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Cauchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 3.1: The specifications of “Hover”. The quadcopter is equipped with
high efficient power system, including T-Motor MN3508 KV380
motor, 1552 folding propeller and Foxtech Multi-Pal 40A OPTP
ESC, to ensure long flight time. . . . . . . . . . . . . . . . . . . 54

Table 3.2: Orthomosaic images generation workflow in Agisoft Metashape. . 61
Table 3.3: Different resolutions accuracy for onion treatment inference. The

best accuracy was 0.726, which showed up when the resolution
was at 2.02 cm/pixel by using “Neural net” classifier. Compared
with the other classifiers, the “Neural net” classifier performed
the best in all resolution levels. . . . . . . . . . . . . . . . . . . 75

Table 3.4: Bands configuration accuracy for onion treatment inference. The
best accuracy was 0.840, which appeared when the RGB-NIR-
TIR waveband images were used by “Gaussian process” classi-
fier. Compared with the other classifiers, the “Gaussian process”
classifier performed the best in all wavebands configuration. . . . 76

Table 3.5: The groundtruth. . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 3.6: The measurement from the non-calibrated camera. . . . . . . . . 84
Table 3.7: The measurement from the calibrated camera. . . . . . . . . . . 85
Table 3.8: The root mean square error. . . . . . . . . . . . . . . . . . . . . 85
Table 3.9: The view angle experiment. . . . . . . . . . . . . . . . . . . . . . 87
Table 3.10: The stitching effect on the data. . . . . . . . . . . . . . . . . . . 88
Table 3.11: The root mean square error. . . . . . . . . . . . . . . . . . . . . 89
Table 3.12: The UAV flight schedule. The UAV flight height was 60 m, 90

m, and 120 m to acquire different high-resolution multispectral
imagery. Data was collected successfully for three different days,
5-8-19, 9-19-19, and 10-3-19. . . . . . . . . . . . . . . . . . . . . 93

xxii



Table 3.13: Entropy was used in the quantitative analysis and evaluation
of image information, because it provided better comparison of
the image details. Higher value of entropy meant more detailed
information in the image. . . . . . . . . . . . . . . . . . . . . . . 100

Table 4.1: The specifications of spectrometer EPP2000-VIS-50. . . . . . . 105
Table 4.2: The specifications of spectrometer Scio. . . . . . . . . . . . . . 107
Table 4.3: Top 5 performing classifiers using PCA and MLP and their grid

search parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 5.1: Specifications of several UGVs and the proposed Personal UGV. 123

Table 6.1: Nematode numbers per gram of root in rootstock genotypes ex-
amined by Walabot measurements (Project 45, 2019). “RLN per
gram of root” meant the root-lesion nematode number per gram
of root extracted in laboratory procedures. . . . . . . . . . . . . 136

Table 6.2: The classification of the nematode infestation levels (Project 45,
2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Table 6.3: The performance of classification methods (Project 45, 2019). . . 142
Table 6.4: The k-nearest neighbors performance (Project 45, 2019). . . . . 144
Table 6.5: The classification of the nematode infestation levels (Project 45,

2020). “RLN per gram of root” meant the root-lesion nema-
tode number per gram of root that was extracted in laboratory
procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Table 6.6: Nematode numbers per gram of root in rootstock genotypes ex-
amined by Walabot measurements (Project 45, 2020). “RLN per
gram of root” meant the root-lesion nematode number per gram
of root that was extracted in laboratory procedures. “ID” is a
short form for “identity”. . . . . . . . . . . . . . . . . . . . . . . 147

Table 6.7: The performance of classification methods (Project 45, 2020). . . 149
Table 6.8: The k-nearest neighbors performance (Project 45, 2020). . . . . 149

Table 7.1: ET estimation using UAV platforms. . . . . . . . . . . . . . . . 155
Table 7.2: Multispectral and thermal infrared sensors on UAV platforms. . 156
Table 7.3: Comparisons of the different ET estimation methods. . . . . . . 158
Table 7.4: Comparisons of the different ET estimation methods with UAVs. 167
Table 7.5: The UAV flight schedule. The flight height was set up as 60

m. The overlapping of UAV images was set up as 80%, so that
the UAV imagery of the pomegranate could be stitched together
during image processing. The author flew the UAV bi-weekly
over the pomegranate field at noon during the growing season in
2019. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xxiii



Table 7.6: DeepSCNs with properties. For example, the maximum times
of random configuration Tmax was set as 100. The scale factor
Lambdas in the activation function, which directly determined
the range for the random parameters, was examined by perform-
ing different settings (0.5 - 200). The tolerance was set as 0.001. 184

Table 7.7: Flight missions at the USDA in 2019. The UAV flight missions
were configured by using the MissionPlanner (Ardupilot, USA).
The flight altitude was set up as 60 m. The overlapping of UAV
images was set up as 80% forward and 70% by the side. . . . . . 191

Table 8.1: The architecture of the CNN model. . . . . . . . . . . . . . . . . 209
Table 8.2: The classification performance of CIML algorithms on irrigation

treatment levels at individual tree level. All the methods showed
a state-of-art performance, with an overall accuracy of 87%. The
“Naive Bayes” had the highest accuracy of 0.90. . . . . . . . . . 213

Table 8.3: The CNN model performance. . . . . . . . . . . . . . . . . . . . 216

Table 9.1: UAV image features used in this study. . . . . . . . . . . . . . . 224
Table 9.2: The “Decision Tree” performance on yield prediction. “NA”

stands for “Not available”. . . . . . . . . . . . . . . . . . . . . . 230
Table 9.3: The performance of ML methods on yield prediction. . . . . . . 233

Table 11.1: The stem water potential of walnut leaves. There were 16 sam-
pling trees, which had unique ID numbers. For example, “20-4”
meant the fourth tree on row 20. Each sampling tree was mea-
sured five times to reduce the likelihood of errors or anomalous
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Table 11.2: The SWP levels of walnut leaves. Based on the SWP range, the
walnut trees were classified into three levels. . . . . . . . . . . . 252

Table 11.3: The performance of classification methods. The accuracy of the
“Support Vector Machine” was 0.62. The “Random Forest” also
had a low prediction accuracy of 0.60. The “AdaBoost,” “Near-
est Neighbors,” and “Neural Network” had an accuracy of 0.60,
0.65, and 0.62, respectively. . . . . . . . . . . . . . . . . . . . . 254

Table 11.4: The “Decision Trees” performance on SWP prediction. In the
analysis as “Decision Tree” for the SWP Level 1, the trained
model predicted the test data was in the range of Level 3. There-
fore, the prediction accuracy (F1-score) of Level 1 was zero. The
model successfully classified 22 out of 25 samplings in Level 2.
For the Level 2, the model had performance with an F1-score of
0.92. For the Level 3, the model classified 9 out of 10 samplings.
The overall prediction accuracy of the trained model was 0.78. . 255

xxiv



Table 12.1: Soil samplings. All the soil samplings were from the same spot
in the almond field to make sure they are homogeneous. The
soil was dried out to make sure all the 3 cups of soil were at the
same lowest moisture level. The weights of three cups of dry soil
were 632 grams, 630 grams, and 634 grams. 6 g or 8 g water was
added in every cup each time (10 times in total) to increase the
soil moisture until the soil moisture was saturated . . . . . . . . 260

Table 12.2: The classifier accuracy. The best classifiers were “Nearest Neigh-
bors,” “Gaussian Process,” “Decision Tree,” “Random Forest,”
“Neural Net,” and “Naive Bayes” with an accuracy of 95%. The
“QDA” was with 90% accuracy. The “Linear SVM” and “Ad-
aBoost” were worst with 55% accuracy. . . . . . . . . . . . . . . 262

Table 12.3: The LDA Methods. Several LDA methods were used for soil
moisture classification. . . . . . . . . . . . . . . . . . . . . . . . 263

Table 12.4: The PCA Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 265

xxv



ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my Ph.D. advisor, professor

YangQuan Chen, who is an educationist and teacher in a research university for

me. In the Tang dynasty, there was a Chinese scholar, poet, and government

official called Han Yu (AD 768 - AD 824). In his “Discourse on Teachers”, Han

discussed the importance and principles of learning from teachers, “In ancient

times, those who wanted to learn surely had a teacher. A teacher is a person who

propagates the Dao, imparts professional knowledge, and resolves doubts. Since

no one is born omniscient, who can claim to have no doubt? Having doubt but

neglect learning from a teacher, one’s doubt will never be resolved.” During my

Ph.D. life at UC, Merced, there were always many doubts and challenges for my

research and life. I am so lucky to meet with Dr. Chen, and he is always here to

help resolve my doubts and challenges. His enthusiasm for research and optimistic

attitude towards life always encourage me to learn new knowledge aggressively and

explore the wonderful world.

I would like to extend my deepest gratitude to my dissertation committee mem-

bers: Prof. Mukesh Singhal, Prof. Wan Du, Dr. Andreas Westphal, and Dr. Dong

Wang. Their encouraging, critical, and constructive comments and suggestions

increased the value of this dissertation. I am also extremely grateful to Dr. Bruce

J. West, Prof. Reza Ehsani, Prof. Hede Ma, Prof. Adel Ghandakly, Prof. Ghang-

Ho Lee, Prof. Kurtis Kredo II, Dr. Larry Wear, Marisol B. Gamboa, Dr. Brenden

Peterson, Dr. Mikel Landajuela Larma, and Dr. Kari L. Arnold.

Many thanks to my lab colleagues Dr. Tiebiao Zhao, Dr. Guoxiang Zhang,

Dr. Brandon Stark, Derek Hollenbeck, Jose Alcala, Jairo Viola, Di An. Special

thanks to Dr. Huifang Dou, Jin & Wayne Douglass, Cilla Jia, Jinghui Wang, Kai-

jun Qi, Dr. Feng Qi, Haiyang Wang, Dr. Mengjun Shu, Renjie Cui, Dr. Yuquan

Chen, Dr. Lihong Guo, Dr. Tian Feng, Dr. Yanan Wang, Dr. Panpan Gu, Dr. Peng

Wang, Dr. Zhenlong Wu, David Doll, Cameron At Zuber, Stella Zambrzuski, and

Jennifer Bellig. Thanks go to the undergraduate researchers I have mentored and

worked with: Dong Sen Yan, Emery Silberman, Andreas Anderson, Allan Murillo,

Christopher Currier, Christopher Guzman, Daniel Perez-Zoghbi, Nicolas Limon,

xxvi



Brendan Daddino, Julian Gionet-Gonzalez, Arturo Ramirez-Reyes, Christian Mar-

tin, Jaime Rivera, Kimberly Parra, Ryan Wong, Roberto Cordero, Jesus Coria,

Kyle Chun, Merlin Appel, William Le, Levi Williams, Matthew Nor.

I deeply thank Jiamin Wei and my parents, Xiufang Niu and Jianxun Niu for

their unconditional support, timely encouragement, and endless love.

xxvii



ACRONYMS

AI Artificial Intelligence

ACF Autocorrelation Function

ANN Artificial Neural Network

API Application Programming Interface

ARMA Autoregressive and Moving Average

ARS Agricultural Sciences Center

BRDF Bidirectional Reflectance Distribution Function

CIMIS California Irrigation Management Information System

CIML Complexity-informed Machine Learning

CNNs Convolutional Neural Networks

CRP Calibrated Reflectance Panel

CS Cuckoo Search

CTRW Continuous Time Random Walk

dBm Decibel Milliwatts

DEM Digital Elevation Model

DLS Downwelling Light Sensor

DN Digital Number

DNNs Deep Neural Networks

DOY Day of Year

DTD Dual Temperature Difference

EOM Equation of Motion

ET Evapotranspiration

fBm fractional Brownian motion

fGn fractional Gaussian noise

FARIMA Fractional Autoregressive Integrated Moving Average

FC Fractional Calculus

FCC Federal Communications Commission

FIGARCH Fractional Integral Generalized Autoregressive Conditional Heteroscedasticity

FLOMs Fractional Lower-order Moments

xxviii



FOCV Fractional-order Calculus of Variation

FODA Fractional-order Data Analysis

FOEL Fractional-order Euler-Lagrange

FOT Fractional-order Thinking

FOV Field of View

GARMA Gegenbauer Autoregressive Moving Average

GHz Gigahertz

GPS Global Positioning System

GPU Graphics Processing Unit

HRMET High Resolution Mapping of Evapotranspiration

ID Identity

IPL Inverse Power Law

IoLT Internet of Living Things

IR Infrared

JPG Joint Photographic Experts Group

LAI Leaf Area Index

LDA Linear Discriminant Analysis

LRD Long Range Dependence

LTI Linear Time-invariant

MAD Modeling, Analysis, and Design

MAE Mean Absolute Error

METRIC Mapping Evapotranspiration with Internalized Calibration

ML Machine Learning

MLL Mittage-Leffler Law

MLP Multi-layer Perceptron

NAGD Nesterov Accelerated Gradient Descent

NDVI Normalized Difference Vegetation Index

NIST National Institute of Standards and Technology

NIR Near Infrared

OSEB One Source Energy Balance

PA Precision Agriculture

xxix



PCA Principal Component Analysis

PDF Probability Distribution Function

POTM Principle of Tail Matching

PPIML Plant Physiology-informed Machine Learning

PSD Power Spectral Density

PSO Particle Swarm Optimization

QDA Quadratic Discriminant Analysis

RFIC Radio Frequency Integrated Circuits

RGB Red, Green, and Blue

RL Reinforcement Learning

RLN Root Lesion Nematode

RMSE Root Mean Square Error

ROS Robotic Operation System

RSEB Remote Sensing Energy Balance

SCN Stochastic Configuration Network

SEBAL Surface Energy Balance Algorithm for Land

SGD Stochastic Gradient Descent

SPDA Soil and Plant Development Analyzer

SRD Short Range Dependence

SVM Support Vector Machine

SWIR Short-wave Infrared

TIR Thermal Infrared

TSEB Two-source Energy Balance

TSEB-PT Priestley-Taylor TSEB

UAVs Unmanned Aerial Vehicles

UGVs Unmanned Ground Vehicles

US United States

USDA United States Department of Agriculture

UV Ultraviolet

VIS Visable

wGn White Gaussian Noise

xxx



VITA

2014 B.S. in Electrical Engineering and Automation, Hebei
Agricultural University, China

2016 M.S. in Electrical and Computer Engineering, Califor-
nia State University, Chico, USA

2022 Ph.D. in Electrical Engineering and Computer Sci-
ence, University of California, Merced, USA

PUBLICATIONS

Niu, Haoyu, YangQuan Chen, and Bruce J. West., “Why do big data and machine
learning entail the fractional dynamics?”, Entropy, 23.3 (2021): 297.

Niu, Haoyu, Jiamin Wei, and YangQuan Chen., “Optimal randomness for stochas-
tic configuration network (SCN) with heavy-tailed distributions.”, Entropy, 23.1
(2021): 56.

Niu, Haoyu, Derek Hollenbeck, Tiebiao Zhao, Dong Wang, and YangQuan Chen.,
“Evapotranspiration estimation with small UAVs in precision agriculture.”, Sen-
sors, 20.22 (2020): 6427.

Niu, Haoyu, YangQuan Chen., “High spatial-resolution has little impact on
NDVI mean value of UAV-based individual tree-level mapping: Evidence from
9 field tests and implications.”, Image and Signal Processing for Remote Sensing
XXVII., Vol. 11862. SPIE, 2021.

Niu, Haoyu, Dong Wang, and YangQuan Chen., “Niu, Haoyu, et al. ”Reliable
tree-level evapotranspiration estimation of pomegranate trees using lysimeter and
UAV multispectral imagery.”, IEEE Conference on Technologies for Sustainability
(SusTech), IEEE, 2021.

Niu, Haoyu, Dong Wang, and YangQuan Chen., “Estimating crop coefficients
using linear and deep stochastic configuration networks models and UAV-based
Normalized Difference Vegetation Index (NDVI).”, International Conference on
Unmanned Aircraft Systems (ICUAS), IEEE, 2020.

Niu, Haoyu, Andreas, Westphal, and YangQuan Chen., “A low-cost proximate
sensing method for early detection of nematodes in walnut using Walabot and
scikit-learn classification algorithms.”, Autonomous Air and Ground Sensing Sys-
tems for Agricultural Optimization and Phenotyping V., Vol. 11414. International
Society for Optics and Photonics, 2020.

xxxi



Niu, Haoyu, Dong Wang, and YangQuan Chen., “Estimating actual crop evapo-
transpiration using deep stochastic configuration networks model and UAV-based
crop coefficients in a pomegranate orchard.”, Autonomous Air and Ground Sensing
Systems for Agricultural Optimization and Phenotyping V. Vol. 11414., Interna-
tional Society for Optics and Photonics, 2020.

Niu, Haoyu, Yanan Wang, Tiebiao Zhao, and YangQuan Chen., “A low-cost soil
moisture monitoring method by using Walabot and machine learning algorithms.”,
IFAC-PapersOnLine, 53.2, (2020): 15784-15789.

Niu, Haoyu, Tiebiao Zhao, Cameron Zuber, Jacqueline Vasquez-Mendoza, David
Doll, Kari Arnold, and YangQuan Chen., “A low-cost stem water potential moni-
toring method using proximate sensor and scikit-learn classification algorithms.”,
ASABE Annual International Virtual Meeting, American Society of Agricultural
and Biological Engineers, 2020.

Wang, Peng, Junwei Tian, Niu, Haoyu, YangQuan Chen., “Smart Agricultural
In-Field Service Robot: From Toy to Tool.”, International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
Vol. 59292. American Society of Mechanical Engineers, 2019.

Niu, Haoyu, Yuquan Chen, and YangQuan Chen., “Fractional-order extreme
learning machine with Mittag-Leffler distribution.”, International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference., Vol. 59292. American Society of Mechanical Engineers, 2019.

Wang, Yanan, Junwei Tian, Niu, Haoyu, Peng Wang, Xiaozhong Liao, and
Yangquan Chen., “Multi-Resolution Energy Strategy for Battery Management
System of Unmanned Ground Vehicles in Agriculture.”, nternational Design En-
gineering Technical Conferences and Computers and Information in Engineering
Conference., Vol. 59292. American Society of Mechanical Engineers, 2019.

Tian, Junwei, Niu, Haoyu, Peng Wang, and YangQuan Chen., “Smart and au-
tonomous farm field scouting service robot as an edge device under $1000: Chal-
lenges and opportunities.”, International Design Engineering Technical Confer-
ences and Computers and Information in Engineering Conference., Vol. 59292.
American Society of Mechanical Engineers, 2019.

Wang, Yanan, Niu, Haoyu, Tiebiao Zhao, Xiaozhong Liao, Lei Dong, and YangQuan
Chen., “Contactless Li-Ion battery voltage detection by using walabot and machine
learning.”, International Design Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference., Vol. 59292. American Society of
Mechanical Engineers, 2019.

xxxii



Niu, Haoyu, Tiebiao Zhao, YangQuan Chen., “Intelligent bugs mapping and
wiping (iBMW): An affordable robot-driven robot for farmers”, IEEE International
Conference on Mechatronics and Automation (ICMA), IEEE, 2019.

Niu, Haoyu, Tiebiao Zhao, Dong Wang, YangQuan Chen., “A UAV resolution
and waveband aware path planning for onion irrigation treatments inference.”,
International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2019.

Niu, Haoyu, Tiebiao Zhao, Dong Wang, YangQuan Chen., “Estimating evapo-
transpiration with UAVs in agriculture: A review.”, ASABE Annual International
Meeting., American Society of Agricultural and Biological Engineers, 2019.

Tiebiao Zhao, Niu, Haoyu, Dong Wang, YangQuan Chen, and Bruce J. West.,
“Resolution Matters: A Case Study in Onion Crop Irrigation Inference Using
Unmanned Aerial Vehicles.”, ASA, CSSA, and CSA International Annual Meeting,
ASA-CSSA-SSSA, 2018.

Tiebiao Zhao, Alexander Koumis, Niu, Haoyu, Dong Wang, YangQuan Chen.,
“Onion irrigation treatment inference using a low-cost hyperspectral scanner.”,
Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Tech-
niques and Applications VII., Vol. 10780. International Society for Optics and
Photonics, 2018.

Tiebiao Zhao, Yonghuan Yang, Niu, Haoyu, Dong Wang, YangQuan Chen.,
“Comparing U-Net convolutional network with mask R-CNN in the performances
of pomegranate tree canopy segmentation.”, Multispectral, Hyperspectral, and Ul-
traspectral Remote Sensing Technology, Techniques and Applications VII., Vol.
10780. International Society for Optics and Photonics, 2018.

Tiebiao Zhao, Niu, Haoyu, Andreas Anderson, YangQuan Chen, and Joshua
Viers., “A detailed study on accuracy of uncooled thermal cameras by exploring
the data collection workflow.”, Autonomous Air and Ground Sensing Systems for
Agricultural Optimization and Phenotyping III., Vol. 10664. International Society
for Optics and Photonics, 2018.

Tiebiao Zhao, Niu, Haoyu, Erick de la Rosa, David Doll, Dong Wang, and
YangQuan Chen., “Tree canopy differentiation using instance-aware semantic seg-
mentation.”, 2018 ASABE Annual International Meeting., American Society of
Agricultural and Biological Engineers, 2018.

xxxiii



ABSTRACT OF THE DISSERTATION

Smart Big Data in Precision Agricultural Applications: Acquisition,

Advanced Analytics, and Plant Physiology-informed Machine Learning

by

Haoyu Niu

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, 2022

Professor YangQuan Chen, Chair

Big data acquisition platforms, such as small unmanned aerial vehicles (UAVs),

unmanned ground vehicles (UGVs), and proximate sensors for precision agricul-

ture, especially for heterogeneous crops, such as vineyards and orchards, are gain-

ing interest from both researchers and growers. For example, lightweight sensors

mounted on UAVs, such as multispectral and thermal infrared cameras, can be

used to collect high-resolution images. The higher temporal and spatial resolu-

tions of the images, relatively low operational costs, and nearly real-time image

acquisition make the UAVs an ideal platform for mapping and monitoring the vari-

ability of crops over large acreage. The data acquisition platforms and analytics

can create big data and demand fractional-order thinking due to the “complexity”

and, thus, variability inherent in the process. Much hope is placed on machine

learning (ML). How can an ML model learn from big data efficiently (optimally)

and make the big data “smart” is important in agricultural research. The key to

the learning process is the plant physiology and optimization method. Designing

an efficient optimization method poses three questions: 1.) What is the best way

to optimize? 2.) What is the more optimal way to optimize? 3.) Can we demand

“more optimal machine learning,” for example, deep learning with the minimum

or smallest labeled data for agriculture? Therefore, in this dissertation, the author

investigated the foundations of the plant physiology-informed machine learning
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(PPIML) and the principle of tail matching (POTM) framework. He elucidated

their role in modeling, analyzing, designing, and managing complex systems based

on the big data in precision agriculture. Plant physiology entails the complexity of

growth. The complex system has both deterministic and stochastic dynamic pro-

cesses with external driving processes characterized and modeled using fractional

calculus-based models, which will better inform the complexity-informed machine

learning (CIML) algorithms. Data acquisition platforms, such as low-cost UAVs,

UGVs, and edge-AI sensors, were designed and built to demonstrate their reliabil-

ity and robustness for remote and proximate sensing in agricultural applications.

Research results showed that the PPIML, POTM, CIML, and the data acquisition

platforms were reliable, robust, and smart tools for precision agricultural research

in varying situations, such as water stress detection, early detection of nematodes,

yield estimation, and evapotranspiration (ET) estimation. The application of these

tools has the potential to assist stakeholders in their crop management decisions.

xxxv



Part I

Why Big Data Is Not Smart Yet?
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Chapter 1

Introduction

1.1 Motivation

The term “big data” started showing up in the early 1990s. The world’s tech-

nological per capita capacity to store information has roughly doubled every 40

months since the 1980s [1]. Since 2012, there have been 2.5 exabytes (2.5 × 260

bytes) of data generated every day [2]. According to data report predictions, there

will be 163 zettabytes of data by 2025 [3]. Firican proposed ten characteristics

(properties) of big data to prepare for both the challenges and advantages of big

data initiatives in [4].

• Volume: Best known characteristic of big data; more than 90 percent of the

whole data were created in the past couple of years.

• Velocity: The speed at which data are being generated.

• Variety: Processing structured, unstructured and semi structured data.

• Variability: Inconsistent speed of data loading, multitude of data dimen-

sions, and number of inconsistencies.

• Veracity: Confidence or trust in the data.

• Validity: Refers to how accurate and correct the data are.

2
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• Vulnerability: Security concerns, data breaches.

• Volatility: Design policy for data currency, availability, and rapid retrieval

of information when required.

• Visualization: Develop new tools considering the complex relationships

between the above properties.

• Value: The most important of the 10 Vs; substantial value must be found.

With the development of big data technologies and high-performance comput-

ing, big data creates new opportunities for farmers and researchers to quantify,

analyze and better understand data intensive processes in precision agriculture.

Big data can provide us information on the weather, irrigation management, pest

management, fertilizer requirements, and so on. This enables farmers to make

better decisions, such as what kind of crops to grow for better profitability and

when to harvest.

However, big data technology also faces challenges, which has been discussed

and reviewed by many researchers [5, 6, 7]. For example, Zhang et al. pointed out

three challenges faced by agricultural big data in [5], which were big data storage,

big data analysis, and big data timeliness. The data storage could affect the ef-

ficiency of data analysis, they proposed to use timeliness as a measure standard

based on the characteristics of agricultural big data. In [6], Gopal et al. pro-

posed that how to obtain reliable data on farm management decision making both

for current conditions and under scenarios of changing bio-physical and socioeco-

nomic conditions was also one of the greatest challenges for big data applications

in agriculture. Considering the complexity of agricultural datasets, multiple data

models and algorithms are also needed at different procedures of big data pro-

cessing. There are many challenges for traditional methods to extract meaningful

information out of the big data [7], such as what is the optimal management zone

for crops, and what is the optimal zone size for soil sampling to analyze the vari-

ability? The benefit of big data for precision agricultural applications remains

elusive.
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Therefore, the author proposes the concept of smart big data for agricultural

applications by using plant physiology-informed machine learning (PPIML), in

which variability analysis plays a key role. In this dissertation, variability is

the most important characteristic being discussed for agricultural research. Vari-

ability refers to several properties of big data. First, it refers to the number of

inconsistencies in the data, which need to be understood by using anomaly- and

outlier-detection methods for any meaningful analytics to be performed. Second,

variability can also refer to diversity [8, 9], resulting from disparate data types and

sources, for example, healthy or unhealthy [10, 11]. Finally, variability can refer

to multiple research topics [12].

1.1.1 What Is Smart Big Data in Precision Agriculture?

Big data technology, such as Internet of Things (IoT) and wireless sensors

enables researchers to solve complex agricultural problems [13]. By applying the

sensors in the field, farmers can track valuable data for farm management, such

as soil moisture, wind speed, air temperature, humidity and so on. The amount

of the data can be huge and challenging to process timely. How to make the big

data “smarter” becomes necessary. Thus, the concept of smart big data analysis

is proposed in this dissertation. Smart big data in agricultural applications is

an interdisciplinary research topic that is related to the extraction of meaningful

information from data of plant physiology, drawing techniques from a variety of

fields, such as UAV image processing, deep learning, pattern recognition, high-

performance computing, and statistics. The big data can then be filtered and

becomes smart big data before being analyzed for insights, which leads to more

efficient decision-making. Smart big data can be defined as big data that has been

cleaned, filtered, and prepared for data analysis.

Recently, researchers are gaining interest of the smart big data in precision

agricultural applications [14, 15, 16]. For example, Li and Niu proposed a design

for smart agriculture using the big data and IoT in [17]. They optimized the data

storage, data processing, and data mining procedures generated in the agricultural

production process and used the k−means algorithm to study the data mining.
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Based on the experimental results, the improved k−means clustering method had

an average reduction of 0.23 second in total time and an average increase of 7.67%

in the F metric value. In [18], Tseng et al. utilized the IoT devices to monitor

the environmental factors on a farm. The experimental results demonstrated that

farmers could gain a better understanding if a crop was appropriate for their farm

by looking into factors such as temperature and soil moisture content. In [19], a

big data analytic agricultural framework was developed to identify disease based

on symptoms similarity and a solution was suggested based on the high similarity.

Although their framework is crop and location specific, it has great potential to

expand to more crops and areas in the future.

Researchers are exploring all kinds of methods to turn the collected big data into

smart big data to gain better understanding of our agricultural system. The author

believes that the smart big data will be a core component of big data applications

in precision agriculture, which enables the stakeholders and researchers to identify

patterns, make better decisions, and adapt to new environment. Smart big data

will also lay the foundation of agricultural data analysis.

1.1.2 Plant Physiology-informedMachine Learning: A New

Frontier

Machine Learning (ML) is the science (and art) of programming computers so

they can learn from data [20]. A more engineering-oriented definition was given

by Tom Mitchell in 1997, “A computer program is said to learn from experience E

with respect to some task T and some performance measure P, if its performance

on T, as measured by P, improves with experience E [21].” In 2006, Hinton et

al. trained a deep neural network (DNN) to recognize handwritten digits with

an accuracy of more than 98% [22]. Since then, researchers are more and more

interested in Deep Learning (DL), and this enthusiasm extends to many areas of

ML, such as image processing [23, 24], natural language processing [25], and even

precision agriculture [26, 27, 28].

Why do we need ML? In summary, ML algorithms can usually simplify a

solution and perform better than traditional methods, which may require much
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Human 
supervision 

• Supervised
• Unsupervised
• Semi-supervised
• Reinforcement Learning (RL) 

Learn 
incrementally 

on the fly 

• Online Learning 
• Batch learning

Detect the 
training 
patterns 

• Instance-based learning
• Model-based learning 

Machine 
Learning 
(ML)

Figure 1.1: The ML can be classified as supervised, unsupervised, semi-supervised,
and Reinforcement Learning (RL) based on whether or not human supervision is
included. According to whether or not the ML algorithms can learn incrementally
on the fly, they can be classified into online and batch learning. Based on whether
or not the ML algorithms detect the training data patterns and create a predictive
model, the ML can be classified into instance-based and model-based learning.

more hand-tuning rules. Furthermore, there may not exist a right solution for the

complex phenomena by traditional methods. The ML techniques can help explain

that kind of complexity and can adapt to new data better. The ML algorithms

can obtain the variability about the complex problems and big data [12]. There

are many different types and ways for ML algorithms classification (Fig. 1.1). ML

can be classified as supervised, unsupervised, semi-supervised, and Reinforcement

Learning (RL) based on whether human supervision is included. According to

whether or not the ML algorithms can learn incrementally on the fly, they can

be classified into online and batch learning. Based on whether or not the ML

algorithms detect the training data patterns and create a predictive model, the

ML can be classified into instance-based and model-based learning [20].

Considering the volume, diversity, and complexity of the agricultural dataset,
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plant physiology-informed machine learning is proposed in this dissertation. The

key of this concept is to extract meaningful agricultural information out of the big

data to guide stakeholders and researchers to make better decisions for agricul-

ture, in which the big data becomes “smart”. Instead of training the ML models

directly, plant-physiology knowledge will be added into the training process, which

helps explain the complexity and model performance. When complexity is under

scrutiny, it is fair that we ask what it means? At what point do investigators begin

identifying a system, network, or phenomenon as complex [29, 30]? It seems that

a clear and unified definition of complexity is still unknown for us to answer the

following questions:

1. How can we characterize complexity (More details in Chapter 2)?

2. What method should be used for the analysis of complexity in order to better

understand real–world complex phenomena, such as the evapotranspiration

of trees (See details in Chapter 7)?

There is agreement among a significant fraction of the scientific community

that when the distribution of the data associated with the process of interest is

IPL, the phenomenon is complex. In the book by West and Grigolini [31], there

is a table listing a sample of the empirical power laws and IPLs uncovered in the

past two centuries. For example, in scale-free networks, the degree distributions

follow an IPL in connectivity [32, 33], in the processing of signals containing pink

noise the power spectrum is IPL [34]. For other examples, such as the probability

distribution function (PDF), the auto-correlation function (ACF) [35], allometry

(Y = aXb) [36], anomalous relaxation (evolving over time) [37], anomalous dif-

fusion (mean squared dissipation versus time) [38], self-similar, they can all be

described by an IPL (See details in Chapter 2).

1.1.3 Big Data Acquisition and Advanced Analytics

Smart big data involves the use of artificial intelligence and machine learning

to make big data acquisition and advanced analytics actionable, to transform big
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data into insights, and to provide engagement capabilities for researchers and stake-

holders. The smart big data acquisition and advanced analytics refer to the use of

classification, conversion, extraction, and analysis methods to extract meaningful

information from agricultural data. The acquisition and advanced analytics process

generally contain the data preparation, the data analysis, and the result evaluation

and explanation. Data preparation involves the agricultural data collection and

integration using smart big data acquisition platforms, such as UAVs, Edge-AI

sensors, and UGVs. Data analytics refers to examining the large dataset and ex-

tracting the useful information out of the raw dataset by using ML algorithms and

tools, such as Pytorch, TensorFlow, and OpenCV, etc. Result evaluation and ex-

planation involves the verification of patterns or characteristics produced by data

analytics.

1.2 Dissertation Objectives and Methods

Considering that Smart Big Data is a new concept with great potential in preci-

sion agricultural applications, the main objective of this dissertation is developing

a methodological framework for the plant physiology-informed machine learning

supported by 1.) Smart big data acquisition platforms, such as UAV, Edge-AI

sensors, and UGV, 2.) Advanced data analytics, such as fractional-order thinking,

and artificial intelligence.

In order to accomplish the main objectives, the smart big data in precision

agricultural applications will be grouped into the following specific parts:

1. Why Big Data Is Not Smart Now?

2. Smart Big Data Acquisition Platforms.

3. Advanced Big Data Analytics, Plant Physiology-informed Machine Learning,

and Fractional-order Thinking.

4. Towards Smart Big Data in Precision Agriculture.
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In the first part, the concept of smart big data is proposed and discussed in

Chapter 1 to build the framework of smart big data applications for precision

agriculture. The author discusses the importance of smart big data and investi-

gates the correlation between the smart big data, machine learning, and fractional

dynamics in Chapter 2.

In the second part, smart big data acquisition platforms are mainly discussed.

A UAV platform for remote sensing data collection and a reliable image processing

workflow are proposed. The challenges and opportunities for UAV image process-

ing are also discussed in Chapter 3. In Chapter 4, the concept of IoLT is proposed

and several proximate sensors are introduced. The potential of UGV platforms for

agriculture is briefly discussed in Chapter 5.

For the third part, the author proposes the concept of plant physiology-informed

machine learning and how to use advanced analytics and fractional-order thinking

to make contributions. In Chapter 6, a non-invasive proximate sensing method

for early detection of nematodes is proposed. Microwave reflectance from walnut

leaves is analyzed using ML algorithms to classify the nematode infection levels

in the walnut roots. In Chapter 7, reliable tree-level ET estimation methods are

proposed using the UAV high-resolution imagery, ML algorithms and platforms,

such as Python, MATLAB, Pytorch, and TensorFlow. In Chapter 8, individual

tree-level water status inference is performed using the high-resolution UAV ther-

mal imagery and complexity-informed machine learning. In Chapter 9, the author

proposes a scale-aware pomegranate yield prediction method using UAV imagery

and machine learning.

In the fourth part, the author discusses an intelligent bugs mapping and wiping

robot for farmers in Chapter 10, which has great potential for pest management

in the future. Then, the author proposes a non-invasive stem water potential

monitoring method using proximate sensor and ML algorithms for a walnut orchard

in Chapter 11 and a low-cost soil moisture monitoring method in Chapter 12. In

the end, the author draws conclusive remarks and discusses the future research

plan in Chapter 13.
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1.3 Dissertation Contributions

The main contribution of the dissertation is to lay the foundation of the smart

big data in precision agricultural applications. A framework is created to enable the

plant physiology-informed machine learning using the smart big data acquisition

platforms and advanced data analytics. Likewise, the following contributions can

be obtained from this dissertation:

• A developing framework for plant physiology-informed machine learning adap-

tive to different kinds of trees and crops.

