H4).

Users Rarely Build New Connections

Both Venmo and WeChat Pay users mentioned that they are not willing to establish new social connections with unfamiliar transaction partners. People usually expect one-time-only transaction with unfamiliar individuals.

In Venmo, even if users have to make multiple transactions with a stranger, they would prefer searching the partner’s Venmo username each time rather than keeping it in the friend list (US1, 2, 10, 12, 13, 14, 21). While in WeChat Pay, our respondents indicated that they tend to deliberately avoid exposing their online social network to strangers in a transactional process (CN except 7, 8, 15, 17).

To pay strangers, I will definitely prefer using Alipay or scanning WeChat’s payment QR code so that I don’t need to follow them in WeChat. That makes things much easier. (CN3, female, age 21-30)

Even if users have to “friend” someone unfamiliar in WeChat for a payment in certain occasions, they intend to remove the other party soon after the transaction is over. In cases where users need to keep strangers or acquaintances in their contact list for future payments, they seldom chat beyond the transactions with these contacts. In addition, they are likely to separate these connections from their normal social circles, e.g., not sharing moments with them in WeChat (CN except 13, 16, 18).
These results suggest that P2P digital wallet may not be suitable for seeking new social relationships that can be extended beyond the financial activities.

Transactions Benefit Existing Friendships

Although the fast transactions enabled by Venmo and WeChat Pay do not leave users much time to socialize during transactions as in [19], it brings in other benefits to existing social ties. They serve to ease interactions around the payment process and enable social-oriented transaction activities.

First, the ease of making transaction mitigates possible social awkwardness and consequent financial risks (US10, CN12, 13, 15, 19). The Chinese participants specifically mentioned that it used to be a pain chasing after friends for bill splitting and sometimes they simply give up (CN12, 19). Now the bill splitting function of WeChat Pay makes the process much easier and more pleasant. The improved commitment to exchange process can generate positive effect towards the other parties involved [114].

Second, the reduced complexity of transactions provides opportunities for social-oriented transactions to take place. For example, in WeChat Pay, the Red Packet feature allows online money gifting in a more casual, lightweight, comfortable manner (CN1, 4, 8, 11, 13, 15, 19, 20). It soon became an essential type of social currency that largely boosts social dynamics in the Chinese online communities [109].

In Venmo, users say funny things or even tease each other in the messages associated with transactions, adding playfulness to the whole experience (US9, 14, 17). This is consistent with the previous work [75], which shows seeing funny feeds help people feel more connected to people they care about.

These results are different from the traditional view of money-based exchange, which suggests that money-based exchanges entail issues like objectifying and dehumanizing people, over-concerning wealth and economic benefits, and undermining trust and empa-
Figure 3.6: Aspects to be improved to fully embrace digital wallets and eliminate cash (Venmo Users).

<table>
<thead>
<tr>
<th>Question</th>
<th>US</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy, flexible transactions with friends increases my “stickiness” to the service</td>
<td>86.8%</td>
<td>85.6%</td>
</tr>
<tr>
<td>Access to recommendations, reviews, sales/discounts, shared with friends increases my “stickiness” to the service</td>
<td>43.7%</td>
<td>56.7%</td>
</tr>
<tr>
<td>Able to follow others who have similar shopping interests increases my “stickiness” to the service</td>
<td>22.9%</td>
<td>35.6%</td>
</tr>
<tr>
<td>Able to share my shopping interests with others increases my “stickiness” to the service</td>
<td>19.0%</td>
<td>47.9%</td>
</tr>
</tbody>
</table>

Table 3.1: Ratio of users who “Agree” or “Strongly Agree” on the social network related statements in mobile digital wallets.

3.1.9 Discussion

For Future Social Digital Wallets

P2P digital payment is a highly competitive market. Many companies have attempted to combine social networks with financial function in their service. For example, Facebook adds the P2P payment function to the Facebook messenger [5], and Alipay starts its own social network over the already successful e-commerce system [7]. However, from users’ perspectives, users do not expect the social components to be the most important...
feature for the digital wallets. In our survey, we asked users to assess a few statements related to social networks (Table 3.1) and describe their expectations for the future digital wallet systems (Figure 3.6). Results show that the utility value (i.e., coverage, efficiency, usability and costs for making payment) is the most important considerations. In our interview, participants also suggested that completely removing Venmo’s social sharing function would not affect their usage (US except 1, 5, 16). WeChat Pay users mentioned that they would not socialize with contacts added merely for making payments (CN except 13, 16, 18).

Users’ expectation of the social feature is to help to facilitate more convenient P2P payments, rather than “making friends.” Our interviewees have responded positively to the ease of locating their friends in Venmo through the Facebook social graph (US1, 6, 8, 10, 14, 19, 20, 21) or making payments through WeChat chatting box (CN11, 13, 18). Several WeChat Pay users (CN 3, 4, 17, 20) stated that paying through the social network service was convenient because they did not need to open another app. This is why they prefer WeChat Pay over other payment systems, such as Alipay and online banks.

Limitations

Our work has several limitations. First, we only study Venmo and WeChat Pay to exemplify the most successful P2P digital wallets. Other online P2P payment systems that support social transactions such as Chirpify and Dwolla may also have interesting design features to investigate. Second, recruiting survey/interview participants from Amazon MTurk or social media may entail potential biases [116], as both are nonprobability sampling methods [117]. To alleviate this problem, we incorporate multiple channels to recruit participants in both US and China, to further ensure that our findings are reliable and generalizable. Third, it is inherently difficult to make direct comparisons between
WeChat Pay and Venmo, since the two digital wallets have different designs and are introduced in different social contexts. Hence, we mainly provide plausible explanations based on existing theories to any difference observed between the two services in terms of usage and user behaviors.

3.1.10 Conclusion

In the first part of this chapter, we conduct a mixed-method study to examine the key factors that contribute to the rapid adoption of P2P digital wallets in the US and China. We particularly focus on the roles and impacts of the built-in social networks in P2P digital wallets. We summarize our key findings and contributions as follows:

- Our survey confirms that the introduction of social features indeed helps to accelerate the initial adoption of Venmo and WeChat Pay. The social feature plays a positive role in mitigating users' security concerns by creating a sense of critical mass, building trusts between users, and facilitating information dissemination and interpersonal persuasion.

- There is a key difference between the US and Chinese users regarding their initial adoption of the digital wallets. Venmo (US) users’ adoption decision is more influenced by their close tie(s) (i.e. the “degree effect”), whereas WeChat Pay users are more likely to be persuaded by the collective opinions and the wide usage in a community (i.e. the “cluster effect”).

- Social relationships can affect users’ experiences of making peer-to-peer payments. Users are more comfortable transferring money with close friends (strong ties) or acquaintances (weak ties), than with normal friends (those between strong and weak ties).
Social sharing in P2P digital wallets has helped to boost user engagement by provoking new social conversations around transaction activities. However, most users are conservative towards sharing payment details due to privacy or security concerns.

Social connections that are built specifically for making payments can hardly transform into real social relationships. Users often deliberately separate these connections from regular social circles. However, friendship of existing ties may benefit from transferring money via P2P digital wallets, since the experience is more comfortable and fun compared to the conventional payment methods.

Users weigh the utility value of the P2P digital wallet over its social value. The general perception is that social features are not required but can be beneficial when facilitating the utilitarian functions.

3.2 Psychological factors behind Penny Auction Behaviors

3.2.1 Introduction & Related Works

Prior work has studied in detail psychological factors that drive user behavior during auctions. Some of these fit into the framework of prospect theory [118], which suggests that losses hurt more than gains feel good. This leads to the endowment effect [119], where people value things more when they own them, since losing an item is more painful than failing to get it. In the general setting of auctions, endowment effects exist for bidders, since status as the current top bidder gives them a false sense of ownership. This is termed the pseudo- or quasi-endowment effect, which makes a bidder unwilling to give
up an auction \cite{120, 121}. It is unclear whether this effect exists in online auctions. One study found some support by correlating data from eBay auctions and user surveys \cite{121}, while another study \cite{122} found no evidence to support this.

The higher impact of losses also exacerbates the “sunk cost fallacy.” As a bidder puts more money into an auction, winning the auction becomes more about recovering their losses than simply winning the item. Based on a survey of 479 online bidders \cite{123}, sunk cost fallacy can explain user behaviors in traditional online auctions. For penny auctions, Augenblick designed theoretical models that explain the profitability of penny auctions by incorporating sunk-cost fallacy, and empirically verified the model using 166,000 penny auctions \cite{56}. Another effect called self-justification describes a similar phenomenon, where as the user put more bids into an auction, he/she feels a stronger desire to win the auction as to justify the money already spent \cite{120, 123}.

The presence of other bidders can trigger irrational behavior. Simonsohn et al. observed herding behavior in 8,333 eBay auctions where users tend to select auctions that seem more popular, despite the fact that popularity of auctions does not indicate quality of the item sold \cite{124}. Other studies found that intense competitions in auctions can trigger a state called competitive arousal, which leads to more irrational bidding \cite{125, 123, 126}.

Finally, how much money is at stake also influences how users make decisions. Prior work found users behave more rationally when high stakes are involved, through analysis of overbidding behavior in 432 auctions \cite{126}, and experiments involving 164 auctions \cite{127}.

Although much work has been done on understanding user psychology in different auction settings, few have studied these behaviors in penny auctions. In this section, we focus on the effects that are measurable using action history and validate these behaviors in penny auctions using large-scale traces. By analyzing our detailed bidding traces for
evidence of impact of psychological biases like sunk-cost fallacy on bidding behavior, we find evidence consistent with the pseudo-endowment effect and sunk-cost fallacy, and find data inconsistent with theories of competitive arousal.

3.2.2 Hypotheses

We identify the psychological effects that are empirically measurable, and design corresponding hypotheses about the phenomenon we expect to observe based on the psychology theories.

Pseudo-endowment effect indicates that bidders are more likely to continue participating in an auction if he/she has been the highest bidder for a longer period.

H1: An increase in time spent as the highest bidder will lead to an increase in the likelihood to remain in an auction.

Sunk cost fallacy and *self-justification* indicates that bidders are less likely to leave an auction if he/she has spent a lot of money in the auction.

H2: An increase in the amount of money spent will lead to an increase in the likelihood to remain in the auction.

Herding effect and *competitive arousal* show that users are more likely to overbid when an auction involves many competing parties.

H3a: An increase in number of competing bidders will lead to an increase in the likelihood of a user to place bids in the auction.

H3b: An increase in the total number of bids already placed will lead to an increase in the likelihood of a user to place bids in the auction.
When *auction stake* is high, bidders are less likely to overbid. In the context of penny auction, overbidding means the combined cost of all bidders exceeds the item’s worth [58].

H4: An increase in the value of the auctioned item leads to a decreased likelihood of combined bidder cost exceeding item value.

3.2.3 Observing Psychological Phenomenon

Pseudo-endowment Effect To test H1, we observe the bidding history for each auction, which consists of a sequence of bids, then compute the following metrics for each time *t*:

- **Leading time:** the time a user spent as the highest bidder up to time *t*.

- **Bidding:** whether this user has placed a bid in the auction after *t*, with 0 meaning no future bids are place, and 1 meaning the user will bid after *t*.

Given the volume size of our data, we sample *t* every 10 minutes and randomly down-sample the data points by a factor of 10. Even after down-sampling, we still find sufficiently small p-value to prove statistical significance.

To test if time spent as the highest bidder has any correlation with the users’ future bids, we perform a logistic regression using *leading time* against *bidding*. To remove confounding factors, we control for the price of the item auctioned. In addition, we use clustered standard errors [128] across auctions to remove the effect of individual auctions.

As shown in Table 3.2, leading time does have a significant effect on whether a user will continue to bid in an auction. With a coefficient of 0.0002, a leading time of one hour correlate with an increase in probability of *bidding* from 50% to 67%. This validates H1 and suggests the existence of pseudo-endowment effect in penny auctions.
Table 3.2: Results of logistic regression model measuring pseudo-endowment effect (H1).

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Bidding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading time</td>
<td>0.0002***</td>
</tr>
<tr>
<td>Item price</td>
<td>-1.058e-6</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-1.4089***</td>
</tr>
<tr>
<td>N</td>
<td>15,783,131</td>
</tr>
</tbody>
</table>

Note: *** p<0.01, ** p<0.05, * p<0.1.

Table 3.3: Results of logistic regression model measuring sunk cost fallacy and self-justification (H2).

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Bidding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique users so far</td>
<td>-0.0021***</td>
</tr>
<tr>
<td>Auction bids so far</td>
<td>-8.603e-6*</td>
</tr>
<tr>
<td>Item price</td>
<td>5.5e-5***</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-1.1689***</td>
</tr>
<tr>
<td>N</td>
<td>15,783,131</td>
</tr>
</tbody>
</table>

Table 3.4: Results of logistic regression model measuring competitive arousal and herding (H3).

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Total cost during auction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique users so far</td>
<td>-0.0021***</td>
</tr>
<tr>
<td>Auction bids so far</td>
<td>-8.603e-6*</td>
</tr>
<tr>
<td>Item price</td>
<td>5.5e-5***</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-1.1689***</td>
</tr>
<tr>
<td>N</td>
<td>15,783,131</td>
</tr>
</tbody>
</table>

Table 3.5: Results of linear regression model measuring item value and overbidding. Bids are calculated as 12 cents each (H4).

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Buy-It-Now price of product</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>64.8261***</td>
</tr>
<tr>
<td>N</td>
<td>134,568</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.246</td>
</tr>
</tbody>
</table>

Sunk cost and self-justification

To test H2, we perform logistic regression on bidding using the number of total bids already placed in auctions before time \(t \). To remove confounding factors and the effect of individual auctions, we perform the same procedure as with H1.

Following similar methodology, we find in Table 3.3 that the number of bids already placed by a user significantly correlates with users’ tendencies to continue bidding, where an additional 200 bids placed can increase users’ likelihood to continue from 50% to 58%. This provides support for H2; however, by observing the data alone, we cannot tell whether this is the result of sunk cost fallacy or self-justification. For simplicity, we refer to this effect as sunk cost fallacy in the rest of this chapter.
Herding and Competition To test H3a, we compute the number of unique users who has joined the auction before t. And for H3b, we record the number of bids placed in the auction before t. We then perform a logistic regression on bidding using the two metrics. We control for the sell price of the item and removed the effect of individual auctions.

Contrary to H3, we find evidence inconsistent with the theory of competitive arousal in Table 3.4 where users are less likely to engage in auctions when there is already a large number of users engaged, we call this behavior *competition aversion*. This is reasonable considering penny auction sites tend to sell brand new items with clear retail values, so users do not need to rely on popularity to judge the value of an item. In addition, since each bid in penny auction carries a cost, users have the incentive to shun away from competitive auctions that call for intense bidding.

Auction Stakes To test H4, we need to first quantify the level of overbidding in penny auctions. Different from traditional auctions, a rational bidder is not supposed to bid as high as the true value of the item in penny auctions. Byers et al. proved that in a penny auction with fully rational bidders and full awareness of other bidders, the auction reaches equilibrium when all bidders combined spend exactly the item’s worth \(58\). Hence, we examine overbidding by comparing the money spent by all bidders with the sell price of the item. As shown in Table 3.5 the coefficient is only 0.2622, meaning as the Buy-It-Now price increase by $1, the total money paid by bidders increase by only 26 cents. This is much lower than in theory, where the coefficient should be 1. On the other hand, the intercept is at 64.8 dollars. This indicates that users tend to bid less cautiously for items of lower value, supporting H4. Note that, even for the same item, penny auctions can product very different final prices, and sell price is only able to explain 24.6% of the total variation. This can explain why our optimal strategy is more inclined to bid on big ticket items, since they are less likely to trigger overbidding.
Understanding Online Financial Behavior

Table 3.6: Results of logistic regression model measuring all effects combined.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Bidding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endowment effect</td>
<td>-0.0006***</td>
</tr>
<tr>
<td>Leading time</td>
<td></td>
</tr>
<tr>
<td>Sunk cost fallacy</td>
<td>0.0071***</td>
</tr>
<tr>
<td>& self-justification</td>
<td></td>
</tr>
<tr>
<td>User bids placed</td>
<td></td>
</tr>
<tr>
<td>Competition aversion</td>
<td>-0.0017***</td>
</tr>
<tr>
<td>Unique users so far</td>
<td></td>
</tr>
<tr>
<td>Auction bids so far</td>
<td>-1.979e-5***</td>
</tr>
<tr>
<td>Confounding factor</td>
<td>5.952e-5***</td>
</tr>
<tr>
<td>Item price</td>
<td></td>
</tr>
<tr>
<td>(Intercept)</td>
<td>-1.6271***</td>
</tr>
<tr>
<td>N</td>
<td>15,783,131</td>
</tr>
</tbody>
</table>

Note. *** p<0.01, ** p<0.05, * p<0.1.

Joint Psychological Effect Finally, we examine all the psychological factors, aside from auction stake, together in Table 3.6. We find that, while the tendency to avoid competition is still strong, sunk cost and pseudo-endowment effect are strongly mixed. The effect of sunk cost fallacy overshadows the pseudo-endowment effect. A negative coefficient on leading time indicates that, with the same number of bids placed, a user who quickly gets outbid is more likely to stay in the auction. For the tendency to avoid competition, the number of bids placed in the auction observes a more than two-fold increase in magnitude and becomes statistically significant. This indicates that, when we control for the number of bids placed by a user, a higher level of total bidding activity in an auction is more likely to drive the user away.

3.2.4 Discussions & Conclusions

Our above analysis discovers signs of psychological traits like sunk cost fallacy and pseudo-endowment effect, which lead to higher cost for the bidders.

Certain elements in the design of DealDash are taking advantage of these traits to increase revenue. When a user become the current top bidder, the site shows “YOU ARE
THE HIGHEST BIDDER” with colored background to enforce the message. DealDash also keeps track of bidders’ time spent as the highest bidder at the bottom of the page. These can potentially be contributing factors to the pseudo-endowment effect.

DealDash also displays the number of bids placed in an auction, in association with the Buy-It-Now function, saying things like “Buy it Now for $129 & Get 104 Bids Back”. Users who are under sunk cost effect may decide to buy the product from DealDash under unfavorable prices just to avoid the pain of losing their bids.

For competition level, DealDash’s design is sending mixed messages. On one hand, it seems to be aware of bidder’s tendency to avoid auctions with too many unique bidders in that it actually does not allow new bidders to enter into auctions beyond a fixed price. On the other hand, it displays all the unique bidders in the auction as avatars, which will make users more aware of the competition present in the auction. Potentially, DealDash can limit the display of unique bidders to a smaller number, i.e. displaying only the most recent 10 bidders, thus reducing user’s tendency of competition avoidance.