• A set of data acquisition platforms, advanced analytics for smart big data

applications in precision agriculture.

• A non-invasive method for early detection of nematodes in walnut using

Edge-AI sensors and PPIML.

• Proposed reliable tree-level ET estimation methods using UAV and remote

sensing payloads.

• A concept of complexity-informed machine learning and its application for

tree-level irrigation treatment inference.

• Scale-aware yield estimation method using UAV thermal image and plant

physiology-informed ML algorithms.

• Proposed a UGV platform “iBMW” for pest management in agriculture.

• Investigated potential Edge-AI sensors for future agricultural research.

1.4 Dissertation Outlines

The dissertation is organized as follows (Fig. 1.2). In Part I, the author dis-

cusses the question “Why big data is not smart now?” and “Why do we need

smart big data for precision agriculture?” (Chapter 1). The objectives, methods,

and contributions of this dissertation are also listed in Chapter 1. In Chapter 2,
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the author presents the correlation between the big data, machine learning, and

the fractional dynamics. The author attempts to answer “Why do big data and

machine learning entail the fractional dynamics?”

In Part II, the smart big data acquisition platforms are presented and their

applications for precision agriculture are introduced. Chapter 3 presents the UAV

platforms and the remote sensing payloads mounted on them. The UAV image

acquisition workflow is described in details. Chapter 4 introduces the concept of

IoLT and several Edge-AI sensors for agricultural applications. The potential of

UGV platforms for agriculture is briefly discussed in Chapter 5.

In Part III, the main contribution of the author’s research work is discussed.

Advanced big data analytics and fractional-order thinking are used for plant-

informed machine learning. In Chapter 6, a low-cost proximate sensing method for

early detection of nematodes in walnut orchard is presented. Evapotranspiration

estimation with small UAVs is mainly discussed in Chapter 7. Reliable tree-level

ET estimation methods are also proposed in this chapter. In Chapter 8, individual

tree-level water status inference is performed using the high-resolution UAV ther-

mal imagery and complexity-informed machine learning. In Chapter 9, the author

proposes a scale-aware pomegranate yield prediction method using UAV imagery

and machine learning.

In Part IV, the author discusses an intelligent bugs mapping and wiping robot

for farmers in Chapter 10, which has great potential for pest management in the

future. Then, the author proposes a non-invasive stem water potential monitoring

method using proximate sensor and ML algorithms for a walnut orchard in Chapter

11 and a low-cost soil moisture monitoring method in Chapter 12. In the end, the

author draws conclusive remarks and discusses the future research in Chapter 13.
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Chapter 2

Why Do Big Data and Machine

Learning Entail the Fractional

Dynamics?

2.1 Fractional Calculus (FC) and Fractional-order

Thinking (FOT)

Fractional calculus (FC) is the quantitative analysis of functions using non-

integer-order integration and differentiation, where the order can be a real num-

ber, a complex number or even the function of a variable. The first recorded query

regarding the meaning of a non-integer order differentiation appeared in a letter

written in 1695 by Guillaume de l’Hôpital to Gottfried Wilhelm Leibniz, who at the

same time as Isaac Newton, but independently of him, co-invented the infinitesi-

mal calculus [39]. Numerous contributors have provided definitions for fractional

derivatives and integrals since then [40], and the theory along with the applications

of FC have been expanded greatly over the centuries [41, 42, 43]. In more recent

decades, the concept of fractional dynamics has merged and gained followers in the

statistical and chemical physics communities [44, 45, 46]. For example, optimal

image processing has improved through the use of fractional-order differentiation

and fractional-order partial differential equations as summarized in Chen et al.

13
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[47, 48, 49]. Anomalous diffusion was described using fractional-diffusion equa-

tions in [50, 38], and Metzler et al. used fractional Langevin equations to model

viscoelastic materials [51].

Recently, big data and machine learning (ML) are two of the hottest topics

of applied scientific research, and they are closely related to each other. To bet-

ter understand them, we also need fractional dynamics, as well as fractional-order

thinking (FOT). Section 2.4 is devoted to the discussion of the relationships be-

tween big data, variability, and fractional dynamics, as well as to fractional-order

data analytics (FODA) [52]. The topics touched on in this section include the

Hurst parameter [53, 54], fractional Gaussian noise (fGn), fractional Brownian

motion (fBm), the fractional autoregressive integrated moving average (FARIMA)

[55], the formalism of continuous time random walk (CTRW) [56], unmanned aerial

vehicles (UAVs) and precision agriculture (PA) [57]. In Section 2.5, how to learn

efficiently (optimally) for ML algorithms is investigated. The key to developing

an efficient learning process is the method of optimization. Thus, it is important

to design an efficient or perhaps optimal optimization method. The derivative-

free methods, and the gradient-based methods, such as the Nesterov accelerated

gradient descent (NAGD) [58], are both discussed.

FOT is a way of thinking using FC. For example, there are non-integers be-

tween the integers; between logic 0 and logic 1, there is the fuzzy logic [59]; com-

pared with integer-order splines, there are fractional-order splines [60]; between the

high-order integer moments, there are non-integer-order moments, etc. FOT has

been entailed by many research areas, for example, self-similar [61, 62], scale-free

or scale-invariant, power-law, long-range-dependence (LRD) [63, 34], and 1/fα

noise [64, 65]. The terms porous media, particulate, granular, lossy, anomaly,

disorder, soil, tissue, electrodes, biology [66], nano, network, transport, diffusion,

and soft matters are also intimately related to FOT. However, in this section, the

author mainly discusses complexity and inverse power laws (IPL).
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2.2 Complexity and Inverse Power Laws (IPLs)

When studying complexity, it is fair to ask, what does it mean to be com-

plex? When do investigators begin identifying a system, network or phenomenon

as complex [29, 30]? There is an agreement among a significant fraction of the

scientific community that when the distribution of the data associated with the

process of interest obeys an IPL, the phenomenon is complex; see Figure 2.1. On

the left side of the figure, the complexity “bow tie” is the phenomenon of interest,

thought to be a complex system [67, 68, 69, 70]. On the right side of the figure is

the spectrum of system properties associated with IPL probability density func-

tions (PDFs): the system has one or more of the properties of being scale-free,

having a heavy tail, having a long-range dependence, and/or having a long mem-

ory [71, 72]. In the book by West and Grigolini [31], there is a table listing a

sample of the empirical power laws and IPLs uncovered in the past two centuries.

For example, in scale-free networks, the degree distributions follow an IPL in con-

nectivity [32, 33]; in the processing of signals containing pink noise, the power

spectrum follows an IPL [34]. For other examples, such as the probability density

function (PDF), the autocorrelation function (ACF) [35], allometry (Y = aXb)

[36], anomalous relaxation (evolving over time) [37], anomalous diffusion (mean

squared dissipation versus time) [38], and self-similarity can all be described by

the IPL “bow tie” depicted in Figure 2.1.

The power law is usually described as:

f(x) = axk, (2.1)

when k is negative, f(x) is an IPL. One important characteristic of this power law

is scale invariance [73] determined by:

f(cx) = a(cx)k = ckf(x) ∝ f(x). (2.2)

Note that when x is the time, the scaling depicts a property of the system dynamics.

However, when the system is stochastic, the scaling is a property of the PDF (or

correlation structure) and is a constraint on the collective properties of the system.

FC is entailed by complexity, since an observable phenomenon represented by

a fractal function has integer-order derivatives that diverge. Consequently, for the
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Fractional calculus 
based models

IPL
Scale-Free, 
Heavy-tailedness,
Long Range Dependence,  
Long Memory …

Complex systems, 
Phenomena,

Behaviors, …

Fractional dynamic

Mittag-Leffler Law

Figure 2.1: Inverse power law (complexity “bow tie”): On the left are the systems
of interest that are thought to be complex. In the center panel, an aspect of the
empirical data is characterized by an inverse power law (IPL). The right panel
lists the potential properties associated with systems with data that have been
processed and yield an IPL property. See text for more details.
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Network Traffic, Smart Grids, 
HRV, Outliers in time series, 
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“Spikiness”
intermittence
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dependence

Self-similar
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Fractional Gaussian
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distributions
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parameter

“Heavy tails”

ARFIMA

Figure 2.2: Complex signals: Here, the signal generated by a complex system is
depicted. Exemplars of the systems are given as the potential properties arising
from the systems’ complexity.

complexity characterization and regulation, we ought to use the fractional dynam-

ics point of view because the fractional derivative of a fractal function is finite.

Thus, complex phenomena, no matter whether they are natural or carefully en-

gineered, ought to be described by fractional dynamics. Phenomena in complex

systems in many cases should be analyzed using FC-based models, where mathe-

matically, the IPL is actually the “Mittag–Leffler law” (MLL), which asymptoti-

cally becomes an IPL (Figure 2.2), known as heavy-tail behavior.

When an IPL results from processing data, one should think about how the

phenomena can be connected to the FC. In [74], Gorenflo et al. explained the role

of the FC in generating stable PDFs by generalizing the diffusion equation to one

of fractional order. For the Cauchy problem, they considered the space-fractional

diffusion equation:
∂u

∂t
= D(α)

∂αu

∂|x|α
, (2.3)

where −∞ < x < ∞, t ≥ 0 with u(x, 0) = δ(x), 0 < α ≤ 2, and D(α) is a suitable

diffusion coefficient. The fractional derivative in the diffusion variable is of the

Reisz–Feller form, defined by its Fourier transform to be |k|a. For the signalling
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problem, they considered the so-called time-fractional diffusion equation [75]:

∂2βu

∂t2β
= D(β)

∂2u

∂x2
, (2.4)

where x ≥ 0, t ≥ 0 with u(0, t) = δ(t), 0 < β < 1, and D(β) is a suitable

diffusion coefficient. Equation (2.4) has also been investigated in [76, 77, 78].

Here, the Caputo fractional derivative in time is used.

There are rich forms in stochasticity [79], for example, heavytailedness, which

corresponds to fractional-order master equations [80]. In Section 2.3, heavy-tailed

distributions are discussed.

2.3 Heavy-tailed Distributions

In probability theory, heavy-tailed distributions are PDFs whose tails do not

decay exponentially [81]. Consequently, they have more weight in their tails than

does an exponential distribution. In many applications, it is the right tail of the

distribution that is of interest, but a distribution may have a heavy left tail, or both

tails may be heavy. Heavy-tailed distributions are widely used for modeling in dif-

ferent disciplines, such as finance [82], insurance [83], and medicine [84]. The dis-

tribution of a real-valued random variable X is said to have a heavy right tail if

the tail probabilities P (X > x) decay more slowly than those of any exponential

distribution:

lim
x→∞

(
P (X > x)

e−λx
) = ∞, (2.5)

for every λ > 0 [85]. For the heavy left tail, an analogous definition can be

constructed [86]. Typically, there are three important subclasses of heavy-tailed

distributions: fat-tailed, long-tailed and subexponential distributions.

2.3.1 The Lévy Distribution

A Lévy distribution, named after the French mathematician Paul Lévy, can

be generated by a random walk whose steps have a probability of having a length

determined by a heavy-tailed distribution [87]. As a fractional-order stochastic
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process with heavy-tailed distributions, a Lévy distribution has better computa-

tional characteristics [88]. A Lévy distribution is stable and has a PDF that can

be expressed analytically, although not always in closed form. The PDF of Lévy

flight [89] is:

p(x, µ, γ) =


√

γ
2π

e
γ

2(x−µ)
(x−µ)3/2

, x > µ,

0, x ≤ µ,

(2.6)

where µ is the location parameter and γ is the scale parameter. In practice,

the Lévy distribution is updated by

Lévy(β) =
u

|ν|1/β
, (2.7)

where u and ν are random numbers generated from a normal distribution with a

mean of 0 and standard deviation of 1 [90]. The stability index β ranges from 0

to 2. Moreover, it is interesting to point out that the well-known Gaussian and

Cauchy distributions are special cases of the Lévy PDF when the stability index

is set to 2 and 1, respectively.

2.3.2 The Mittag–Leffler PDF

The Mittag–Leffler PDF for the time interval between events can be written as

a mixture of exponentials with a known PDF for the exponential rates [91]:

Eθ(−tθ) =

∫ ∞

0

exp(−µt)g(µ)dµ, (2.8)

with a weight for the rates given by:

g(µ) =
1

π

sin(θπ)

µ1+θ + 2 cos(θπ)µ + µ1−θ
. (2.9)

The most convenient expression for the random time interval was proposed by [92]:

τθ = −γt(lnu
sin(θπ)

tan(θπv)
− cos(θπ))1/θ, (2.10)

where u, v ∈ (0,1) are independent uniform random numbers, γt is the scale pa-

rameter, and τθ is the Mittag–Leffler random number. In [93], Wei et al. used

the Mittag–Leffler distribution for improving the Cuckoo Search algorithm, which

showed an improved performance.
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2.3.3 The Weibull Distribution

A random variable is described by a Weibull distribution if it has a PDF func-

tion F :

F (x) = e−(x/k)λw , (2.11)

where k > 0 is the scale parameter, and λw > 0 is the shape parameter [94].

If the shape parameter is λw < 1, the Weibull distribution is determined to be

heavy tailed.

2.3.4 The Cauchy Distribution

A random variable is described by a Cauchy PDF if its cumulative distribution

is [95, 96]:

F (x) =
1

π
arctan(

2(x− µc)

σ
) +

1

2
, (2.12)

where µc is the location parameter and σ is the scale parameter. Cauchy dis-

tributions are examples of fat-tailed distributions, which have been empirically

encountered in a variety of areas including physics, earth sciences, economics and

political science [97]. Fat-tailed distributions include those whose tails decay like

an IPL, which is a common point of reference in their use in the scientific litera-

ture [98]:

2.3.5 The Pareto Distribution

A random variable is said to be described by a Pareto PDF if its cumulative

distribution function is

F (x) =

1 − ( b
x
)a, x ≥ b,

0, x < b,
(2.13)

where b > 0 is the scale parameter and a > 0 is the shape parameter (Pareto’s

index of inequality) [99].
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2.3.6 The α-stable Distribution

A PDF is said to be stable if a linear combination of two independent random

variables, each with the same distribution, has the same distribution for the con-

joined variable. This PDF is also called the Lévy α-stable distribution [100, 101].

Since the normal distribution, Cauchy distribution and Lévy distribution all have

the above property, one can consider them to be special cases of stable distribu-

tions. Stable distributions have 0 < α ≤ 2, with the upper bound corresponding

to the normal distribution, and α = 1, to the Cauchy distribution. The PDFs have

undefined variances for α < 2, and undefined means for α ≤ 1. Although their

PDFs do not admit a closed-form formula in general, except in special cases, they

decay with an IPL tail called the IPL index, which determines the behavior of the

PDF. As the IPL index gets smaller, the PDF acquires a heavier tail.

2.3.7 Mixture Distributions

A mixture distribution is derived from a collection of other random variables.

First, a random variable is selected by chance from the collection according to given

probabilities of selection. Then, the value of the selected random variable is real-

ized. The mixture PDFs are complicated in terms of simpler PDFs, which provide

a good model for certain datasets. The different subsets of the data can exhibit

different characteristics. Therefore, the mixed PDFs can effectively characterize

the complex PDFs of certain real-world datasets. In [102], a robust stochastic con-

figuration network (SCN) based on a mixture of Gaussian and Laplace PDFs was

proposed. Thus, Gaussian and Laplace distributions are mentioned in this section

for comparison purposes.

The Gaussian Distribution

A random variable X has a Gaussian distribution with the mean µG and vari-

ance σ2
G (−∞ < µG < ∞ and σG > 0) if X has a continuous distribution for which

the PDF is as follows [103]:

f(x|µG, σ
2
G) =

1

(2π)1/2σG

e
− 1

2
(
x−µG
σG

)2
, for −∞ < x < ∞. (2.14)
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The Laplace Distribution

The PDF of the Laplace distribution can be written as follows [102]:

F (x|µl, η) =
1

(2η2)1/2
e(−

√
2|x−µl|

η
), (2.15)

where µl and η represent the location and scale parameters, respectively.

2.4 Big Data, Variability and FC

In Chapter 1, the author discussed the 10 characteristics (properties) of big

data to prepare for both the challenges and advantages of big data initiatives

(Table 2.1). In this chapter, variability is the most important characteristic being

discussed. Variability can refer to multiple research topics (Table 2.2) [4].

Considering variability, Xunzi (312 BC–230 BC), who was a Confucian philoso-

pher, made a useful observation: “Throughout a thousand acts and ten thousand

changes, his way remains one and the same [104].” Therefore, we ask: what is

the “one and the same” for big data? This is the variability, which refers to

the behavior of the dynamic system. The ancient Greek philosopher Heraclitus

(535 BC–475 BC) also realized the importance of variability, prompting him to

say: “The only thing that is constant is change”; “It is in changing that we find

purpose”; “Nothing endures but change”; “No man ever steps in the same river

twice, for it is not the same river and he is not the same man.”

Heraclitus actually recognized the (fractional-order) dynamics of the river with-

out modern scientific knowledge (in nature). After two thousand years, the integer-

order calculus was invented by Sir Issac Newton and Gottfried Wilhelm Leibniz,

whose main purpose was to quantify that change [105, 106]. From then, scientists

started using integer-order calculus to depict dynamic systems, differential equa-

tions, modelling, etc. In the 1950s, Scott Blair, who first introduced the FC into

rheology, pointed out that the integer-order dynamic view of change is only for our

own “convenience” (a little bit selfish). In other words, denying fractional calculus

is equivalent to denying the existence of non-integers between the integers!

Blair said: “We may express our concepts in Newtonian terms if we find this



23

Table 2.1: The 10 Vs of big data.

Characteristics Description

1. Volume

Best known characteristic of big data; more than 90

percent of the whole data were created in the past

couple of years.

2. Velocity The speed at which data are being generated.

3. Variety
Processing structured, unstructured and semistruc-

tured data.

4. Variability
Inconsistent speed of data loading, multitude of data

dimensions, and number of inconsistencies.

5. Veracity Confidence or trust in the data.

6. Validity Refers to how accurate and correct the data are.

7. Vulnerability Security concerns, data breaches.

8. Volatility
Design policy for data currency, availability,

and rapid retrieval of information when required.

9. Visualization
Develop new tools considering the complex relation-

ships between the above properties.

10. Value
The most important of the 10 Vs; substantial value

must be found.

Table 2.2: Variability in multiple research topics.

Topics Description

1. Climate variability
Changes in the components of the climate system and

their interactions.

2. Genetic variability
Measurements of the tendencies of individual geno-

types between regions.

3. Heart rate variability
Physiological phenomenon where the time interval

between heart beats varies.

4. Human variability
Measurements of the characteristics, physical or men-

tal, of human beings.

5. Spatial variability
Measurements at different spatial points exhibit dif-

ferent values.

6. Statistical variability A measure of dispersion in statistics.
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convenient but, if we do so, we must realize that we have made a translation into

a language which is foreign to the system which we are studying (1950) [107].”

Therefore, variability exists in big data. However, how do we realize the mod-

eling, analysis and design (MAD) for the variability in big data within complex

systems? We need fractional calculus! In other words, big data are at the nexus of

complexity and FC. Metrics based on using the fractional-order signal processing

techniques should be used for quantifying the generating dynamics of observed or

perceived variability [52].

2.4.1 The Hurst Parameter, fGn, and fBm

The Hurst parameter or Hurst exponent (H) was proposed for the analysis of

the long-term memory of time series. It was originally developed to quantify the

long-term storage capacity of reservoirs for the Nile river’s volatile rain and drought

conditions more than a half century ago [53, 54]. To date, the Hurst parameter

has also been used to measure the intensity of long range dependence (LRD) in

time series [108], which requires accurate modeling and forecasting. The self-

similarity and the estimation of the statistical parameters of LRD have commonly

been investigated recently [109]. The Hurst parameter has also been used for

characterizing the LRD process [108, 110]. A LRD time series is defined as a

stationary process that has long-range correlations if its covariance function C(n)

decays slowly as:

lim
n→∞

C(n)

n−α
= c, (2.16)

where 0 < α < 1, which relates to the Hurst parameter according to α = 2 − 2H

[111, 112]. The parameter c is a finite, positive constant. When the value of n is

large, C(n) behaves as the IPL c/nα [113]. Another definition for an LRD process

is that the weakly stationary time-series X(t) is said to be LRD if its power spectral

density (PSD) follows:

f(λ) ∼ Cf |λ|−β, (2.17)

as λ → 0, for a given Cf > 0 and a given real parameter β ∈ (0,1), which

corresponds to H = (1 + β)/2 [114]. When 0 < H < 0.5, it indicates that the
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time intervals constitute a negatively correlated process. When 0.5 < H < 1,

it indicates that time intervals constitute a positively correlated process. When

H = 0.5, it indicates that the process is uncorrelated.

Two of the most common LRD processes are fBm [115] and fGn [116]. The fBm

process with H(0 < H < 1) is defined as:

BH(t) =
1

Γ(H + 1/2)
{
∫ 0

−∞
[(t−s)H−1/2−(−s)H−1/2]dW (s)+

∫ t

0

(t−s)H−1/2dW (s)},

(2.18)

where W denotes a Wiener process defined on (−∞,∞) [117]. The fGn process is

the increment sequences of the fBm process, defined as:

Xk = Y (k + 1) − Y (k), (2.19)

where Y (k) is a fBm process [118].

2.4.2 Fractional Lower-order Moments (FLOMs)

The FLOM is based on α-stable PDFs. The PDFs of an α-stable distribution

decay in the tails more slowly than a Gaussian PDF does. Therefore, for sharp

spikes or occasional bursts in signals, an α-stable PDF can be used for characteriz-

ing signals more frequently than Gauss-distributed signals [119]. Thus, the FLOM

plays an important role in impulsive processes [120], equivalent to the role played

by the mean and variance in a Gaussian process. When 0 < α ≤ 1, the α-stable

processes have no finite first- or higher-order moments; when 1 < α < 2, the α-

stable processes have a first-order moment and all the FLOMs with moments of

fractional order that is less than 1. The correlation between the FC and FLOM was

investigated in [121, 122]. For the Fourier-transform pair p(x) and ϕ(µ), the latter

is the characteristic function and is the Fourier transform of the PDF; a complex

FLOM can have complex fractional lower orders [121, 122]. A FLOM-based frac-

tional power spectrum includes a covariation spectrum and a fractional low-order

covariance spectrum [123]. FLOM-based fractional power spectrum techniques

have been successfully used in time-delay estimation [123].
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2.4.3 Fractional Autoregressive Integrated Moving Aver-

age (FARIMA) and Gegenbauer Autoregressive Mov-

ing Average (GARMA)

A continuous-time linear time-invariant (LTI) system can be characterized us-

ing a linear difference equation, which is known as an autoregression and moving

average (ARMA) model [124, 125]. The process Xt of ARMA(p, q) is defined as:

Φ(B)Xt = Θ(B)ϵt, (2.20)

where ϵt is white Gaussian noise (wGn), and B is the backshift operator. However,

the ARMA model can only describe a short-range dependence (SRD) property.

Therefore, based on the Hurst parameter analysis, more suitable models, such as

FARIMA [126, 127] and fractional integral generalized autoregressive conditional

heteroscedasticity (FIGARCH) [128], were designed to more accurately analyze the

LRD processes. The most important feature of these models is the long memory

characteristic. The FARIMA and FIGARCH can capture both the short- and

the long-memory nature of time series. For example, the FARIMA process Xt is

usually defined as [129]:

Φ(B)(1 −B)dXt = Θ(B)ϵt, (2.21)

where d ∈ (−0.5, 0.5), and (1 − B)d is a fractional-order difference operator.

The locally stationary long-memory FARIMA model has the same equation as

that of Equation (2.21), except that d becomes dt, which is a time-varying param-

eter [130]. The locally stationary long-memory FARIMA model captures the local

self-similarity of the system.

The generalized locally stationary long-memory process FARIMA model was

investigated in [130]. For example, a generalized FARIMA model, which is called

the Gegenbauer autoregressive moving average (GARMA), was introduced in [131].

The GARMA model is defined as:

Φ(B)(1 − 2uB + B2)dXt = Θ(B)ϵt, (2.22)
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where u ∈ [−1, 1], which is a parameter that can control the frequency at which the

long memory occurs. The parameter d controls the rate of decay of the autocovari-

ance function. The GARMA model can also be extended to the so-called “k-factor

GARMA model,” which allows for long-memory behaviors to be associated with

each of k frequencies (Gegenbauer frequencies) in the interval [0, 0.5] [132].

2.4.4 Continuous Time Random Walk (CTRW)

The CTRW model was proposed by Montroll and Weiss as a generalization of

diffusion process to describe the phenomenon of anomalous diffusion [56]. The basic

idea is to calculate the PDF for the diffusion process by replacing the discrete steps

with continuous time, along with a PDF for step lengths and a waiting-time PDF

for the time intervals between steps. Montroll and Weiss applied random intervals

between the successive steps in the walking process to account for local structure

in the environment, such as traps [133]. The CTRW has been used for modeling

multiple complex phenomena, such as chaotic dynamic networks [134]. The cor-

relation between CTRW and diffusion equations with fractional time derivatives

has also been established [135]. Meanwhile, time-space fractional diffusion equa-

tions can be treated as CTRWs with continuously distributed jumps or continuum

approximations of CTRWs on lattices [136].

2.4.5 Unmanned Aerial Vehicles (UAVs) and Precision Agri-

culture

As a new remote-sensing platform, researchers are gaining interest in the po-

tential of small UAVs for precision agriculture [137, 138, 139, 140, 141, 142, 27,

28, 143, 144, 145], especially for heterogeneous crops, such as vineyards and or-

chards [146, 26]. Mounted on UAVs, lightweight sensors, such as RGB cameras,

multispectral cameras and thermal infrared cameras, can be used to collect high-

resolution images. The higher temporal and spatial resolutions of the images,

relatively low operational costs, and nearly real-time image acquisition make the

UAV an ideal platform for mapping and monitoring the variability of crops and
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Figure 2.3: Normalized difference vegetation index (NDVI) mapping of
pomegranate trees.

trees. UAVs can create big data and demand the FODA due to the “complexity”

and, thus, variability inherent in the life process. For example, Figure 2.3 shows

the normalized difference vegetation index (NDVI) mapping of a pomegranate or-

chard at the USDA-ARS experimental field (More details in Chapter 7). Under

different irrigation levels, the individual trees can show strong variability during

the analysis of water stress. Life is complex! Thus, it entails variability, which

as discussed above, in turn, entails fractional dynamics. UAVs can then become

“Tractor 2.0” for farmers in precision agriculture.

2.5 Optimal Machine Learning and Optimal Ran-

domness

Most ML algorithms perform training by solving optimization problems that

rely on first-order derivatives (Jacobians), which decide whether to increase or de-

crease weights. For huge speed boosts, faster optimizers are being used instead of

the regular gradient descent optimizer. For example, the most popular boosters are
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Figure 2.4: Data analysis in nature.

momentum optimization [147], Nesterov acelerated gradient [58], AdaGrad [148],

RMSProp [149], and Adam optimization [150]. The second-order (Hessian) opti-

mization methods usually find the solutions with faster rates of convergence but

with higher computational costs. Therefore, the answer to the following question is

important: 1.) What is a more optimal ML algorithm? 2.) What if the derivative

is fractional order instead of integer order? In this section, we discuss some ap-

plications of fractional-order gradients to optimization methods in ML algorithms

and investigate the accuracy and convergence rates.

As mentioned in the big data section, there is a huge amount of data in human

society and nature. During the learning process of ML, we care not only about

the speed, but also the accuracy of the data the machine is learning (Figure 2.4).

The learning algorithm is important; otherwise, the data labeling and other labor

costs will exhaust people beyond their abilities. When applying the artificial in-

telligence (AI) to an algorithm, a strong emphasis is on artificial, only followed

weakly by intelligence. Therefore, the key to ML is what optimization methods

are being applied. The convergence rate and global searching are two important

parts of the optimization method.

Reflection: The ML is a hot research topic and will probably remain so into

the near future. How a machine can learn efficiently (optimally) is always impor-

tant. The key for the learning process is the optimization method. Thus, in de-
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signing an efficient optimization method, it is necessary to answer the following

three questions:

• What is the optimal way to optimize?

• What is the more optimal way to optimize?

• Can we demand “more optimal machine learning,” for example, deep

learning with the minimum/smallest labeled data?

Optimal randomness: In the section of the Lévy PDF, the Lévy flight is

the search strategy for food that the albatross has developed over millions of years

of evolution. Admittedly, this is a slow optimization procedure [151]. From this

perspective, we should call “Lévy distribution” an optimized or learned randomness

used by albatrosses for food search. Therefore, we pose the question: “Can the

search strategy be more optimal than Lévy flight?” The answer is yes if one adopts

the FC [152]! Optimization is a very complex area of study. However, few studies

have investigated using FC to obtain a better optimization strategy.

2.5.1 Derivative-free Methods

For derivative-free methods, there are single agent search and swarm-based

search methods (Figure 2.5). Exploration is often achieved by randomness or

random numbers in terms of some predefined PDFs. Exploitation uses local in-

formation such as gradients to search local regions more intensively, and such

intensification can enhance the rate of convergence. Thus, a question was posed:

what is the optimal randomness? Wei et al. investigated the optimal randomness

in a swarm-based search [153]. Four heavy-tailed PDFs have been used for sample

path analysis (Figure 2.6). Based on the experimental results, the randomness-

enhanced cuckoo search (CS) algorithms [154, 93, 155] can identify the unknown

specific parameters of a fractional-order system with better effectiveness and ro-

bustness. The randomness-enhanced CS algorithms can be considered as a promis-

ing tool for solving real-world complex optimization problems. The reason is that

optimal randomness is applied with fractional-order noise during the exploration,
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(a) Single agent search. (b) Swarm-based search methods.

Figure 2.5: The 2-D Alpine function for derivative-free methods.

which is more optimal than the “optimized PSO”, CS. The fractional-order noise

refers to the stable PDFs [74]. In other words, when we are discussing optimal

randomness, we are discussing fractional calculus!

2.5.2 Gradient-based Methods

The gradient descent (GD) is a very common optimization algorithm, which

can find the optimal solutions by iteratively tweaking parameters to minimize

the cost function. The stochastic gradient descent (SGD) randomly selects times

during the training process. Therefore, the cost function bounces up and down,

decreasing on average, which is good for escape from local optima. Sometimes,

noise is added into the GD method, and usually, such noise follows a Gaussian

PDF in the literature. We ask, “Why not heavy-tailed PDFs”? The answer to this

question can lead to interesting future research.
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(a) Mittag-Leffler distribution. (b) Weibull distribution.

(c) Pareto distribution. (d) Cauchy distribution.

Figure 2.6: Sample paths analysis. Wei et al. investigated the optimal randomness
in a swarm-based search. Four heavy-tailed PDFs were used for sample path
analysis. The long steps, referring to the jump length, frequently happened for all
distributions, which showed strong heavy-tailed performance.
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The Nesterov Accelerated Gradient Descent (NAGD)

There are many variants of GD analysis as suggested in Figure 2.7. One of the

most popular methods is the NAGD [58]:yk+1 = ayk − µ∇f(xk),

xk+1 = xk + yk+1 + byk,
(2.23)

where by setting b = −a/(1 + a), one can derive the NAGD. When b = 0, one can

derive the momentum GD. The NAGD can also be formulated as:xk = yk−1 − µ∇f(yk−1),

yk = xk + k−1
k+2

(xk − xk−1).
(2.24)

Set t = k
√
µ, and one can, in the continuous limit, derive the corresponding

differential equation:

Ẍ +
3

t
Ẋ + ∇f(X) = 0. (2.25)

The main idea of Jordan’s work is to analyze the iteration algorithm in the

continuous-time domain [156]. For differential equations, one can use the Lay-

punov or variational method to analyze the properties; for example, the conver-

gence rate is O( 1
t2

). One can also use the variational method to derive the master

differential equation for an optimization method, such as the least action princi-

ple [157], Hamilton’s variational principle [158] and the quantum-mechanical path

integral approach [159]. Wilson et al. built a Euler–Lagrange function to derive

the following equation [156]:

Ẍt + 2γẊt +
γ2

µ
∇f(Xt) = 0. (2.26)

which is in the same form as the master differential equation of NAGD.

Jordan’s work revealed that one can transform an iterative (optimization) algo-

rithm to its continuous-time limit case, which can simplify the analysis (Laypunov

methods). One can directly design a differential equation of motion (EOM) and

then discretize it to derive an iterative algorithm (variational method). The key

is to find a suitable Laypunov functional to analyze the stability and convergent

rate. The new exciting fact established by Jordan is that optimization algorithms
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Figure 2.7: Gradient descent and its variants.

can be systematically synthesized using Lagrangian mechanics (Euler–Lagrange)

through EOMs.

Thus, is there an optimal way to optimize using optimization algorithms stem-

ming from Equation (2.26)? Obviously, why not an equation such as Equa-

tion (2.26) of fractional order? Considering the Ẋt as X
(α)
t , it will provide us

with more research possibilities, such as the fractional-order calculus of variation

(FOCV) and fractional-order Euler–Lagrange (FOEL) equation. For the SGD, op-

timal randomness using the fractional-order noises can also offer better than the

best performance, similarly shown by Wei et al. [153].

2.6 What Can the Control Community Offer to

ML?

In the IFAC 2020 World Congress Pre-conference Workshop, Eric Kerrigan

proposed “The Three Musketeers” that the control community could contribute

to ML [160]. These three were the internal model principle (IMP) [161], the Nu-

Gap metric [162] and model discrimination [163]. Herein, we focused on the IMP.

Kashima et al. transferred the convergence problem of numerical algorithms into

a stability problem of a discrete-time system [164]. An et al. explained that the
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Figure 2.8: The integrator model (embedded in G(z)). The integrator in the
forward loop eliminates the tracking steady-state error for a constant reference
signal (internal model principle (IMP)).

commonly used SGD-momentum algorithm in ML was a PI controller and de-

signed a PID algorithm [165]. Motivated by [165] but differently from M. Jordan’s

work, we proposed designing and analyzing the algorithms in the S or Z domain.

Remember that GD is a first-order algorithm:

xk+1 = xk − µ∇f(xk), (2.27)

where µ > 0 is the step size (or learning rate). Using the Z transform, one can

achieve:

X(z) =
µ

z − 1
[−∇f(xk)]z. (2.28)

Approximate the gradient around the extreme point x∗, and one can obtain:

∇f(xk) ≈ A(xk − x∗), with A = ∇2f(x∗). (2.29)

For the plain GD in Figure 2.8, we have G(z) = 1/(z−1), which is an integrator.