To conclude, we have examined prior theories about auction psychology. Based on the theories, we have designed multiple hypothesis about users’ behavior during penny auctions. Using empirical traces from DealDash, we are able to find evidence that supports sunk cost fallacy, pseudo-endowment effect as well as the effect of higher auction stake. However, we find evidence against competitive arousal; instead, users tend exhibit competition avoidance in the penny auction setting. Finally, we find that DealDash is already taking advantage of some of the fallacies in their website design, suggesting that the penny auction site is preying on users’ irrationalities.
Chapter 4

Using Understanding to Guide Financial Actions: The Case of Penny Auctions

In Chapter 2 and 3, we have introduced how measurement of behavioral traces and exploration of the underlying reasons can both contribute to our understanding of online financial behavior. However, although a deep understanding is intellectually gratifying by itself, it is even more valuable as a means to guide future actions. In this chapter, we address the challenge of how understanding about financial behaviors can be used to assist decision making.

In the following, we use the example of penny auction to demonstrate, how, through a deep understanding of the dynamics in penny auctions, adversarial strategies can be designed and tested to win penny auctions.
4.1 Introduction

Whether it is art, real estate, automobiles or electronics, auctions provide an efficient marketplace mechanism with the goal of selling goods to buyers willing to pay the highest price for each item. For their part in facilitating the transaction, auction providers like Sotheby’s or eBay collect a transaction fee generally calculated as a function of the selling price. Traditional auctions are transparent processes where buyers have deterministic controls over their expenses, i.e. given an initial budget, they will either successfully purchase the target item, or fail and spend nothing.

Following the great recession of 2008–2009, a very different type of online auctions rose in popularity, by attracting new buyers with TV or online ads that promote massive bargains like digital cameras for pennies and iPhones for a few dollars [129]. Penny auctions, or pay-per-bid auctions, offer a significantly different model, where auction participants pay to purchase non-refundable bids, and each new bid increases the item’s purchase price by some small increment, e.g. $0.01. Auctions end only when some preset time period passed with no new bids, at which time the winner can buy the item at the current purchase price. While the final sale price can be a small fraction of retail prices, the auction provider can collect far more revenue than the retail price, from sales of bids used by both the winner and losers.

Penny auctions are non-transparent by design. There are no caps on how much a user can expend on bids used in a single auction, with no guarantee of success. There is little known about auction providers themselves, their profitability, or how much do cost of bids contribute to their revenue stream. Are penny auctions a different form of “entertainment shopping” as they claim [131] [129], or are they gambling sites in disguise, “the evil stepchild of game theory and behavioral economics” described by the Washington Post [130]? Do penny auctions prey on users’ irrational tendencies like sunk-
cost fallacy [56] and risk-seeking behavior [55]? Are there bidding strategies that will consistently win auctions at a low cost?

There have been relatively few empirical studies of penny auctions in the decade since their introduction. Three prior studies used empirical measurements of the Swoopo penny auction system to validate their analytical models [56, 58, 55], focusing on the profitability of these systems and the impact of factors like sunk-cost fallacy and information asymmetry. Surprisingly, Swoopo closed its doors in 2011, while its competitor DealDash survived and remains the largest penny auction platform today.

In this chapter, we seek to bring more transparency to penny auction systems using a data driven approach. We use detailed measurements to generate a detailed, 166-day trace from DealDash, covering 174 million bids made by 101,936 unique users in 134,568 auctions. Our work seeks to answer three questions surrounding how to make money in penny auctions. First, for the platform’s perspective, we seek to perform an updated analysis of profitability of penny auctions since earlier studies of Swoopo auctions from 2009-2011. Then, we look into individual behaviors by modeling them using data-driven learning models. Finally, we develop adversarial strategies that would succeed in consistently winning auctions and maximizing user gain.

Our work produces several key findings, as follows.

- Using online prices to approximate cost of goods, we estimate that DealDash is generates a gross profit with margins similar to other retailers. Analyzing the flow of revenue shows DealDash is heavily dependent on new users who provide nearly all of their revenue, and offers an explanation for the earlier demise of other penny auction systems.

- We find that bidding behavior can be accurately modeled using a parameterized deep neural network (LSTM), which is capable of predicting detailed properties like
number of distinct bidders or length of bidding wars.

- We explore the value of multiple approaches to adversarial bidding strategies. We find that iterative learning using cross-entropy can produce consistent auction wins, and identify 2 key features with strong correlation to success. We also find that a simple strategy based on persistent bidding using automated bidding agents is also quite successful.

- We empirically confirm that when bidders using adversarial strategies compete in the same auction, they produce a scenario similar to Prisoner’s Dilemma, and both end up overpaying for the product. These cases maximize profit for the auction provider.

To the best of our knowledge, our work is the first to develop adversarial bidding strategies for penny auctions. We identify consistently successful strategies, some of which seem to be utilized by long-term “power bidders” who manage to generate profits at the expense of DealDash.

4.2 Background and Related Work

We begin with a brief introduction to penny auctions and some prior work on automated bidding agents in auctions.

Penny auctions, also called pay-per-bid auctions, is an auction format where a participant must pay a non-refundable bidding fee when he/she places a bid. Each auction begins with a reserve price and a countdown timer. Unlike regular auctions where bids determine the sale price, each new bid only increases the sale price of the item by a (small) fixed amount. The timer resets after each bid, and bidding terminates when the
timer expires, and the person who made the last bid wins the auction and buys the item at the final price.

Some recent research has studied penny auctions, finding them to be highly profitable for auctioneers [55, 55]. The majority of prior works focus on using economics model to explain the reason behind the high profit. Byers et al. argues that information asymmetry across players can increase the auction duration significantly [55]. Further, it is found that penny auction bidders are risk-lovers [54], and bidding behavior can be explained by sunk cost fallacy [56]. As a result, the majority of the bidders lose money in penny auction and leave the platform quickly, and these users are the main sources of the auctioneer’s profit [72].

Our study focuses DealDash\(^1\), one of the largest and longest-lived penny auction sites, as a representative of this class of systems. On DealDash, the reserve price is 0, and the bid timer is reset to 10 seconds after each bid. Each bid costs $0.12-$0.15, and when applied, raises the sale price by 1 cent. DealDash provides two additional functions common in penny auction sites. One is an automated bidding assistant called BidBuddy, which takes some budget from a participant, and if the user has been outbid, automatically places a bid one second before timer expiration. Another is called buy-it-now, with which an auction loser can buy the item at a preset retail price, and have all their expended bids refunded.

Autonomous Bidding Agents. Given the wide applications of auctions in areas like spectrum allocation, electricity markets and trading, there is extensive analysis on the design of autonomous bidding agents. Some propose bidding agents using heuristic-based algorithms [132, 133]. Others show that reinforcement learning can successfully drive autonomous agents [134, 135]. Still others have applied reinforcement learning to evaluate auction designs in energy markets [136] and to improve bidding efficiency in

\(^1\)https://www.dealdash.com/
Using Understanding to Guide Financial Actions: The Case of Penny Auctions

<table>
<thead>
<tr>
<th>Category</th>
<th>Value-to-Price Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bids Packs</td>
<td>0.200</td>
</tr>
<tr>
<td>Fashion, Health & Beauty</td>
<td>0.364</td>
</tr>
<tr>
<td>Home, Garden & Tools</td>
<td>0.390</td>
</tr>
<tr>
<td>Bundles</td>
<td>0.446</td>
</tr>
<tr>
<td>Electronics & Computers</td>
<td>0.506</td>
</tr>
<tr>
<td>Kitchen & Dining</td>
<td>0.542</td>
</tr>
<tr>
<td>Hobbies, Toys, Outdoors & Games</td>
<td>0.565</td>
</tr>
<tr>
<td>Gift Cards</td>
<td>0.654</td>
</tr>
</tbody>
</table>

Table 4.1: Average value of auctioned product in comparison to Buy-It-Now price.

<table>
<thead>
<tr>
<th>Category</th>
<th>Revenue-to-Cost Ratio</th>
<th>Without BIN</th>
<th>With BIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bids Packs</td>
<td>3.507</td>
<td>3.503</td>
<td></td>
</tr>
<tr>
<td>Electronics & Computers</td>
<td>2.022</td>
<td>1.089</td>
<td></td>
</tr>
<tr>
<td>Hobbies, Toys, Outdoors & Games</td>
<td>1.590</td>
<td>1.052</td>
<td></td>
</tr>
<tr>
<td>Bundles</td>
<td>0.989</td>
<td>0.966</td>
<td></td>
</tr>
<tr>
<td>Kitchen & Dining</td>
<td>0.957</td>
<td>0.971</td>
<td></td>
</tr>
<tr>
<td>Home, Garden & Tools</td>
<td>0.909</td>
<td>0.980</td>
<td></td>
</tr>
<tr>
<td>Fashion, Health & Beauty</td>
<td>0.878</td>
<td>0.938</td>
<td></td>
</tr>
<tr>
<td>Gift Cards</td>
<td>0.807</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>All Categories Combined</td>
<td>1.127</td>
<td>1.019</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Revenue generated in comparison to value of products auctioned/sold.

spectrum auctions [137]. In our work, we use heuristics and cross-entropy methods [138]
to develop adversarial strategies with improved chances of winning penny auctions.

Penny auction sites also deploy their own automated bidding agents, which only serve
to extend auctions by automating the actual bidding action. In this chapter, we consider
the role that automated bidding agents play in shifting the balance between bidders and
auction providers.
4.3 Profitability and Sustainability

We start with a basic question: are penny auctions profitable? Some prior work has found extremely high profit margins for sites like Swoopo [58] and QuiBids [139]. However, Swoopo’s eventual bankruptcy and subsequent acquisition by DealDash suggest that those profit margins were insufficient to keep Swoopo afloat. In this section, we reexamine the question whether the penny auction business model is sustainable, by analyzing DealDash as a platform and its source of profits.

4.3.1 Our Dataset

Our work is based on a dataset containing all observed auctions from DealDash from October 19th, 2017 to April 3rd, 2018, with 166 days of data. This dataset consists of the complete bidding history of 134,568 auctions and 174,076,943 bids. For each auction, we have the name of the product, the Buy-It-Now price, starting time of the auction, and the full sequence of bids, each of which includes the ID of the user placing this bid, and the time of the bid. The dataset contains bids from a total of 101,936 unique users.

To examine the profitability of penny auctions, we first need some measure of baseline value of the auction items. Although DealDash offers a Buy-It-Now price for each auctioned item, the Buy-It-Now price is typically higher than the price at which the same product is sold on retail platforms like Amazon and eBay. We start by estimating the true retail price for products sold on DealDash. In total, there are 1,463 unique products identified in our dataset. Using the names of these products, we queried both Amazon and eBay and manually identified products that are of exact matches with the ones sold on DealDash. When querying on eBay, we filter out refurbished or previously owned items. We were able to identify 583 of the products on Amazon and 804 products on eBay. Merging the results (and averaging prices when multiples prices were found) gives
Using Understanding to Guide Financial Actions: The Case of Penny Auctions

Figure 4.1: Net returns per user. The large majority of users lose significant amounts of money vs. a tiny fraction of winners.

Figure 4.2: Net return vs. user lifetime. Each distribution plotted with box plot quantiles (5%, 25%, 50%, 75%, 95%).

Figure 4.3: Contributions to gross profit vs. user lifetime. DealDash loses $ to long-lived users and generates all of its profits from short-term novice users.

us a total of 921 products.

4.3.2 Inferring Retail Prices

This leaves 37% of the unique products without a baseline price. They tend to be accessory items like bags or jewelry from a variety of brands. We hypothesize that DealDash prices products from the same brand with similar levels of markup. To test this, we perform linear regression on the Buy-It-Now prices and retail prices across products from the same brand. Among the 153 brands identified, we found that for 21 brands we can estimate by how much DealDash has marked up the price with high confidence (p-
value < 0.006). We thus estimate retail prices of these products using the linear regression models. In total, we are able to generate baseline prices for 1,335 unique products on DealDash, or 91.3% of all auction items.

We discovered significant level of overpricing across all categories, shown in Table 4.1. Besides “Bids Packs” being marked at 5x their normal price, other categories like “Fashion, Health & Beauty” (handmade jewelry and bags) are overpriced at 3x markup.

4.3.3 Estimating Profits

Given a reasonable estimate of the retail product prices sold on DealDash, we estimate DealDash’s profit margins relative to products’ retail prices, using the following:

\[
Revenue = \sum_{Auctions} (Total\ Bids\ Cost + Final\ Price)
\]

Where total bids cost is the value of all bids placed in the auctions, assuming bid cost is 12 cents (roughly stable price for a single bid). The cost for DealDash is computed as:

\[
Cost = \sum_{Auction} Product\ Retail\ Price
\]

For each category, we divide the revenue by the cost, which represents how much of a wholesale discount DealDash needs to start earning money. We also consider the case where some of the users decide to use Buy-It-Now (BIN), which affects both the revenue and the cost:

\[
Revenue_{BIN} = Revenue + \sum_{Auction} \sum_{BIN\ User} (BIN\ Price - Bids\ Cost)
\]

\[
Cost_{BIN} = Cost + \sum_{Auction} \sum_{BIN\ User} Product\ Retail\ Price
\]
Since we do not have data on which user decides to use BIN and which does not, we use the conservative lower bound where we assume user decides to use BIN only when the cost in bids has exceeded the price gap between the retail price and the BIN price.

Table 4.2 lists the categories of products and approximate profit margins for each, with a weighted average across all products. The high-level takeaway is that a conservative estimate of profit (assuming an oracle guiding users to use BIN when appropriate) shows DealDash generating similar profits as traditional retailers. In practice, most users are unlikely to have direct visibility to retail prices for products, and would likely overpay about the BIN price, generating higher profits for DealDash.

4.3.4 Per-user Profits and Sustainability

Perhaps a more interesting question is how much individual users are contributing to profits in penny auctions. Traditional auction systems generate revenue from listing fees that are often a function of the selling price of items. In penny auctions, one would expect all profits by the provider (e.g. DealDash) and any auction winners to be funded by the costs of failed bids from users who bid but lose auctions. We analyze per user profit and loss through our trace, and compute each user’s net gain or loss as any profit (difference between retail price and paid price in auctions won) minus total cost of bids. The results shown in Figure 4.1 show that for the vast majority of users on penny auctions lose money. Money lost by 92.6% of users is funding both the platform’s profits and gains for the remaining 7% of users. In this sense, penny auctions operate similarly to casinos, where losses by the majority serve to fund winnings by a small minority, along with profits for the provider.

Another similarity we find between these two operations is that in both cases, users who have played longer are not more likely to win, i.e. a significant portion of long-term
users/players continue to lose money. In Figure 4.2, we plot gains and losses for penny auction users based on how long they have been active in the system (during our trace). Long term users have significantly higher variance in their final returns, but expected returns do not improve over time. Among users who have been active in auctions for at least 5 months, roughly 5% of them have earned more than $881 each, while half of them have lost more than $165 each.

<table>
<thead>
<tr>
<th>Months Active</th>
<th># of Users</th>
<th>% of All Users Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>76502</td>
<td>75.05</td>
</tr>
<tr>
<td>1</td>
<td>7475</td>
<td>7.33</td>
</tr>
<tr>
<td>2</td>
<td>4774</td>
<td>4.68</td>
</tr>
<tr>
<td>3</td>
<td>3310</td>
<td>3.25</td>
</tr>
<tr>
<td>4</td>
<td>2795</td>
<td>2.74</td>
</tr>
<tr>
<td>5+</td>
<td>7080</td>
<td>6.95</td>
</tr>
</tbody>
</table>

Table 4.3: Distribution of users in DealDash and length of active lifetimes observed in our trace (101,936 users total).

Finally, we ask the question, which users are responsible for generating revenues? We break down the relative contribution to the auction provider’s profit across users with different lengths of lifetimes. The results plotted in Figure 4.3 show that, unsurprisingly, it is the new user whose losses fund the auction provider’s gross profits. In fact, losses by users who last 1 month or less (first two bars) account for (101.8%) more than the total of DealDash’s overall profits. This contribution is actually above 100% because users who have stayed 5 months or longer are actually generating significant losses for the platform.

Sustainability. This last result is particularly important to understanding the long-term viability of penny auctions. One question we hoped to answer in this study is why a number of penny auctions have shut down over the years (e.g., Swoopo in 2011) despite earlier models that predicted profit margins above 50% [56]. Figure 4.3 suggests that penny auction systems are highly dependent on novice users for profit.
After experimenting with the system, a small portion of users figure out how to win auctions (more on this in Section 4.5) and stay in the system for personal profit, while the vast majority of users lose money and leave the system altogether. Roughly 7% of all users remain after 5 months in the system, and those users as a whole, generate a net loss for the platform. Thus, sustaining the platform requires consistently adding large numbers of users to the platform, perhaps explaining in part their consistent marketing campaigns [140]. It is also a possible explanation for why penny auction sites like Swoopo shut their doors despite high per-item profit margins. This conclusion is consistent with an earlier paper [72] that suggested that penny auctions needed a revolving door of users to maintain profitability.

4.4 Bid-level Simulation of Penny Auctions

A key goal of our work is to understand how adversarial strategies can work in the context of penny auctions. Ideally, developing and validating these strategies would be done either through experiments in the wild. Unfortunately, active experiments in the wild face challenges in terms of reproducibility as well as ethical questions. Instead, we choose to develop a reliable simulation platform that accurately reproduces auctions that match real auctions in both high level and fine grain features. In this section, we describe the development of this simulator using deep neural networks (LSTM in particular), and present validation results that show our simulated auctions are extremely realistic on fine-grain features like final prices and length of bidding wars.

4.4.1 Basic Bid Prediction Model

For an accurately simulator to be feasible, users’ bidding behavior needs to be predictable. Therefore, we start by studying the predictability of bidders in penny auctions.
We achieve this by building machine learning models to predict bidding behavior and evaluating them using our DealDash traces. More specifically, we use n-gram \(^{141}\) and recurrent neural network (2-layer LSTM \(^{11}\)) models, and show that bidding behavior in penny auctions are actually highly predictable.

Methodology

Our prediction models use a sequence-based framework. An auction with \(n\) bids forms a sequence \(S = (U_1, U_2, \ldots, U_n, \text{End})\), where \(U_i\) is the username of the user who placed the \(i^{th}\) bid in the auction, and \(\text{End}\) is a token that indicates auction has ended. Our model takes in any subsequence \((U_1, U_2, \ldots, U_k)\) where \(k \leq n\) and predicts the value of \(S_{k+1}\), either the username of the \(k + 1^{th}\) bidder or that the auction has ended.
A bidder who has recently placed a bid in an auction is likely to bid again soon. Hence, we introduce the concept of "relative position," as the position difference between the current bid and the most recent bid placed by the same user. We can then transform a bidding sequence into a sequence of relative positions of the bidder who placed each bid. When a user has not previously placed any bid in the auction, her relative position will be regarded as infinite.