For fractional-order GD (FOGD), the updating term of xk in Equation (2.27) can

be treated as a filtered gradient signal. In [166], Fan et al. shared similar thoughts:

“Accelerating the convergence of the moment method for the Boltzmann equation

using filters”. The integrator in the forward loop eliminates the tracking error for

a constant reference signal according to the IMP. Similarly, the GD momentum

(GDM) designed to accelerate the conventional GD, which is popularly used in

ML, can be analyzed using Figure 2.8 by:yk+1 = αyk − µ∇f(xk),

xk+1 = xk + yk+1,
(2.30)
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where yk is the accumulation of the history gradient and α ∈ (0, 1) is the rate of

the moving average decay. Using the Z transform for the update rule, one can

derive: zY (z) = αY (z) − µ[∇f(xk)]z,

zX(z) = X(z) + zY (z).
(2.31)

Then, after some algebra, one obtains the following equation:

X(z) =
µz

(z − 1)(z − α)
[−∇f(xk)]z. (2.32)

For the GD momentum, we have G(z) = z
(z−1)(z−α)

in Figure 2.8, with an integrator

in the forward loop. The GD momentum is a second-order (G(z)) algorithm with

an additional pole at z = α and one zero at z = 0. The “second-order” refers to

the order of G(z), which makes it different from the algorithm using the Hessian

matrix information. Moreover, NAGD can be simplified as:yk+1 = xk − µ∇f(xk),

xk+1 = (1 − λ)yk+1 + λyk,
(2.33)

where µ is the step size and λ is a weighting coefficient. Using the Z transform for

the update rule, one can derive:zY (z) = X(z) − µ[∇f(xk)]z,

zX(z) = (1 − λ)zY (z) + λY (z).
(2.34)

Different from the GD momentum, and after some algebra, one obtains:

X(z) =
−(1 − λ)z − λ

(z − 1)(z + λ)
µ[∇f(xk)]z =

z + λ
1−λ

(z − 1)(z + λ)
µ(1 − λ)[−∇f(xk)]z. (2.35)

For NAGD, we have G(z) =
z+ λ

1−λ

(z−1)(z+λ)
, again, with an integrator in the forward

loop (Figure 2.8). NAGD is a second-order algorithm with an additional pole at

z = −λ and a zero at z = −λ
1−λ

.

“Can G(z) be of higher order or fractional order”? Of course it can! As shown

in Figure 2.8, a necessary condition for the stability of an algorithm is that all the

poles of the closed-loop system are within the unit disc. If the Lipschitz continuous
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Table 2.3: General second-order algorithm design. The parameter ρ is the loop
forward gain; see text for more details.

ρ 0.4 0.8 1.2 1.6 2.0 2.4

a −0.6 −0.2 0.2 0.6 1 1.4

b 1.5 0.25 −0.1667 −0.3750 −0.5 −0.5833

gradient constant L is given, one can replace A with L, and then, the condition is

sufficient. For each G(z), there is a corresponding iterative optimization algorithm.

G(z) can be a third- or higher-order system. Apparently, G(z) can also be a

fractional-order system. Considering a general second-order discrete system:

G(z) =
z + b

(z − 1)(z − a)
, (2.36)

the corresponding iterative algorithm is Equation (2.23). As mentioned earlier,

when setting b = −a/(1 + a), one can derive the NAGD. When b = 0, one can

derive the momentum GD. The iterative algorithm can be viewed as a state-space

realization of the corresponding system. Thus, it may have many different real-

izations (all are equivalent). Since two parameters a and b are introduced for a

general second-order algorithm design, we use the integral squared error (ISE) as

the criterion to optimize the parameters. This is because for different target func-

tions f(x), the Lipschitz continuous gradient constant is different. Thus, the loop

forward gain is defined as ρ := µA.

According to the experimental results (Table 2.3), interestingly, it is found that

the optimal a and b satisfy b = −a/(1 + a), which is the same design as NAGD.

Other criteria such as the IAE and ITAE were used to find other optimal param-

eters, but the results are the same as for the ISE. Differently from for NAGD,

the parameters were determined by search optimization rather than by mathemat-

ical design, which can be extended to more general cases. The algorithms were

then tested using the MNIST dataset (Figure 2.9). It is obvious that for different

zeros and poles, the performance of the algorithms is different. One finds that both

the b = −0.25 and b = −0.5 cases perform better than does the SGD momentum.

Additionally, both b = 0.25 and b = 0.5 perform worse. It is also shown that an

additional zero can improve the performance, if adjusted properly. It is interesting
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Figure 2.9: Training loss (left); test accuracy (right). It is obvious that for
different zeros and poles, the performance of the algorithms is different. One
finds that both the b = −0.25 and b = −0.5 cases perform better than does the
stochastic gradient descent (SGD) momentum. Additionally, both b = 0.25 and
b = 0.5 perform worse. It is also shown that an additional zero can improve the
performance, if adjusted carefully. (Courtesy of Professor Yuquan Chen)

to observe that both the method and the Nesterov method give an optimal choice

of the zero, which is closely related to the pole (b = −a/(1 + a)).

Now, let us consider a general third-order discrete system:

G(z) =
z2 + cz + d

(z − 1)(z2 + az + b)
. (2.37)

Set b = d = 0; it will reduce to the second-order algorithm discussed above.

Compared with the second-order case, the poles can now be complex numbers.

More generally, a higher-order system can contain more internal models. If all the

poles are real, then:

G(z) =
1

(z − 1)

(z − c)

(z − a)

(z − d)

(z − b)
, (2.38)
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Table 2.4: General third-order algorithm design, with parameters defined by Equa-
tion (2.39).

ρ 0.4 0.8 1.2 1.6 2.0 2.4

a 0.6439 0.5247 −0.4097 −0.5955 −1.0364 −1.4629

b 0.0263 0.0649 0.0419 −0.0398 0.0364 0.0880

c 1.5439 0.5747 −0.3763 −0.3705 −0.5364 −0.6462

d 0.0658 0.0812 0.0350 −0.0408 0.0182 0.0367

whose corresponding iterative optimization algorithm is
yk+1 = yk − µ∇f(xk),

zk+1 = azk + yk+1 − cyk,

xk+1 = bxk + zk+1 − dzk.

(2.39)

After some experiments (Table 2.4), it was found that since the ISE was used

for tracking a step signal (it is quite simple), the optimal poles and zeros are

the same as for the second-order case with a pole-zero cancellation. This is an

interesting discovery. In this optimization result, all the poles and zeros are real,

and the resulting performance is not very good, as expected. Compare this with

the second-order case; the only difference is that in the latter, complex poles can

possibly appear. Thus, the question arises: “How do complex poles play a role in

the design?” The answer is obvious: by fractional calculus!

Inspired by M. Jordan’s idea in the frequency domain, a continuous time

fractional-order system was designed:

G(s) =
1

s(sα + β)
, (2.40)

where α ∈ (0, 2), β ∈ (0, 20] at first. It was then found that the optimal parameters

were obtained by searching using the ISE criterion (Table 2.5).

Equation (2.40) encapsulates the continuous-time design, and one can use the

numerical inverse Laplace transform (NILP) [167] and Matlab command stmcb(

) [168] to derive its discrete form. After the complex poles are included, one can

have:

G(z) =
(z + c)

(z − 1)
(

1

z − a + jb
+

1

z − a− jb
), (2.41)
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Table 2.5: The continuous time fractional-order system.

ρ 0.3 0.5 0.7 0.9

α 1.8494 1.6899 1.5319 1.2284

β 20 20 20 20

Figure 2.10: Training loss (left); test accuracy (right). (Courtesy of Professor
Yuquan Chen)

whose corresponding iterative algorithm is:
yk+1 = ayk − bzk − µ∇f(xk),

zk+1 = azk + byk,

xk+1 = xk + yk+1 + cyk.

(2.42)

Then, the algorithms were tested again using the MNIST dataset, and the

results were compared with the SGD’s. For the fractional order, ρ = 0.9 was used,

a = 0.6786, b = 0.1354, and different values for zero c were used. When c = 0,

the result was similar to that for the second-order SGD. When c was not equal
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to 0, the result was similar to that for the second-order NAGD. For the SGD, α

was set to be 0.9, and the learning rate was 0.1 (Figure 2.10). Both c = 0 and

c = 0.283 perform better than the SGD momentum; generally, with appropriate

values of c, better performance can be achieved than in the second-order cases.

The simulation results demonstrate that fractional calculus (complex poles) can

potentially improve the performance, which is closely related to the learning rate.

In general, M. Jordan asked the question: “Is there an optimal way to opti-

mize?” Our answer is a resounding yes, by limiting dynamics analysis and dis-

cretization and SGD with other randomness, such as Langevin motion. Herein,

the question posed was: “Is there a more optimal way to optimize?” Again,

the answer is yes, but it requires the fractional calculus to be used to optimize

the randomness in SGD, random search and the IMP. There is more potential for

further investigations along this line of ideas.

2.7 Case Study: Optimal Randomness for Stochas-

tic Configuration Network (SCN) with Heavy-

tailed Distributions

2.7.1 Introduction

The Stochastic Configuration Network (SCN) model is generated incrementally

by using stochastic configuration (SC) algorithms [169]. Compared with the exist-

ing randomized learning algorithms for single-layer feed-forward neural networks

(SLFNNs), the SCN can randomly assign the input weights (w) and biases (b)

of the hidden nodes in a supervisory mechanism, which is selecting the random

parameters with an inequality constraint and assigning the scope of the random

parameters adaptively. It can ensure that the built randomized learner models

have universal approximation property. Then, the output weights are analyti-

cally evaluated in either a constructive or selective manner [169]. In contrast with

the known randomized learning algorithms, such as the Randomized Radial Basis

Function (RBF) Networks [170] and the Random Vector Functional-link (RVFL)
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[171], SCN can provide good generalization performance at a faster speed. Con-

cretely, there are three types of SCN algorithms, which are SC-I, SC-II, and SC-III.

SC-I algorithm uses a constructive scheme to evaluate the output weights only for

the newly added hidden node [172]. All of the previously obtained output weights

are kept the same. The SC-II algorithm recalculates part of the current output

weights by analyzing a local least squares problem with user-defined shifting win-

dow size. The SC-III algorithm finds all the output weights together by solving a

global least-squares problem.

SCN algorithms have been commonly studied and used in many areas, such as

image data analytics [173, 28], prediction of component concentrations in sodium

aluminate liquor [174], and etc. [175, 176]. For example, in [173], Li et al. de-

veloped a two-dimensional SCNs (2DSCNs) for image data modelling tasks. Ex-

perimental results on hand written digit classification and face recognition showed

that the 2DSCNs have great potential for image data analytics. In [174], Wang

et al. proposed a SCN-based model for measuring component concentrations in

sodium aluminate liquor, which were usually acquired by titration analysis and

suffered from larger time delays. From the results, the mechanism model showed

the internal relationship. The improved performance can be achieved by using

the SCN-based compensation model. In [102], Lu et al. proposed a novel robust

SCN model based on a mixture of the Gaussian and Laplace distributions (MoGL-

SCN) in the Bayesian framework. To improve the robustness of the SCN model,

the random noise of the SCN model is assumed to follow a mixture of Gaussian

distribution and Laplace distributions. Based on the research results, the pro-

posed MOGL-SCN could construct prediction intervals with higher reliability and

prediction accuracy.

Neural Networks (NNs) can learn from data to train feature-based predictive

models. However, the learning process can be time-consuming and infeasible for

applications with data streams. An optimal method is to randomly assign the

weights of the NNs so that the task can become a linear least-squares problem. In

[177], Wang et al. classified the NN models into three types. First, the feed-forward

networks with random weights (RW-FNN) [178]. Second, recurrent NNs with ran-
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dom weights [179]. Third, randomized kernel approximations [180]. According to

[177], there are three benefits of the randomness: (1) Simplicity of implementation,

(2) Faster learning and less human intervention, (3) Possibility of leveraging linear

regression and classification algorithms. Randomness is used to define a feature

map, which converts the data input into a high dimensional space where learning

is more simpler. The resulting optimization problem becomes a standard linear

least-squares, which is a simpler and scalable learning procedure.

For the original SCN algorithms, weights and biases are randomly generated

in uniform distribution. Randomness plays a significant role in both exploration

and exploitation. A good NNs architecture with randomly assigned weights can

easily outperform a more deficient architecture with finely tuned weights [177].

Therefore, it is critical to discuss the optimal randomness for the weights and biases

in SCN algorithms. In this study, the authors mainly discussed the impact of three

different heavy-tailed distributions on the performance of the SCN algorithms,

Lévy distribution, Cauchy distribution, and Weibull distribution [94]. Heavy-tailed

distribution has shown optimal randomness for finding targets [181], which plays

a significant role in exploration and exploitation [153]. It is important to point

out that the proposed SCN models are very different from Lu et al. [102]. As

mentioned earlier, Lu et al. assumed that the random noise of the SCN model

following a mixture of Gaussian distribution and Laplace distributions. In this

research study, the author randomly initialized the weights and biases with heavy-

tailed distributions instead of uniform distribution. To compare with the mixture

distributions, the author also used the mixture distributions for weight and bias

generation. A more detailed comparison of the two heavy-tailed methods is shown

in the following Results and Discussion section.

There are two objectives for this research: (1) Compare the performance of

SCN algorithms with heavy-tailed distributions on a linear regression model [182];

(2) Evaluate the SCN algorithms performance on MNIST handwritten digit clas-

sification problem with heavy-tailed distributions.
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2.7.2 SCN with Heavy-tailed PDFs

For the original SCN algorithms, weights and biases are randomly generated

using a uniform PDF. Randomness plays a significant role in both exploration and

exploitation. A good neural network architecture with randomly assigned weights

can easily outperform a more deficient architecture with finely tuned weights [177].

Therefore, it is critical to discuss the optimal randomness for the weights and

biases in SCN algorithms. Heavy-tailed PDFs have shown optimal randomness

for finding targets [181, 183], which plays a significant role in exploration and

exploitation [153]. Therefore, herein, heavy-tailed PDFs were used to randomly

update the weights and biases in the hidden layers to determine if the SCN models

display improved performance. Some of the key parameters of the SCN models

are listed in Table 2.6. For example, the maximum times of random configuration

Tmax were set as 200. The scale factor lambda in the activation function, which

directly determined the range for the random parameters, was examined by using

different settings (0.5–200). The tolerance was set as 0.05. Most of the parameters

for the SCN with heavy-tailed PDFs were kept the same with the original SCN

algorithms for comparison purposes. For more details, please refer to [169].

2.7.3 A Regression Model and Parameter Tuning

The dataset of the regression model was generated by a real-valued func-

tion [182]:

f(x) = 0.2e−(10x−4)2 + 0.5e−(80x−40)2 + 0.3e−(80x−20)2 , (2.43)

where x ∈ [0, 1]. There were 1000 points randomly generated from the uniform

distribution on the unit interval [0, 1] in the training dataset. The test set had

300 points generated from a regularly spaced grid on [0, 1]. The input and output

attributes were normalized into [0, 1], and all the results reported in this research

represented averages over 1000 independent trials. The settings of the parameters

were similar to the SCN in [169].

Heavy-tailed PDF algorithms have user-defined parameters, for example, the

power-law index for SCN-Lévy, and location and scale parameters for SCN-Cauchy
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Table 2.6: SCNs with key parameters.

Properties Values

Name: “Stochastic Configuration Networks”

version: “1.0 beta”

L: hidden node number

W: input weight matrix

b: hidden layer bias vector

Beta: output weight vector

r: regularization parameter

tol: tolerance

Lambdas: random weights range

Lmax: maximum number of hidden neurons

Tmax: maximum times of random configurations

nB: number of node being added in one loop
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and SCN-Weibull, respectively. Thus, to illustrate the effect of parameters on the

optimization results and to offer reference values for the proposed SCN algorithms,

parameter analysis was conducted, and corresponding experiments were performed.

Based on the experimental results, for the SCN-Lévy algorithm, the most optimal

power-law index is 1.1 for achieving the minimum number of hidden nodes. For the

SCN-Weibull algorithm, the optimal location parameter α and scale parameter β

for the minimum number of hidden nodes are 1.9 and 0.2, respectively. For the

SCN-Cauchy algorithm, the optimal location parameter α and scale parameter β

for the minimum number of hidden nodes are 0.9 and 0.1, respectively.

Performance Comparison among SCNs with Heavy-Tailed PDFs

In Table 2.7, the performance of SCN, SCN-Lévy, SCN-Cauchy, SCN-Weibull

and SCN-Mixture are shown, in which mean values are reported based on 1000

independent trials. Wang et al. used time cost to evaluate the SCN algorithms’

performance [169]. In the present study, the author used the mean hidden node

numbers to evaluate the performance. The number of hidden nodes was associated

with modeling accuracy. Therefore, the analysis determined if an SCN with heavy-

tailed PDFs used fewer hidden nodes to generate high performance, which would

make the NNs less complex. According to the numerical results, the SCN-Cauchy

used the lowest number of mean hidden nodes, 59, with a root mean squared error

(RMSE) of 0.0057. The SCN-Weibull had a mean number of 63 hidden nodes,

with an RMSE of 0.0037. The SCN-Mixture had a mean number of 70 hidden

nodes, with an RMSE of 0.0020. The mean number of hidden nodes for SCN-Lévy

was also 70. The original SCN model had a mean number of 75 hidden nodes.

A more detailed training process is shown in Figure 2.11. With fewer hidden node

numbers, the SCN models with heavy-tailed PDFs can be faster than the original

SCN model. The neural network structure is also less complicated than the SCN.

Our numerical results for the regression task demonstrate remarkable improve-

ments in modeling performance compared with the current SCN model results.
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Table 2.7: Performance comparison of SCN models on the regression problem.

Models Mean hidden node number RMSE

SCN 75 ± 5 0.0025,

SCN-Lévy 70 ± 6 0.0010,

SCN-Cauchy 59 ± 3 0.0057,

SCN-Weibull 63 ± 4 0.0037,

SCN-Mixture 70 ± 5 0.0020.
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Figure 2.11: Performance of SCN, SCN-Lévy, SCN-Weibull, SCN-Cauchy and
SCN-Mixture. The parameter L is the hidden node number.
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Figure 2.12: The handwritten digit dataset example.

2.7.4 MNIST Handwritten Digit Classification

The handwritten digit dataset contains 4000 training examples and 1000 test-

ing examples, a subset of the MNIST handwritten digit dataset. Each image is a 20

× 20 pixel grayscale image of the digit (Figure 2.12). Each pixel is represented by

a number indicating the grayscale intensity at that location. The 20 × 20 grid of

pixels is “unrolled” into a 400-dimensional vector. Similar to the parameter tuning

for the regression model, parameter analysis was conducted to illustrate the im-

pact of parameters on the optimization results and to offer reference values for the

MNIST handwritten digit classification SCN algorithms. Corresponding experi-

ments were performed. According to the experimental results, for the SCN-Lévy

algorithm, the most optimal power law index is 1.6 for achieving the best RMSE

performance. For the SCN-Cauchy algorithm, the optimal location parameter α

and scale parameter β for the lowest RMSE are 0.2 and 0.3, respectively.

Performance Comparison among SCNs on MNIST

The performance of the SCN, SCN-Lévy, SCN-Cauchy and SCN-Mixture are

shown in Table 2.8. Based on the experimental results, the SCN-Cauchy, SCN-Lévy

and SCN-Mixture have better performance in training and test accuracy, compared

with the original SCN model. A detailed training process is shown in Figure 2.13.
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Table 2.8: Performance comparison between SCN, SCN-Lévy and SCN-Cauchy.

Models Training accuracy Test accuracy

SCN 94.0 ± 1.9% 91.2 ± 6.2%,

SCN-Lévy 94.9 ± 0.8% 91.7 ± 4.5%,

SCN-Cauchy 95.4 ± 1.3% 92.4 ± 5.5%.

SCN-Mixture 94.7 ± 1.1% 91.5 ± 5.3%.

Within around 100 hidden nodes, the SCN models with heavy-tailed PDFs perform

similarly to the original SCN model. When the number of the hidden nodes is

greater than 100, the SCN models with heavy-tailed PDFs have lower RMSEs.

Since more parameters for weights and biases are initialized in heavy-tailed PDFs,

this may cause an SCN with heavy-tailed PDFs to converge to the optimal values at

a faster speed. The experimental results for the MNIST handwritten classification

problem demonstrate improvements in modeling performance. They also show

that SCN models with heavy-tailed PDFs have a better search ability for achieving

lower RMSEs.

2.8 Conclusion and Future Research

Big data and ML are two of the hottest topics of applied scientific research,

and they are closely related to one another. To better understand them, in this

chapter, we advocated fractional calculus (FC), as well as fractional-order thinking

(FOT), for big data and ML analysis and applications. In Section 2.4, we discussed

the relationships between big data, variability and FC, as well as why fractional-

order data analytics (FODA) should be used and what it is. The topics included

the Hurst parameter, fractional Gaussian noise (fGn), fractional Brownian mo-

tion (fBm), the fractional autoregressive integrated moving average (FARIMA),

the formalism of continuous time random walk (CTRW), unmanned aerial vehicles

(UAVs) and precision agriculture (PA).

In Section 2.5, how to learn efficiently (optimally) for ML algorithms was
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Figure 2.13: Classification performance of SCNs.

discussed. The key to developing an efficient learning process is the method of

optimization. Thus, it is important to design an efficient optimization method.

The derivative-free methods, as well as the gradient-based methods, such as the

Nesterov accelerated gradient descent (NAGD), are discussed. Furthermore, it

is shown to be possible, following the internal model principle (IMP), to design

and analyze the ML algorithms in the S or Z transform domain in Section 2.6.

FC is used in optimal randomness in the methods of stochastic gradient descent

(SGD) and random search. Nonlocal models have commonly been used to describe

physical systems and/or processes that cannot be accurately described by classical

approaches [184]. For example, fractional nonlocal Maxwell’s equations and the

corresponding fractional wave equations were applied in [185] for fractional vector

calculus [186]. The nonlocal differential operators [187], including nonlocal analogs

of the gradient/Hessian, are the key of these nonlocal models, which could lead to

very interesting research with FC in the near future.

Fractional dynamics is a response to the need for a more advanced charac-

terization of our complex world to capture structure at very small or very large

scales that had previously been smoothed over. If one wishes to obtain results
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Figure 2.14: Timeline of FC (courtesy of Professor Igor Podlubny).

that are better than the best possible using integer-order calculus-based methods,

or are “more optimal”, we advocate applying FOT and going fractional! In this

era of big data, decision and control need FC, such as fractional-order signals,

systems and controls. The future of ML should be physics-informed, scientific

(cause–effect embedded or cause–effect discovery) and involving the use of FC,

where the modeling is closer to nature. Laozi (unknown, around the 6th century to

4th century BC), the ancient Chinese philosopher, is said to have written a short

book Dao De Jing (Tao Te Ching), in which he observed: “The Tao that can

be told is not the eternal Tao” [188]. People over thousands of years have shared

different understandings of the meaning of the Tao. Our best understanding of the

Tao is nature, whose rules of complexity can be explained in a non-normal way.

Fractional dynamics, FC and heavytailedness may well be that non-normal way

(Figure 2.14), at least for the not-too-distant future.
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Chapter 3

Small Unmanned Aerial Vehicles

and Remote Sensing Payloads

3.1 The UAV Platform

Many kinds of UAVs are used for different research purposes, such as ET esti-

mation. Some popular UAV platforms are shown in Fig. 3.1. Typically, there are

two types of UAV platforms, fixed-wings and multirotors. Fixed-wings can usually

fly longer with a larger payload. It can usually fly for about 2 hours, which is suit-

able for a large field. Multirotors can fly about 30 minutes with payload, which

is suitable for short flight missions. Both of them have been used in agricultural

research, such as [26, 23], which promises great potential in precision agriculture.

The author mainly used a quadcopter named “Hover” to collect aerial images,

as shown in Fig. 3.1 (e). The “Hover” was equipped with a Pixhawk flight con-

troller, GPS, telemetry antennas. It can fly over the field by waypoints mode

(designed by using Mission Planner software). The lithium polymer battery of

“Hover” has a capacity of 9500 mAh, which can support a 30-minute flight mis-

sion with cameras mounted on it. The specifications of the “Hover” are listed in

Table 3.1 for reference. The “Hover” is equipped with high efficient power system,

including T-Motor MN3508 KV380 motor, 1552 folding propeller, and Foxtech

Multi-Pal 40A OPTP ESC, to ensure long flight time.

53
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Figure 3.1: (a) The QuestUAV 200 UAV. (b) The MK Okto XL 6S12. (c) The
DJI S1000. (d) The eBee Classic. (e) The Hover.

Table 3.1: The specifications of “Hover”. The quadcopter is equipped with high
efficient power system, including T-Motor MN3508 KV380 motor, 1552 folding
propeller and Foxtech Multi-Pal 40A OPTP ESC, to ensure long flight time.

Specifications:

Wheelbase 610 mm,

Folding size 285 × 285 × 175 mm,

Propeller Foxtech 1552 folding propeller,

Motor T-Motor MN3508 KV380,

ESC Foxtech Multi-Pal 40A OPTO ESC (Simonk Firmware),

Flight controller Pixhawk cube orange standard set with Here 2 GNSS,

Operating temperature -20 ∼ +50 ◦C,

Suggested flight altitude < 1000 m,

Max air speed 20 m/s.
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Figure 3.2: The Survey 2 sensors and the reflectance calibration ground target
package.

3.2 Lightweight Sensors

Mounted on UAVs, many light weight sensors can be used for collecting UAV

imagery, such as RGB, multispectral, and thermal images, for agricultural research.

In this section, the author listed the sensors that had been commonly used in most

of his research work. The sensors being introduced here will be mentioned in the

following chapters frequently. Therefore, the author introduced the sensors in this

section in details.

3.2.1 The RGB Camera

The Survey 2 (MAPIR, San Diego, CA, USA)1 camera has four bands, Blue,

Green, Red, and Near-infrared (NIR), with a spectral resolution of 4608 × 3456

pixels, and a spatial resolution of 1.01 cm/pixel (Fig. 3.2). The Survey 2 camera

has a fast interval timer, 2 seconds for JPG mode, and 3 seconds for RAW + JPG

mode. Faster interval timer will benefit the overlap design for UAV flight missions,

such as reducing the flight time, and enabling higher overlapping.

1Mention of trade names or commercial products in this publication is solely for the pur-
pose of providing specific information and does not imply recommendation or endorsement by
the University of California. The University of California is equal opportunity providers and
employers.
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Figure 3.3: The Rededge M is a commonly used multispectral camera. The Red-
edge M has five bands, which are Blue, Green, Red, Near-infrared, and Red edge.
It has a spectral resolution of 1280 × 960 pixel, with a 46◦ field of view.

3.2.2 The Multispectral Camera

The Rededge M is a commonly used multispectral camera (Fig. 3.3). The

Rededge M has five bands, which are Blue, Green, Red, Near-infrared, and Red

edge. It has a spectral resolution of 1280 × 960 pixel, with a 46◦ field of view. With

a Downwelling Light Sensor (DLS), which is a 5-band light sensor that connects

to the camera, the Rededge M can measure the ambient light during a flight

mission for each of the five bands. Then, it can record the light information in the

metadata of the images captured by the camera. After the camera calibration, the

information detected by the DLS can be used to correct lighting changes during a

flight, such as changes in cloud cover during a UAV flight.

3.2.3 The Short Wave Infrared Camera

The SWIR 640 P-Series (Infrared Cameras Inc, Beaumont, TX, USA.), which is

a shortwave infrared camera, has also been commonly used for agricultural research
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Figure 3.4: The SWIR 640 P-Series, which is a shortwave infrared camera, has
also been commonly used for agricultural research. The spectral band is from 0.9
µm to 1.7 µm. The accuracy for the SWIR camera is ± 1 ◦C. It has a resolution
of 640 × 512 pixels.

(Fig. 3.4). The spectral band is from 0.9 µm to 1.7 µm. The accuracy for the SWIR

camera is ± 1 ◦C. It has a resolution of 640 × 512 pixels.

3.2.4 The Thermal Camera

The thermal camera ICI 9640 P (Infrared Cameras Inc, Beaumont, TX, USA.)

has been used for collecting thermal images as reported in [189, 190, 191, 27]. The

thermal camera has a resolution of 640 × 480 pixels. The spectral band is from

7 µm to 14 µm. The dimension of the thermal camera is 34 mm × 30 mm × 34

mm (Fig. 3.5). The accuracy is designed to be ± 2 ◦C. A Raspberry Pi Model B

computer (Raspberry Pi Foundation, Cambridge, UK.) can be used to trigger the

thermal camera during flight missions.
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Figure 3.5: The thermal camera has a resolution of 640 × 480 pixels. The spectral
band is from 7 µm to 14 µm. The dimension of the thermal camera is 34 mm ×
30 mm × 34 mm. The accuracy is designed to be ± 2 ◦C.
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Figure 3.6: The user interface of Mission Planner. The example of flight mission
was for nematode data collection using UAV for Project 30 at UC Kearny Center.
See Chapter 6 for more details.

3.3 UAV Image Acquisition and Processing

3.3.1 The Flight Mission Design

The author used the Mission Planner to program all flight missions (Fig. 3.6).

The flight height was usually set up as 30, 60, 90, and 120 m based on research

purpose. The overlapping of UAV imagery was set up as 80%, so that the UAV

imagery of the crops or trees can be stitched together during image processing. A

bi-weekly UAV flight schedule is suggested to collect sufficient data. If there is a

UAV crash, unexpected weather conditions, hardware issues, or unknown reasons,

data may not be collected successfully. If data is missed, people may have to wait

for another year.

To minimize the shading effect on the images, the UAVs are usually flying at

noon with clear sky conditions. Because each pixel in a UAV image is a percent-

age of the reflected light, pixel values need to be calibrated by using a known

reflectance value. Therefore, the image of a calibration board needs to be taken

before and after the flight missions, servicing as the reflectance reference. It is

important to take pictures of the reference panel immediately before and after the
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flight missions because the solar angle and light intensity can change [192], which

causes inaccurate experiment results. UAV images usually have higher radiometric

homogeneity than aircraft or satellite images because of the lower flight altitude

[193]. However, there are also special UAVs image quality problems. For exam-

ple, the camera position on the UAVs might be different for each flight mission,

which can cause different spatial resolution or different viewing angles [193]. The

low flight height of UAVs can also result in geometric distortion [193, 194]. Be-

sides, lower flight height results in greater numbers of UAV images to keep effective

overlapping, which makes image processing more time-consuming.

3.3.2 UAV Image Processing

After the flight missions, all of the aerial images were stitched together to gen-

erate the orthomosaick images (Table 3.2 and Fig. 3.7) in Metashape (Agisoft LLC,

Russian). Preselection is recommended because it can speed up the processing of

large datasets. Building the dense cloud can reconstruct a more accurate surface,

which can improve the quality of the final orthomosaic. Higher quality usually can

result in a more accurate surface, which means a greater number of points. How-

ever, higher quality is not recommended because of longer data processing time.

Medium quality is sufficient for UAV image processing, especially for low varia-

tions field. Building Digital Elevation Model (DEM) allows generating an accurate

surface, which can be used as a source for the orthomosaic generation. This will

shorten the data processing time compared with Build Mesh operation because

Build Mesh is usually used for a more complex surface. The source data for build-

ing DEM is the dense cloud. For the interpolation method, Extrapolated option

is selected because it can generate a surface without gaps being extrapolated to

the bound box sides. The default option for Interpolation is Enabled, which

is not recommended because it will leave the valid elevation values only for fields

that are seen from at least one aligned camera.
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Table 3.2: Orthomosaic images generation workflow in Agisoft Metashape.

Step 1 : Align Photos Step 2 : Build Mesh Step 3 : Build Orthomosaick

Accuracy: Medium Surface type: Height field (2.5D) Type: Planar

Generic preselection: Yes Source data: Sparse cloud Projection plane: TOP XY

Key point limit: 40,000 Face count: Medium (30,000) Rotation angle: 0

Tie point limit: 4,000 Interpolation: Enabled (default) Surface: Mesh

Adaptive camera model fitting: No Point classes: All Blending mode: Mosaic (default)

Caculate vertex colors: Yes Enable hole filling: Yes

Enable back-face culling: No

Figure 3.7: Agisoft Metashape image processing workflow: (a) Align Photos. (b)
Build Mesh. (c) Generate orthomosaick.
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3.4 Challenges and Opportunities

Compared with traditional remote sensing tools, such as satellite, the UAVs

flight can be more flexible and frequent in the field. UAVs can fly at a lower

altitude and can take higher spatial and temporal resolution images of crops [190].

As a low-cost scientific data collection platform, UAVs also make data acquisition

relatively less expensive. While there are many advantages by using UAVs for

agricultural research, there are still challenges for UAVs. These challenges are also

commonly shown in different research work [195, 196, 197, 198, 199, 200, 201, 202,

203, 204, 205, 206].

3.4.1 UAVs

Although UAVs have shown great potential for precision agriculture, there are

still many technical problems for UAVs, such as flight time, flight height control,

path planning, stability in winds, and turbulence [207, 208]. For example, most

UAVs can only fly around 30 minutes with payload, which is not enough for a

large field. The power can also run low faster because of unexpected headwinds or

other factors. Increasing the payload of UAVs will make the UAVs more capable.

Flight height is another concern, in the United States, the maximum altitude for

UAVs is limited to 120 m. The UAVs need to be in the sight of the operator, and

a pilot license is also required. Consequently, it is necessary to have a flying team

for UAVs. For a detailed discussion on technical limitations for UAVs, please refer

to [209]. Fortunately, it is expected that with the development of UAV technol-

ogy, new camera designs, lower costs, improved image processing techniques, and

a greater number of experimental studies of UAV-based remote sensing for agri-

culture applications, UAVs will have better performance for agricultural research.

3.4.2 UAV Path Planning and Image Processing

Many researchers fly the UAVs in different height, using specialized equipment,

controlling environments, and relying on data analysis expertise [210]. Is there any

optimal point where the data can be the best representation of crops or trees? In
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[210], Stark et al. built a conceptual framework for describing the optimality

as a function of spatial, spectral, and temporal factors that represented the best

solution. As researchers try to understand the potential of the UAVs, efficient

workflow, image processing methods, and better software are still under developing

[211, 212, 213, 214].

3.4.3 Pre-flight Path Planning

Being used as a remote sensing platform, UAVs also create new research prob-

lems, such as UAV image processing and flight path planning. Flight missions are

usually designed by different kinds of software. The flight height is usually set

up as 30 m, 60 m, and 120 m. For most flight missions in the reviewed papers,

the overlap was usually set up between 75% to 85% to enable the images stitched

together during image processing. The UAVs sensors are designed to take images

at nearly 0 nadir angle.

Researchers usually fly UAVs biweekly to collect data. If there is a UAV crash,

unexpected weather conditions, hardware issues, or unknown reasons, data may

not be collected successfully. If data is missed, people may have to wait for another

year. A bi-weekly UAV flight schedule is suggested to collect sufficient data.

3.4.4 Multispectral Image Calibration

To minimize the shading effect on the multispectral images, the UAVs are

usually flying at noon with clear sky conditions. Because each pixel in a UAV

image is a percentage of the reflected light, pixel values need to be calibrated

by using a known reflectance value. Therefore, the image of a calibration board

needs to be taken before and after the flight missions, servicing as the reflectance

reference (Fig. 3.8).

It is important to take pictures of the reference panel immediately before and

after the flight missions because the solar angle and light intensity can change [192],

which causes inaccurate experiment results. The digital number of the images are

converted to reflectance by [215]
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Figure 3.8: The UAV image reflectance calibration. (a) A color panel. (b) The
MAPIR target calibration board. (c) The Rededge M calibration board.

ρλ =
DN −DNd

DNw −DNd

, (3.1)

where ρλ is the reflectance and DN is the digital number of the raw image, DNd

and DNw are the dark reflectance point and white reflectance point in the color

checker, respectively.

UAV images usually have higher radiometric homogeneity than aircraft or satel-

lite images because of the lower flight altitude [193]. However, there are also special

UAV image quality problems. For example, the camera position on the UAVs might

be different for each flight mission, which can cause different spatial resolution or

different viewing angles [193]. The low flight height of UAVs can also result in geo-

metric distortion [193, 194]. Besides, lower flight height results in greater numbers

of UAV images to keep effective overlapping, which makes image processing more

time-consuming.

Although multispectral cameras have light sensors to calibrate light conditions,

saturation issues can still be found in UAV images. As mentioned earlier, the

Rededge M can measure the ambient light during a flight with a DLS and record

the light information in the images. After the camera calibration, the information

detected by the DLS can be used to correct lighting changes during a flight, which

usually happens because the clouds cover the sun during a UAV flight. The clouds

are believed to affect the saturation issues, even though sunshine is supposed to
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correct reflectance for real-time conditions. Saturated values decrease the quality of

the data. The retrieval of required indexes, such as NDVI and LAI, are important

for the estimation of soil heat flux (G) and sensible heat flux (H).