For example, a bidding sequence $S = (A, B, A, C, B, A, End)$ can be transformed into $S_{rel} = (Inf, Inf, 2, Inf, 3, 3, End)$, which is then used in prediction. We find the performance is better when we treat different relative positions as separate classes instead of as a numeric value. Given that most relative bids (95.5%) are below 20, we enforce a cap of 20 on the maximum relative position. Experiments show different threshold values of 10, 20 and 50 have minimal impact on prediction results.

Prediction Results

We separate our data trace by time, auctions that concluded at least 14 days before the end of the trace (120,671 auctions), and auctions taking place during the last 14 days (13,842 auctions). We use the older auctions for training, and the newer auctions for testing.

We first use the probability on the class "End" to predict whether an auction will end or not. In Table 4.4, the best performing n-gram model is 5-gram with an AUC of 0.844. The LSTM model beats it by a large margin with an AUC of 0.890, as shown in Figure 4.4.

We evaluate bidder prediction using top-1 accuracy, which is the percent of time our model correctly predicts whom the next bidder is. As shown in Table 4.4, the LSTM achieves a slightly higher top-1 accuracy of 0.900. In addition, we evaluated each model’s perplexity. It is formulated as $\exp\left(-\frac{\sum_i \log p_i}{n}\right)$, where p_i is the predicted probability.
of the i-th relative position in the test set of n bids. A lower perplexity indicates a better model. LSTM significantly outperforms the rest.

The high accuracy in bid prediction indicates strong underlying processes that drive bidder behavior.

4.4.2 Powering Simulation with LSTMs

However, simply being able to predict the next bids based on previous traces is not enough to simulate actual auctions. As auction outcome is heavily influenced by metadata such as type of product being auctioned, *e.g.* bidder behave differently for items like cars and toys. In addition, to effectively simulate auction environments, we need to accurately predict exactly *when* bids occur.

It is clear that we needed a much more detailed and accurate model, one that predicted not only the next bidder, but gaps between bids as well as longer-term behaviors like bidding wars. Since events in auctions are highly dependent on previous events, small errors in the sequence of bids tend to cascade into larger errors. Given an item, only a consistently accurate simulator would be able to accurately predict the entire bid sequence, and produce final results (final sale price and auction end time) consistent with real auctions.

We build a new model using a two-layer LSTM model, that considers a number of key features:

- Buy-It-Now price of the product being auctioned.
- “Category” of the product.
- Time (time of day and day of week) of the last bid.
- Delay between current bid and previous bid.
• Current auction price of the product.

Once trained, our simulator takes data about a particular ongoing auction, and predicts the source and arrival time of the next bid. Therefore, we split the output of the LSTM layer into two branches, each connected to a fully connected layer. One predicts the next bidder, and also pipes the output (bidder ID) into the other, which predicts the time gap/delay before the next bid. The output is one of eleven labels, ranging from 0 to 10 seconds. The model has an additional “temperature” hyperparameter that controls the level of randomness during bid generation, which can be tuned easily using a subset of the traces.
4.4.3 Trace-based Simulator Validation

We evaluate our simulator in three ways: a) single bid prediction accuracy, b) distributions over generated full auctions, and c) comparisons of parameters from linear regression. First, we test bid prediction accuracy by training a model on 90% of auction traces, and testing on the remaining 10%. Our model accurately predicts the next bidder 90.6% of the time, and predicts arrival time of the next bid with a mean absolute error of 0.035 seconds.

Next, we quantify the accuracy of the simulator by looking at its ability to generate full auction traces that match real auctions in key characteristics. We generate 1,000 full auction traces (using initial metadata chosen to match real traces), and compare them with real world traces on three key features: Auction final price, a measure of how long the auctions last; unique bidders per auction, and length of bidding wars, which measures the length of any bidding wars between two final bidders. The distribution of these key features in our synthetic traces are plotted together with the distributions of real traces, in Figures 4.6, 4.7 and 4.8. Each plot includes a Kolmogorov-Smirnov test (K-S value) and a p-value. As we can see, our simulator’s synthetic bidding traces match the real samples nearly perfectly visually as well as using K-S and p-values, across three key features.

Finally, we examine whether our model is able to capture the different contributions of different metadata features in each auction, by performing a linear regression between metadata and number of unique bidders on both real world and simulated traces. This is one way to test similarity of the two sets of traces (real measurement traces vs. synthetic traces generated by our simulator) across different subsets defined by varying metadata values. As shown in Table 4.5, our simulator is able to produce a set of coefficients quite similar to that in the actual world across a wide range of metadata values. We mark
Using Understanding to Guide Financial Actions: The Case of Penny Auctions Chapter 4

<table>
<thead>
<tr>
<th>Category</th>
<th>Real traces (N=134568)</th>
<th>Simulations (N=1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bundles</td>
<td>23.69 †</td>
<td>24.31 †</td>
</tr>
<tr>
<td>Electronics</td>
<td>-6.27 †</td>
<td>-14.00 †</td>
</tr>
<tr>
<td>Fashion</td>
<td>-20.32 †</td>
<td>-19.90 †</td>
</tr>
<tr>
<td>Gift Cards</td>
<td>-26.66 †</td>
<td>-25.85 †</td>
</tr>
<tr>
<td>Day of week</td>
<td>Is weekday</td>
<td>-2.49 †</td>
</tr>
<tr>
<td>1 AM to 7 AM</td>
<td>8.49 †</td>
<td>7.09 †</td>
</tr>
<tr>
<td>7 AM to 1 PM</td>
<td>4.33 †</td>
<td>4.16 †</td>
</tr>
<tr>
<td>1 PM to 7 PM</td>
<td>2.60 †</td>
<td>1.37</td>
</tr>
<tr>
<td>Buy-It-Now Price</td>
<td>0.0137 †</td>
<td>0.0121 †</td>
</tr>
<tr>
<td>Y-Intercept</td>
<td>38.68 †</td>
<td>40.94 †</td>
</tr>
</tbody>
</table>

Table 4.5: Results of linear regression correlating auction metadata with # of unique bidders (†p<0.01, †p<0.05.).

each result with the associated p values between the fitting and the # of unique bidders.

Together, these validation results lead us to believe that our simulator can provide an accurate testing ground involving bidding behavior of real penny auction users. However, we note that our goal is not to provide a fully realistic real time simulator that models human responses to unforeseen bidding strategies. Such a system is well beyond the scope of this work, and would be quite challenging to validate in its own right. Given our large training corpus of real human bid sequences, the goal of our simulator is to capture user responses to bidding strategies already used by users in our large sample trace. While we believe that is a reasonable expectation given the size of the LSTM architecture used, it does mean it is conceivable that a highly unusual bidding strategy not captured in our dataset of 134K auctions might trigger an unrealistic response from our simulator.
Using Understanding to Guide Financial Actions: The Case of Penny Auctions

![Figure 4.9: % of auctions won against net gain for each auction.](image)

<table>
<thead>
<tr>
<th># of Bidders</th>
<th>Net Gain / Auction</th>
<th>Avg % of Auctions Won</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.73</td>
<td>13.04</td>
</tr>
<tr>
<td>2</td>
<td>-78.56</td>
<td>3.59</td>
</tr>
<tr>
<td>3</td>
<td>-100.11</td>
<td>1.35</td>
</tr>
<tr>
<td>4</td>
<td>-94.53</td>
<td>1.19</td>
</tr>
<tr>
<td>5</td>
<td>-97.72</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Table 4.6: Performance of learning-based strategy (without BidBuddy) when used by multiple bidders.

4.5 How to Bid and Win Penny Auctions

In this section, we explore the feasibility of developing adversarial bidding strategies in penny auctions. We want to explore two separate goals here. First, we consider a targeted auction strategy, where the user has chosen a single product or auction, and wants the best strategy to “win” the product at the lowest price possible. Second, we consider a global maximization strategy, where the user is not interested in a particular item, but is interested in maximum financial gain by winning items and reselling them on secondary markets (we have observed this behavior by a number of DealDash power users). In this section, we consider strategies for both scenarios.
4.5.1 Automated Bidding Agents

To more accurately understand the impact of bidding in real penny auctions, we need to first discuss the role of practical issues, including bid failures and automated bidding agents like “BidBuddy.”

“Bid failures” occur when bids placed do not arrive on time before the auction ends, either due to network or server-side processing delays. To understand these failures, we placed 1,800 real bids on DealDash (at randomly chosen timer values) and observe the bid time recorded by the server. We find that although most recorded bid times on the server are close to our bid times, there is still significant variance, with a standard deviation of 0.840 seconds. We find from our tests that issuing bids close to the deadline results in a high probability of failure. A bid sent (from a low latency client running on Amazon EC2) with 1 second left on the timer has a 49% chance of failing, whereas a bid sent with 3 seconds left has a 0.8% failure rate. We introduce this server-side delay as a normal distribution into the simulator. In practice, a simulated bidder must issue bids with sufficient time buffer to account for this.

Many users avoid such tradeoffs by using automated bidding agents like BidBuddy, where the user specifies a budget, and the agents place bids for him/her at the very last second. If multiple users activate bidding agents in the same auction, the server rotates through them in a round robin fashion every time the clock is close to expiration. Since bidding agents run on the bidding platform itself, they always wait until the last possible moment, \textit{i.e.} with less than 1 second before the auction will be terminated. While our simulator does not explicitly recognize automated agents, it does capture their behavior as consistent bidders who always bid with less than 1 second on the timer.
4.5.2 Adversarial Strategies

Next, we describe three different approaches to developing adversarial bidding strategies in penny auctions: prediction (based on predicting the auction end time), learning (iteratively learns when to bid based on multiple iterations), and random. For each approach, we explore dual strategies both with and without the use of automated bidding agents like BidBuddy.

Prediction-based Bidding. Our first strategy tries to predict when the last bid will occur and place a bid afterwards. It reasons that even if the bidding continues, this strategy reduces costs of bidding by skipping the large majority of bids in the auction.

To predict when the last bid will occur, we build a binary LSTM model with the output being whether the auction will end or not. The LSTM predicts if the auction will end in real-time, using a sequence of the most recent 50 bids. Following each new bid, the new bid is fed into the predictor which generates a probability of the auction ending immediately. If the result is higher than some predefined likelihood threshold \(T \), we either place a bid or turn on BidBuddy for automated bidding. Otherwise, we wait for the next bid and iterate the process once again. If the predictor fails to predict the end of the auction, we lose.

The prediction strategy can work with a standalone user-bidding process or rely on BidBuddy to reduce the chance of bid failures.

Learning-based strategy. Our second strategy makes use of iterative learning, using the Cross-Entropy (CE) Method, an efficient optimization algorithm which can be adapted to learn the optimal bidding strategy \[138\]. The CE method builds a good bidding strategy by starting with a model with multiple parameters, each with some learned prior probability distribution. In each learning iteration, the model generates some number of model parameters, tests them with multiple simulated auctions, chooses
a small subset of best performing parameters, and updates the mean and variance of
the distribution. The model repeats the learning iteration with the updated distribution
until the parameters converge.

For our purposes, we need to choose a parameterized model, key parameters, and an
initial prior distribution. Since CE works well with simple distributions, we choose logistic
regression as the parameterized model. For our parameters, we identify key features that
most strongly correlate with the winning bid of auctions. We train a random forest using
a collection of winning bids and non-winning bids, and use the resulting classifier to
identify the most important features, which we list below. Finally, as is common when
using CE, we choose the \textit{Gaussian}(0, 1) as the prior distribution for parameters.

- Current price: The current price of the auction.
- Last bidder ratio in 10/50: The number of bids placed by the last bidder in the
 most recent 10/50 bids.
- Recent unique bidders: Number of unique bidders among those who placed the last
 10 bids.
- Last bidder ratio in all: What percentage of bids in the auction is placed by the
 last bidder.
- Last bidder dominance: The percentage of bids placed by the last bidder minus
 that of the second to last bidder.
- Buy-It-Now price: The Buy-It-Now price of the product.

We build two versions of the algorithm, one intended to work with BidBuddy and
one with users sending in bids. In the iterative parameter learning phase, the BidBuddy
version is evaluated while using BidBuddy in the simulated test runs; the user-version is evaluated with users sending in bids.

Random Baseline. Finally, to serve as the baseline, we randomly place bids with a fixed probability. Just as the others, there are two versions of this strategy, using and not-using BidBuddy for bidding.

4.5.3 Evaluating Strategies

To evaluate the performance of different strategies, we use each strategy to participate and make bidding decisions in 5,000 simulated auctions. We compute two metrics. One is the percent of auctions won using the strategy. When the money spent in the auction exceeds the Buy-It-Now price, we consider the auction lost (recall that our data shows the Buy-It-Now price is generally higher than the online retail price). The other is net return per auction, where we compare the retail price of the item won and the total cost paid (total cost of bids and final auction price). We assume that when a user’s cost of bids exceeds the price gap between the Buy-It-Now price and retail price, she exits the auction by buying the item for the Buy-It-Now price, and gets her bids refunded.

In our tests using the prediction-based strategy, we tuned the bidding threshold between 0 and 1 to compute its optimal performance. Similarly for the learning-based strategy, we trained different strategies while setting the optimization goal as a weighted combination of number of auctions won and net return.

We plot the performance of all strategies shown in Figure 4.9. First, we note that learning-based strategies produces generally very good results that are optimized for one of two outcomes. If we optimize for net return, we win less auctions while getting a high net return. But if we focus on winning each auction, the optimal learned strategy is very close to the baseline case where we bid persistently. If we set the optimization goal to a
combination of both goals, the learned strategies naturally converge to one of the two. This indicates that there are two convergent behaviors in winning penny auctions with iterative learning, either to bid persistently on all items, or being high selective, winning less auctions but getting a higher net return. Attempts to strike a balance between the two are likely to yield worse results.

As for the prediction-based strategy, it performs worse than learning-based strategy regardless of whether BidBuddy was used. It likely is too heavily dependent on prediction accuracy, since a single failure to predict the auction end will lose the auction. Given the reliance on catching near-auction-end events, it is unsurprising that using BidBuddy to reduce bid failures has a significant impact in net gain per user.

Surprisingly, the baseline random case, where BidBuddy is always on, performs reasonably well, and is actually able to win $4.7 per auction. This suggests that even without sophisticated strategies, a persistent bidder can perform quite well in penny auctions. In fact, when looking at the percent of auctions won, the Random Baseline grows super linearly with bidding probability, consistent with previous work which finds the persistent bidders, a.k.a. power bidders, to be the best performers in penny auctions [13]. In the limit, this suggests an extremely aggressive bidding approach will produce good results:

Theorem 1 *For a resourceful bidder whose budget is no less than the Buy-It-Now price of the auction item, the optimal strategy to acquire the item is to bid persistently. The bidder's finally auction cost is upper bounded by the Buy-It-Now price.*

Proof: If the resourceful bidder is the only bidder who bids persistently, then it will win the auction in the end and receive the item because it is the last bidder who submits bids. If there are more than one resourceful bidder who bid persistently, then they will form a bidding war and drive up the price to reach the value of the Buy-It-Now price. When this happens, these bidders will all pay the Buy-It-Now price to stop the auction
(since each penny auction can have multiple winners, and each winner receives a copy of the auction item).

Next, we are interested in what are the best strategies chosen by the learning approach. We examine the coefficients used by the best performing strategy with the highest net return. All features are z-score normalized before training. We find the most important feature is the Buy-It-Now price of the item, with a coefficient of 18.9. This indicates that based on our trace data, the best way to maximize gains is to engage in auctions of big-ticket items. The second most important feature is the percent of bids placed by the last bidder, with a negative coefficient of -4.91 on bidding decisions. This shows that we can maximize success by avoiding auctions with a single dominating bidder. That scenario is likely to end in a costly bidding war. Beyond these two dominating factors, no other feature has a consistent strong impact on bidding success.

In summary, we observe two different bidding strategies depending on the specific goal. To optimize the number of auctions own (or to maximize the chance of acquiring a given item), the best strategy is simply to bid persistently while using BidBuddy. To achieve better aggregate gains, it is best to pursue expensive items while avoiding power bidders.

4.5.4 Competitive Adversarial Bidding

Our earlier discussion assumed that the adversarial bidding strategy was utilized by a single user at an auction. But what happens when adoption of more advantageous strategies gains traction, and multiple bidders utilize similar strategies at the same auction? Our observation is that penny auction sites are the ultimate winners when adversarial bidding strategies collide.

We experiment with this scenario, by simulating competing bidders using the same
strategy in the same 5000 auctions. We begin with the strategy that maximizes win probability per auction, the persistent bidding strategy using BidBuddy. Having two bidders both adopting the strategy in the same auction triggers a bidding war that results in both bidders placing bids nonstop, until the cost in bids exceeds the item’s Buy-It-Now price. It is then preferable to simply stop bidding and buy the auctioned item from DealDash. Our simulation shows that net gain per auction drops from $10.9 to $-227.5 by having multiple adversarial bidders in the same auctions, which is essentially the result of using Buy-It-Now for every single auction the bidder has joined.

We then test the strategy with the highest net return, which is our CE-learned strategy that did not train together with BidBuddy. As before, performance still plummets when multiple bidders adopting the strategy are in the same auctions. As seen in in Table 4.6, the bidders are losing an average of eighty dollars by participating in each auction, and the situation gets even worse as more such bidders enter into the auction.

Essentially, DealDash has created a prisoner’s dilemma type of situation. For any single user, persistently placing bids using BidBuddy is an easy way to win auctions and gain money. However, when other users in the same auction decide to use the same strategy, they will then drive up the final price of the auction and all end up losing money to DealDash.

4.6 Limitations and Ongoing Work

In this chapter, we described our efforts to understand who are and how to profit from penny auctions. In addition to updating profitability studies, our analysis of profit distributions empirically confirm that penny auctions rely on a steady stream of new users to generate revenue, possibly explaining the downfall of many penny auctions in the past. Next, we develop a detailed and highly accurate auction simulation platform,
and use it to develop multiple adversarial bidding strategies for different assumptions.

Prisoner’s Dilemma. Intentionally or not, DealDash has created a Prisoner’s Dilemma-like situation, where, for any single user, bidding more persistently yields higher average return, especially in big ticket items. By providing BidBuddy as a functionality, DealDash reduces the effort needed to be a persistent bidder, while eliminating accidentally failed bids, making it very easy for users to bid persistently. Meanwhile, per-user returns plummet when multiple users adopt the strategy, and profits are maximized for the penny auction provider.

Limitations. Our work is fundamentally limited by the lack of controlled experiments for adversarial bidding strategies in real settings. We note that even if ethical concerns were fully addressed, it is infeasible to perform a truly controlled and reproducible A/B test in the wild. Instead, we plan to validate bidding strategies by conducting user studies in a controlled setting, in the form of auction games. Designed correctly, these studies can replicate the biases that trigger actions in the wild, and offer an opportunity to understand the bidder’s decision process through detailed interviews.