Another critical issue with UAVs is the bidirectional reflectance distribution

function (BRDF) effects. For many UAV application, the reflectance model for

canopy measurements is simplified to assume a strict nadir (or straight down)

viewing angle and a static illumination source [216, 217, 192]. However, this as-

sumption does not consider the BRDF, which is a function of wavelength, observer

azimuth, observer zenith, illumination azimuth, and illumination zenith [216]. In

satellite images, the effect of BRDF is relatively uniform because the satellite cov-

ers a wide region in a single frame. However, this simplification is not valid for

UAV platforms equipped with an imaging system with a wide field-of-view (FOV).

Further experiment should be based on multispectral measurements, and UAV

image acquisition should be conducted to select those spectral bands which are

most useful and sensitive for specific research purpose. Cameras should be de-

signed only for those needed bands, which will lower the cost of the sensors. The

availability of low-cost UAV platforms and specialized cameras will also make the

UAV application on agriculture more competitive.

3.4.5 Thermal Camera Calibration and Image Processing

The thermal image from UAVs is becoming a useful source for agricultural

research because of the higher temporal and spatial resolution compared with those

obtained from the satellite. Thermal remote sensing images were first used in 1973

to estimate ET [218]. Temperature information is usually converted into land

surface characteristics such as albedo, LAI, and surface emissivity. The TIR band

is considered as the most critical variable for estimating the sensible heat flux and

ground heat flux [196]. The cooled thermal cameras are usually more sensitive and

accurate than uncooled thermal cameras [219]. However, cooled thermal cameras

are very big, expensive, and energy-consuming [191]. Therefore, cooled thermal

cameras can hardly be used on UAV platforms. In contrast, the uncooled thermal

cameras are usually lighter [217], which are usually less than 200 grams, low power
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consumption [220], and less expensive than cooled thermal cameras.

The uncooled thermal camera has many advantages, though, its microbolome-

ter is not always sensitive and accurate [191]. Most thermal cameras are not

always calibrated, which can only measure the relative temperature instead of the

absolute values. In precision agriculture, it is necessary to measure the absolute

temperature in many applications [217], such as crop monitoring [221], pest de-

tection [222], and disease detection [223]. Unstable outdoor environmental factors

can also cause serious measurement drift during flight missions. Post-processing

like mosaicking might further lead to measurement errors. To solve these two fun-

damental problems, in [190], the authors conducted three experiments to research

the best practice of thermal image collection using UAVs. To calibrate TIR im-

ages, in [206], Park et al. used the water body and rubber plates as cold and hot

features. IR Flash Version 2 is usually used to process thermal UAV images for

image format transformation.

The correlation between the measured IR temperature from calibration boards

and the estimates by thermal cameras were found to be unacceptable sometimes.

Without warming up the uncooled thermal camera, the temperature difference

between the thermal camera and calibration board can be as high as ± 10 ◦C.

For instance, the land surface temperature is the most important data for SEBAL

and the estimation of surface energy fluxes; thus, its accuracy is the key for the

agricultural research.

Many researchers also focus on thermal camera calibration issues. For example,

Ribeiro et al. proposed a new calibration algorithm based on neural networks

[191]. The calibration algorithms considered the thermal camera temperature and

the digital response of the microbolometer as input data. Based on the calibration

result, the accuracy increased from 3.55 ◦C to 1.37 ◦C. In [189], Torres-Rua et

al. presented a vicarious calibration methodology (UAV-specific, time-specific,

flight-specific, and sensor-specific) for thermal camera images traceable back to

NIST-standards (National Institute of Standards and Technology) and current

atmospheric correction methods.

For future research, uncooled thermal cameras can be used to evaluate with
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other temperatures sensor information to acquire reliable thermal information,

such as atmospherically corrected satellite images and temperature canopy sensors.

3.4.6 Images Stitching and Orthomosaic Image Generation

After UAV images are collected, all of the aerial images need to be stitched

together to generate the orthomosaic images. Some problems are identified when

creating mosaics, such as fault lines, blurriness, and replicated features, especially

with the thermal data. To overcome the thermal camera’s effect, a higher overlap

for the thermal camera can be a good choice. With an increase in the image overlap

by 5%, most of the fuzziness and replicated problems were eliminated [201].

There are many types of software that can be used for image stitching, such

as Pix4D (Pix4D, Prilly, Switzerland), Agisoft Metashape, RealityCapture, and

DroneDeploy (DroneDeploy, San Francisco, CA, USA). For example, during the

image stitching workflow using the Agisoft Metashape, there are several steps for

image processing, which include aligning photos, optimize cameras, build mesh,

build dense cloud, build digital elevation model (DEM), and generating orthomo-

saic.

3.5 Case Study I: A UAV Resolution and Wave-

band Aware Path Planning for Onion Irriga-

tion Treatment Inference

3.5.1 Introduction

Over the past few years, unmanned aerial vehicles have been widely used as a

remote sensing platform in agricultural applications, such as crop yield estimation

[224], soil moisture monitoring, water stress estimation [146] and pest management

[225]. Compared with traditional remote sensing tools, such as satellites, UAV

flight time can be more flexible and more frequent in the field. UAVs also fly

at lower altitude and can take higher resolution multispectral images or thermal
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images of crops [190]. As a low-cost scientific data collection platform, UAVs also

make data acquisition relatively less expensive. While there are many advantages

by using UAVs for agricultural applications [224], there is still a lot of work for

UAVs. Many researchers fly the UAVs in different standard, using specialized

equipment, controlling environments and relying on data analysis expertise [210].

Is there any optimal point where the data can be the best representation of crops?

In [210], Brandon et al. built a conceptual framework for describing the optimality

as a function of spatial, spectral, and temporal factors which represented the best

solution.

How to collect remote sensing data effectively can still be a big challenge.

Many UAV tunable parameters can have significant impact on data quality and

the data analysis, such as flight height, flight time, overlapping, and airspeed. In

this section, flight height’s effect on data analysis was discussed. It assumed that

there must be an optimal point where the data analysis results from multispectral

images or thermal images could greatly represent for, for example, the crops water

stress status [146] or other crop characteristics. In this section, a resolution and

waveband aware path planning was conducted in order to optimally collecting

remote sensing aerial images with UAVs. Then, the flight mission design was

tested in an onion field at USDA during the growing season in 2017.

Onion is one of the most widely produced vegetables all over the world. Onion

also plays an important role in human diet and medical properties [226]. Therefore,

onion is consumed among all nationalities and cultures [227]. Based on the data

from Food and Agriculture Organization, onion production has been increasing

continuously by 65 million tonne (1999 - 2009 period), in an area of 2.1 million

hectare in 2009 [227]. California is the biggest onion producer in the United States,

which is also the only state that can produce spring and summer-harvested onions

in the US. 31% of the total onion in the US was produced in California in 2015

[228].

In the semi-arid and arid areas of California, onion production is highly depen-

dent on irrigation. Water stress can happen in any onion growing stage and causes

onion yield loss. Therefore, to optimize irrigation management, it is important
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to have an optimal onion water stress monitoring method. Many research results

have been published on using UAVs to detect water stress [229, 230, 231, 232, 192],

which prove UAVs can be a reliable and effective remote sensing platform. In onion

study area, multispectral cameras are mounted on the unmanned aerial vehicles

for onions yield estimation, biomass monitoring [233] , and disease detection [234].

However, to our best knowledge, nobody has studied the effect of UAV flight height

on onion’s multispectral image data analysis and irrigation treatment inference.

Therefore, in this section, the author mainly designed a UAV flight mission in

order to optimally collecting onion remote sensing aerial images with UAVs. By

using multispectral and thermal images collected by UAVs, the author was able to

apply supervised learning methods to find the relationship between image features

and onions irrigation treatments. The author also figured out how UAV flight

height or resolution settings affected the accuracy of estimating onion irrigation

treatment. Different spectral bands combination also had effect on onion irrigation

treatment prediction.

3.5.2 Material and Methods

Onion Study Area

As shown in Fig. 3.9, the field study was conducted at the USDA-ARS, San

Joaquin Valley Agricultural Sciences Center (36.594 ◦N, 119.512 ◦W), Palier, Cal-

ifornia, 93648, USA. Since 2016, an onion test field had been set up for research of

biomass soil amendments and deficit irrigation. There were three irrigation treat-

ment levels and four soil amendments. Three irrigation levels were low, medium

and high. The four soil amendments were biochar, check, biochar + compost, and

biochar + compost + 1 bag of sulfur. There were also three replicate plots for

each treatment combination.

A UAV Platform and Sensors

In this study, the author used a “Hover” (brand of the UAV) quadcopter as

the UAV platform. The “Hover” was equipped with a Pixhawk flight controller,
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Figure 3.9: Onion test site. The field study was conducted at the USDA-ARS, San
Joaquin Valley Agricultural Sciences Center (36.59◦N, 119.51◦W), Palier, Califor-
nia, 93648, USA. Since 2016, an onion test field has been set up for research of
biomass soil amendments and deficit irrigation.

GPS, telemetry antennas. It was able to fly over the onions field by waypoints

mode (designed by using Mission Planner software). The lithium polymer battery

had a capacity of 9500 mAh, which could support a 30-minute flight mission with

cameras mounted on the UAV.

Multispectral images were collected by Survey 2 (MAPIR, USA) cameras with

4 bands, Blue, Green, Red (RGB) and Near-infrared (NIR). The MAPIR camera

has a resolution of 4608 × 3456 pixels, with a space resolution at 1.01 cm/pix.

The Survey 2 cameras have a faster interval timer, 2 seconds for JPG mode and

3 seconds for RAW + JPG mode. Faster interval timer would benefit the overlap

design for UAV flight missions, such as reducing the flight time, enabling higher

overlapping.

The thermal camera ICI 9640 P-Series (ICI, USA) was applied for collecting

thermal images of onions. The thermal camera has a resolution of 640 × 480

pixels. The spectral band is from 7 µm to 14 µm. The dimensions of the thermal

camera is 34 mm × 30 mm × 34 mm. The accuracy is supposed to be ± 2 ◦C. A

Raspberry Pi Model B computer was used to trigger the thermal cameras during
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Figure 3.10: RGB image for the onion field.

the flight missions.

UAV Images Collection and Pre-processing

Flight missions were programmed by using Mission Planner software. The

flight height was setup as 10 m, 15 m, 30 m, and 60 m in order to compare

the resolution’s effect on onion irrigation treatment inference. For all the flight

missions, the overlap was set up as 75% to make sure the images of onion can be

stitched together during image pre-processing.

The author flew the UAV bi-weekly over the onions field at noon during the

growing season in 2017. The images of a color panel were taken right before

and after the flight missions, servicing as the reflectance reference. After the

flight missions, all of the aerial images were stitched together to generate the

orthomosaick images in PhotoScan (Agisoft LLC, Russian). An RGB image was

shown in Fig. 3.10, and an NIR image was shown in Fig. 3.11. The process included

aligning photos and building orthomosaick.

All of the thermal images were pre-processed by IR Flash (ICI, USA) in order to
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Figure 3.11: NIR image for the onion field.

get .TIF thermal images. Then, thermal images were stitched together to generate

the orthomosaick images in PhotoScan (Agisoft LLC, Russian). The process also

included aligning photos and building orthomosaick.

The Principal Component Analysis

For image processing, the author used two different machine learning meth-

ods, the Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA). Both of them could reduce the dataset dimensionality and increased the

classification accuracy.

The PCA is a fast and flexible unsupervised method for data dimensionality

reduction [235]. It can achieve linear projection to a lower-dimensional subspace by

using singular value decomposition. The PCA can also maximize the variance of

the projected data. Therefore, the PCA method is commonly used in exploratory

data analysis and making predictive models.
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The Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) is a classifier with a linear decision

boundary. It is generated by using Bayes’ rule to fit class conditional densities

to the data. It assumes that all classes share the same covariance matrix. After

that, the LDA model can be used to reduce the dimensionality of the input data

by projecting it to the most discriminative directions. Then, the output dimen-

sionality is usually less than the number of classes; thus, the LDA is a very strong

dimensionality reduction method [236].

3.5.3 Results and Discussion

To prepare the multispectral and thermal image data sets, the author firstly

segmented 36 plots from the whole onion field in order to focus only on the area

of interest, as shown in Fig. 3.12. Every image was converted into 2048 dimen-

sion vector for data processing by Python. The data was distributed as 67% for

training and 33% for testing. Several classifiers in scikit-learn machine learning

algorithms were used for onion irrigation treatment inference, such as, “Nearest

Neighbors,” “Linear SVM,” “RBF SVM,” “Gaussian Process,” “Decision Tree,”

“Random Forest,” “Neural Net,” “AdaBoost,” “Naive Bayes,” and “QDA.”

The accuracy was evaluated by scikit-learn’s accuracy classification score func-

tion. This function computed the subset accuracy, in which the labels predicted

for a sampling must exactly match the corresponding true labels. Estimators used

this score method as the evaluation criterion for the classification problems. All

scorer objects followed the convention that higher return values were better than

lower return values.

The author mainly discussed two topics in this section, flight height or dif-

ferent resolution’s effect on onion irrigation treatment estimation, and different

wavebands combination on onion irrigation treatment prediction.
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Figure 3.12: 36 plots of onion. Every image was converted into 2048 dimension
vector for data processing. The data was distributed as 67% for training and 33%
for testing.

UAV Flight Height or Resolution’s Effect

In this section, near-infrared images were used to analyze the flight height or

image resolution’s effect on data analysis. At 30 meters height, the MAPIR had

a resolution as 1.01 cm/ pix. By image processing, the author set up 4 different

resolutions, A, B, C, and D for onion images. Resolution A meant 0.55 cm/pix,

resolution B meant 1.01 cm/pix, resolution C meant 2.02 cm/pix, and resolution

D meant 4.04 cm/pix, as shown in Table 3.3.

From the Table 3.3, the author could figure out that the best accuracy was

0.726, which showed up when the resolution was at 2.02 cm/pixel by using “Neural

net” classifier. Compared with the other classifiers, the “Neural net” classifier

performed the best in all resolution levels. Based on most classifiers resolution

analysis results in the Table 3.3, it turned out that when the author flew a UAV in

the field, higher resolution did not mean better analysis results. The best resolution
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Table 3.3: Different resolutions accuracy for onion treatment inference. The best
accuracy was 0.726, which showed up when the resolution was at 2.02 cm/pixel
by using “Neural net” classifier. Compared with the other classifiers, the “Neural
net” classifier performed the best in all resolution levels.

Classifiers A 0.55 cm/pix B 1.01 cm/pix C 2.02 cm/pix D 4.04 cm/pix

“Nearest Neighbors” 0.625 0.608 0.593 0.608

“Linear SVM” 0.684 0.660 0.691 0.691

“RBF SVM” 0.375 0.365 0.347 0.323

“Gaussian Process” 0.653 0.674 0.708 0.642

“Decision Tree” 0.663 0.587 0.618 0.601

“Random Forest” 0.663 0.608 0.649 0.601

“Neural Net” 0.719 0.708 0.726 0.684

“AdaBoost” 0.649 0.590 0.653 0.639

“Naive Bayes” 0.600 0.604 0.618 0.538

“QDA” 0.708 0.694 0.694 0.642

“LDA” 0.691 0.684 0.691 0.677

did not promise the best estimation. Based on the accuracy trend of “Neural net”

classifier, for example, it existed an optimal point near 2.02 cm/pixel resolution

when “Neural net” was applied for onion irrigation estimation.

Waveband Configuration’s Effect

In this section, remote sensing images were generated by using different wave-

bands configurations. There were red, green, blue (RGB), near-infrared (NIR),

thermal (TIR), and NDVI (Normalized Difference Vegetation Index) being used

in this section. As shown in Table 3.4, there were four combinations being used,

RGB-NIR, All bands, RGB-NIR-TIR and TIR. Because RGB and NIR had a

higher resolution (1.01 cm/pixel) than thermal images resolution (9 cm/pixel),

the multispectral images were pre-processed in order to match the thermal images

resolution.

From the Table 3.4, the author could figure out that the best accuracy was

0.840, which appeared when the RGB-NIR-TIR waveband images were used by
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Table 3.4: Bands configuration accuracy for onion treatment inference. The best
accuracy was 0.840, which appeared when the RGB-NIR-TIR waveband images
were used by “Gaussian process” classifier. Compared with the other classifiers,
the “Gaussian process” classifier performed the best in all wavebands configuration.

Classifiers RGB-NIR All RGB-NIR-TIR TIR

“Nearest Neighbors” 0.583 0.538 0.691 0.723

“Linear SVM” 0.569 0.590 0.774 0.743

“RBF SVM” 0.622 0.552 0.316 0.764

“Gaussian Process” 0.729 0.646 0.840 0.792

“Decision Tree” 0.615 0.569 0.715 0.719

“Random Forest” 0.590 0.615 0.646 0.750

“Neural Net” 0.625 0.618 0.826 0.785

“AdaBoost” 0.576 0.549 0.767 0.681

“Naive Bayes” 0.521 0.514 0.566 0.622

“QDA” 0.611 0.597 0.788 0.753

“LDA” 0.677 0.628 0.809 0.781

“Gaussian process” classifier. Compared with the other classifiers, the “Gaussian

process” classifier performed the best in all wavebands configuration. Based on

most classifiers resolution analysis results in the Table 3.4, it turned out that

when we flew a UAV in the field, more wavebands information did not mean

better analysis results. Knowing all the remote sensing data did not mean the

best estimation. Based on the accuracy of “Gaussian process” classifier, it was

meaningful to point out that TIR images itself could already get pretty good

estimation results, as high as 0.792, which meant that we did not always need

multispectral wavebands information for some coarse estimation research work.

On the other side, adding RGB-NIR information did increase accuracy from 0.792

to 0.840, which was meaningful for precision agriculture applications.
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3.5.4 Conclusions

In this study, a UAV resolution and waveband aware path planning was con-

ducted in order to optimally collecting remote sensing aerial images with UAVs.

Using multispectral and thermal images collected by UAVs, we were able to apply

supervised learning methods to find the relationship between image features and

onion irrigation treatments.

First, the author found out that the best accuracy for onion irrigation treat-

ments was 0.726 , which showed up when the resolution was at 2.02 cm/pixel by

using the “Neural net” classifier. The best resolution did not promise the best

estimation. According to the accuracy trend of the “Neural net” classifier, it did

exist an optimal point near 2.02 cm/pixel resolution when the “Neural net” was

applied for onion irrigation estimation.

Second, this study also found out that different spectral bands combination

also had effect on onion irrigation treatment prediction. Applying all the remote

sensing data did not mean the best estimation. Based on the accuracy of the

“Gaussian process” classifier, we figured out that TIR images itself could already

get relatively good estimation results for onion irrigation estimation, as high as

0.792, which meant we do not always need multispectral bands information for it.

On the other side, adding the RGB-NIR information did increase accuracy from

0.792 to 0.840, which was important for precision agriculture applications.

3.6 Case Study II: A Detailed Study on Accu-

racy of Uncooled Thermal Camera by Ex-

ploring the Data Collection Workflow

3.6.1 Introduction

Because the uncooled thermal camera is light [217], low power consumption

[220] and less expensive than cooled thermal cameras, it has been widely used in

many agricultural applications, such as plant disease detection [223], crop water
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stress estimation [229, 192] and soil moisture detection [237]. Mounted on the

UAVs, the uncooled thermal camera makes it possible for UAVs to collect high-

resolution thermal images in precision agriculture (PA) [231]. Compared with tra-

ditional remote sensing method, such as satellites, the thermal camera and UAVs

make the data collection more flexible and lower cost. The cooled thermal cam-

eras are usually more sensitive and accurate than uncooled thermal cameras [219].

However, cooled thermal cameras are very big, expensive and energy consuming

[191]. Thus, they can hardly be used on UAVs platform. In contrast, the uncooled

thermal camera plays a more and more important role in remote sensing by UAV

platforms.

The thermal camera has so many advantages, though, its micobolometer is not

always sensitive and accurate [191]. Also, most thermal cameras are not always

calibrated, which makes it can only measure the relative temperature instead of the

accurate value. In precision agriculture, however, most time it is necessary to mea-

sure the accurate temperature in many applications [217], such as crop monitoring

[221], pest detection [222] and disease detection [223]. We are using thermal cam-

era more and more frequently without understanding its truth. Therefore, there

is a highly strong demand to find a calibration method for the thermal camera in

UAV applications.

Researchers have published many thermal camera calibration methods when

the thermal camera was used in UAV platforms [238]. In [191], Ribeiro-Gomes

et al. proposed a new calibration algorithm based on neural network [239]. It

also improved the photogrammetry process by using Wallis Filter [240]. They

increased the measurement accuracy from 3.55 ◦C to 1.37 ◦C. In [217], Berni et al.

implemented an internal calibration for a thermal camera controlled by PC 104

embedded computer [241], which built a grid with resistive wires. When the wires

were heated up, the thermal camera could detect the grid and calibrate the camera.

In [242], they designed a lab calibration by using a calibration blackbody source

(RAYBB400, Raytek, CA,USA). As mentioned above, researchers tried to solve

the thermal camera calibration issues, though, the methods used in these papers

were not quite appropriate in UAV platforms [231]. For example, the thermal
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camera can have internal and external disturbance during the UAV flight. Internal

disturbance can be caused by microbolometer [243]. For external disturbance, the

wind can cool down the thermal cameras. The unstable outdoor environment can

also cause serious measurement drift during flight missions. Not all of these factors

were considered into the previous papers.

Therefore, in this section, the author mainly focused on the thermal cam-

era calibration in UAV applications. The author tried to focus on the thermal

camera itself. In agriculture applications, the thermal cameras were not always

calibrated, researchers might use a thermal camera for several years without cal-

ibration. Therefore, it is very important to figure out how the calibration will

affect the thermal camera’s data collection. Also, when the UAVs are flying in

the field, the thermal camera will capture images in different view of angles. In

this section, the author also studied the effects of the thermal camera’s view of

angles on the temperature data. For the photogrammetry process, the software

Agisoft PhotoScan is frequently used. Thermal images are stitched together into

an orthomosaick picture. The author also figured out if the stitching had any effect

on the data process. To our best knowledge, there was little study talking about

these thermal camera calibration issues before.

3.6.2 Material and Methods

Study Site

This research was conducted in a field near MESA Lab in Atwater, California,

USA (37.37◦N, 120.57◦W). There were five different materials being used, water,

dry soil, wet soil, leaves and white panels. All materials were put in cups, as shown

in Fig. 3.13.

The Thermal Image Collection

The thermal camera ICI 9640 P-Series (ICI, USA) was used to collect thermal

images. The thermal camera has a resolution of 640 × 480 pixels. The spectral

band is from 7 µm to 14 µm. The dimensions of the thermal camera is 34 mm ×
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Figure 3.13: This research was conducted in a field near MESA Lab in Atwater,
California, USA (37.37◦N, 120.57◦W). There were five different materials being
used, water, dry soil, wet soil, leaves and white panels.

(a) Experiment field. (b) Thermal picture by IR Flash.

Figure 3.14: Calibration’s effect experiment.

30 mm × 34 mm. In these research experiments, the .TIF images were taken for

further image processing by Agisoft PhotoScan. The camera was attached under

the experiment platform, as shown in Fig. 3.14(a). The camera was triggered 10

times per second by the ICI Software’s function Capture Series Images in ground

station computer (Fig. 3.14(b)).

Groundtruth Data Collection

The infrared radiometer Apogee MI-220 was used in the research experiments

to collect thermal data as groundtruth value. The MI-220 has a 18◦ half-angle field
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of view (FOV). The response time for the MI-220 is only 0.6 seconds. It can be

used in many areas, such as tree canopy temperature measurement, water stress

estimation, soil temperature measurement and so on.

3.6.3 Results and Discussion

Experiment Setup

There were three different experiments in this section. In the first experiment,

the author analyzed the calibration’s effect on thermal cameras. Second, the au-

thor studied the thermal camera’s angle effect on the temperature data. Third,

the author analyzed stiching’s effect on the orthomosaick pictures. The author

prepared five different materials for all experiments to stimulate the situations

one might meet in the field. As shown in Fig. 3.14, there were water, wet soil,

fresh leaves, dry soil, and white paper panels. Thus, we could analyze the thermal

camera’s effect on different materials.

Thermal Camera Warm Up Time

A thermal camera needs to be at (or close to) thermal equilibrium in order

to produce accurate data. When the camera is turned on, the electronics inside

produce heat, and it takes a while for the camera body to heat up enough for the

rate of heat loss at the surface to match the rate of heat being produced on the

inside.

This poses a challenge to flying a thermal camera on a UAV: even if the camera

has been given sufficient time to reach equilibrium on the ground, the airflow

increases heat transport away from the camera, upsetting the equilibrium again,

and requiring additional time to adjust. However, due to the limited flight time of

UAVs, especially multirotors, this time may be longer than the available flight time

itself. The recommended equalization time for the camera used in the experiments

was about half an hour.
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Calibration Experiment

In this section, the author compared two thermal cameras’ temperature data.

One was a new thermal camera, which meant calibrated thermal camera. The

other one was a used camera, which was not calibrated. To minimize the thermal

camera’s effect on the experimental results, the author used exactly the same

model ICI 9640 P for the calibrated and non-calibrated thermal cameras. As

shown in Fig. 3.14(a), the author put the two thermal cameras at the same height

69.5325 cm to our materials. Both of them captured the same materials at the

same time. Apogee MI-220 was used to collect data as groundtruth. As seen in

Fig. 3.14(b), all materials were labeled by IR Flash, so it could test exactly the

same temperature at the selected areas.

According to the Table 3.5, Table 3.6, Table 3.7, and Table 3.8, the calibrated

camera had better root mean square error (RMSE) than the non-calibrated camera.

For the calibrated camera, the RMSEs for water, wet soil, dry soil and leaf were

1.61 ◦C, 1.92 ◦C, 2.89 ◦C and 1.47 ◦C. For the non-calibrated camera, the RMSEs

were 3.07 ◦C, 3.00 ◦C, 4.09 ◦C and 2.83 ◦C. The result was obviously as expected

that calibrated camera had better results than non-calibrated thermal camera. In

this experiment, however, we tried to figure out if the data collected by thermal

cameras was always consistent. If the thermal camera was not accurate, was the

temperature value always above or below the groundtruth value? Unfortunately,

the answer was no. It made thermal calibration more difficult to estimate and to

deal with.

The View Angle of Thermal Camera

In this experiment, the author tested the thermal cameras’ view angle effect

on temperature. In an unmanned aerial vehicle system, the thermal cameras are

usually mounted on the UAVs and capturing images when the UAVs are flying

over field. For example, in an almond orchard, the tree canopies can show up in

different positions in thermal images. This may cause the canopy has different

temperature in different view of angles. In this section, the author figured out if

the view angles had any effect on the thermal images. The thermal picture has
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Table 3.5: The groundtruth.

Time Water (◦C) wet soil (◦C) dry soil (◦C) leaf (◦C)

2:53 34.2 36.9 51.2 44.1

3:02 34.1 34.7 52.3 42.9

3:06 35.2 36.3 51.7 41.2

3:10 35.0 36.4 52.5 43.0

3:14 32.1 35.1 50.3 41.0

3:17 36.5 37.0 49.8 41.3

3:21 35.0 37.5 50.2 41.2

3:25 34.1 37.4 51.5 40.8

3:29 34.1 34.6 50.5 39.7

3:32 34.2 36.9 49.6 39.6

3:36 34.5 33.6 50.5 41.6

3:40 34.1 34.3 50.3 41.6

3:44 33.9 34.0 49.5 42.9

3:48 33.8 35.2 50.3 41.3

3:51 33.0 33.1 49.0 38.3
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Table 3.6: The measurement from the non-calibrated camera.

Time Water (◦C) wet soil (◦C) dry soil (◦C) leaf (◦C)

2:53 41.27 42.53 59.22 48.45

3:02 37.32 38.30 54.96 44.91

3:06 36.42 37.46 54.86 43.91

3:10 35.44 36.10 53.63 45.04

3:14 36.67 37.13 54.55 46.13

3:17 36.59 36.71 53.96 43.11

3:21 37.38 38.63 55.86 42.91

3:25 36.03 42.32 53.85 41.95

3:29 33.82 34.39 51.66 39.71

3:32 36.64 37.09 53.69 40.26

3:36 37.53 38.33 54.97 46.21

3:40 35.50 35.89 52.78 41.93

3:44 35.87 36.66 52.94 42.93

3:48 38.29 39.30 55.37 45.38

3:51 35.83 36.34 52.69 42.01
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Table 3.7: The measurement from the calibrated camera.

Time Water (◦C) wet soil (◦C) dry soil (◦C) leaf (◦C)

2:53 34.38 35.99 53.21 41.95

3:02 36.03 37.38 54.28 43.50

3:06 34.42 35.88 52.85 40.23

3:10 35.22 36.21 53.31 42.24

3:14 35.83 37.01 54.00 44.33

3:17 35.73 36.53 53.47 41.03

3:21 34.96 36.03 53.45 40.20

3:25 36.12 37.41 54.60 41.38

3:29 35.39 36.49 53.44 37.89

3:32 35.53 36.63 53.11 40.07

3:36 35.39 36.72 53.46 42.63

3:40 35.46 36.74 53.26 43.60

3:44 36.22 37.47 53.52 44.36

3:48 34.60 36.03 51.91 39.75

3:51 35.00 36.06 52.28 39.06

Table 3.8: The root mean square error.

Materials Calibrated camera (◦C) Non-calibrated camera (◦C)

Water 1.61 3.07

Wet soil 1.92 3.00

Dry soil 2.89 4.09

Leaf 1.47 2.83
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(a) Thermal picture by IR Flash,

horizontal measurement.

(b) Thermal picture by IR Flash,

vertical measurement.

Figure 3.15: View angle experiment.

a pixel value of 640 × 480. The central point pixel value is 320 × 240. After we

found the test point temperature, we also found the pixel value of the test point

(Fig. 3.15). In the thermal picture, one pixel value represented 0.09525 cm. Then,

we could calculate the horizontal distance between the camera center and the test

point. As mentioned in the previous section, the camera’s vertical distance to the

test point was 69.5325 cm. Then, the accurate half view angle could be calculated

in this experiment.

According to Table 3.9, there were 8 different half view angles, 4.2◦, 4.6◦, 6.0◦,

8.3◦, 11.6◦, 12.7◦, 14.3◦, and 16.7◦. The errors between the groundtruth and the

collection data were less than 0.5 ◦C. The root mean square error was much less

than 0.01 ◦C. The results showed that the the thermal camera’s view angles had

little effect on collecting data.

The Effect of Stitching

After the thermal images were collected from thermal cameras, many researchers

liked to process the data by Agisoft PhotoScan software. In this software, we could

stitch all the pictures into one orthomosaick picture which represented the whole

field, as shown in Fig. 3.16(b). In this experiment, it figured out if this Align Pho-

tos function had any effect on temperature data. As shown in Table 3.10, there

were 28 samples in this experiment. They were divided into four groups, which
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Table 3.9: The view angle experiment.

Half view angle(◦) Location in the picture Point temperature(◦C) Groundtruth(◦C)

4.2 363 × 275 12.41 12.40

4.6 372 × 269 12.52 12.40

6 354 × 311 11.79 12.40

8.3 352 × 344 12.28 12.40

11.6 342 × 391 12.38 12.40

12.7 337 × 406 12.11 12.40

14.3 336 × 428 11.90 12.40

16.7 329 × 462 12.26 12.40

were water, dry soil, wet soil and white paper panels. There were labels in each

picture, so we could accurately find the same temperature point in the single image

and the orthomosaick picture. To calculate the temperature, the author used the

MATLAB 2017b to get the average temperature for a selected area.

Based on the data in Table 3.10, the temperature errors between the single im-

age and the orthomosaick were less than 1 ◦C. According to Table 3.11, for different

materials, the root mean square errors were different. For example, the water in

a single image had a root mean square error as 0.646 ◦C. In the orthomosaick

picture, the value was 0.834 ◦C. The result showed that the Agisoft PhotoScan’s

stitching process had little effect on the thermal data.

3.6.4 Conclusions and Future Work

In this section, it discussed three factors’ effect on the thermal camera cali-

bration. They were fundamental and useful. First, calibrated thermal camera did

have better results compared with the non-calibrated thermal camera. However,

even the calibrated thermal camera’s data was not consistent. The thermal camera

itself could be a reason. The uncooled thermal camera’ micorobolometer was not

accurate and sensitive. Second, the thermal camera’s view angles had little effect

on the temperature data. The thermal camera’s accuracy was ± 1 ◦C. The data

errors in this section was less than 1 ◦C and the root mean square error was less

than 0.01 ◦C. Third, after the photogrammetry process, the stitching did have a
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Table 3.10: The stitching effect on the data.

Sample number Materials Groundtruth (◦C) Single image (◦C) Orthomosaick (◦C)

1 water 17.4 17.74 18.2648

2 water 17.5 17.53 17.9962

3 water 17.4 17.75 18.1876

4 water 17.2 18.23 18.4245

5 water 17.2 16.35 16.5322

6 water 17.4 16.73 17.2438

7 water 16.8 17.47 17.9345

8 dry soil 15.8 15.72 16.6309

9 dry soil 14.4 13.93 14.5372

10 dry soil 14.2 13.53 13.3192

11 dry soil 14.7 14.61 14.8676

12 dry soil 15.4 15.45 15.6241

13 dry soil 14.8 15.51 15.6242

14 dry soil 14.5 15.26 15.3906

15 wet soil 14.8 14.84 15.8454

16 wet soil 13.9 14.38 15.7918

17 wet soil 14.8 14.06 14.9511

18 wet soil 14.1 15.37 14.3389

19 wet soil 14.9 14.89 15.7558

20 wet soil 14.6 14.24 14.8981

21 wet soil 14.3 14.77 15.2562

22 paper 13.6 12.67 13.9083

23 paper 13.8 12.42 12.9427

24 paper 14.5 14.02 15.2562

25 paper 12.8 11.55 13.9083

26 paper 12.4 11.75 12.9427

27 paper 13.9 11.13 12.1386

28 paper 12.4 11.36 11.8678
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(a) The images taken by ICI thermal

camera.

(b) The thermal orthomosaick picture

which represented the whole field.

Figure 3.16: The effect of stitching experiment.

Table 3.11: The root mean square error.

Materials Single images (◦C) Orthomosaick (◦C)

Water 0.646 0.834

Dry soil 0.503 0.658

Wet soil 0.626 0.963

White panel 0.912 0.949
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little effect on the orthomosaick picture we got. The temperature in the orthomo-

saick was greater than the temperature in single image. This could be caused by

the stitching process.

In the future, the author will keep working on the thermal camera calibration

problem. A more accurate, real time and state-of-art thermal camera calibration

method will be proposed in the future.

3.7 Case Study III: High Spatial-resolution Has

Little Impact on NDVI Mean Value of UAV-

based Individual Tree-level Mapping: Evi-

dence from 9 Field Tests and Implications

3.7.1 Introduction

The normalized difference vegetation index (NDVI) has been used for many

agriculture-related research topics, such as water stress detection [192, 232], crop

yield assessment [224], and ET estimation [142, 28]. The NDVI is usually calcu-

lated by

NDV I =
ρnir − ρr
ρnir + ρr

, (3.2)

where ρnir and ρr are the reflectances of the near-infrared and red wavebands,

respectively. NDVI is a standardized method to measure healthy vegetation. When

the NDVI is high, it indicates the vegetation has a higher level of photosynthesis.

To date, satellite-derived NDVI has been commonly used for crop coefficient

values estimation [244, 245, 246]. For example, Trout et al. [247] and Zhang et al.

[248] applied a remote sensing method using the NDVI to estimate canopy ground

cover as a basis for generating crop coefficient (Kc). Kamble et al. [244] used a

simple linear regression model to establish a relationship between the NDVI and

Kc. Although satellite imagery can obtain spatially distributed measurements,

they cannot acquire high spatio-temporal resolution images for precision agricul-

ture applications [249]. The timing of satellite overpass is not always synchronous
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with research requirements, either.