Finally, our analyses confirm that penny auction exhibit similar properties as some regulated industries, e.g. the gambling industry. We plan to share our data and software with the research community, and with contacts at federal agencies for potential oversight.
Chapter 5

Conclusions and Discussions

In this dissertation, we have illustrated how the increasing digitalization of financial activities has empowered us to study financial behavior at a large scale, while still maintaining the ability to study the phenomenon in depth. Our methodology consists of three main themes. *First*, in Chapter 2 we ground our analysis on vast quantities of real-worlds financial activity traces to ensure a board coverage and to surface previous unknown patterns. *Second*, in Chapter 3 we take advantage of established theories in social science and behavioral economics to explore the hidden drivers behinds user behavior. *Finally*, in Chapter 4 we demonstrated how knowledge of users’ behavior can be translated into future actions. Given the ultimate trend of moving financial life online, we believe that our works are only the start of a thriving field of research and that our methodology can be generalized to an even wider range of applications.

In this chapter, we summarize the key findings of this dissertation, discuss what we have learned during the research process and explore the future directions surrounding the study of financial behavior.
5.1 Summary

First, we seek to obtain an unbiased picture of users’ financial behavior through measurement studies. Thanks to the growing trends of digitalization and even socialization of financial activities, we have been able to analyze individual financial behavior at unprecedented scale. Using records of all public transactions on Venmo, we show that Venmo’s transaction graph provide a close representation of strong real-world friendship as indicated through the high clustering coefficient and reciprocity in comparison to interactions on traditional online social networks. Venmo’s social payment graph can serve as a stronger and perhaps more meaningful dataset of social relationships. In addition, we demonstrate key differences between social payments and business payments, which shed lights on how one may identify different target users within the network based on their behavior.

Similarly, we find that most penny auction bidders fall into a limited number of behavioral categories based on how patient or aggressive they are and how much money they are willing to use to win auctions. We show that the large majority of users lose money, while a small portion of users are winning disproportionately whose behaviors exhibit high distinct characteristics.

Second, as the existence of naturally grouped behavior patterns suggests that users’ financial behaviors are driven by a limited set of common motivations, we then seek to understand the common drivers behind these behaviors. We achieve this by borrowing theories from social science and behavioral economics. Using a mixed-method study with surveys and interviews, we find the presence of degree effect among Venmo users’ and cluster effect among users of WeChat Pay. In addition, we identify a U-shape in the relationship between strength of social relationship and ease of payments. Transactions between normal friends turn out to be more awkward then those with close friends or
casual acquaintances. Using digital wallet during payments, however, may actually help alleviate some of such awkwardness. Consistent with our expectation, we find that users are reluctant to share their financial activities due to privacy and security concerns, and the utility value of a mobile wallet is much more important than its social value.

Building on prior theories around auction behavior [120, 121, 122, 123, 56, 124, 125, 126, 127], we examine their applicability in the penny auctions setting, finding confirmation of sunk cost fallacy and endowment effect, while identifying evidence against herding in penny auctions. Furthermore, when examining the auction sites, we identified (potential) designs that take advantage of the irrationality in bidder behavior to the advantage of the auction sites.

Finally, by applying data-driven learning models of penny auction bidding behavior, we are able to build an accurate simulator for the bidding environment, which can then be used to develop and test adversarial strategies that can consistently win auctions and maximize user gain. By exploring a variety of adversarial strategies, we find iterative learning to produce the best results, with the learned strategy behaving similarly to power bidders identified in Chapter 2.2.4. Interestingly, the learned strategy seems to be taking advantage of irrationalities discovered in Chapter 3.2.3 without us telling it to. We also show that when multiple users use such strategy to compete in auctions, a prisoner’s dilemma would appear and end up benefiting the penny auction sites. This again illustrates the hidden complexities of financial systems.

5.2 Lessons

During our study of financial behavior, we have accumulated many lessons. Here, we select and describe a few of them.
Users behave differently, in similar ways. One key conclusion keeps surfacing throughout our analysis is the inherent differences that are present in financial behavior. Highly distinct usage patterns are observed through clustering, graph analysis as well as community detection, which highlights again and again that not all financial behaviors are the same, and treating them as such will result in misconceptions about the behavioral patterns.

One prominent example is the differences in the graph structure of social payments and non-social payments as discussed in Chapter 2.1.4. When the Venmo transactions graph is treated as a whole, its graph properties fail to reflect the true structure of the payments, concealing the extremely high assortativity of the social payments and the low clustering coefficient of the non-social payments. Only when we learn to separate payments of different nature, do we realize the true uniqueness of financial behaviors.

On the other hand, users tend to fall into fixed set behavioral groups, with users in the same group behaving very similarly to one another. This phenomenon is observed through clustering on behavioral features both in financial behavior on Venmo [12], DealDash [13] and on social network sites like Whisper and RenRen [14]. Before aggregating user behavior during data analysis, it is always useful to realize the fact that users are driven by a diverse set of motivations, and by distinguishing different users’ intentions, the aggregated behavioral patterns would provide deeper insight into users’ actual behavior.

Research problems are in daily life, waiting for those who can catch it. Measurement studies are unique in the sense they are almost always about large-scale activities and thus the subject of the study often comes to you naturally without having to look for it. For example, Venmo came to our attention because it has been used by our friends to split meal expenses. I have now adopted the habit of asking myself “can this be turned into a research project?” every time something new catches my eye.
However, one thing to keep in mind is that simply conceiving a project idea is not enough. The important thing is to take steps to execute the idea solidly. One should not hesitate to take on new projects simply because there is an existing project that his/she is working on. The nature of large-scale measurement projects entails that there will be periods where one has to wait for the analysis run to finish. Such periods can be utilized when there are parallel projects going on. Another reason why not to wait is that, if a measurement study idea comes to you naturally, then it is very likely also coming to someone else, and it is always easier and more fun when you are the first.

Dealing with challenges in obtaining data. To model user behavior, one would need large quantities of user data. Over the years, we have used different methods to collect data, ranging from web crawling, reverse engineering, collaboration with the industry, to user surveys and interviews. For web crawling, there has always been an underlying struggle with the service providers who are unwelcoming if not hostile to the probing eyes of the researchers. Escalating degree of crawling and anti-crawling has gone on in the community, going from rate limiting, captcha, to returning fake data.

Given the sensitive nature of financial activities, one would expect the future to be less than promising for the crawling-based approaches. Nonetheless, there remains two promising approaches in the future. First, enhanced collaboration with the industry. In this age of accelerating growth, research topics are popping up constantly along with plethora of data. Both the research community and the industry would benefit greatly from a collaboration. Second, go narrow and go deep. Traditional measurement papers are often looking at a large and general population. This provides the benefit of having a complete picture of a large system. However, the strive for completeness often hides individual differences which sometimes carry profound insights into user behavior. By limiting the scale of the study, a wider set of tools are applicable and even anti-crawling
mechanisms become less of a problem. Keep in mind that the narrow-and-deep approach is by no means easier than the comprehensive approach, as it requires the researchers to be able to intelligently identify the right angle.

5.3 Future Directions

Moving forward, I plan to continue research into financial behavior, looking at dramatic changes induced by digitalized payments and understand their implications on user behavior and on research methodologies.

Modeling users of crypto currencies. Over the recent decade, crypto currencies have emerged as an alternative to fiat currency. Users rush into the realm with varying intentions, there are black market dwellers seeking to purchase illegal goods [143], hackers extorting their victims while hiding their identity [144], investors busy building castles in the air, as well as enthusiasts excited to experience new technology.

I plan to investigate into this diverse set of population, examine their perceptions and usage patterns of different crypto currencies, and understand the implications to the community, while dealing with the challenge of the potential bias introduced in the methodology.

Monetization models on the Internet. The Internet is not the first industry to adopt the advertisement-base revenue model, however, it is definitely the one that took it to a whole new level. Nowadays, most of the major players on the Internet make their earnings through ads. From Internet giants like Facebook and Google, to individual contributors on YouTube, advertisement has been the most widely adopted way of monetization. However, the ad-based model is facing challenges in three directions.

Firstly, there have long been complaints that the ad-based revenue model is creating an economy focused on grabbing people attention instead of provide long-lasting benefits
to the audience. Rather than spending time to improve the quality of content, news sites like to use sensational headlines or even click baits to trigger users’ interests.

Secondly, with the advancements in digital payments, users are less and less resistant to the idea of spending money on intangible goods, which enables the introduction of new revenue models to challenge the ad-based model. Netflix’s subscription-based model has generated $15.79 billion in revenue, proving how subscription-based services can also make money in the digital age. In addition, donation-based model is also a viable alternative used by a number of streaming services [145].

Finally, digital payments carry the promise a completely new pricing model as it can support micro payments with arbitrarily small monetary value. Basic Attention Token (BAT) [146] is an example that take advantage of this fact and promise to pay websites based on the exact time spent. Although BAT is still built on the advertising model, one can easily see how such capability may be transformed to enables other revenue models.

The future will be a battle ground between a diverse set of revenue models and it is highly interesting to see what effects different models have on the content, and how to design completely new revenue model given the new capability of digital payments.
Appendix A

Appendix

A.1 Appendix: Questionnaire used in Digital Wallet Survey

Definition: by digital wallet, we mean an electronic device (e.g., computer or smartphone) or service that allows an individual to make an electronic transaction online rather than directly through cash or bank cards. In this survey we are particularly interested in Venmo and PayPal, but we appreciate your answers for other similar services.

* 1. How often do you use the following digital wallets?

<table>
<thead>
<tr>
<th></th>
<th>Venmo</th>
<th>PayPal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Less than once a month</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Once a month</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Several times a week</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Once a week</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Everyday</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Other (please specify service and frequency): ________________

* 2. How long have you been using digital wallets?
Appendix

*3. What have you used digital wallets for (multiple choices)?