With the development of new remote sensing technology, the unmanned aerial

vehicles (UAVs) have been commonly used in agricultural applications, such as

crop yield estimation [224], irrigation managements [24, 27], water stress estima-

tion [146], and pest management [225, 250]. Compared with the satellite, the flight

of UAVs can be more flexible and frequent in the field. The UAVs fly at a lower

altitude and take higher resolution imagery of crops [190]. The UAVs also make

data acquisition relatively less expensive. However, one may fly the UAV at dif-

ferent flight heights. What is the optimal UAV flight height for research can be an

interesting topic. In previous paper [251], Awais et al. investigated the optimal

timing and altitude for thermal imagery collection using UAV in an Anji tea plant

experimental field. The results reported that the thermal imagery could provide

the best correlation and accurate canopy temperature when the UAV flights were at

11 am and 60 m altitude. In previous article [27], the authors applied supervised

learning methods to study the correlation between imagery features and onions

irrigation treatments. Then, it figured out how UAV flight height or resolution

settings affect the accuracy of onion irrigation treatment inference.

Studies of [27, 251] showed the importance of UAV flight height or spatial

resolution’s effect on data analysis. To date, few studies have investigated the

association between NDVI and UAV flight height or spatial resolution at individ-

ual tree level. The objective of this study are: 1. Investigate how the UAV

flight height or spatial resolution affects the mean NDVI for individual tree-level

canopy. 2. Check the reliability of the multispectral sensor for different heights of

UAV flight missions. The major contribution of this section are: 1. Publish

a dataset on Dryad for a high-spatial-resolution UAV imagery research study. All

the datasets will be available at DRYAD2 for research purpose. 2. Point out the

importance of variability analysis of individual tree-level research.

2All the datasets will be available at https://doi.org/10.6071/M3JH4Q for research purpose.
Citation: Niu, Haoyu; Chen, YangQuan (2021), Rededge M pomegranate field 60m, 90m, 120m,
Dryad, Dataset, https://doi.org/10.6071/M3JH4Q

https://doi.org/10.6071/M3JH4Q
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Figure 3.17: The pomegranate study site at USDA. The pomegranate was planted
in 2010 with a 5 m spacing between rows and 2.75 m within-row tree spacing in a
1.3 ha field. There are two large weighing lysimeters located in the center of the
field, marked in red boxes.

3.7.2 Material and Methods

The Study Site

The flight missions were conducted in a pomegranate field (Fig. 3.17) at the

USDA-ARS, San Joaquin Valley Agricultural Sciences Center (36.594 ◦N, 119.512

◦W), Parlier, California, 93648, USA.

The UAV and the Multispectral Sensor

In this article, the UAV platform, named “Hover,” was adopted to conduct

this exploratory study. The authors chose the Rededge M camera (MicaSense,

Seattle, WA, USA) to obtain multispectral imagery. The multispectral sensor has

five different bands, which are Blue (475 nm), Green (560 nm), Red (668 nm),

Near-infrared (840 nm), and Red edge (717 nm). The Rededge M has a spectral

resolution of 8.2 cm/pixel (per band) at 120 m (400 ft.) above ground level (AGL),

with a 46◦ field of view.
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Table 3.12: The UAV flight schedule. The UAV flight height was 60 m, 90 m,
and 120 m to acquire different high-resolution multispectral imagery. Data was
collected successfully for three different days, 5-8-19, 9-19-19, and 10-3-19.

Dates Flight time Flight height

May 8th, 2019 12 - 1 pm 60 m, 90 m and 120 m,

Sep 19th, 2019 12 - 1 pm 60 m, 90 m and 120 m,

Oct 3rd, 2019 12 - 1 pm 60 m, 90 m and 120 m.

Details of the UAV Imagery Dataset

The UAV flight height was 60 m, 90 m, and 120 m to acquire different high-

resolution multispectral imagery. Data was collected successfully (Table 3.12) for

three different days, 5-8-19, 9-19-19, and 10-3-19. All of the multispectral images

were then processed to generate the orthomosaick images in Metashape (Agisoft

LLC, Russian).

The source data for building DEM was the dense cloud. For the interpolation

method, Extrapolated option was selected because it could generate a surface

without gaps being extrapolated to the bound box sides. The default option for

Interpolation was Enabled, which was not recommended because it would leave

the valid elevation values only for fields seen from at least one aligned camera.

3.7.3 Results and Discussion

The Relationship Between NDVI and UAV Flight Height

The mean NDVI values of each sampling tree were shown in Fig. 3.18, Fig. 3.19,

and Fig. 3.20. Theoretically, for each sampling tree, the mean NDVI value of the

tree canopy should have the same value at 60m, 90m, and 120m. However, the

values of NDVI could be very different from each other considering the weather

conditions (Fig. 3.19), such as the cloud.

Key observation: In Fig. 3.19, the NDVI values were significantly different for

trees from 1 to 20, and from 31 to 50. The reason was that for image segmentation,
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Figure 3.18: The mean NDVI values of each sampling tree at 60 m, 90 m, and 120
m on May 8th, 2019. The x-axis was the identification number (ID) for sampling
trees, 82 in total. The y-axis was the mean NDVI value for each tree canopy.

more shades were included in the tree canopy. In Fig. 3.18 and Fig. 3.20, the data

was more consistent for different UAV flight height. For example, in Fig. 3.21, the

author compared the correlation of NDVI values between 90 m and 120 m. The

result showed there was a strong correlation between them, with R2 = 0.7.

Individual Tree Canopy Segmentation Using Support Vector Machine

(SVM)

To obtain the individual tree level NDVI values of the 82 sampling trees, the

author used the SVM for classifying the tree canopy. Using the SVM classifier could

map the input data vectors into a higher dimensional feature space. Then, the SVM

optimally separated the data into different classes. Since the multispectral UAV

imagery was large, the SVM classifier was adopted, which was less susceptible to

noise, correlated bands, and unbalanced number or size of training sites within

each class. All the sampling trees were successfully segmented using the SVM

classifier.

Key observation: For simplicity, the author only created the NDVI distri-

bution for the two trees in lysimeter (Fig. 3.22, Fig. 3.23 and Fig. 3.24). For

example, in Fig. 3.22, the NDVI distributions for the two trees in the lysimeter

were generated. The NDVI was for May 8th, and the UAV flight height was at 60
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Figure 3.19: The mean NDVI values of each sampling tree at 60 m, 90 m, and 120
m on Sep 19th, 2019. The x-axis was the identification number (ID) for sampling
trees, 82 in total. The y-axis was the mean NDVI value for each tree canopy.

Figure 3.20: The mean NDVI values of each sampling tree at 60 m, 90 m, and 120
m on Oct 3rd, 2019. The x-axis was the identification number (ID) for sampling
trees, 82 in total. The y-axis was the mean NDVI value for each tree canopy.
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Figure 3.21: The individual tree-level mean NDVI correlation between 120 m and
90 m on Oct 3rd, 2019. The x-axis was the mean NDVI values for sampling trees
at 120 m flight height. The y-axis was the mean NDVI values for sampling trees
at 90 m flight height.

m, 90 m, and 120 m. The color bar meant the range of the NDVI values (from

-1 to 1). Based on the above section, “The relationship between NDVI and UAV

flight height”, there was no significant difference for mean NDVI value at indi-

vidual tree level. However, as shown in Fig. 3.22, lower flight height (60 m) gave

a higher spatial resolution image. The NDVI distribution inside the canopy was

more precise than that in higher flight height. Therefore, what the average told us

could be wrong. How to use this high-resolution benefit from UAV imagery can

be discussed in the near future. Variability analysis may play an important role in

individual tree-level research.

Entropy of Individual Tree-level NDVI Image

To characterize the texture of the individual tree-level NDVI image of the

lysimeter trees, the author adopted the entropy method, which was a statisti-

cal measurement of the randomness in the image. Entropy was defined as -
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(a) The NDVI distribution of individual lysimeter trees at 60 m flight height.

(b) The NDVI distribution of individual lysimeter trees at 90 m flight height.

(c) The NDVI distribution of individual lysimeter trees at 120 m flight height.

Figure 3.22: The NDVI distribution of two individual lysimeter trees at 60 m, 90
m and 120 m on May 8th, 2019.
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(a) The NDVI distribution of individual lysimeter trees at 60 m flight height.

(b) The NDVI distribution of individual lysimeter trees at 90 m flight height.

(c) The NDVI distribution of individual lysimeter trees at 120 m flight height.

Figure 3.23: The NDVI distribution of two individual lysimeter trees at 60 m, 90
m and 120 m on Sep 19th, 2019.
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(a) The NDVI distribution of individual lysimeter trees at 60 m flight height.

(b) The NDVI distribution of individual lysimeter trees at 90 m flight height.

(c) The NDVI distribution of individual lysimeter trees at 120 m flight height.

Figure 3.24: The NDVI distribution of two individual lysimeter trees at 60 m, 90
m and 120 m on Oct 3rd, 2019.
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Table 3.13: Entropy was used in the quantitative analysis and evaluation of image
information, because it provided better comparison of the image details. Higher
value of entropy meant more detailed information in the image.

Dates 60 m 90 m 120 m

May 8th, 2019 2.0176 2.0789 1.7984,

Sep 19th, 2019 4.5861 3.7598 3.1027,

Oct 3rd, 2019 3.2812 3.6725 4.0022.

sum(p.*log2(p)), where p contained the normalized histogram counts returned

from the MATLAB command “imhist” [252]. It was used in the quantitative

analysis and evaluation of image details. Higher value of entropy meant more

detailed information in the image.

Key observation: As shown in Table 3.13, the higher entropy value for lysime-

ter trees was obtained at 90 m on May 8th. However, the higher value entropy were

at 60 m and 120 m on Sep 19th and Oct 3rd, respectively. Therefore, high spatial-

resolution had low impact on the UAV-based individual tree-level NDVI images.

There was no significant difference for image information in range of 60 m to 120

m of UAV flight height.

3.7.4 Conclusions and Future Work

In this study, UAV flight missions were conducted to collect multispectral im-

agery at different flight height (60 m, 90 m, and 120 m). After image processing,

the author contributed a dataset on Dryad for a high-spatial-resolution UAV im-

agery research study.

Using the NDVI derived from UAV images, the author analyzed how spatial

resolution could affect the NDVI values at the individual tree level. According to

the results, there was no significant difference for mean NDVI value at individual

tree level for different flight heights when the data was processed appropriately.

The R2 of mean NDVI values between 90 m and 120 m was around 0.7, which
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proved the multispectral sensor was reliable for data collection. However, the

shade around the tree canopy could be a key factor for tree canopy segmentation

(Fig. 3.19), which could reduce the mean NDVI significantly.

Lower flight height (60 m) did give a higher spatial resolution image. The

NDVI distribution inside the canopy was more precise than that in higher flight

height. Therefore, what the average tells us can be wrong. How to use this high-

resolution benefit from UAV imagery can be discussed in the near future. Vari-

ability analysis may play an important role in individual tree-level research. In the

future, the author will apply the conclusion to NDVI related research topics, such

as evapotranspiration estimation, stem water potential, and yield estimation.

3.8 Conclusion and Future Research

Compared with traditional remote sensing tools, the UAV and lightweight pay-

loads can be more flexible and frequent in the field. UAVs can fly at a lower altitude

and can take higher spatial and temporal resolution images of crops. As a low-

cost scientific data collection platform, UAVs also make data acquisition relatively

less expensive. While there are many advantages by using UAVs for agricultural

research, the author also discussed the challenges for UAV flight missions with

different remote sensing payloads.

Based on the current research results, the author presents the following poten-

tial research directions for future investigation.

1. For future research, uncooled thermal cameras can be used to evaluate with

other temperatures sensor information to acquire reliable thermal informa-

tion, such as atmospherically corrected satellite images and temperature

canopy sensors.

2. How to benefit the research study from high-resolution UAV imagery can be

discussed in the near future.

3. Is there any optimal point where the data can be the best representation of

crops or trees? As researchers try to understand the potential of the UAVs,
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efficient workflow, image processing methods, and better software are still

under developing.



Chapter 4

The Edge-AI Sensors and

Internet of Living Things (IoLT)

4.1 Introduction

The term “Internet of things” was first created by Kevin Ashton of Procter &

Gamble, later MIT’s Auto-ID Center, in 1999 [253]. The Internet of things (IoT)

can describe physical objects that are embedded with sensors, software, and other

technologies, which connect and exchange information with other equipment or

systems over the Internet or other communication networks [254, 255, 256]. This

research topic has been gaining interest because of the convergence of multiple

technologies, such as ubiquitous computing, commodity sensors, embedded sys-

tems, and machine learning. There are extensive applications for IoT devices, such

as agriculture, medical and healthcare [257, 258], and manufacturing [259]. For

example, many researchers have been working on the application of the IoT tech-

nology in agriculture [260, 261, 262]. In [263], Zhao et al. selected mobile wireless

communication technology to achieve greenhouse monitoring with IoT technology.

Research results showed that the greenhouse monitoring system based on IoT tech-

nology could automatically control the environmental temperature and humidity

factors. In [264], Hamad et al. emphasized the the role of smartphones for collect-

ing agricultural parameters and its advantages in the field of agriculture. Using

103
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the smartphone enabled the farmers to have a positive impact on communication

with producer’s network and improved the awareness of farming community.

Considering the author’s research experience in agriculture, he proposed the

concept of “Internet of Living Things (IoLT)” in this chapter. In the dictionary,

a “living thing” pertains to any organism or a life form that possesses or shows

the characteristics of life or being alive. The fundamental characteristics are 1.)

having an organized structure, 2.) requiring energy, 3.) responding to stimuli and

adapting to environmental changes, 4.) being capable of reproduction, growth,

movement, metabolism, and death. For most of agricultural applications of IoT,

it actually can also be considered as the IoLT. Researchers collect data of crops

or trees, such as tree canopy temperature, rainfall, humidity, wind speed, soil

moisture, and stem water potential, etc. After the analysis of recorded data,

stakeholders or researchers can help make better decisions to increase the farm

productivity, improve the sustainability, and reduce the costs.

The proximate sensors play a key role in IoLT. Therefore, in the rest of this

chapter, the author introduced several sensors he commonly used in the research

work.

4.2 Proximate Sensors

4.2.1 The Spectrometer

The spectrometer EPP2000-VIS-50 was used for the author’s onion irrigation

treatment inference research. The StellarNet EPP2000 Spectrometers (StellarNet,

Inc., Tampa, Florida, USA) are miniature fiber optic instruments for ultraviolet

(UV), visisble (VIS), and near-infrared (NIR) measurements in 190 - 1700 nm

ranges (Fig. 4.1). The technical specifications of EPP2000-VIS-50 was listed in

Table 4.1 for reference.
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Figure 4.1: The spectrometer EPP2000-VIS-50. The StellarNet EPP2000 Spec-
trometers are miniature fiber optic instruments for ultraviolet (UV), visisble (VIS),
and near-infrared (NIR) measurements in 190 - 1700 nm ranges.

Table 4.1: The specifications of spectrometer EPP2000-VIS-50.

Specifications:

Wavelength range 190 - 1700 nm,

Base unit size 15.5 × 9.5 × 4.0 cm,

Base unit mass 500 g,

Detector 2048 pixel, 14 × 200 µm,

Linear range 0 - 2.1 absorbance units (< 0.5%),

Exposure range 4 milliseconds to 60 seconds,

Integration time range 4 - 6500 ms,

Wavelength accuracy < 0.25 nm,

Wavelength repeatability < 0.05 nm.

Wavelength stability < 0.001 nm per ◦C.
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Figure 4.2: A light and small near-infrared spectrometer, Scio. The low power
consumption and zero warm up time make it highly responsive and extremely effi-
cient, which allows it to perform hundreds of samplings from a small rechargeable
battery. The Scio spectrometer works in NIR at wavelengths of 700 - 1100 nm. It
can also be integrated into smart phone as an Edge-AI device.

4.2.2 A Pocket-sized Spectrometer

Recently, a light and small near-infrared spectrometer, Scio (Consumer Physics,

Israel) was released in the market (Fig. 4.2). They used advances in micro-optical

technology to miniaturize the traditional near-infrared spectrometer. The optical

head is just a few millimeters in size and can provide sensitivity and accuracy

levels on par with the best bench spectrometers. The low power consumption and

zero warm up time make it highly responsive and extremely efficient, which allows

it to perform hundreds of samplings from a small rechargeable battery. The Scio

spectrometer works in NIR at wavelengths of 700 - 1100 nm. It is so small that

it can even be integrated into the smartphone as an Edge-AI device. This system

is a low-cost module, with a price less than $300. The technical specifications of

Scio was listed in Table 4.2 for reference.

4.2.3 A Microwave Radio Frequency 3D Sensor

The reflectance of the environment being sensed was collected with a radio

frequency 3D sensor called Walabot Developer (Fig. 4.3) (Vayyar Imaging Ltd,

Yehud-Monosson, Israel). The frequency range was 3.3 - 10 GHz for the US/FCC

model and 6.3 - 8 GHz for the EU/CE model. The average transmitted energy of
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Table 4.2: The specifications of spectrometer Scio.

Technical specifications:

Wavelength range 700 - 1100 nm,

Dimensions Handheld Device Cover: 67.7 × 40.2 × 18.8 mm,

Weight handheld device 35 g,

Standalone sensor module 27.5 × 9.5 × 3.15 mm,

Operational distance Contact to 2 cm,

Typical scan time 2 - 5 seconds,

Connectivity Online and offline scanning supported,

Temperature range - operation 4 - 35 ◦C.

both models was below 41 dBm/MHz and did not constitute health concerns for

the user, nor did it impact the tested tissues. Based on the technical specifications,

the Walabot could sense the environment by transmitting, receiving, and recording

signals from multiple antennas. Recordings of multiple transmit-receive antenna

pairs were analyzed to build a 3D image of the examined environment. Changes

in the environment were characterized by analyzing sequences of images. Then,

researchers could detect changes in the environment by analyzing the sequences of

images.

The Walabot used an antenna array to send radio frequency to the area in

front of it and then captured the returning signals (reflectance or response). The

citation signals were produced, and the reflectance was then recorded by integrated

circuits (Fig. 4.4). The reflectance data were preprocessed by MATLAB 2020a. For

example, records of the different reflectance strengths could be visualized in a graph

(Fig. 4.5). The y-axis denoted the radio frequency reflectance from a walnut leaf.

The x-axis meant the time. The research hypothesis was that the radio frequency

reflectance of walnut leaves would be significantly different towards root-lesion

nematode infection levels. Then, the spectral curve obtained from the leaves of

walnut trees infected with nematodes could show the characteristic pattern of

walnut under nematode stress. For more details of this research work, please refer
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Figure 4.3: A radio frequency 3D sensor, Walabot Developer (Front and back
view). The frequency range was 3.3 - 10 GHz for the US/FCC model and 6.3 - 8
GHz for the EU/CE mode. The average transmitted energy of both models was
below 41dBm/MHz and did not constitute health concerns for the user, nor did it
impact the tested tissues.

to Chapter 6.

4.3 Case Study: Onion Irrigation Treatment In-

ference Using A Low-cost Edge-AI Sensor

4.3.1 Introduction

Onions are produced and consumed throughout the world. It is worldwide used

in different countries and cultures during all seasons in a year [227]. California

produces the most onion in the US. In 2015, it produced around one third of

the total onion crop in the US. It is the only state that can produce spring and

summer-harvested onions [265]. Onions are shallow-rooted crop, and most of the

roots can be found in the top 0.18 m of soil [266]. This makes it hard for onions

to obtain enough soil water. Therefore, lighter and more frequent irrigation are

recommended in onion cultural practices [267]. On the other hand, experimental

results showed that water stress could also cause reduction in the yield at any

growing stages [268].
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Figure 4.4: The principle of Walabot. The sensor uses an antenna array to send
radio frequency to the area in front of it, e.g. walnut leaves, and then captures the
returning signals (reflectance or response). The citation signals are produced, and
the reflectance is then recorded by the radio frequency integrated circuits (RFIC).

Figure 4.5: The measurement signal of the radio frequencies reflectance of the
walnut leaves using Walabot. The research hypothesis is that the reflectance of
walnut leaves will be significantly different towards root-lesion nematode infection
levels. The spectral curve obtained from the leaves of walnut trees infected with
nematodes could show the characteristic pattern of walnut under nematode stress.
For more details of this research work, please refer to Chapter 6.
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To optimize irrigation schedule, it is necessary to have accurate and reliable

water stress monitoring methods. Many studies have been published on wa-

ter stress detection using remote sensing, real-time and nondestructive methods

[269]. Near-infrared cameras were used to detect water stress of almond trees

[192, 229, 230, 231, 146, 232], where new types of spectral features were proposed

to predict stem water potential. Hyperspectral sensors were also applied for water

stress monitoring in apple trees [270], vineyard [271, 272], etc. For onions, stud-

ies of remote sensing were conducted on yield and biomass prediction using the

spectroradiometer [273], biomass monitoring using UAVs and RGB cameras [233],

detecting diseased onion tissues [234], quality inspections [274, 275]. However, to

date, little research has been conducted on the irrigation treatment inference using

the spectrometer. Furthermore, Scio, as a low-cost portable, light spectrometer,

was also evaluated to infer irrigation treatments in onions for the first time.

4.3.2 Material and Methods

Onion Study Site

The study field was in the USDA-ARS, San Joaquin Valley Agricultural Sci-

ences Center (36.59◦N, 119.51◦W), Parlier, California (Fig. 4.6). Since 2016, an

onion test field had been set up for research of biomass soil amendments and deficit

irrigation. There were three irrigation treatment levels, High, Medium and Low,

and four soil amendments, Biochar, Check, Biochar + Compost, and Biochar +

Compost + Sulfur. There were three replicate plots for each treatment combina-

tion.

The Spectrometer Scio

Most recently, a light and small hyperspectral scanner called Scio (Consumer

Physics, Israel) was released in the market. As a complete system, it included

a spectrometer, a light source, and optimized algorithms in the cloud. The Scio

spectrometer worked in NIR at wavelengths of 700 - 1100 nm (Fig. 4.7). It could

also be integrated into the smartphone. This system was a low-cost module, with



111

Figure 4.6: The onion field (image taken by the “Hover” UAV platform). The
study field was in the USDA-ARS, San Joaquin Valley Agricultural Sciences Center
(36.59◦N, 119.51◦W), Parlier, California. Since 2016, an onion test filed had been
set up for research of biomass soil amendments and deficit irrigation. There were
three irrigation treatment levels, High, Medium and Low.

the price less than $300.

As a reference, the author also used a traditional handhold spectrometer

EPP2000-VIS-50. Its wavelength sensitivity was from 190 nm to 1700 nm, with

the wavelength accuracy of 0.25 nm.

Field Measurement Collection

During the growing season, onions under different treatment were sampled once

a month. The field measurements using the spectrometers were coordinated with

these physiological measurements, including shoot length, root length, number

of leaves, fresh weight, dry weight, and bulb diameter. There were three onion

samples collected for each plot. For each onion sample, three measurements were

made using both the EPP2000-VIS-50 (Fig. 4.8) and Scio at the same time in the

field to reduce the likelihood of errors or anomalous results. In general, the author

had 81 measurements for 27 onion samplings.

The Scio was an active sensing platform and it provided calibration case. The

sensor was first calibrated using the white panel in the case. The measurement

using Scio required the distance between onion leaves and the scanner as small
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Figure 4.7: The NIR reflectance measurement of Scio using a smartphone.

as possible to minimize the disturbance of sun light source. On the other hand,

EPP2000-VIS-50 was a passive sensing platform. The author needed to take the

measurements of white panel and dark panel for calibration before measuring the

onion leaves.

The Principal Component Analysis

Both principal component analysis (PCA) and linear discriminant analysis

(LDA) were methods for reducing dimensionality of a dataset to increase accu-

racy, speed up processing time, and generate visualization.

PCA is a linear transformation that rotates the axes of the data along the

direction that maximizes its variance, allowing data to be projected onto a lower

dimensional subspace [235]. These new axes, or “loadings,” are found by calculat-

ing the eigenvectors W of the covariance matrix of data, where X is an M × N

matrix representing M samples of size N :

XTX = Wλ. (4.1)

The eigenvalues λ represented how “important” each loading was in transforming
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Figure 4.8: The reflectance measurement of EPP2000-VIS-50. Each onion sam-
pling was measured three times to reduce the likelihood of errors or anomalous
results.

the data, or how much variance the projection onto this axis contributed. As

the loadings (and λ) were sorted in descending order, W could be truncated to r

columns, which could then be used to project data along r dimensions, preserving

the dimensions that contributed most to the variance of distribution. W was often

obtained with singular value decomposition (SVD) instead of performing the eigen

decomposition of XTX, as it was more computationally efficient.

Linear Discriminant Analysis

LDA reduces dimensionality of data by finding new axes to project it onto that

maximizes the seperability between classes [276]. It does this by maximizing the

distance between means of classes relative to some center point for all classes, while

minimizing the variance, or scatter, within each category (equation (4.2)). In the

following equation, C is the number of classes, Ni is the size of class i, µ is the

mean of all data points, µi is the mean of class i, and xj is the jth data point in

class i, ∑C
i=1Ni(µi − µ)(µi − µ)T∑C

i=1

∑Ni

j=1(xj − µi)(xj − µi)T
. (4.2)

The optimized solution contains eigenvectors that is descending order of their eigen-

values, which can be used to reduce the dataset similar to PCA. Optimizing for



114

both within and between-class scatter is important because only maximizing dis-

tance between means can lead to scenarios where the variance is high along the

axis with large mean distances, increasing the chance that there are points from

different classes overlapping. Minimizing the variance ensures data from each class

is grouped tightly along the new axis, increasing separability.

Multi-layer Perceptron Classifier

The single perceptron, or artificial neurons, are nodes with a number of weighted

data inputs, a bias input, and an output [277]. The weighted inputs are summed

up and fed through an activation function, used as a threshold to decide when the

node should be active. They can be used for binary classification or regression

problems by using activation functions (e.g. tanh, sigmoid). The function for a

single perceptron is as follows, where a is the activation function, W is the input

weights, and b is the bias,

f(x) = a(Wx + b). (4.3)

The single perceptron cannot be used for many complex prediction tasks because

they can only predict nonlinear patterns [278]. Multilayer Perceptrons (MLP)

overcome this by constructing networks out of multiple perceptrons. An MLP is a

supervised learning system consisting of an input layer, N number of hidden layers,

and an output layer. Nonlinear activation functions used in the MLP introduce

nonlinearity into the model, allowing it to make predictions on complex, nonlinear

datasets, such as hyperspectral readings. MLPs are trained using a process called

backpropogation, which updates the network’s weights with respect to the error

between its current output and the expected result.

4.3.3 Results and Discussion

To prepare the dataset of EPP2000-VIS-50, each 1675-dimension reading was

loaded into a vector. The Scio measurements were obtained with the help of

a smartphone application, and each reading was of 1060 dimensions. For the

model evaluation, the dataset was split into 75% for training, and 25% for testing.
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Figure 4.9: Classifier accuracy comparison on the PCA reduced Scio dataset.

All data was normalized with scikit-learn’s normalize() function, while the MLP

classifier required normalization with the StandardScalar() module [279].

The evaluation stage was broken up into three steps: data preparation, classifier

evaluation, and parameter grid search on the best performing classifiers. Classifier

performance was ranked by the percentage of correctly predicted labels in the test

dataset, averaged over 10 iterations. In the classifier evaluation stage, a number

of classifiers were being applied with and without PCA and LDA dimensionality

reduction.

Results Using PCA Based Classifiers

Figure. 4.9 showed the performance of several scikit-learn classifiers (and XG-

Boost) ranked against each other in terms of label prediction accuracy for the Scio

dataset (reduced with PCA from 3 - 99 components). Most classifiers performed

very poorly, with only the MLP classifier nearly breaking 50% accuracy, hitting a

high score of 48.1% at 90 components, with the rest barely beating random guess-

ing (33% for 3 labels). After MLP was determined to perform the best with PCA

reduced data, the author performed parameter grid search to optimize its results,

iterating through the parameters listed below, achieving a top accuracy of 53.1%

(top 5 results and parameters are shown in Table 4.3).
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• PCA components: 10, 20, 40, 80, 160

• Hidden layer sizes: 25, 50, 100, 200, 400

• Activation: relu, logistic, tanh

• Solver: lbfgs, adam

• Alpha: 0.00001, 0.0001, 0.001, 0.01, 0.1

• Batch size: 200, 100, 50, 25

• Max iterations: 200, 500, 1000

Results Using LDA Based Classifiers

Each classifier was tested against reduced data with size ranging from 3 - 99

components, as with the PCA reduction in the previous section. This hurted per-

formance relative to PCA reduction, with all classifiers again scoring only slightly

above random guessing, with the exception of MLP which scored an average of

38.8% accuracy (see Fig. 4.10), with a best score of 39.5% at 6 components. Be-

cause these results were substantially less than the default results of MLP with

PCA reduction, parameter grid search was not conducted.

Results Using MLP

The MLP implementation was also tested with the raw, unreduced dataset,

but performed substantially worse than PCA and LDA-reduced methods. MLP

predicted the correct label 36.6% of the time with the unreduced data, essentially

Accuracy PCA Components Hidden Layer Sizes Activation Solver Alpha Batch Size Max Iterations

0.53064 20 100 tanh adam 0.001 25 500

0.52903 20 50 relu lbfgs 0.1 50 500

0.52741 20 200 tanh adam 1e-05 25 500

0.52741 20 400 relu adam 0.01 100 500

0.52580 20 50 logistic adam 1e-05 25 1000

Table 4.3: Top 5 performing classifiers using PCA and MLP and their grid search
parameters.
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Figure 4.10: Classifier accuracy comparison on the LDA reduced Scio dataset.

randomly picking the result. This demonstrated that dimensionality reduction was

necessary for MLP to provide any benefit for the onion dataset. For the unreduced

data, scikit-learn Extra Trees implementation performed the best, predicting the

correct label with an accuracy of 43.1%.

4.3.4 Conclusions and Future Work

Data collection from the Scio sensor produced worse classification results as

opposed to the spectrometer EPP2000-VIS-50. Using the data of EPP2000-VIS-

50 increased MLP’s prediction accuracy from 36.6% to 71.8% on unreduced data.

Similar improvement was seen with dimensionally reduced data, improving the

prediction accuracy of MLP from 48.1% (with 90 components) to 77.4% (with 30

components) for PCA, and 39.5% (with 6 components) to 58.5% (with 42 compo-

nents) for LDA.

In the future, the author will collect more measurements in different growing

stages of onions to make sure the model is robust to the different growth stages.

As for the sensor Scio, the author will explore new machine learning methods to

see if better algorithms can help improve prediction accuracy.
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4.4 Conclusion and Future Research

In this chapter, the author proposed the concept of “Internet of Living Things

(IoLT).” A “living thing” pertains to any organism or a life form that possesses

or shows the characteristics of life or being alive. The fundamental characteristics

are 1.) having an organized structure, 2.) requiring energy, 3.) responding to

stimuli and adapting to environmental changes, 4.) being capable of reproduction,

growth, movement, metabolism, and death. For most of agricultural applications

of IoT, it actually can also be considered as the IoLT. Researchers collect data of

crops or trees, such as tree canopy temperature, rainfall, humidity, wind speed,

soil moisture, and stem water potential, etc. After the analysis of recorded data,

stakeholders or researchers can help make better decisions to increase the farm

productivity, improve the sustainability, and reduce the costs. For the future

research, new sensors can be designed for specific agricultural applications. How

to extract the most significant data using the ML algorithms can be an important

research topic.



Chapter 5

The Unmanned Ground Vehicles

(UGVs) for Precision Agriculture

5.1 Introduction

An unmanned ground vehicle (UGV) is an autonomous vehicle, capable of not

only driving without a human driver, but can also include artificial intelligence

to conduct search, proximate sensing, mapping and tracking mission without the

need of human’s control [280]. Current UGVs come in a variety of forms and

capabilities, from full-sized tractor capable of replicating manned operations to

miniature systems for agricultural environments [281]. Industry experts predicted

a significant surge in UGVs deployment, especially within the agricultural industry.

This exponential increase is expected from two major developments: the increase

in availability of advanced sensor technology [282] and the cognitive applications

allowing commercial use of UGVs [283]. Advanced sensing technology allows cam-

eras to be automated, leading the way for UGVs to further reduce labor costs in

agriculture. According to a robotic research report, agricultural robots can become

a 45 billion industry by 2038 [284].

UGVs, equipped with sensors, have been used in several agricultural sensing

applications for collecting data. For example, the CGMD302 spectrometer can be

used to measure the leaf area index (LAI) for monitoring the rice growth conditions

119
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[285]. Equipped with pan-tilt-zoom (PTZ) camera and Stereo cameras, Husky

UGV from Clearpath Robotics can be used for optimized harvesting by isolating

low yielding crops [286]. The Velodyne VLP-16 LiDAR, equipped with the IG52-

DB4 UGV from Superdroid Robots, can be used for 3D mapping of plants [287].

Furthermore, equipped with a 2D laser rangefinder, a Kinect v2 camera and a

set of robot navigation sensors, a commercial off-the-shelf mobile robot Summit

XL HL can be used for assessing vines’ canopy dimensions and estimating yield

[288]. Pest population distribution and irrigation non-uniformity mapping are still

new areas for UGVs, but they have more exact requirements than other sensing

applications. For example, real-time management of irrigation systems require

more and more precise information on water, soil, and plant conditions than most

surveillance applications. Most current UGV sensing applications use expensive

UGVs and cameras [286].

Pests are usually considered as the most economically important factor in agri-

culture because of their spatial coverage [289]. Early detection of pest population

distribution in agricultural systems is critical to enabling timely interventions and

reducing crop yield losses [290]. For example, estimates are that approximately

10.8% of global crop losses are due to pests [291]. Each year in California, eradica-

tion of pests is not always available, due to either the quickly expanding distribu-

tion of the pest or constraints regarding the tools available to attempt eradication.

Pests can cause significant damage to the agricultural industry and natural envi-

ronments [292].

The irrigation systems have been designed to apply water uniformly in the ir-

rigation area. Uniformity of soil moisture under the sprinkler irrigation system

is an important parameter for crop quality and yield. Non-uniformity irrigation

can cause less yields than expected [293]. Smart irrigation management will en-

able growers to irrigate ideally in agricultural industry. For example, research

in almond irrigation management has been accelerated to achieve sustainability

and marketability since 2010 in California. There are around 7600 almond farms

in California, which makes up almost 100% of commercial almond production in

the US and about 80% of the global supply. Since there is limited water in CA,
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it is important to move the almond industry forward toward sustainable water

management. The Sustainable Ground Management Act (SGMA) defined a new

industry goal for the almond water use efficiency by 2025 to “Reduce the amount

of water used to grow a pound of almonds by 20%.” Smart irrigation management

will enable growers to irrigate almonds ideally and keep CA as a global leader in

sustainable almond production.

The current state-of-the-art methods to identify pest population distribution

and non-uniformity irrigation system require farmers or growers to employ field

scouts to identify visible symptoms or rely on remote sensing images from satellites

or UAVs to identify crops [294]. Usually, when visual symptoms occur, the damages

may have already occurred. Early detection of crop pest population distribution

and irrigation non-uniformity mapping will directly or indirectly contribute to

agricultural, environmental and economic sustainability due to rational irrigation

water usage, minimized application of fertilizers and pesticides and improve yield

estimation.

This chapter will first focus on how to build a low-cost UGV platform and its

application for pest population distribution and irrigation non-uniformity map-

ping. The fundamental research proposed can also be used for other precision

agriculture applications, such as leak detection. The UGV, as a data acquisition

platform, will definitely play a key role in these agricultural applications.