<table>
<thead>
<tr>
<th>Service</th>
<th>Venmo</th>
<th>PayPal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Online shopping</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Offline shopping</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Paying bills / rent</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Paying for services (e.g., taxi/uber, restaurants)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Send money to/from friends</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Send money to/from strangers</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other (please specify below)</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Other (please specify): ______________

*4. What motivated you to start using digital wallets (your first transaction or main reason for linking it to your bank account or credit card, multiple choice)?

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Venmo</th>
<th>PayPal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Asked to by friends/relatives</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Asked to by a vendor/service provider</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>No/low service fees</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ease of use</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Wide coverage</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>To replace carrying cash</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Unique functionality</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other (please specify below)</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Other (please specify): ______________

*5. What are the major reasons why you continue to use digital wallets...
today (multiple choices)?

<table>
<thead>
<tr>
<th></th>
<th>Venmo</th>
<th>PayPal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>No/low service fees</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Ease of use</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Wide coverage</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>To replace carrying cash</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Unique functionality</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Social (my friends use it)</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Other (please specify below)</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Other (please specify): __________________________

* 6. Please indicate your level of agreement with the following statements:

I frequently send/receive money with my friends using digital wallets.

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

I use digital wallets because people in my social network (friends, relatives, coworkers, etc.) are using it.

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

* 7. These social features in digital wallets would or could increase my ”stickiness” (long-term loyalty) to the service:

Easy, flexible transactions with friends

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Easy, flexible transactions with strangers

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

Access to recommendations, reviews, sales/discounts, shared between you and your friends

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Access to recommendations, reviews, sales/discounts, shared between you and your followers
Strongly disagree Disagree Neutral Agree Strongly agree
0 0 0 0 0

Able to follow others who have similar shopping interests
Strongly disagree Disagree Neutral Agree Strongly agree
0 0 0 0 0

Able to share my shopping interests with others
Strongly disagree Disagree Neutral Agree Strongly agree
0 0 0 0 0

Other (please specify): ____________

* 8. If a digital wallet shared my transaction records with my friends by default, I would keep that setting.

Strongly disagree Disagree Neutral Agree Strongly agree
0 0 0 0 0

* 9. If a digital wallet allowed me to share (some of) my transaction records with my friends, I would make use of that feature.

Strongly disagree Disagree Neutral Agree Strongly agree
0 0 0 0 0

* 10. Specify the types of transactions you are willing to share with your friends (multiple choices).

□ Purchases
□ Money transfers
□ Billing / Charging others
□ Gifts
□ Donations
□ Other (please specify) ____________
11. Specify the types of information you are willing to share with your friends (multiple choices).

- Purpose (e.g., food, entertainment, etc.)
- Recipient
- Amount
- Time
- Other (please specify) ___________

12. If a digital wallet shared my transaction records with the public by default, I would keep the setting.

<table>
<thead>
<tr>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

13. If a digital wallet allowed me to share my transactions with the public, I would use it.

<table>
<thead>
<tr>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

14. Specify the types of transactions you are willing to share with public (multiple choices)

- Purchases
- Money transfers
- Billing / Charging others
- Gifts
- Donations
- Other (please specify) ___________
* 15. Specify the type of information you are willing to share publicly (multiple choices)

- Purpose of Transaction (e.g., food, entertainment, etc.)
- Recipient
- Amount of Transaction
- Time of Transaction
- Other (please specify) ________________

* 16. I would be interested to hear about other peoples transactions shared on digital wallet platforms.

<table>
<thead>
<tr>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

* 17. Specify the types of transactions you are interested in hearing about (multiple choices):

- Purchases
- Money transfers
- Billing / Charging others
- Gifts
- Donations
- Other (please specify) ________________

* 18. Specify the types of information you are interested in hearing about (multiple choices):

- Purpose of transaction (e.g., food, entertainment, etc.)
- Recipient
Appendix Chapter A

- Amount of transaction
- Time of transaction
- Other (please specify) ____________

* 19. I think cash will be fully replaced by digital wallets by 2026

[] Strongly disagree
[] Disagree
[] Neutral
[] Agree
[] Strongly agree

* 20. What are the most attractive (and hard to replace) properties of cash that make you reluctant to go completely cashless?

- Cash is more secure
- Cash transactions are more private
- Cash is universally accepted
- Cash does not require mobile network connection
- Other (please specify) ____________

* 21. Why do you think digital wallets are better than cash?

- Fast transactions
- Transactions can be any amount
- Remote transactions
- No need to carry cash
- Social (sharing with friends)
- Other (please specify) ____________

* 22. I think use of digital wallets will exceed that of credit cards and debit cards by 2026
* 23. What are the most attractive (and hard to replace) properties of credit/debit cards that would make you reluctant to go completely digital?

☐ Universally accepted
☐ More trustworthy
☐ Benefits from cards (points, rebates, cash back)
☐ Other (please specify) ____________

* 24. Why do you think digital wallet is better than cards?

☐ No need to carry physical cards
☐ Social (sharing with friends)
☐ More secure
☐ Other (please specify) ____________

* 25. What aspects of digital wallets must be improved for you to fully embrace this service and eliminate cash from your daily lives? (explanation below)

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Not a priority</th>
<th>Low priority</th>
<th>Medium priority</th>
<th>High priority</th>
<th>Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Usability</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Coverage</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Efficiency</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Privacy/Security</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Social</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Explanation:
• Cost: To use the payment system, how much money you need to pay (e.g., transaction fee)
• Usability: To what extent the payment system is easy to use (e.g., fast connection, simple operation)
• Coverage: How many different scenarios the payment system can be used (e.g., transfer money, buy products, pay bills)
• Efficiency: How fast a payment/transfer happens (e.g., always instant transfer money from payment system to bank account)
• Privacy/Security: To what extent your personal information and money are properly preserved
• Social: Integration with social network (friends, relatives, colleagues, etc.)

Other (please specify) __________________________

* 26. What is your gender?
 ○ Female ○ Male ○ Other

* 27. What is your age?
 ○ <= 20 ○ 21 - 30 ○ 31 - 40 ○ 41 - 50 ○ 51 - 60 ○ > 60

* 28. Which of the following best describes your current occupation?
 ○ Student ○ Full-time employment ○ Part-time employment
 ○ Self-employed ○ Unemployed ○ Retired

* 29. In what country do you live?

* 30. In which area do you live?
 ○ City ○ Town ○ Rural area

* 31. What is your annual (approximate) household income?
32. [OPTIONAL] If you would like to receive your $1 reward for completing the survey and be entered in the $300 raffle, please type your Venmo user ID here. We respect your privacy and your ID will be used only to issue payment.

A.2 Appendix: Semi-structured Interview Script for Digital Wallet Systems

Q1. How long have you been using Venmo and how often? What do you usually do with Venmo? Could you share with me your very first experience with the service? Why do you continue to use the service?

For the following scenarios, if they don’t mention, ask them if there is:

- Split bills
- Borrow / lend money (including ask others for help to buy)
- Pay private service (e.g., buy breakfast, pay rent)

Q2. (For different scenarios)
• Can you give us more detail about the scenario? (ask more detail)
• Who is the other person?
• How do both of you agree to use Venmo as the payment method?
• How do you become Venmo friends?
• How frequent do similar payments happen?

(Some transactions are with friends, while some are with strangers. We classify different transactions and tell the interviewee which is which)

Let’s forget about Venmo, we will ask your opinion about general financial activities with different kinds of people.

Some definitions:

• Close friends are people you have known a lot time with strong familiarity, like family members, significant others, roommates, best friends

• Acquaintances are people you are familiar with, but perhaps only have weak relationships with little attachment, like your bank teller, your postman, your barber, or your landlord.

• Normal friends cover a broad range of friends, who you might see semi-regularly at work/school, after work, people you might enjoy hanging out with but might not share personal stories with.

Q3. *Are you comfortable bringing up the topic of money with your close friends? your acquaintances? your normal friends?*

• What are the payment scenarios with close friends/acquaintances/normal friends?
 (Other than the scenarios we talked about)
• (for each) How often?
• (scenario dependent) Is a similar scenario apply to other types of people?
Q4. Do you think you would prefer different ways to pay or receive money depending on your relationship with a friend, e.g. cash, check, apps by bank (Chase), payment apps (Venmo), social apps (Facebook)?

- If yes. What are the ways for each of them? Why the difference?
- If no. What is the way? Why do you choose this one?

Q5. Do you have any security concern about Venmo when you bind your debit/credit card to Venmo? If so, how do you overcome the concern?

Now lets look at Venmos sharing function.

Q6. What do you think about the sharing design? Have you ever shared your payment to your friends?

- If yes. What did you share? What do other people think of the shared payment?
 Do you have security concern when sharing payments? What about sharing to the public? Have you used emoji in shared message?
- If no. Why?

Q7. What do you know about the default sharing setting in Venmo? When did you notice? What do you think of this default setting?

Q8. Have you ever looked at the news-feed of your friends?

- If no. Why? Is it because your friends are not using Venmo? How do you know if your friends are using Venmo?
- If yes.
 - What about public feeds? What are you interested in? Any stories?
 - Do you think thats a lot of your friends or just a few?
 - What do you think when you look at these payments?
Q9. Suppose one day you find that none of your friends are sharing their records, what will you do?
Bibliography

[5] “Send money to friends in messenger.”

[10] K. Pearson, X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science 50 (1900), no. 302 157–175.