5.2 The UGV as A Data Acquisition Platform

Over the past decade, UGVs have shown much promise in their future role as

a primary tool to collect critical information for precision agriculture [295]. Com-

mercial UGVs have the potential to deal with rising demand for lowering labor

cost in the world. Whether used as a smart farmer’s companion or a co-ecologist,

cognitive swarming via UGVs with associated system applications is rapidly in-

creasing in number and sophistication. We are limited only by our imagination for

potential future applications, much like the dawn of personal computing.

The proposed UGVs in this chapter can run more than 6 hours in the field, and
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have the ability to capture remarkably high resolution thermal, near infrared, red-

green-blue standard video and imagery, and LIDAR for 3D mapping. These data

can then be used for a variety of timely decisions, such as determining not only the

species of plants, but also their water and nutrient stress status [296]. This type

of applications is only the beginning, as we believe there are many more untapped

agriculture and environmental research abilities, such as health-check for crops

(disease detection), pest management, irrigation management, crop harvesting,

mechanical weeding, and much more. Also, the world population increases fast,

which is expected to reach about 9 billion by 2050 [297]. More food is in demand

from agriculture. Labor shortages have been reported throughout agriculture in

the United States again and again [298]. UGVs can decrease the need for labors in

farms by mechanizing and automating agricultural processes such as harvesting,

seeding, monitoring, and etc. [297].

5.2.1 Fundamental Research Questions for UGVs

Precision agricultural applications by using cognitive swarming of low-cost

UGVs require spatial and temporal resolutions. Cognitive swarming of low-cost

UGVs is promising but limited by its autonomous navigation controls, manage-

ment methods and performances. The fundamental questions are

• How to use smart cognitive algorithms to make sure the UGVs can perform

state-of-art movement in the field?

• How can UGVs/UAVs cooperate efficiently by using a swarming mechanism?

• How to make the UGVs taskable with little modification of current planning

methodologies?

• How to lower the UGVs barriers (low-cost) to entry agricultural industry?

• How to early detect pest population and irrigation non-uniformity mapping

based on data information collected from low-cost UGVs?

• How to use data collected from UGV sensors to acquire most related infor-

mation about precision agriculture sensing and applications?
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• How can the UGVs perform safely in emergency to avoid hurting people or

crops?

5.2.2 Low Barriers to Entry

The personal UGV platforms are highly efficient for different agricultural sens-

ing and applications. Specifically, the personal UGV can run more than 6 hours

each time and 3 miles per hour, which makes it work more efficiently than most

UAVs. Currently, one method to make the UAV fly longer is adding more bat-

teries, such as NCFLY-Helios (Drone Technology Inc.). With eight motors and

the diameter up to 2136 mm, UAVs can have the endurance of 60 minutes with

1 kilogram payload or 40 minutes with 7 kilograms payload. This is clearly not

enough for many agricultural applications in the field. With a single, more cost-

effective battery, a personal UGV can work more than 12 hours per day. This

makes the UGV platform work much more efficiently in a variety of agricultural

proximate sensing and applications. Affordability of the UGV platform is also a

very important concern from agricultural industry [299]. Recently, most UGVs

used in the research are very expensive, such as IG52-DB4, HD2-S UGV from Su-

perdroid Robots [287] and Husky UGV from Clearpath Robotics [286]. To make

it commercial, balancing the technology efficiency with cost is a study area for

researchers.

Table 5.1: Specifications of several UGVs and the proposed Personal UGV.

UGVs Price Run time Max speed User power

Husky more than $20,000 3 hours 2.3 mph 5 V, 12 V, and 24 V fused at 5 A each

IG52-DB4 $1613.55 5 - 5 hours 5.65 mph 24 V, SLA batteries with 18 A of capacity

HD2-S $32,500 up to 8 hours 2.7 mph 24 V, SLA batteries with 18 A of capacity

Personal UGV less than $1000 6 hours 3.7 mph 12 V fused at 7 A

As seen from Table 5.1, compared with Husky UGV, IG52-DB4 and HD2-S

UGV, the proposed personal UGV had a much lower cost and better performance.

For example, IG52-DB4 (Superdroid Robots) costed like $1613.55, and it could

only run like 2 to 5 hours without payload. The proposed personal UGV could run

as long as 6 hours. The HD2-S UGV was even more expensive, as much as $32500.
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The performance was very similar with the proposed UGV platform, which was

targeted to less than $1000. The author believed this cost range made the proposed

personal UGV achieved lowering barriers to entry and became more ubiquitous in

precision agriculture industry.

As indicated in the above examples, only one camera is used to have longer

endurance on the UAV platforms. However, for UGV platforms, there is more space

for cameras. All kinds of cameras can be mounted on the UGV without concern

about the endurance. For example, The GoPro Hero 6 is the newest product from

GoPro technology company. It can shoot 4K video at 60 frames per second and

slow-motion 1080P (240 fps), which is only $399. To make it more cost effective,

Gopro Hero 5 can be another choice, which is $299. For another example, Survey

2 Camera (MAPIR, USA) is a visible light RGB camera. According to its official

website, it is only $280. The Survey 2 has a 16MP sensor and sharp non-fisheye

lens make it easier to capture in the field. It captures photos on the default timer

trigger or can be sent a PWM signal through the HDMI port. Similar size to

a GoPro 6 (Gopro, USA), these small survey cameras can be attached to UGV

platforms using various mounts. With more cameras, the UGV can become more

taskable for farmers and growers.

TurtleBot is a low-cost, personal robot kit with open-source software. It was

created at Willow Garage by Melonee Wise and Tully Foote in November 2010.

There are mobile base, 3D sensor and a laptop computer in the TurtleBot kit.

TurtleBot has many similar abilities of the large company’s robot platforms, such

as PR2. With the TurtleBot components, users can even create real-time obsta-

cles avoidance and autonomous navigation. For the personal UGV platform, we

can even use the TurtleBot to control the UGVs. Then, the TurtleBot becomes

the “UGV brain” and monitor the UGV behaviors in the field. All the possible

applications of the TurtleBot can be realized on the UGVs and can be much more

powerful. The TurtleBot 2 and TurtleBot 3 are most commonly used in research.

TurtleBot 2 consists of a Kobuki base, a 2200 mAh battery pack, a Kinect sensor,

an Asus Xion Pro Live, fast charger, netbook (ROS compatible). The ROS stands

for robot operation system, which is a flexible framework for writing robot software
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[300]. Turtlebot 3 is the new generation mobile robot which is modular, compact

and customizable. It reduced the size and lowered price without sacrificing func-

tion, capability, and quality. The Intel RealSense Depth Camera D435 has been

used in several research areas. It can be used indoor and outdoor. The depth

technology is active IR stereo. The processor used in this camera is Processor D4.

The depth field of view can be up to 1280 × 720. The depth stream output frame

rate can be up to 90 fps. It can be used in 3D point clouds and other research

areas. The most important is that the price is only $179. Mounted on the UGVs,

it will be more powerful as part of the cognitive system.

5.2.3 Cognitive Algorithms by Deep Learning

Cognitive algorithm is one of the most important parts of the UGV platform.

The inspiration of cognitive algorithms for UGV comes from the human drivers.

Based on human cognitive mechanism, researchers lay the foundation for the de-

velopment of cognitive algorithms. Typically, there are three steps of the UGV

movement behaviors, stimulus perception, judgement and decision making, and

stimulus performance [301]. In a recent cognitive algorithm, it could identify spe-

cific objects in the environment, using cognitive reasoning to develop a deeper

understanding of the scene based on objects and their spatial relationships [302].

Reconstruction and mapping monocular simultaneous localization and mapping

(SLAM) relies on cognition techniques to calculate the position of the robot and

map the environment [303]. Real-time monocular SLAM was thought impossible

due to high computational costs. However, there are many kinds of SLAM packages

now, such as LSD-SLAM [304], RatSLAM [305], and SVO [306]. Many open source

vision-based SLAM packages were compared in a paper at 2016 [307]. It turned out

that ORB-SLAM is the best performing package [308]. The ORB-SLAM uses ORB

features, which are binary features that are invariant to rotation and scale [303].

The ORB-SLAM also allows the robots to initialize with no user input, which is

important for UGV platforms as an autonomous robot system. Additionally, when

the ORB-SALM is matching features, the number of key frames increases because

of the complexity of the images. This is done by “culling” key frames that are no
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longer used, and allows for ORB-SLAM to run for longer periods of time [303].

Recognition using deep learning can bridge the gap between perception and

intelligence. Perception missions can collect lots of data, but much of it is discarded

to simplify interpretation by higher level tasks [309], e.g. a 3D object can become

a point in space. In [309], it used a deep learning framework to replace these

interfaces with learned interfaces. This allows for error back-propagation that can

adapt each module to the robot’s task. Deep learning is also a powerful state-of-art

technique for image processing. It can target land cover and crop type classification

from the images collected from sensors [310]. Safety is another concern by farmers

and growers, the UGV should have the ability to detect workers and farmers, then

make the right decision in the field.

5.2.4 The Swarming Mechanism of UGVs

Technological advances are pushing the applications of UGVs in exciting di-

rections [311]. Many different types of UGVs have been developed to address a

variety of agricultural applications ranging from soil sampling, irrigation mapping

and crop harvesting [312]. However, for a large scale of field where fleets of au-

tonomous UGVs must be used to work together on a common goal, multiple UGVs

can collaborate to form a swarming mechanism [313].

Recent swarming research has focused on aspects of communications and main-

tenance of connectivity [314], such as control and collision avoidance with the

swarm [315], task allocation and strategies for solving multiple tasks [316], model-

ing of the swarm behavior by predicting individual behaviors [317]. In these papers

[318, 319, 320, 321], control methodologies for swarms of UGVs were discussed. In

this chapter, the research will be conducted based on the proposed UGV platform

and provide swarm mechanism with multiple UGVs. In this mode, the followers

can only follow the leader UGV according to its GPS position, although detailed

functions will be developed depending on the requirement of proximate sensing.

For example, several UGVs can work in a large scale field together, which makes

a mission much shorter than normal time. The collected data can also be shared

between UGVs in real-time mode, which makes the UGVs more intelligent.
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Figure 5.1: The toy vehicle.

5.3 Case Study: Build A UGV platform for Agri-

cultural Research from A Low-cost Toy Ve-

hicle

5.3.1 Introduction

This section is for a short introduction of the UGV from a toy vehicle (Fig. 5.1).

the UGV could navigate through its environment without the assistance or guid-

ance of human intervention. This was done through the signal transmission be-

tween the vehicle controller and a program called Mission Planner, which was used

to set up markers called waypoints that set up locations for the UGV to reach. For

the research purpose, the UGV’s main function was to survey and inspect differ-

ent farmlands, performing large amounts of data collection for researchers to use.

After data gathering is complete, they can perform data analysis and computer

vision algorithms to gain more insight in crop growth, trends and pave the way to

precision agriculture.

This tool is a great substitute for physical labor and minimizes expenses in the

industry (Fig. 5.2). Besides research, UGV usage can transition to applications

within the working sectors such as agriculture, emergency services, government
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Figure 5.2: The UGV platform.

work, and much more. In terms of agriculture, the goal of this project is to create

a low-cost (less than $1000) UGV that local farmers in the Central Valley can use.

With this affordable UGV, they have a device that does surveillance in their field,

inspect for water pipe leakage, crop diseases, and perform human-based tasks such

as spraying insecticides and mowing, especially in vineyards. For more information

about this UGV application in agriculture, please refer to Chapter 10.

5.4 Conclusions and Future Research

Unlike other robots, UGVs post particular challenges for algorithms of au-

tomation, cognition and swarming. UGVs are operated in the environment with

disturbances like weather condition, and decisions on the control actions have to

be made instantaneously. Also, farmers and growers are worried about the prof-

itability of UGVs implementation as well as safety. Therefore, it is necessary to

develop a mixed-initiative planning system with adjustable autonomy to enable

UGVs meet with their mission objectives within the physical dynamics.

More precisely, the architecture of UGV system should include three layers. The

first layer includes a team of multiple UGVs with cost effective cameras and sensors.
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Each camera sensing specific band of light is mounted on a single UGV. On this

level, it supports direct precise teleoperation for a single UGV by providing guiding

mode, loitering mode, or even stabilizing mode controller. In this scenario, the

higher layer monitoring system keeps checking the status of the UGV and operation

of the user and notifies the user about safety and corresponding suggestion on

action.

The second layer is model based monitoring system to improve system safety

and operator awareness. The control system is embedded with declarative model

of its activities to detect constraint violations. On the one hand, the performance

of UGVs, like position, speed, battery etc., will be compared with the prediction

output based on the prior model of UGV. Once there are any strange behaviors,

it will give warning or action suggestion to operators. Particularly, management-

by-consent and management-by-exception should be involved to free operator’s

cognitive resources for higher priority operation. On the other hand, while mis-

sion planning, human command is also checked to prevent dangerous or conflict

initiatives. Not normal interaction would be detected and displayed to the user,

and only safe meaningful interaction will pass into the first layer.

The highest level is mixed-initiative planning system, which allows incremental

interactive planning for pest population distribution and non-uniformity irrigation

mapping. The scale adaptive searching algorithm is part of this layer for path

planning. It orchestrates task assignment, task decomposition, overall path plan-

ning, and incremental planning. The user either generate mission plan by task

assignment with the planning system or follow the plan sequence with just a few

modifications. In addition, it permits incremental planning so the user can just

focus local decisions without endanger the overall system constraints.
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Chapter 6

A Low-cost Proximate Sensing

Method for Early Detection of

Nematodes in Walnut Using

Machine Learning Algorithms

6.1 Introduction

Most of the high-value commodity walnuts of the US are grown in the fertile

soils of the California Central Valley. The sustainability of walnut production

is challenged by several pests and pathogen problems that can occur in walnut

orchards [322, 323]. The plant-parasitic nematodes are one of these pest problems.

There are many species of nematodes in California, but the root-knot nematodes

(Meloidogyne spp.) and root-lesion nematodes (Pratylenchus vulnus) [324] are

among the most damaging [325]. Plant-parasitic nematodes are difficult to control

and can spread easily in soil on tools, boots, or infested plants [326]. Root-knot

nematodes can attack many different crops, including nut and fruit trees. Root-

knot nematodes usually cause distinctive swellings, called galls, on the roots of

affected plants [327]. Many nut crop rootstocks used in California carry resistance

towards root-knot nematodes, but nematode species new to California can occur
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in the state and damage the nut crops based on their vulnerability. Root-lesion

nematodes are also widely distributed and heavily damaging in walnut orchards,

therefore causing widespread problems [328].

Recently, accurate nematode detection relies on soil collections, tedious nema-

tode extraction procedures, and identification and enumeration under a microscope

[324]. Infestations of nematode under field conditions are not diagnostic but need

to be confirmed by laboratory procedures. These traditional nematode detection

methods are tedious, need highly specialized personnel, equipment, and take time

to complete. Detection of plant-parasitic nematodes by simple means is paramount

to direct management strategy decisions.

With the development of remote sensing technology, satellite and unmanned

aerial vehicles (UAVs) imagery have been commonly used in precision agricul-

ture, such as early detection of nematodes [329, 330, 331], irrigation management

[24, 27], and evapotranspiration estimation [142, 137, 28]. The walnut root in-

fection by nematodes can induce spectral variation in leaves and define a special

spatial configuration. Thus, Hillnhütter et al. reported that the induction of symp-

toms in leaves, the clustered occurrence, and the low level of mobility in the soil

made nematodes ideal targets for remote sensing detection [332]. For example,

Martins et al. detected and mapped the root-knot nematode infection in coffee

crops using the hyperspectral data and RapidEye sensor to identify the most sen-

sitive spectral ranges for nematode infection discrimination in coffee plants [329].

The multispectral classification method could classify the spatial distribution of

healthy, moderately infected, and severely infected coffee plants with an overall

accuracy of 78% [329].

However, satellite or UAVs could be limited by flight time or payload capabil-

ity. Such limitations do not apply to proximate sensors. For instance, in [333], Li

et al. adopted a non-invasive method of measuring leaf water content using tera-

hertz (THz) radiation, which provided for repeated, non-destructive measurement

of leaf water content. In [334], the author proposed a novel low-cost proximate ra-

diofrequency tridimensional sensor Walabot to measure the stem water potential of

walnut leaves. Results showed that the sensor could predict stem water potentials
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with an accuracy of 78% using the decision tree classifier. The Walabot has also

been used in many other research topics, such as battery management [335, 336].

For example, Wang et al. [336] compared the performance of three classifiers on

Lithium-ion batteries (LIBs) voltage classification problem, which were principal

component analysis (PCA) [235], linear discriminant analysis (LDA) [236], and

stochastic gradient descent (SGD) classifiers. Experimental results showed that

LDA was the most suitable for LIBs voltage classification. These findings high-

lighted the powerful potential for applying Walabot as a proximate sensor.

Inspired by previous research work, the objectives of this chapter are:

1. Investigate and validate the non-invasive approach of early detection of ne-

matodes using a pocket-sized, cutting-edge technology radio frequency tridi-

mensional sensor.

2. Implement several Scikit-learn classifiers, such as “Neural Net” [277], “Sup-

port Vector Machine” [337], “Random Forest” [338], “AdaBoost” [150], “Near-

est Neighbors” [339], and “Decision Tree” [340] to classify the nematode

infection levels of walnut trees.

3. Evaluate the prediction performance of the Deep Neural Networks (DNNs)

model.

The major contributions of this chapter are:

1. Develop a reliable method for early detection of nematodes using a proximate

sensor and ML algorithms.

2. Provide a DNN framework, which establishes a DNN model between the

radio frequency reflectance of walnut leaves and nematode infection levels.

The rest of this chapter is organized as follows: the second section introduces

material and methods for early detection of nematode infection levels. Several

commonly used ML algorithms are also introduced in this section. Different re-

sults of early detection of nematode infection levels are then presented, compared,

and discussed in the third section. In the end, the author shares views on the
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early detection of nematodes with ML algorithms for future research and draws

conclusive remarks.

6.2 Material and Methods

6.2.1 Study Area

The study was conducted in an experimental walnut orchard at the Kearney

Agricultural Research and Extension Center, 9240 S Riverbend Ave, Parlier, CA,

93648, USA (36.595◦N, 119.508◦W). There were three replications to detect the

nematode infection levels, Project 30 (a) and (b), Project 45, and Project Smith

(Fig. 6.1). For example, in Project 45, the experimental orchard consisted of 90

trees in total, including experimental clonal hybrid walnut rootstock genotypes

(originating from one cross) and some clonal controls (Fig. 6.1(b)). They foremost

varied for their host status towards root-lesion nematode.

6.2.2 Reflectance Measurements with A Radio Frequency

Sensor

The reflectance of the walnut leaves was collected with a radio frequency 3D

sensor called Walabot Developer1. The Walabot used an antenna array to send

radio frequency to the area in front of the walnut leaf and then captured the

returning signals (See Chapter 4 for more details of the Walabot). The research

hypothesis was that the radio frequency reflectance of walnut leaves would be

significantly different towards root-lesion nematode infection levels. Then, the

spectral curve obtained from the leaves of walnut trees infected with nematodes

could show the characteristic pattern of walnut under nematode stress.

1Mention of trade names or commercial products in this publication is solely to provide specific
information and does not imply recommendation or endorsement by the University of California
or the Kearney Agricultural Research and Extension Center. The University of California and
Kearney Center are equal opportunity providers and employers.
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(a) The Project 30 (a) and (b).

(b) The Project 45.

(c) The Project Smith.

Figure 6.1: The study was conducted in an experimental walnut orchard at the
Kearney Agricultural Research and Extension Center, 9240 S Riverbend Ave, Par-
lier, CA, 93648, USA (36.595◦N, 119.508◦W). There were three replications to
detect the nematode infection levels, Project 30 (a, b), Project 45, and Project
Smith.
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Table 6.1: Nematode numbers per gram of root in rootstock genotypes examined
by Walabot measurements (Project 45, 2019). “RLN per gram of root” meant the
root-lesion nematode number per gram of root extracted in laboratory procedures.

Block Genotype RLN per gram of root

A 62 57.2

A 95 49.8

A 127 70.6

A 117 99.8

B 72 147.2

B 89 8.0

B 127 47.7

C 95 50.2

C 127 40.8

D 48 72.6

D 127 7.1

D 128 117.6

E 89 76.1

E 127 1.8

F 127 0

6.2.3 Groundtruth Data Collection and Processing

In this chapter, the Walabot was used to measure the radiofrequency reflectance

of the walnut leaves in 2019 and 2020. For Project 45, there were 15 sampling trees

from 6 different blocks in 2019 (Table 6.1) and 60 sampling trees from 4 different

blocks in 2020 (Table 6.6). Each sampling tree was measured five times to reduce

the likelihood of errors or anomalous results. Genotypes from one cross went into

the analysis. “RLN per gram of root” meant the root-lesion nematode number

per gram of root extracted in laboratory procedures. Based on the root-lesion

nematode number, the walnut trees of 2019 were classified into four nematode

infestation levels (Table 6.2).
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Table 6.2: The classification of the nematode infestation levels (Project 45, 2019).

Nematode infestation levels RLN per gram of root

Level 1 0 - 20,

Level 2 20 - 60,

Level 3 60 - 90,

Level 4 > 90.

6.2.4 Scikit-learn Classification Algorithms

Several different methods in generating classifiers were adopted to evaluate

the detection performance for nematode infection levels. “Neural Net”, “Support

Vector Machines (SVM)”, “Random Forest”, “AdaBoost”, “Nearest Neighbors”,

and “Decision Tree” were chosen as the classification algorithms. In the “Neural

Net” library, a multi-layer perceptron (MLP) classifier was used. This model

optimized the log-loss function using stochastic gradient descent. The MLP trained

iteratively because the partial derivatives of the loss function with respect to the

model parameters were computed to update the parameters at every step. The

SVMs are a set of supervised learning methods used for classification, regression,

and outliers detection. The SVMs are effective in high dimensional spaces and

effective in cases where the number of dimensions is greater than the number of

samples.

For the “Random Forest” classifier, it is a meta-estimator that fits several deci-

sion tree classifiers on various sub-samples of the dataset and adopts averaging to

improve the predictive accuracy and control overfitting. An “AdaBoost classifier”

is also a meta-estimator that begins by fitting a classifier on the original dataset

and then fits additional copies of the classifier on the same dataset but where

the weights of incorrectly classified instances are adjusted such that subsequent

classifiers focus more on complex cases.

The “Nearest Neighbors” method is to figure out a predefined number of train-

ing samples closest in the distance to the new point, and predict the label from

these. The number of samples can be a constant (k-nearest neighbor learning) or
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vary based on the local density of points (radius-based neighbor learning). De-

spite of its simplicity, the nearest neighbors method has been successfully applied

for many research problems, such as the handwritten digits classification. As a

non-parametric method, it is often successful in classification situations where the

decision boundary is very irregular.

The “Decision Trees” are also non-parametric supervised learning methods

commonly adopted for classification problems. The objective is to create a model

that predicts the value of a target variable by learning simple decision rules inferred

from the data features. A tree can be seen as a piecewise constant approximation.

The “Decision Trees” usually use a white box model, which means the explanation

for the condition is easily explained by boolean logic if a given situation is observ-

able in a model. In contrast, results may be more challenging to interpret for a

black-box model, such as an artificial neural network.

6.2.5 Deep Neural Networks (DNNs) and TensorFlow

A deep neural network (DNN) usually has two or more hidden layers, com-

monly used in agriculture-related research. For example, in [341], Boniecki et al.

adopted the DNN as one of the classification tools, with the process of identifying

selected apple tree orchard pests as an example. In [342], You et al. proposed

a segmentation method using DNN that could recognize the weed precisely with

arbitrary shape in complex environmental conditions and enabled the autonomous

robot to reduce the density of weed more successfully.

In this research, the author trained a DNN with TensorFlow’s high-level appli-

cation programming interface (API). For each training instance of the nematode

dataset, the algorithm fed the instance into the DNN and predicted the nematode

infection level. The DNN classifier could be trained with any number of hidden

layers. Then, a softmax output layer was used to generate the estimated nema-

tode infection level probabilities. During the training process, the authors trained

a DNN for classification with two hidden layers, one with 300 neurons and the

other with 100 neurons.
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6.3 Results and Discussion

6.3.1 Data Visualization (Project 45, 2019)

Figure. 4.5 was a measurement example of the time-domain reflectance signal

using the Walabot. Records of the different reflectance strengths could be visual-

ized. Based on the root-lesion nematode number, the walnut trees were classified

into four levels of nematode infestation (Table 6.2). Each sampling was 2 × 2048

dimension by default. Then, the collected nematode infestation data were con-

verted into 2048-dimension vectors for data processing. For data visualization, the

author applied the LDA method for dimension reduction, which learned the most

critical axes between the classes [343]. The axes were then used to define hyper-

plane to project the high-dimensional training data into two dimensions, which

gained important insight by visually detecting patterns (Fig. 6.2). The x-axis and

y-axis had no scale because of hyperplane projection [20]. The nematode infection

levels were successfully clustered into four levels. Although the two clusters of

lower nematode infection levels (Level 1 and Level 2) were close to each other in

Fig. 6.2, they were clustered very well in three-dimensional space (Fig. 6.3).

6.3.2 Performance of Classifiers (Project 45, 2019)

The collected data of nematode infestation levels were converted into 2048-

dimension vectors for Scikit-learn algorithms data processing. The data was dis-

tributed as 75% for training and 25% for testing using the train test split method.

For evaluating the trained models, a confusion matrix was used to compare the

performances of different classifiers. A confusion matrix was a summary of pre-

diction results on a classification problem. The number of correct and incorrect

predictions was tallied with count values and divided into classes. The confusion

matrix provided insight not only into the errors being made by a classifier but,

more importantly, the types of errors that were being made. “True label” meant

the ground truth of nematode infestation levels. “Predicted label” identified the

nematode infestation levels predicted by the trained model.

The trained Scikit-learn classifiers had distinct test performance for early detec-
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Figure 6.2: The Linear Discriminant Analysis (LDA) was used for data visualiza-
tion, which learned the most critical axes between the classes. The axes were then
used to define hyperplane to project the high-dimensional training data into two
dimensions, which gained important insight by visually detecting patterns. The
x-axis and y-axis had no scale because of hyperplane projection. The nematode
infection levels were successfully clustered into four levels. The color bar values 1,
2, 3, and 4 represented the four nematode infection levels from 1 to 4 (low to high)
(Table 6.2).



141

Figure 6.3: The Linear Discriminant Analysis (LDA) was used for three-
dimensional data visualization. The x-axis and y-axis had no scale because of
hyperplane projection. The nematode infection levels were successfully clustered
into four levels. The clusters’ color was related to Fig. 6.2.
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Table 6.3: The performance of classification methods (Project 45, 2019).

Classification methods Prediction accuracy

“Neural Network” 0.62

“Support Vector Machine” 0.57

“Random Forest” 0.76

“AdaBoost” 0.57

“Nearest Neighbors” 0.95

“Decision Tree” 0.81

“DNN with TensorFlow” 0.82

tion of nematode infection levels (Fig. 6.4 and Table 6.3). The k-nearest neighbors

vote had the highest accuracy of 0.95. Table 6.4 showed the details of the test

process of the k-nearest neighbors method, which was a type of instance-based

learning that did not attempt to construct a general internal model, but simply

stored instances of the nematode infection levels training data. The classification

was computed from a simple majority vote of the nearest neighbors of each point.

Then, a query point was assigned the data class that had the most representatives

within the nearest neighbors of the point. For the other classifiers’ test perfor-

mance, the accuracy of the “Support Vector Machine” was 0.57. The “Random

Forest” had a test accuracy of 0.76. The “AdaBoost”, “Neural Network”, and

“Decision Tree” had an accuracy of 0.57, 0.62, and 0.81, respectively.

During the training process of DNN with TensorFlow, the number of epochs

was set as 200. The batch size was 10 since there was a small training dataset. As

shown in Fig. 6.5, there were 100 models. The highest accuracy could be as high

as 0.9. The lowest accuracy was around 0.58 when the training instances could not

represent the nematode infection levels very well. To evaluate the trained model,

the authors run the training process 100 times to reduce the randomness of the

training instances selection. The mean accuracy was 0.82 for the DNN classifier

model.

The experimental results proved that the walnut root infection by nematodes
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(a) “Neural Net”. (b) “Support Vector Machine”.

(c) “Random Forest”. (d) “AdaBoost”.

(e) “Nearest Neighbors”. (f) “Decision Trees”.

Figure 6.4: A comparison of six classifiers in Scikit-learn on nematode testing
dataset (Project 45, 2019). A confusion matrix was a summary of prediction results
on a classification problem. The “True label” meant the ground truth of nematode
infestation levels. The “Predicted label” identified the nematode infestation levels
predicted by the trained model.
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Table 6.4: The k-nearest neighbors performance (Project 45, 2019).

Nematode infestation level Precision Recall F1-score

Level 1 1 1 1

Level 2 0.88 1 0.93

Level 3 1 0.67 0.80

Level 4 1 1 1

Accuracy NA NA 0.95

Macro avg 0.97 0.92 0.93

Weighted avg 0.96 0.95 0.95

Figure 6.5: There were k models (in this case, k = 100). The best accuracy
could be as high as 0.9 (marked as a red dot). The lowest accuracy was around
0.58 when the training instances could not represent the nematode infection levels
dataset very well. The mean accuracy was 0.82 for the DNN classifier model.
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could induce spectral variation in walnut leaves. The proximate sensor could send

the radio frequency to the area in front of the walnut leaf and then captured the

returning signals (reflectance). Then, waveforms generated by different signals

could estimate the damage caused by nematodes in the walnut root. With the

machine learning algorithms, the nematode infection levels could be classified with

high accuracy of 95%. These findings emphasized the importance of applying phe-

notyping analysis for the early detection of nematode infection levels. Trees and

crops severely infected by nematodes showed a significant reduction in leaf area

similar to the plant response to other environmental stress, such as drought, nutri-

ent deficiency, salinity, and other biotic stresses [344]. Several researchers reported

the similar results [329, 330, 345, 346, 347]. For example, Matins et al. concluded

that the multispectral classification with hyperspectral data could define the spa-

tial distribution of healthy, moderately infected, and severely infected coffee plants,

with an overall accuracy of 78% for detecting and mapping the root-knot nematode

infection [329]. In [330], Palacharla et al. proposed an SVM regression method

for the inversion and retrieval of key biophysical parameters that help understand

and to quantify the nature of the nematode infested vegetation. Therefore, to

guarantee the efficiency of early detection of nematode infection levels, efficient

machine learning algorithms and sensing technology should be adopted according

to the results from this study.

6.3.3 Performance of Classifiers (Project 45, 2020)

In order to obtain a complete understanding of the facts and circumstances

about the early detection of nematode infection levels, the author also collected

the data using the proximate sensor in 2020. For Project 45, there were 60 sampling

trees from 4 different blocks in 2020 (Table 6.6). Each sampling tree was measured

five times to reduce the likelihood of errors or anomalous results. Genotypes from

one cross went into the analysis. Based on the root-lesion nematode number, the

walnut trees of 2020 were classified into four levels of nematode infestation, from

level 1 to level 4 (Table 6.5).

The machine learning algorithms were applied for nematode data processing
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Table 6.5: The classification of the nematode infestation levels (Project 45, 2020).
“RLN per gram of root” meant the root-lesion nematode number per gram of root
that was extracted in laboratory procedures.

Nematode infestation levels RLN per gram of root

Level 1 0 - 20,

Level 2 20 - 60,

Level 3 60 - 200,

Level 4 > 200.

and analysis. According to Fig. 6.6 and Table 6.7, the trained models had different

prediction performance for early detection of nematode infection levels. Although

the exact prediction accuracy was distinct, the experimental results of 2020 were

pretty consistent with the analysis results of 2019. The k-nearest neighbors vote

still had the highest accuracy of 0.95. Table 6.8 showed the details of the test pro-

cess of the k-nearest neighbors method. For the other classifiers’ test performance,

the accuracy of the “Support Vector Machine” was 0.58. The “Random Forest”

had a test accuracy of 0.61. The “AdaBoost”, “Neural Network”, and “Decision

Tree” had an accuracy of 0.63, 0.62, and 0.78, respectively.

For the training process of DNN with TensorFlow, the number of epochs was

still set as 200 and the batch size was 10. As shown in Fig. 6.7, there were 100

models. The highest accuracy could be as high as 0.88. The lowest accuracy was

around 0.4 when the training instances could not represent the nematode infection

levels very well. To evaluate the trained model, the authors run the training process

100 times to reduce the randomness of the training instances selection. The mean

accuracy was around 0.7 for the DNN classifier model.

As mentioned earlier in this section, the experimental results of 2020 were

pretty consistent with the analysis results of 2019. Detecting the nematode disease

in walnut roots with proximate sensing is usually based on changes in the spectral

response of the walnut due to impairment of their leaf structure. The research

consistency further enhanced the author’s discussion that the walnut root infection

by nematodes could induce spectral variation in walnut leaves. The different signals
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Table 6.6: Nematode numbers per gram of root in rootstock genotypes examined
by Walabot measurements (Project 45, 2020). “RLN per gram of root” meant the
root-lesion nematode number per gram of root that was extracted in laboratory
procedures. “ID” is a short form for “identity”.

Tree ID Genotype RLN per gram of root Tree ID Genotype RLN per gram of root

C1 MS1 48 243.8 A1 MS1 62 418.5

C2 I13-32 1005 A2 MS1 117 73.5

C3 Vlach 872.4 A3 MS1 117 43.5

C4 MS1 128 96 A4 MS1 95 205.5

C5 MS1 3 155.4 A5 MS1 48 82.5

C6 RX1 40.6 A6 MS1 128 355.5

C7 MS1 72 21 A7 Vlach 228

C8 MS1 117 4.5 A8 MS1 89 64.5

C9 MS1 31 207.6 A9 UZ229 172.5

C10 MS1 132 20 A10 MS1 127 37.5

C11 MS1 89 11.6 A11 MS1 3 1.4

C12 MS1 127 69 A12 RX1 1536

C13 MS1 95 201 A13 MS1 31 766.5

C14 VX211 19.5 A14 VX211 174

C15 MS1 62 462 A15 MS1 98 18

D1 Vlach 187.5 B1 MS1 31 67.5

D2 MS1 128 437.4 B2 MS1 48 111

D3 MS1 3 286.5 B3 MS1 95 57.4

D4 MS1 89 197.5 B4 MS1 127 15

D5 MS1 132 159 B5 MS1 132 23.2

D6 MS1 31 226.5 B6 VX211 36

D7 VX211 22.5 B7 MS1 62 141

D8 MS1 95 90 B8 Vlach 30

D9 MS1 127 114 B9 RX1 111

D10 MS1 72 931.5 B10 MS1 3 10.4

D11 MS1 122 201 B11 MS1 89 18

D12 I13-32 433.5 B12 MS1 72 27

D13 RX1 333 B13 MS1 117 12

D14 MS1 62 17.5 B14 UZ229 1090.5

D15 MS1 48 1599 B15 MS1 128 334.6
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(a) “Neural Net”. (b) “Support Vector Machine”.

(c) “Random Forest”. (d) “AdaBoost”.

(e) “Nearest Neighbors”. (f) “Decision Trees”.

Figure 6.6: A comparison of six classifiers in Scikit-learn on nematode testing
dataset (Project 45, 2020). Table 6.8 showed the details of the test process of the
k-nearest neighbors method.
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Table 6.7: The performance of classification methods (Project 45, 2020).

Classification methods Prediction accuracy

“Neural Network” 0.63

“Support Vector Machine” 0.58

“Random Forest” 0.61

“AdaBoost” 0.63

“Nearest Neighbors” 0.95

“Decision Tree” 0.78

“DNN with TensorFlow” 0.7

Table 6.8: The k-nearest neighbors performance (Project 45, 2020).

Nematode infestation level Precision Recall F1-score

Level 1 0.94 0.89 0.91

Level 2 0.92 1 0.96

Level 3 0.89 0.94 0.92

Level 4 1 0.97 0.98

Accuracy NA NA 0.95

Macro avg 0.94 0.95 0.94

Weighted avg 0.95 0.95 0.95
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Figure 6.7: The test performance of DNN for Project 45, 2020. There were 100
models and the best accuracy could be as high as 0.88 (marked as a red dot). The
lowest accuracy was around 0.4 when the training instances could not represent
the nematode infection levels dataset very well. The mean accuracy was 0.7 for
the DNN classifier model.

generated by the radio frequency proximate sensor could estimate the walnut root

damage caused by nematodes. With the k-nearest neighbors method, the nematode

infection levels could be classified with a high accuracy of 95%. These findings

further emphasized the importance of applying phenotyping analysis by machine

learning algorithms for the early detection of nematode infection levels.

To evaluate the hypothesis that remote sensing is the best approach to monitor-

ing root-knot nematodes in coffee crops, Matins et al. also collected agronomical

parameters from plots of healthy and infected coffee plants, such as leaf area index

(LAI), chlorophyll relative content obtained by soil and plant development ana-

lyzer (SPDA), biomass measurements, and radiometric data [329]. For the spectral

characterization, radiometric data of leaves enabled the identification of the most

sensitive spectral ranges for discrimination of the infected coffee plots. Inspired

by the research work by [329], the author will also collect agronomical parameters

from the study site in the future and will further figure out the correlation between

the radio frequency reflectance and the agronomical parameters, such as LAI and

chlorophyll relative content of the walnut leaves.
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6.4 Conclusions and Future Research

The aim of the present research was for the early detection of nematode in-

fection levels in the walnut root by a non-invasive method. The author collected

the radio frequency reflectance data of walnut leaves by using a proximate sen-

sor. Then, machine learning algorithms were adopted for the nematode infection

levels classification problem. The research results showed that the best classifica-

tion accuracy of nematode infection levels was 95% when the k-nearest neighbors

method was being adopted. The walnut root infection by nematodes could induce

spectral variation in walnut leaves. The results of this research supported the idea

that trees and crops severely infected by nematodes showed a significant reduction

in leaf area similar to the plant response to other environmental stress, such as

drought, nutrient deficiency, salinity, and other biotic stresses. Furthermore, the

findings of this research provided insights for the early detection of nematodes

using phenotyping and machine learning technology.

The study was limited by the lack of information on the biophysical explanation

of what variations of the walnut leaves were responsive or sensitive to the radio

frequency signal under the pressure of nematodes. Despite of its limitations, the

study certainly added an understanding of the effect of nematode infection on

walnut phenotyping analysis. In the future, the precise mechanism of the radio

frequency sensor in the early detection of nematodes remains to be elucidated.

The author will also collect agronomical parameters from the study site and figure

out the correlation between the radio frequency reflectance and the agronomical

parameters, such as LAI and chlorophyll relative content of the walnut leaves. The

author will also perform similar data analysis for Project 30 (a, b) and Project

Smith.



Chapter 7

Evapotranspiration Estimation

with Small UAVs

7.1 Introduction

Evapotranspiration (ET) estimation is important for precision agriculture, es-

pecially precision water management. Mapping the ET temporally and spatially

can identify variations in the field, which is useful for evaluating soil moisture

[348, 349] and assessing crop water status [350]. ET estimation can also benefit

the water resources management and weather forecast [351]. ET is a combination

of two separate processes, evaporation (E) and transpiration (T). Evaporation is

the process whereby liquid water is converted to water vapor through latent heat

exchange [352]. Transpiration is the process of the vaporization of liquid water

contained in plant tissues, and the vapor removal to the atmosphere [352]. The

current theory for transpiration is constituted by the following three steps. First,

the conversion of liquid-phase water to vapor water causes canopy cooling from

latent heat exchange. Thus, canopy temperature can be used as an indicator of

ET. Second, diffusion of water vapor from inside plant stomata on the leaves to the

surrounding atmosphere. Third, atmospheric air mixing by convection or diffusion

transports vapor near the plant surfaces to the upper atmosphere or off-site away

from the plant canopy. Usually, evaporation and transpiration occur simultane-

152
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ously.

Many approaches have been developed to estimate ET. Typically, there are

direct and indirect methods. For direct methods, ET can be determined by water

balance [353]:

ET = P + I −D −R− S, (7.1)

where P (mm day−1) is precipitation, I (mm day−1) is irrigation, D (mm day−1)

is drainage, R (mm day−1) is runoff, and S (mm day−1) is the soil moisture stor-

age. These direct ET methods, however, are usually point-specific or area-weighted

measurements and cannot be extended to a large scale because of the heterogene-

ity of the land surface. The experiment equipment is also costly and requires

substantial expense and effort, such as lysimeters, which are only available for a

small group of researchers. For indirect methods, there are energy balance meth-

ods [354] and remote sensing methods [355]. For energy balance methods, Bowen

ratio [356, 357] and eddy covariance [358] have been widely used in ET estimation.

However, they are also area-weighted measurements. Remote sensing techniques

can detect variations in vegetation and soil conditions over space and time. Thus,

they have been considered as one of the most powerful methods for mapping and

estimating spatial ET over the past decades [359, 360]. Remote sensing models

have been useful in accounting for the spatial variability of ET at regional scales

when using satellite platforms such as Landsat and ASTER [361, 362, 206, 363].

Since the satellite was being applied [364], several remote sensing models have

been developed to estimate ET, such as Surface Energy Balance Algorithm for

Land (SEBAL) [362, 355], Mapping Evapotranspiration with Internalized Cali-

bration (METRIC) [365], the Dual Temperature Difference (DTD) [366], and the

Priestley-Taylor TSEB (TSEB-PT) [198]. Remote sensing techniques can provide

information such as Normalized Difference Vegetation Index (NDVI), Leaf Area

Index (LAI), surface temperature, and surface albedo. Related research on these

parameters has been discussed by different researchers [367, 368, 369].

As a new remote sensing platform, researchers are more and more interested in

the potential of small UAVs in precision agriculture [138, 139, 140, 141], especially
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on heterogenous crops, such as vineyard and orchards [146, 26]. UAVs overcome

some of the remote sensing limitations faced by satellite. For example, satellite

remote sensing is prone to cloud cover; UAVs are below the clouds. Compared

with the satellite, UAVs can be operated at any time if the weather is within

operating limitations. The satellite has a fixed flight path, UAVs are more mobile

and adaptive for site selection. Mounted on the UAVs, lightweight sensors, such as

RGB cameras, multispectral cameras, and thermal infrared cameras, can be used to

collect high-resolution images. The higher temporal and spatial resolution images,

relatively low operational costs, and the nearly real-time image acquisition, make

the UAV an ideal platform for mapping and monitoring ET. Many researchers have

already used UAVs and lightweight sensors for ET estimation, as shown in Table 7.1

and Table 7.2. For example, in [203], Ortega-Faŕıas et al. implemented a remote

sensing energy balance (RSEB) algorithm for estimating energy components in

an olive orchard, such as incoming solar radiation, sensible heat flux, soil heat

flux, and latent heat flux. Optical sensors were mounted on a UAV to provide

high spatial resolution images. By using the UAV platform, experimental results

showed that the RSEB algorithm could estimate latent heat flux and sensible heat

flux with errors of 7% and 5%, respectively. It demonstrated that UAV could be

used as an excellent platform to evaluate the spatial variability of ET in the olive

orchard.

The objective of this chapter is to investigate the advanced analytics for crop

coefficient estimation and reliable tree-level ET estimation methods proposed by

the author. The rest of the chapter is organized as follows: In Section 7.4, the

author proposed to estimate crop coefficient with UAV-based imagery and SCNs

model. Then, the author proposed reliable tree-level ET estimation methods in

Section 7.5. Lastly, the author shares views in ET estimation with UAVs in the

future research and draws conclusive remarks.
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7.2 ET Estimation Methods with UAVs: A Lit-

erature Review

Most ET estimation using UAVs is based on satellite remote sensing methods.

One source energy balance (OSEB), High Resolution Mapping of Evapotranspi-

ration (HRMET) [370], Machine Learning (ML) [371, 372, 373, 374, 375, 376],

Artificial Neural Networks (ANN) [377], Two source energy balance (TSEB), Dual-

Temperature-Difference (DTD) [378], Surface Energy Balance Algorithm for Land

(SEBAL) [362, 355], and Mapping Evapotranspiration at high Resolution with

Internalized Calibration (METRIC) [365] are introduced in this section. The dis-

cussed ET estimation methods with UAVs and their advantages and disadvantages

are summarized in Table 7.3. This chapter is not intended to provide an exhausting

review of all direct or indirect methods that have been developed for ET estimation,

but rather to provide an overview on ET estimation with the UAV applications.

Therefore, only those methods (Table 7.1) which have already been used with the

UAV platform are discussed.

7.2.1 One Source Energy Balance (OSEB)

The one source energy balance (OSEB) model assumes the whole surface as

a uniform layer, which does not differentiate potential sources, such as the soil

and canopy [362, 359]. The OSEB model uses empirical parameters to explain

differences in the aerodynamic and radiometric components [379, 380, 381, 382,

383]. The OSEB model uses the following equation to calculate the latent heat

flux,

LE = Rn −G−H, (7.2)

where LE is the latent heat flux (W m−2), Rn is the net radiation (W m−2), G is

the soil heat flux (W m−2), and H is the sensible heat flux (W m−2). The sensible

heat flux H is calculated by
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Table 7.3: Comparisons of the different ET estimation methods.

Methods
Applications

with UAVs
Advantages Disadvantages

OSEB
Vineyard [199],

grassland [205]

(1) Treat the surface as big leaf

and therefore as a simple uni-

form layer.

(1) Uses empirical parame-

ters to explain differences in

the aerodynamic and radio-

metric components; (2) As-

sumes the whole surface as a

uniform layer, which does not

take advantage of UAV high-

resolution imagery; (3) Less

sensitive to land surface tem-

perature variations than the

TSEB model.

HRMET
Peach, nectarine

[206], and corn

(1) Only requires basic me-

teorological data, spatial sur-

face temperature, and canopy

structure data; (2) Does not

depend on wet and dry refer-

ence features to calculate tur-

bulent fluxes.

(1) Needs more validation

for clumped canopy structure,

such as trees and vines.

ML/ANN Vineyard [377]
(1) Capture non-linear crop

characteristics

(1) Requires large amount of

data for training models and

validation

TSEB

Barley [198],

vineyard

[199, 200, 201, 202],

olive [203],

sorghum and

corn [204], grass-

land [205]

(1) The calculation of sensible

heat flux and latent heat flux

for canopy and soil are sepa-

rate; (2) Parameterization of

resistances is easier compared

with a single layer model

(1) Sensitive to the temper-

ature difference between the

land surface and air; (2) The

measurement of the absolute

land surface temperature is in-

accurate

DTD
Barley [198], corn

and soybean

(1) One more input dataset,

the land surface temperature

retrieved one hour after sun-

rise; (2) Minimizes the bias

in the temperature estimation;

(3) Separates the land sur-

face temperature into vegeta-

tion and soil temperatures

(1) Requires flights at two

times during the morning

hours, thus complicating flight

missions

SEBAL
Corn and soybean

[195]

(1) Requires minimum ground-

based data; (2) Automatic in-

ternal correction

(1) Selecting hot or cold pixels

is subjective, which can cause

variations in ET estimation

METRIC Vineyard [196, 197]

(1) Eliminates the need for ab-

solute surface temperature cal-

ibration; (2) Requires mini-

mum ground-based data; (3)

Automatic internal correction

(1) Selecting hot or cold pixels

is subjective, which can cause

variations in ET estimation
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H = ρCp
Taero − Tac

Rah

, (7.3)

where ρ is the air density (kg m−3), Cp is the specific heat of air (J kg−1 K−1),

Taero is the aerodynamic temperature (K) [384], and Tac is the air temperature (K)

in the vegetation [385, 386, 387]. Rah is the aerodynamic resistance to heat flux (s

m−1), which is calculated by

Rah =
[ln ( zu−d

zom
) − Ψm][ln ( zt−d

zom
) + ln ( zom

zoh
) − Ψh]

k2u
, (7.4)

where zu and zt are the wind and air temperature measurement heights, respec-

tively. The parameter d is the zero displacement height, zom is the momentum

transfer [388, 389], Ψm and Ψh are the diabatic correction factors for momentum

and heat [390], zoh is the resistance to heat, k is the Karman constant, and u is

the wind speed.

The parameter kB−1 is also used in OSEB model to adjust the radiometric

to the aerodynamic temperature. The measured radiometric temperature can be

used in equation (7.3) instead of Taero. The parameter kB−1 is calculated by

kB−1 = ln (
zom
zoh

). (7.5)

There are also some other types of OSEB models. For example, deriving atmo-

sphere turbulent transport useful to dummies using temperature (DATTUTDUT)

[391] is an energy balance model which only needs the land surface temperature

as the input for ET estimation. The DATTUTDUT estimates ET by scaling the

energy fluxes between the hot and cold pixels. The DATTUTDUT model is similar

to the simplified surface energy balance index (S-SEBI) proposed by Roerink [392].

However, the DATTUTDUT model is more simplified to acquire the radiometric

temperature. More details can be found in [391].

7.2.2 High Resolution Mapping of ET (HRMET)

For most current ET models such as METRIC and SEBAL, they are highly

relied on selecting hot and cold pixels to separate energy fluxes between latent and
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sensible heat in the images. Therefore, their ability is limited to map ET through-

out the growing season at extremely high spatial resolutions. Thus, Zipper et al.

developed a field-validated surface energy balance model, which was called High

Resolution Mapping of Evapotranspiration (HRMET) [370]. The HRMET only

requires basic meteorological data, spatial surface temperature, and canopy struc-

ture data. For more detailed calculation steps about the HRMET, please refer to

[370].

7.2.3 Machine Learning (ML) and Artificial Neural Net-

works (ANN)

Machine learning techniques and ANN models have already been used for esti-

mating hydrological parameters [371, 372, 373, 374, 375, 376], ecological variables

[393]. Because of the ML’s ability to capture non-linear characteristics, many

research results suggest that machine learning methods can provide better ET

estimates than empirical equations based on different meteorological parameters

[394, 395, 396, 397, 398, 399, 400, 401]. Traditional multispectral indices have lim-

itations to assess water status. Therefore, artificial neural networks (ANN) were

used in [377] to improve the estimation of spatial variability of vine water status.

In [402], Dou et al. used four different machine learning approaches in different ter-

restrial ecosystems for ET estimation. The ANN, support vector machine (SVM),

extreme learning machine (ELM) [403] and adaptive neuro-fuzzy inference system

(ANFIS) [404, 405, 406, 407, 400, 408] were compared with each other on estimat-

ing ET. In [409], Torres-Rua et al. built a narrowband and broadband emissivities

model for UAV thermal imagery using a deep learning (DL) model. The resulting

emissivities were incorporated into the TSEB model to analyze their effect on the

estimation of instantaneous energy balance components against ground measure-

ments.
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7.2.4 Two Source Energy Balance (TSEB) Models

The TSEB model is developed to improve the accuracy of LE estimation

[369, 366, 385, 410], using the assumptions of canopy transpiration in Priestley

and Taylor potential evapotranspiration [411] calculations. Therefore, this TSEB

model is also called TSEB-PT to differentiate it from other TSEB methods. The

calculation of sensible heat flux and latent heat flux for canopy and soil are sepa-

rate, which makes the parameterization of resistances easier compared with a single

layer model. Based on [412, 413], the TSEB is effective over homogeneous land

and environmental conditions. The TSEB model reproduces fluxes with similar

results to tower-based observations.

The TSEB model separates the land surface temperature into soil surface tem-

perature Ts and vegetation surface temperature Tc. Subscripts “s” and “c” mean

soil and canopy. It considers sensible and latent heat fluxes are transferred to the

atmosphere from both surface temperature components, as shown in the following

equations [199],

Rn = Rns + Rnc, (7.6)

Rns = Hs + LEs + G, (7.7)

Rnc = Hc + LEc. (7.8)

The net radiation Rn is divided into two parts, the soil net radiation Rns and

the canopy net radiation Rnc [414, 415],

Rns = τlLd + (1 − τl)εcσT
4
c − εsσT

4
s + τs(1 − αs)Sd, (7.9)

Rnc = (1 − τl)(Ld + εsσT
4
s − 2εcσT

4
c ) + (1 − τs)(1 − αc)Sd, (7.10)

where τl and τs are the longwave and shortwave radiation transmittances through

the canopy, respectively. Ld and Sd are the incoming longwave and shortwave

radiation (W m−2), which are usually measured from a nearby weather station.

The Stefan-Boltzmann constant is given by σ, which is approximately 5.67×10−8
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(W m−2 K−4). The surface emissivity is denoted by ε, α is the surface albedo, and

T is the surface temperature (K).

For the soil sensible heat flux Hs and canopy sensible heat flux Hc, they can

be calculated based on the following equations,

Hs = ρCp
Ts − Tac

Rs

, (7.11)

Hc = ρCp
Tc − Tac

Rx

, (7.12)

where ρ is the air density (kg m−3), Cp is the specific heat of air (J kg−1 K−1),

Tac is the air temperature in the vegetation [385, 386, 387], Rs is the resistance to

heat flux above the soil surface (s m−1), and Rx is the boundary layer resistance

of the canopy leaves (s m−1).

7.2.5 Dual-Temperature-Difference (DTD) Model

The DTD model separates the land surface temperature into vegetation and

soil temperatures [378]. Then, it calculates the surface energy balance components

by using the same procedures as the TSEB. The TSEB model is very sensitive

to the temperature difference between the land surface and air, which makes the

absolute land surface temperature inaccurate. To solve this problem, the DTD

model added one more input dataset, the land surface temperature retrieved one

hour after sunrise. The energy fluxes are minimal at sunrise, which minimizes the

bias in the temperature estimation. For the soil sensible heat flux Hs and canopy

sensible heat flux Hc, equation (7.11) and (7.12) become

Hs = ρCp
(Tsi − Tso) − (Taci − Taco)

Rs

, (7.13)

Hc = ρCp
(Tci − Tco) − (Taci − Taco)

Rx

, (7.14)

where subscript i means the measurements are at midday and subscript o refers

to observations one hour after the sunrise.

In [416], Guzinski et al. produced surface energy flux successfully by using

the DTD model with satellite images, who used night observations to substitute
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for the early morning observation. However, the temporal resolution of the satel-

lite observations is limited, especially when the weather conditions are limiting.

For example, satellite thermal infrared observations cannot penetrate clouds when

there is a cloud cover. The incapacity to collect data in overcast situations applies

to all satellite sensors except for those operating in the microwaves region [416].

The calculation of soil heat flux G is different between midday and sunrise

observations. This difference can be used to estimate the soil surface temperature

variations. Soil heat flux is calculated based on the model of [417]. The soil heat

flux equation is

G = RnsAcos(2π
(t + 10800)

B
), (7.15)

A = 0.0074∆TR + 0.088, (7.16)

B = 1729∆TR + 65013, (7.17)

where ∆TR is the diurnal variation in the soil surface temperature, and t is the

time between the data collection time and the solar noon. For more details about

the TSEB and DTD equations, see [418, 419].

7.2.6 Surface Energy Balance Algorithm for Land (SE-

BAL)

The Surface Energy Balance Algorithm for Land (SEBAL) model uses surface

temperature Ts, visible, near-infrared, thermal infrared radiation, albedo maps,

and NDVI to estimate surface fluxes with many different land cover types [362, 420].

SEBAL is currently one of the most reliable algorithms to estimate actual ET

(ETa), and it is one of the most promising approaches currently for local and

regional estimation with minimum ground data [354]. SEBAL has been validated

in many different climatic conditions around the world [421, 422, 423, 424, 425].

Typically, the SEBAL’s accuracy is around 85% and 95% at daily and seasonal

scales, respectively [421, 426]. To calculate ET as a residual of the energy balance

model, the sensible heat flux H needs to be estimated first.
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In the SEBAL model, two reference air temperatures are measured to compute

the air temperature difference (dT ). One air temperature is measured at the height

h1 close to the surface. The other is measured at an upper height of h2. To calculate

dT for each pixel, SEBAL assumes that there is a linear relationship between dT

and the surface temperature Ts as

dT = a + bTs, (7.18)

where a and b are derived parameters empirically based on two extreme hot and

cold pixels, also called “anchor” pixels [420]. These hot and cold pixels defined

the boundary of the sensible heat flux. The cold pixel is usually selected from a

well-watered area with no water stress. The H is assumed to be minimum, and

ET should be maximum. The hot pixel is taken from a dry and bare field where

H is maximum, and ET is almost zero. Hot and cold pixels are usually selected

by an empirical method.

Most SEBAL applications for estimating energy fluxes and ET have used space-

borne platforms with a relatively low spatial resolution. There is not much-

published work related to the use of the SEBAL model to estimate ET using

UAVs. Selecting hot or cold pixels is subjective, which can cause variations in

ET estimation. Estimated sensible heat flux H is easily affected by the surface-air

temperature differences or surface temperatures measurements. The radiometer’s

viewing angle can also cause variations in Ts by several degrees for some images.

Although SEBAL has limitations, there are also several advantages of SEBAL

for estimating land surface fluxes from thermal remote sensing data. First, SEBAL

does not need a lot of ground-based data. Second, SEBAL has an automatic

internal correction. Third, every image has an internal calibration in SEBAL.

7.2.7 Mapping Evapotranspiration at High Resolution with

Internalized Calibration (METRIC)

METRIC is originally a satellite image processing model for estimating ET as

a residual of the energy balance [365], which is based on SEBAL. The METRIC
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can generate ET maps with a 30-meter spatial resolution by using Landsat im-

ages. METRIC has a self-calibration process which contains ground-based hourly

reference ET and the selection of hot, cold pixels [427]. It eliminates the need for

absolute surface temperature calibration [355].

SEBAL uses Ts, ρ, NDVI and their relationships to calculate the surface fluxes

[362], which has been evaluated all over the world [421, 422, 423, 425, 424]. The

METRIC model uses the same method with the SEBAL to estimate dT . Thus,

there is no need to get an accurate aerodynamic surface temperature. In [354], Liou

et al. summarized three differences between the SEBAL and METRIC. First, for

the cold pixel, the METRIC does not consider sensible heat flux as zero. Instead,

a surface soil water balance is applied to set ET as 1.05 times reference ET at cold

pixels. Reference ET is calculated by using the standardized American Society of

Civil Engineers (ASCE) Penman-Monteith equation. Second, in METRIC, cold

pixels are selected in agricultural settings instead of biophysical characteristics.

Third, the extrapolation of instantaneous ET is based on reference ET instead of

the actual evaporative fraction.

METRIC estimates ET using the energy balance equation (7.2). For the net

radiation Rn (W m−2), it can be calculated by adding all the incoming radiation

and subtracting all the outgoing radiation based on the following equation [365],

Rn = (1 − α)Rs↓ + RL↓ −RL↑ − (1 − εo)RL↓, (7.19)

where Rs↓ is the incoming short-wave radiation (W m−2), α is the surface albedo,

RL↓ and RL↑ are the incoming longwave radiation (W m−2) and outgoing long-

wave radiation (W m−2), respectively. εo is the thermal emissivity, which is also

dimensionless. These parameters can be calculated in METRIC with several sub-

models that use other parameters derived from the ground-based weather data,

digital elevation model (DEM), and satellite images [365].

Sensible heat flux H (W m−2) is computed from surface roughness, wind speed,

surface temperature ranges,

H = ρairCp
dT

rah
, (7.20)
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where rah is the aerodynamic resistance (s m−1) between two surface height. In

METRIC, rah is usually calculated by using the wind speed, LAI or NDVI, and an

iterative stability correction, as shown in the following equation,

rah =
ln (z2/z1)

u∗k
, (7.21)

where z1 and z2 are heights above the zero-plane displacement of the vegetation.

k is the von Karman constant (0.41). u∗ is the friction velocity (m s−1), which is

calculated by using

u∗ =
ku200

ln (200/zom)
, (7.22)

where u200 is the wind speed at a blending height 200m, and zom is the momentum

roughness length (m).

The temperature difference between the air and the surface is represented by

dT . A strong linear relationship between the dT and the surface temperature were

found in [365, 362, 426, 428], as shown in equation (7.18). The sensible heat fluxes

for the cold and hot pixels are calculated by equation (7.2). According to [429],

for the cold pixel, the ratio LE and ETr is assumed to be 1.05. However, this

assumption is not always true at the beginning or outside of the growing season

when the vegetation is much less than the alfalfa [364]. Therefore, the ratio of

the LE and ETr for the cold and hot pixels are calculated by NDVI [365]. Then,

the dT and land surface temperature Ts for the cold and hot pixels are applied for

calculating the a and b in equation (7.18) as

a =
dThot − dTcold

Tshot − Tscold

, (7.23)

b =
dThot − a

Tshot

, (7.24)

where Tshot and Tscold are the land surface temperature (K) at the hot and cold

pixels, respectively.
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Table 7.4: Comparisons of the different ET estimation methods with UAVs.

Methods
Applications

with UAVs
Accuracy of Rn Accuracy of G Accuracy of LE Accuracy of H

OSEB
TSEB

Grassland

[205]

R2 of 0.98
R2 of 0.99

R2 of 0.73
R2 of 0.83

R2 of 0.92
R2 of 0.93

R2 of 0.79
R2 of 0.84

TSEB
DTD Barley [198]

RMSE of 44 W m−2

RMSE of 44 W m−2
RSME of 38 W m−2

RSME of 48 W m−2
RMSE of 94 W m−2

RSME of 67 W m−2
RMSE of 85 W m−2

RSME of 59 W m−2

TSEB
DATTUTDUT

Vineyard

[199]

RMSE of 33 W m−2

RMSE of 66 W m−2
RSME of 33 W m−2

RSME of 40 W m−2
RMSE of 87 W m−2

RSME of 150 W m−2
RMSE of 42 W m−2

RSME of 68 W m−2

TSEB Olive [203] RMSE of 38 W m−2 RMSE of 19 W m−2 RMSE of 50 W m−2 RMSE of 56 W m−2

SEBAL
Corn, soy-

bean [195]
R2 of 0.71 R2 of 0.17 and 0.22 R2 of 0.82 R2 of 0.5

7.3 Existing ET Estimation Methods with UAVs:

Results and Discussion

Compared with traditional satellite remote sensing approaches, the UAVs plat-

form and the lightweight cameras can estimate the surface energy fluxes with sim-

ilar accuracy. Therefore, the UAVs can be used for modeling ET estimation with

high confidence. In this section, different crops ET estimation with UAV platforms

(Table 7.4) are compared with each other. The reasons behind the errors of ET

estimation are also discussed in related sections.

7.3.1 OSEB and TSEB Models

In [205], Brenner et al. compared the OSEB model with the TSEB model

by using an octocopter MikroKopter OktoXL (HiSystems GmbH, Moormerland,

Germany). This UAV platform could carry a payload of 4 kg for each flight mission.

An ES80 camera ( Samsung, Seoul, South Korea) and an Optris Pi 400 thermal

camera were mounted on the UAV to collect images. According to the specification,

Pi 400 had an accuracy of ± 2 ◦C. The thermal image resolution was 382 × 288

pixels with a field of view 38◦ × 29◦. Approximately 700 to 1000 thermal images

were collected for every flight mission. The eddy covariance system was used to

evaluate the UAV ET estimation.

Based on the comparison between UAV fluxes and eddy covariance (EC) fluxes,
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the net radiation Rn for TSEB was in good agreement with Rn measured from EC

with an R-squared value (R2) of 0.99. The R2 value for OSEB was 0.98. The

sensible heat flux (H) for TSEB had a R2 value of 0.84, and the OSEB had a R2

value of 0.79. For the soil heat flux G, the R2 value for OSEB was 0.73. The

TSEB had a R2 value of 0.83. Both models underestimated the ground heat flux

compared with the eddy covariance system. For the latent heat flux LE, OSEB

had a R2 value of 0.92. The TSEB had a R2 value of 0.93.

Remark: The results showed that the OSEB model significantly underesti-

mated measured values for flux conditions. The poor performance of the OSEB

model mainly resulted from an underestimation of high fluxes. Different from the

TSEB model, the OSEB model needs an empirical adjustment parameter kB−1 to

explain the difference between the radiometric and aerodynamic surface tempera-

ture. The parameter kB−1 is usually overestimated in case of strong temperature

gradients between the surface and the atmosphere [205].

7.3.2 HARMET Model

In [206], Park et al. used the HARMET model when flying a DJI S1000 UAV. A

thermal infrared camera A65 and a multispectral camera Rededge M were mounted

on the UAV to collect thermal and multispectral images. The thermal camera

image resolution was 640 × 512 pixels with a field of view of 25◦ × 20◦. The

Rededge had a spatial resolution of 1280 × 960 pixels. The UAV was flown at

solar noon for capturing the period of high ET and for minimizing tree canopy

shadows.

The energy fluxes were estimated in the HRMET model. For the reference

trees, the estimated ET was around 0.62 mm h−1. The study site was small and

the UAV flight time was less than 15 minutes; thus, the meteorological data, such

as incoming shortwave radiation, wind speed, and vapor pressure, were considered

to be consistent during the UAV flight mission. The different ET rates along the

trees were mainly decided by the differences in tree canopy temperature and LAI.

The estimated ET had a strong linear relationship with leaf transpiration (R2 =

0.9).
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Remark: Although it was challenging to evaluate the results because of the

absence of sufficient data such as the directly measured ET or multi-seasonal UAV

data, the HARMET model still showed a great potential to estimate tree-by-tree

ET and capturing intra-field variability.

7.3.3 Machine Learning and Neural Networks

In [377], Poblete et al. used the ANN and multispectral images from a UAV

platform to predict vine water status. A multispectral camera MCA-6 (Tetracam

Inc, Chatsworth, CA, USA) was mounted on an octocopter Mikrokopter OktoXL

for data collection. The data were grouped into training and validation, where 80%

was used for the ANN model calibration, and 20% was used to validate the model.

Although this research was not exactly for ET estimation, it proved that Neural

Networks, such as ANN, had a great potential for ET estimation when combing

with high-resolution multispectral UAV images.

In [402], four machine learning methods, ANN, SVM, ELM, and ANFIS, were

used to estimate ET. Results showed that all four models could detect the vari-

ations of ET. The reason is that ML algorithms can identify complex non-linear

relationships between ET and environmental variables. As a new model, the ELM

exhibits strong modeling accuracy for daily ET estimation. The ANFIS can esti-

mate ET more efficiently than the ANN and SVM. More importantly, these new

machine learning approaches show a novel perspective for ET estimation with re-

mote sensing data. Therefore, UAV platforms should be used with ML algorithms

together, which will have great potential for ET estimation in the future.

7.3.4 TSEB and DTD Models

The UAVs can help generate more accurate maps of NDVI, LAI, fc(θ), and

TR(θ), which are the critical input data for the TSEB and DTD models [430]. In

[198], Hoffmann et al. used the TSEB model and the DTD model when flying

a Q300, which has a 2.2 meters wingspan and can carry a payload of 2 kg for a

25-minute flight. An Optris PI 450 camera was mounted on the UAV to collect
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thermal images. Hoffmann et al. concatenated the LST thermal images into the

orthomosaic, which were applied as the input for TSEB model [198]. According

to the specifications, the thermal camera has an accuracy of ± 2 ◦C or ± 2% at

an ambient temperature of 23 ± 5 ◦C. The thermal image resolution is 382 × 288

pixels at 90m flying height. Around 700 to 1000 thermal images were collected for

every flight mission. The eddy covariance system was used to compare with the

UAV results.

Based on the comparison between UAV fluxes and eddy covariance (EC) fluxes,

the net radiation Rn for TSEB was in good agreement with Rn measured from

EC with a root mean square error (RMSE) of 44 W m−2 (11%), the correlation

coefficient was 0.98. The sensible heat flux (H) for DTD has RMSE of 59 W m−2

(64%), and the mean absolute error (MAE) value was 49 W m−2 (52%). Compared

with DTD, the TSEB model had a RMSE of 85 W m−2 (91%) and the MAE was

75 W m−2 (81%). The TSEB had a better linear relationship between measured

sensible heat flux H and modeled H. The soil heat fluxes (G) were underestimated,

which had RMSE and MAE of 48 W m−2 (91%) and 45 W m−2 (86%) for DTD,

respectively. The RSME and MAE for TSEB were 38 W m−2 (72%) and 35 W

m−2 (66%), respectively. The correlation between the modeled G and measured

G was very poor. Soil heat flux G was measured with the heat flux plates, which

could lead to uncertainties in measured G [431]. For the latent heat flux LE, DTD

had RMSE and MAE of 67 W m−2 (26%) and 57 W m−2 (22%), respectively. The

TSEB had RMSE and MAE values of 94 W m−2 (37%) and 84 W m−2 (33%),

respectively.

Remark: The results showed that the DTD model predicted the energy fluxes

better than TSEB, which demonstrated that adding another input, the land surface

temperature retrieved one hour after sunrise, made the DTD model more robust.

It concluded that the thermal camera placed on a UAV platform could provide

high spatial and temporal resolution data for estimating energy balance fluxes

of ET. Calibration of the thermal camera was also likely to improve TSEB heat

flux computations. This study showed similar results with Guzinski’s work [418],

who applied the TSEB at the same site but using satellite images instead of UAV
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images. In [418], the RMSE was 46 W m−2 for Rn, 56 W m−2 for H, and 66 W

m−2 for LE. The DTD model in [198] achieved RMSE of 44 W m−2 for Rn, 59 W

m−2 for H and 67 W m−2 for LE.

7.3.5 TSEB and DATTUTDUT Models

Xia et al. used the TSEB model and DATTUTDUT model for a sub-field and

plant canopy scale ET monitoring over vineyards [199]. Based on the results, the

TSEB model estimated sensible heat flux and latent heat flux with the RMSE

ranging from 20 to 60 W m−2. DATTUTDUT estimated heat fluxes with a larger

error, the RMSE for latent heat flux LE was 105 W m−2. The net radiation Rn

had an RMSE of 65 W m−2. It concluded that the TSEB model could simulate

the energy balance components in two vineyards with MAE ranging from 15 to

90 W m−2. They found that the TSEB model was fairly robust and was able to

calculate LE and ET values under varying environmental conditions. By using the

TSEB, the Ts and Tc had a bias of 0.5 ◦C and RMSE on the order of 2.5 ◦C. The

accuracy was similar with [432, 410, 385, 386], in which the RMSE values were

between 2.4 to 5.0 ◦C for Ts and 0.83 to 6.4 ◦C for Tc.

Remark: In general, the TSEB has a better performance than the DATTUT-

DUT model. The reason might be that the TSEB has a better physical representa-

tion of the energy exchange. The DATTUTDUT, as a single-source model, is more

sensitive when the surface temperature pixels are selected [433, 434]. The actual

extremes may not even exist in the thermal images. Besides, the effect of aerody-

namic resistance (surface roughness) is also not considered in the DATTUTDUT

model.

Ortega et al. [203] used the TSEB model to estimate the energy balance fluxes

over a drip-irrigated olive orchard by using a helicopter-based UAV platform. The

UAV flight height was at 60 m, which enabled the thermal camera’s image at 6

cm spatial resolution. For the multispectral camera Mini MCA-6, the resolution

was 3.3 cm. The remote sensing energy balance (RSEB) algorithm was well imple-

mented, and only the climatic parameters, such as air temperature Ta, wind speed

u were measured as the input data. The UAV images were used for calculating
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the NDVI and soil temperature Ts. Ortega et al. used the Bowen ratio approach

to balance (Rn −G) and (H + LE) to close the energy balance.

For the net radiation Rn, the RMSE and MAE were 38 W m−2 and 33 W m−2,

respectively. For the estimated soil heat flux G by TSEB, the RMSE and MAE

were 19 W m−2 and 16 W m−2, respectively. Results showed that the algorithm

estimated LE and H with errors of 7% and 5%, respectively. The RMSE and

MAE for the sensible heat flux H were 56 W m−2 and 46 W m−2, respectively.

The RMSE and MAE for latent heat flux LE were 50 W m−2 and 43 W m−2,

respectively. It showed that the largest differences for H and LE were found when

the wind speed was greater than 2.7 m s−1.

Remark: The results indicated that the UAV could be an excellent tool to

evaluate the effects of spatial variability for ET estimation. The high spatial

resolution images were able to show significant differences between the energy

balance fluxes above the tree canopy and the soil surface. It concluded that the

TSEB model was fairly robust and could estimate ET at a sub-field scale level under

different environmental conditions. The UAV can also help the satellite platforms

for estimating intra-field spatial variability of the energy fluxes to improve the

estimation of water requirements of sparse canopies, for example, orchards and

vineyards, which have different plant densities and fractional covers.

7.3.6 The SEBAL Model

In [195], Montibeller et al. used the SEBAL model to estimate energy fluxes

and ET of corn and soybean in Ames, Iowa. The UAV being used was the eBee Ag

(SenseFly, Cheseaux-sur-Lausanne, Switzerland), which weighed about 700 grams

and could cover a 12 km2 area in one flight. A modified S110 camera (Canon

Inc, Ota City, Tokyo, Japan), the Sequoia multispectral sensor (MicaSense, Seat-

tle, WA, USA), and the thermoMAP camera (SenseFly, Cheseaux-sur-Lausanne,

Switzerland) were equipped with the UAV to collect data for running the SEBAL

model. The thermal and multispectral images are the most important data for this

project. UAV images were collected from different growing stages of the crops, such

as flowering, yield formation, and the ripening. The seasonal variability of ET and
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energy fluxes were also considered. The surface albedo and surface reflectance were

measured by a spectroradiometer.

To evaluate the accuracy of estimated energy fluxes, [195] used linear regres-

sion models and residual plots methods. All pixels in the energy flux images were

averaged to compare with the observed values measured from the flux towers. The

R2 for the net radiation Rn predicted by SEBAL was 0.71, which was underesti-

mated by about 17% compared with the flux towers. Underestimation was most

likely caused by clouds at the time when UAV was flying. The net radiation Rn

ranged from 427.24 W m−2 to 688.76 W m−2 during the UAV flight missions, with

a RMSE of 6.09 W m−2.

Estimating soil heat flux G was the most challenging part. The estimated soil

heat flux was compared with two soil heat plates in the test field. For the soil

heat flux G, the R2 for the plate 1 was 0.17, with the RMSE of 11.23 W m−2.

The R2 for the plate 2 was 0.22, with the RMSE of 31.02 W m−2. Both showed

a poor correlation. There were mainly two reasons behind it. First, the accuracy

of the soil heat flux plates was very low. The grown canopy could cover the soil

surface, which gave errors for soil heat flux estimations. The soil heat flux plates

could detect the heat rate flow difference when the canopy was developing during

the growing season. Second, the flux plates depth and the soil types also affected

the heat flux estimation [431]. The soil heat flux G ranged from 14.57 W m−2

to 119.76 W m−2 for the whole growing season, which was not a good estimation.

Several factors could affect the soil heat flux values, such as the quality of the UAV

images, the spatial distribution of surface albedo. The SEBAL model estimates

G as the function of surface albedo, vegetation index, and surface temperature,

which depended on the empirical equation developed by [420]. This equation

was originally developed for the Mediterranean regions; thus, different climatic

conditions may have different results.

For the sensible heat flux, it requires an internal calibration method. The

challenge is how to select hot and cold pixels appropriately. To solve this challenge,

Montibeller et al. [195] created a water body for the cold pixel selection by placing

an evaporative pan. The evaporative pan, however, differed from a natural water
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body, which affected the calculation of net radiation Rn and soil heat flux G.

Therefore, the anchor pixels were usually selected from the coldest pixels in the

UAV images. The R2 for the sensible heat flux H was 0.5, with the RMSE of 8.84

W m−2. The estimated value by SEBAL overestimated the sensible heat flux by

5%. The sensible heat flux within the field was around 91.84 W m−2 during the

growing season.

The R2 of the latent heat flux LE was 0.82, with an RMSE of 2.67 W m−2.

The research result showed that the LE varied as the crop growed. The ET rate

was also relevant to the crop growth stage. Corn, for example, had higher ET rates

up until the tassel appeared. The maximum mean for LE was 564.90 W m−2, and

the minimum mean was 256.22 W m−2.

The relationship between NDVI and ET was also evaluated by the author while

using the SEBAL. It assumed that there was a linear relationship between NDVI

and ET. However, the correlation between the NDVI and ET was very poor; the

R2 was around 0.01. One of the reasons was that soil wetting might affect NDVI

prediction [361]. Further study needs to be explored.

Remark: Overall, the research proves that the SEBAL model can be used

for estimating ET with UAVs. The MAE and RMSE values show that SEBAL

can estimate ET with the UAV images very well. UAVs platform also has great

potential to help farmers making decisions with real-time crop conditions in the

near future, which can monitor the water consumption of each crop in the field.

The SEBAL algorithms being used by [195] were automated by reprogramming

the model with Python, which improved the data processing for ET estimation.

7.3.7 METRIC and METRIC-HR Models

The METRIC is discussed here because of its potential in UAV applications.

For satellite images, monthly images can be effective for estimating seasonal ET

[365] by the METRIC model. However, during times of rapid vegetative growth,

multiple dates of satellite images may be needed, which is usually not available

because of limitations on the satellite revisit cycles. UAVs have a more flexible

flight schedule. Since METRIC is designed to use satellite images as inputs, several
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adjustments are usually needed for the high-resolution UAV input data [195].

In [196], a modified METRIC model called METRIC High Resolution (METRIC-

HR) was proposed to use the UAV high-resolution images. There are several

differences between the METRIC and METRIC-HR. First, the digital elevation

model (DEM) has a higher image resolution in METRIC-HR. Manal et al. re-

placed the original DEM with a 15 cm resolution DEM, which was generated by

using the Photoscan (Agisoft, St.Petersburg, Russia). Second, the National Land

Cover Database (NLCD) was also replaced by a 15 cm NLCD in METRIC-HR,

which could be used to develop NLCD high-resolution maps. Third, METRIC

used shortwave infrared (SWIR) bands generated by Landsat 8. SWIR is usually

used for calculating the normalized difference water index. SWIR value is usually

less than zero for water, which can help identify water more accurately than NDVI.

In METRIC-HR, SWIR was neglected because there was no water in the study

site. The thermal band (TIR) resampling of METRIC-HR is also different from

the METRIC model. The thermal band resolution being used in METRIC-HR is

acquired by AggieAir, which has a 60 cm resolution. Since METRIC requires all

bands to have identical resolutions, TIR resampling is necessary. Nearest Neighbor

Resampling was performed in ArcGIS software, which did not change the original

pixel values [435, 436]. The shortwave radiance images (BGR) also have higher

reflectance than Landsat 8 images. Therefore, upscaling BGR with Landsat 8 PSF

and developing correction equations are necessary for the METRIC-HR model.

As mentioned earlier in the METRIC model section, selecting hot and cold

pixels as anchor pixels can be subjective and requires experience. Different hot

and cold pixels can lead to significant deviations in the final ET estimation [437].

METRIC recommends selecting cold pixels in a homogenous, well-watered place

where the range of NDVI is from 0.76 to 0.84. The surface albedo range is from

0.18 to 0.24. Hot pixels are selected in a homogeneous bare, dry soil location

with NDVI less than 0.2. The surface albedo for hot pixels is recommended to

be from 0.17 to 0.23. More information about anchor pixels selection can be

found in [365, 438]. After METRIC and METRIC-HR models were run, the final

output was the instantaneous ETrF (fraction of the alfalfa-based reference ET).



176

For the METRIC-HR results, the ETrF values ranged from 0 to 1.15. Lower

values represented hotter areas, such as bare soil. Higher values meant wet areas.

Compared with METRIC, METRIC-HR had a higher ETrF estimated; this could

be caused by the presence of pixels of multiple vegetation growth with significant

differences in some covers. The maximum difference was around 20%.

Remark: The results showed the values estimated between METRIC and

METRIC-HR had a 0.9 coefficient of correlation. This proves that METRIC-

HR has a similar performance with METRIC. Higher resolution images in the

METRIC-HR model has a better performance in mixed areas. This work demon-

strates that UAVs equipped with lightweight cameras can estimate ET quantita-

tively. However, cameras need further calibration to relate spectral response to

METRIC-HR models.

7.4 Estimating Actual Crop Evapotranspiration

Using the Stochastic Configuration Networks

and UAV-based Crop Coefficients

7.4.1 Introduction

Estimating evapotranspiration (ET ) by crop coefficient (Kc) is one of the most

commonly used methods for water irrigation management. The crop evapotran-

spiration (ETc) is determined by the Kc approach whereby the effect of the various

weather conditions are incorporated into reference ET (ETo) and the crop charac-

teristics into the Kc [352]:

ETc = Kc × ETo. (7.25)

The Kc curve is the crop coefficient distribution during a growing season. At

the beginning of the growing season, the value of Kc increases from a minimum

value. When the canopy cover is full, the Kc reaches a maximum around the

mid-season. Then, the Kc starts decreasing before the end of the growing season.

The normalized difference vegetation index (NDVI) has been commonly used

for vegetation monitoring, such as water stress detection [192, 232], crop yield
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assessment [224], and ET estimation [142, 28]. The NDVI is calculated by

NDV I =
ρNIR − ρR
ρNIR + ρR

, (7.26)

where ρNIR and ρR are the reflectance of near-infrared and red wavebands, respec-

tively. NDVI is a standardized method to measure healthy vegetation. When the

NDVI is high, it indicates the vegetation has a higher level of photosynthesis.

Many studies have used satellite-derived NDVI to estimate crop coefficient

values [244, 245, 246]. For example, Trout et al. [247] and Zhang et al. [248]

applied a remote sensing method using NDVI to estimate canopy ground cover

as a basis for generating Kc. Kamble et al. [244] used a simple linear regression

model to establish a relationship between NDVI and Kc. Satellite imagery can

provide spatially distributed measurements, though, they cannot acquire useful

spatio-temporal resolution images for precision agriculture applications [249]. The

timing of satellite overpass is not always synchronous with research requirements,

either.

As a new remote sensing platform, the UAVs have been commonly used in agri-

cultural applications, such as crop yield estimation [224], irrigation managements

[24, 27], water stress estimation [146], and pest management [225, 250]. Compared

with the satellite, the flight of UAVs can be more flexible and frequent in the field.

The UAVs fly at a lower altitude and take higher resolution imagery of crops [190].

The UAVs also make data acquisition relatively less expensive.

The objective of this study was to investigate the approaches of estimating Kc

using UAV-based NDVI for an experimental pomegranate orchard. The pomegranate

is widely grown all over the world, which has drought resistance and high economic

value. There are approximately 11,000 ha of pomegranate in the semi-arid and arid

areas of California [248]. The spatial and temporal variability of Kc and NDVI

are analyzed by using the Stochastic Configuration Networks (SCNs). A regres-

sion model is established between the NDVI and Kc. The performance of the new

regression model was evaluated by the data collected by the UAVs.
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Figure 7.1: Pomegranate test site. The pomegranate was planted in 2010 with a
5 m spacing between rows and 2.75 m within-row tree spacing in a 1.3 ha field.
There were two large weighing lysimeters, which were 2 m × 4 m by 3 m deep.
The lysimeters had a resolution of 0.1 mm of water loss, which were located in the
center of the field, marked in red boxes.

7.4.2 Material and Methods

Pomegranate Study Area

As shown in the Fig. 7.1, this study was conducted in an experimental pomegranate

orchard at the USDA-ARS, San Joaquin Valley Agricultural Sciences Center (36.594◦N,

119.512◦W), Parlier, California, 93648, USA. The pomegranate was planted in 2010

with a 5 m spacing between rows and 2.75 m within-row tree spacing in a 1.3 ha

field. There were two large weighing lysimeters [248], which were 2 m × 4 m by

3 m deep. The lysimeters had a resolution of 0.1 mm of water loss, which were

located in the center of the field, marked in red boxes in Fig. 7.1.

The UAV Platform and Multispectral Camera

In this study, the author used a quadcopter, called “Hover”, as the UAV plat-

form. The “Hover” was controlled by a Pixhawk flight controller, which could
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fly over the pomegranate field by waypoints mode for 30 minutes. Multispectral

imagery was collected by the Rededge M camera (MicaSense, Seattle, WA, USA).

The Rededge M has five bands, which are Blue, Green, Red, Near-infrared, and

Red edge. It has a spectral resolution of 1280 × 960 pixel, with a 46◦ field of view.

(See more details of the UAV and sensor in Chapter 3)

UAV Image Collection and Preprocessing

Flight missions were programmed by using the Mission Planner. The flight

height was set up as 60 m. The overlapping of UAV images was set up as 80%,

so that the UAV imagery of the pomegranate could be stitched together during

image processing. The image of a calibrated reflectance panel (CRP) was taken

before and after the flight missions, servicing as the reflectance reference.

The author flew the UAV bi-weekly over the pomegranate field at noon during

the growing season in 2019. The successful data collections were shown in Table 7.5.

After the flight missions, all of the aerial images were stitched together to generate

the orthomosaick images in PhotoScan (Agisoft LLC, Russian).

Deep Stochastic Configuration Networks (DeepSCNs)

The Deep Stochastic Configuration Networks (DeepSCNs) was first proposed

by Wang et al. in 2017 [169]. Compared with the known randomized learning

algorithms for single hidden layer feed-forward neural networks, the DeepSCNs

randomly assign the input weights and biases of the hidden nodes in the light

of a supervisory mechanism. The output weights are analytically evaluated in a

constructive or selective method. DeepSCNs have better performance than other

randomized neural networks in terms of the fast learning, scope of the random

parameters, and the required human intervention. Therefore, it has already been

used in many data processing projects, such as [173, 176].

The simple linear regression model could only plot the best fit line which showed

that the model was not a good fit for the data because the data had a non-linear

pattern. Therefore, in this study, the DeepSCNs were used to derive a better

regression model than the simple linear regression model.
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Table 7.5: The UAV flight schedule. The flight height was set up as 60 m. The
overlapping of UAV images was set up as 80%, so that the UAV imagery of the
pomegranate could be stitched together during image processing. The author flew
the UAV bi-weekly over the pomegranate field at noon during the growing season
in 2019.

Dates Flight time Flight height

May 8th, 2019 12 - 1 pm 60 m,

Jun 5th, 2019 12 - 1 pm 60 m,

Jul 25th, 2019 12 - 1 pm 60 m,

Aug 7th, 2019 12 - 1 pm 60 m,

Aug 29th, 2019 12 - 1 pm 60 m,

Sep 19th, 2019 12 - 1 pm 60 m,

Oct 3rd, 2019 12 - 1 pm 60 m,

Oct 29th, 2019 12 - 1 pm 60 m.

7.4.3 Results and Discussion

Seasonal Kc and NDV I

The values of Kc and NDVI were shown in Fig. 7.2. The values of Kc were

derived using equation (7.25). The ETc was recorded by the weighing lysimeter

in the center of the pomegranate field. The ETo was calculated by the California

Irrigation Management Information System (CIMIS) near the pomegranate field.

The NDVI was derived by image processing tools in MATLAB.

A strong correlation was shown between the Kc and NDVI during the growing

season in 2019. The maximum values of Kc and NDVI were 1.0069 and 0.8429

on July 25th (DOY 206), respectively. The high values of Kc and NDVI showed

that the trees in the lysimeter were in a well-irrigated condition. The Kc increased

fast at the beginning of the growing season. After the peak of the mid-season,

Kc started decreasing. Both Kc and NDVI had very low values on October 29th

(DOY 302). The reason was that most leaves fell off the pomegranate trees after

the harvest. Therefore, the data of DOY 302 was not used for the data analysis.
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Figure 7.2: Seasonal Kc and NDVI at the pomegranate field in 2019. The values
of Kc were derived using equation (7.25). The ETc was recorded by the weighing
lysimeter in the center of the pomegranate field. The ETo was calculated by the
CIMIS near the pomegranate field. The NDVI was derived by image processing
tools in MATLAB.
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Figure 7.3: Linear regression model for Kc and NDVI. A strong correlation was
shown between the Kc and NDVI during the growing season in 2019.

Regression Models for Kc and NDVI

As shown in Fig. 7.3, there was a strong correlation between the Kc and NDVI.

A simple linear regression model was built using the NDVI values derived from the

UAV imagery and the Kc from field measurement,

Kc(NDV I) = 4.6666NDV I − 2.9277, (7.27)

where 4.6666 and -2.9277 were the slope and intercept coefficients, respectively.

The correlation coefficient (R2) was 0.975. The root mean square error (RMSE)

was 0.05.

With the development of machine learning technology, many neural networks

have been applied for agricultural applications [23, 26]. Since the dataset of Kc and

NDVI was not large, in this study, DeepSCNs was used for building the regression

model between Kc and NDVI. Four out of seven days of data were used for training

the DeepSCNs regression model. All the data points were fitted very well in the
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Figure 7.4: DeepSCNs training model. Since the dataset of Kc and NDVI was not
large, in this study, DeepSCNs was used for building the regression model between
Kc and NDVI. Four out of seven days of data were used for training the DeepSCNs
regression model. All the data points were fitted very well in the trained model.

trained model, as shown in Fig. 7.4. The weights and bias were shown in Table 7.6.

The parameter L meant that there were four hidden nodes of the trained DeepSCNs

model. For the other parameters in the DeepSCNs model, please refer to [169].

Three days of data were used to evaluate the trained model, as shown in Fig. 7.5.

The value of R2 was 0.995. The value of RMSE was 0.046. Both showed good

performance for estimating Kc by using NDVI. The variations of Kc were well

explained by using the NDVI from UAV images. The trained model was used to

generate the Kc. For example, the spatial mapping of NDVI and Kc on September

19th were shown in Fig. 7.6. The spatial mapping of ET on September 19th was

shown in Fig. 7.7.
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Table 7.6: DeepSCNs with properties. For example, the maximum times of random
configuration Tmax was set as 100. The scale factor Lambdas in the activation
function, which directly determined the range for the random parameters, was
examined by performing different settings (0.5 - 200). The tolerance was set as
0.001.

Properties Values

Name: “Stochastic Configuration Networks”

version: “1.0 beta”

L: 4

W: [0.4924 -0.4987 -4.3543 9.2007]

b: [-0.4650 -0.4197 -4.7048 -9.2846]

Beta: [4 x 1 double]

r: [0.9000 0.9900 0.9990 0.9999 1.0000 1.0000]

tol: 1.0000e-03

Lambdas: [0.5000 1 5 10 30 50 100 150 200 250]

Lmax: 250

Tmax: 100

nB: 1

verbose: 50

COST: 5.5250e-13
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Figure 7.5: The SCNs model evaluation performance. Three days of data were
used to evaluate the trained model. The value of R2 was 0.995. The value of
RMSE was 0.046. Both of them showed good performance for estimating Kc by
using NDVI. The variations of Kc were well explained by using the NDVI from
UAV images.
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Figure 7.6: NDVI (top) and Kc (bottom) maps of the pomegranate using UAVs.
(Sept. 19th, 2019)
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Figure 7.7: Spatial and tree-by-tree view of ET distribution.

7.4.4 Conclusions

In this study, UAV flight missions were conducted to collect remote sensing

multispectral images in a pomegranate orchard at USDA. Using the NDVI derived

from the multispectral imagery, the author could apply DeepSCNs for a regres-

sion model between NDVI and Kc. The parameters of the DeepSCNs model was

shown in Table 7.6. The Kc represents the actual growth conditions in the field.

Therefore, Kc can be used for estimating the ET temporally and spatially in the

pomegranate field.

The simple linear regression model was Kc(NDV I) = 4.6666NDV I − 2.9277.

Compared with the simple linear regression model, the DeepSCNs model could

better fit the data points in the training dataset. The simple linear regression

model had R2 and RMSE of 0.975 and 0.05, respectively. The DeepSCNs regression

model had R2 and RMSE of 0.995 and 0.046. The DeepSCNs showed a better

performance than the linear regression model.

Although only the data of 2019 was used for analysis, the study had provided

evidence that variations of NDVI from UAV imagery could be used to explain the
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variations of Kc. In the future, the data of 2017 and 2018 will be added to train

a more robust DeepSCNs model.

7.5 Reliable Tree-level Evapotranspiration Esti-

mation of Pomegranate Trees Using Lysime-

ter and UAV Multispectral Imagery

7.5.1 Introduction

Because of the recurring water shortages in California, many growers started

growing crops that have drought resistance and high economic value to a certain

degree [439], such as pomegranate. There is around 11,000 ha of pomegranate

in California [248]. Evidence suggests that evapotranspiration (ET) estimation is

among the most important factors to manage limited water effectively in agricul-

ture [352]. Mapping the ET temporally and spatially can identify variations in

the field, which is useful for evaluating soil moisture [348, 349] and assessing crop

water status [350].

Using crop coefficient (Kc) to estimate ET is a common method for water irri-

gation management. The actual crop evapotranspiration (ETc) is determined by

the Kc approach whereby the effect of the various weather conditions are incorpo-

rated into reference ET (ETo) and the crop characteristics into the Kc [352]. At

the beginning of the growing season, Kc increases from a minimum value. When

the canopy cover is full, the Kc reaches a maximum around the mid-season. Then,

the Kc starts decreasing before the end of the growing season. The normalized

difference vegetation index (NDVI) has been commonly used for vegetation mon-

itoring, such as water stress detection [192, 232], crop yield assessment [224], and

ET estimation [142, 28, 27, 137, 143]. The value of NDVI is a standardized method

to measure healthy vegetation. When the NDVI is high, it indicates the vegeta-

tion has a higher level of photosynthesis. Many studies have used satellite-derived

NDVI to estimate crop coefficient values [244, 245, 246]. For example, Trout et

al. [247] and Zhang et al. [248] applied a remote sensing method using NDVI to



189

estimate canopy ground cover as a basis for generating Kc. Kamble et al. [244]

used a simple linear regression model to establish a relationship between NDVI and

Kc. Although satellite imagery can provide spatially distributed measurements, it

cannot acquire useful spatio-temporal resolution images for precision agriculture

applications [249]. The timing of satellite overpass is not always synchronous with

research requirements, either. To date, few studies have investigated the associa-

tion between the Kc and NDVI at the individual-tree level.

Recently, UAVs have been emerging as powerful platforms in agricultural ap-

plications, such as crop yield estimation [224], irrigation management [24, 27],

water stress estimation [146], and pest management [225, 250]. With lightweight

sensors being mounted on UAVs, high-resolution imagery has been taken in mas-

sive amounts [190]. The spatial resolution of the UAV imagery can be at the

centimeter-level and help identify, standardize, and validate methods to calculate

the spatial variability for clumped canopy structures, such as trees and vines.

The objectives of this study are: 1. To investigate and validate the ap-

proaches of estimating Kc using UAV-based NDVI for an experimental pomegranate

orchard. 2. To establish a linear regression model between the NDVI and Kc in the

individual-tree level. 3. To evaluate the performance of the new regression model

on estimating 100% ET irrigation sampling trees. The major contributions of

this section are: 1. Develop a reliable tree-level ET estimation method using

UAV high-resolution multispectral images. 2. Provide a framework to establish

a linear regression model between the NDVI and Kc to estimate the actual daily

ET. Results show that the linear regression model can estimate tree-level ET with

an R2 and mean absolute error (MAE) of 0.9143 and 0.39 mm/day, respectively,

which shows a state-of-art performance.

7.5.2 Material and Methods

Study Site Description

Field studies were conducted in an experimental pomegranate (Punica grana-

tum L., cv ‘Wonderful’) field (Fig. 7.8) at the USDA-ARS, San Joaquin Valley

Agricultural Sciences Center (36.59◦N, 119.51◦W), Parlier, California, 93648, USA.



190

Figure 7.8: The Pomegranate study site. Field studies were conducted in an experi-
mental pomegranate (Punica granatum L., cv ‘Wonderful’) field at the USDA-ARS,
San Joaquin Valley Agricultural Sciences Center (36.59◦N, 119.51◦W), Parlier, Cal-
ifornia, 93648, USA. The pomegranate field was randomly designed into 16 equal
blocks, with four replications, to test four irrigation levels. The irrigation volumes
are 35%, 50%, 75%, and 100% of ETc, which was measured by the weighing lysime-
ter in the field. There were five sampling trees in each block, 80 sampling trees in
total, marked with red labels.

The San Joaquin Valley has a Mediterranean climate with hot and dry summers.

Rainfall is insignificant, and irrigation is the only source of water for pomegranate

growth [440]. There are two large weighing lysimeters installed at the center of

the experimental field [441]. According to [439], the lysimeters have a resolution

of approximately 0.1 mm of water loss. The soil types are a Hanford fine sandy

loam (coarse-loamy, mixed, thermic Typic Xerorthents). The meteorological data

was generated by the CIMIS weather station 39, which is about 700 m far from

the experimental field.

The pomegranate field was randomly designed into 16 equal blocks, with four

replications, to test four irrigation levels. The irrigation volumes are 35%, 50%,

75%, and 100% of ETc, which was measured by the weighing lysimeter in the field.

There were five sampling trees in each block, 80 sampling trees in total, marked

with red labels in Fig. 7.8.
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Table 7.7: Flight missions at the USDA in 2019. The UAV flight missions were
configured by using the MissionPlanner (Ardupilot, USA). The flight altitude was
set up as 60 m. The overlapping of UAV images was set up as 80% forward and
70% by the side.

Dates Flight time Flight altitude

May 8th, 2019 12 - 1 pm 60 m,

Jul 25th, 2019 12 - 1 pm 60 m,

Aug 7th, 2019 12 - 1 pm 60 m,

Aug 29th, 2019 12 - 1 pm 60 m,

Sep 19th, 2019 12 - 1 pm 60 m,

Oct 3rd, 2019 12 - 1 pm 60 m,

Oct 29th, 2019 12 - 1 pm 60 m.

UAV Image Collection and Processing

A UAV platform, called “Hover”, was deployed for imagery data acquisition.

The Rededge M (MicaSense, Seattle, WA, USA) was used for collecting multispec-

tral images (See more details of the UAV and sensor in Chapter 3).

The UAV flight missions were configured by using the MissionPlanner (Ardupi-

lot, USA). The flight altitude was set up as 60 m. The overlapping of UAV images

was set up as 80% forward and 70% by the side. Then, the UAV imagery of the

pomegranate can be stitched together during image processing with high confi-

dence. The image of a calibrated reflectance panel (CRP) was taken before and

after the flight missions, servicing as the reflectance reference. The author flew

the UAV bi-weekly over the pomegranate field at noon during the growing season

in 2019. The successful data collections were shown in Table 7.7. After the flight

missions, all aerial images were stitched together to generate the orthomosaick

images in PhotoScan (Agisoft LLC, Russian).
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7.5.3 Results and Discussion

Determination of Individual-tree Kc from NDVI

The correlation between the Kc and NDVI of an individual tree was analyzed.

Daily Kc for the individual tree was calculated as [352]:

Kc = ETc/ETo, (7.28)

where the actual ET (ETc) was measured by the weighing lysimeter and the refer-

ence ET (ETo) was obtained from the CIMIS weather station near the field. The

mean NDVI values for the lysimeter tree were calculated by ρNIR and ρR, where

ρNIR and ρR were the reflectance of near-infrared and red wavebands, respectively.

NDVI is a standardized method to measure healthy vegetation. When the NDVI

is high, it indicates the vegetation has a higher level of photosynthesis (One of

our demos is an NDVI mapping for May 8th, 2019). According to the demo, most

NDVI values of the tree canopies range from 0.468 to 1. It is interesting to point

out that the shade of the trees had a mean NDVI value around 0.5.

NDV I =
ρNIR − ρR
ρNIR + ρR

. (7.29)

Key observation: Fig. 7.9 showed the relationship between the daily Kc

and the derived mean NDVI for the tree in the lysimeter with 100% irrigation

treatment. The sampling data started on May 8th and ended on Oct 29th. The

linear relationship had an intercept of 0.6114 and a slope of 1.6493. It also had a

high correlation coefficient of 0.8865, indicating a significant correlation between

the Kc and NDVI at the individual-tree level during the growing season in 2019.

The Spatial Variability Mapping of Kc and ETc

Key observation: Inspired by the strong linear correlation between the Kc

and NDVI for the individual lysimeter tree, the author calculated the Kc for all

the trees in the experimental field using the linear regression model. The mapping

of Kc and ETc was generated, respectively (Fig. 7.10 is an example for Kc and ETc
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y = 1.6493x - 0.6114
R² = 0.8865
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Figure 7.9: Seasonal Kc and NDVI for the tree in lysimeter. The sampling data
started on May 8th and ended on Oct 29th. The linear relationship had an intercept
of 0.6114 and a slope of 1.6493. It also had a high correlation coefficient of 0.8865,
indicating a significant correlation between the Kc and NDVI at the individual-tree
level during the growing season in 2019.
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spatial variability mapping on May 8th). The values of Kc were mostly between

0.578 and 1.039 on May 8th. For the ETc, it ranged from 3.2 to 6.0 mm/day.

Performance of the Individual Tree-level ET Estimation

As mentioned earlier, there were 80 sampling trees in the pomegranate field.

Twenty of them were irrigated with 100% of ETc, same with the lysimeter tree.

Key observation: To validate the linear regression model on individual-tree-

level ET estimation, the author compared the 20 sampling trees with the lysimeter

daily ETc for the UAV flight dates (almost the whole growing season). The trends

of the daily ETc for the 20 sampling trees (100% irrigation ) and the lysimeter tree

were shown in Fig. 7.11. Each ‘Serie’ meant an individual tree in the field. Then,

the boxplot of Fig. 7.12 was generated for analysis. Compared with the lysimeter

tree, the linear regression model estimated tree-level ET with an R2 and mean

absolute error (MAE) of 0.9143 and 0.39 mm/day, respectively.

7.5.4 Conclusions

In this study, UAV flight missions were conducted to collect high-resolution

multispectral imagery in a pomegranate orchard at USDA. Using the NDVI derived

from the multispectral imagery, the author applied a regression model between

NDVI and Kc to estimate the individual tree-level ET estimation. The linear

regression model was Kc(NDV I) = 1.6493NDV I − 0.6114, which had an R2 of

0.8865. Then, ETc for all the 100% ET irrigation trees were generated individually.

Experimental results showed that the estimated daily ETc has an R2 and mean

absolute error (MAE) of 0.9143 and 0.39 mm/day for 100% irrigated sampling

trees, which showed a state-of-art performance.

Only the data of 2019 was used for analysis; the study had provided evidence

that variations of NDVI from UAV imagery could be used to explain the variations

of Kc and ETc at the individual tree level. In the future, the data of 2017 and

2018 will be added for further analysis.
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(a) The Kc map of May 8th, 2019. Inspired by the strong linear correlation

between the Kc and NDVI for the individual lysimeter tree, the author calcu-

lated the Kc for all the trees in the experimental field using the linear regression

model. The mapping of Kc was generated. The values of Kc were mostly be-

tween 0.578 and 1.039 on May 8th.

(b) The ETc map of May 8th, 2019. Inspired by the strong linear correlation

between the Kc and ETc for the individual lysimeter tree, the author calculated

the ETc for all the trees in the experimental field using the linear regression

model. The mapping of ETc was generated. For the ETc, it ranged from 3.2

to 6.0 mm/day.

Figure 7.10: The Kc and ETc maps of May 8th, 2019.



196

0

1

2

3

4

5

6

8-M
ay

15
-M
ay

22
-M
ay

29
-M
ay

5-J
un

12
-Ju
n

19
-Ju
n

26
-Ju
n

3-J
ul

10
-Ju
l

17
-Ju
l

24
-Ju
l

31
-Ju
l

7-A
ug

14-
Au
g

21-
Au
g

28-
Au
g

4-S
ep

11
-Se
p

18
-Se
p

25
-Se
p

2-O
ct

9-O
ct

16-
Oc
t

23-
Oc
t

100%ET sampling trees vs lysimeter

Series1 Series2 Series3 Series4 Series5 Series6 Series7 Series8 Series9 Series10 Series11

Series12 Series13 Series14 Series15 Series16 Series17 Series18 Series19 Series20 Series21

Figure 7.11: 100% ET irrigation sampling trees vs lysimeter tree. To validate the
linear regression model on individual-tree-level ET estimation, the author com-
pared the 20 sampling trees with the lysimeter daily ETc for the UAV flight dates
(almost the whole growing season). The trends of the daily ETc for the 20 sampling
trees (100% irrigation ) and the lysimeter tree were shown. Each ‘Serie’ meant an
individual tree in the field.

7.6 Conclusion and Future Research

As a new remote sensing platform, researchers are gaining interest in the poten-

tial of UAVs in precision agriculture. Compared with traditional remote sensing

platforms, the UAVs can be more flexible in the field. For example, UAVs can be

operated at any time if the weather is within the operating limitations. The satel-

lite has a fixed flight path, UAVs are mobile and flexible for site selection. Mounted

on the UAVs, lightweight sensors, such as RGB cameras, multispectral cameras,

and thermal infrared cameras, can be used to collect high-resolution images. While

there are many advantages with using UAVs, there are still challenges for UAVs

when used for estimating ET. Many researchers fly the UAVs at different height,

using specialized equipment and relying on data analysis expertise. As researchers

try to understand and realize the potential of the UAVs for ET estimation, efficient
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Figure 7.12: The boxplot of 100% ET sampling trees vs lysimeter tree. Compared
with the lysimeter tree, the linear regression model estimated tree-level ET with
an R2 and mean absolute error (MAE) of 0.9143 and 0.39 mm/day, respectively.

workflow, image processing, and better software are still under developing.

No existing methods can fully satisfy the spatial, temporal, spectral, and ac-

curacy requirements for ET-based science and applications. Therefore, innovative

methods or models for ET estimation are required by using UAVs. There are five

requirements to map ET with high fidelity in the future [442], which are high fre-

quency, high spatial resolution, high temporal resolution, large spatial coverage,

and long-term monitoring. High frequency will improve the differentiation of water

stress between crops, which enables more efficient water management. High spa-

tial resolution can help detect spatially heterogeneous responses to water stress.

Because ET is highly variable within and among days, high temporal resolution

can help detect crop ET in real-time. Large spatial coverage can help detect large

scale drought. Long term monitoring will be important to record ET variability

overtime.

Compared with other satellite-based remote sensing methods, the UAV plat-

form and lightweight sensors can provide better quality, higher spatial, and tem-
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poral resolution images. The UAVs can be used to estimate ET on an excellent

spatial scale and with flexible flight schedules. In the future, (1) The two-source

energy balance (TSEB) and dual temperature difference (DTD) models have great

potential for ET estimation since they can separate the soil and canopy with high-

resolution UAV imagery; (2) Taking advantage of the UAV high-resolution imagery,

research related to individual tree-level ET estimation will be possible and useful

for analyzing the temporal and spatial variability of the crops in the field; (3)

Deep learning algorithms can be used for processing high-resolution UAV imagery,

such as individual tree-level canopy or soil segmentation; (4) The author’s research

results [28] showed that there was strong correlation between the NDVI and crop

coefficient at individual tree-level ET estimation. Further study can be conducted

to create new generation of vegetation index using machine learning and deep

learning algorithms.



Chapter 8

Individual Tree-level Water

Status Inference Using

High-resolution UAV Thermal

Imagery and

Complexity-informed Machine

Learning

8.1 Introduction

There is around 11,000 ha of pomegranate in California because of its drought

resistance and high economic value [439]. Considering the recurring water shortage

in California, it is essential to find effective methods to optimize irrigation water

use. Research results suggested that the evapotranspiration (ET) estimation is

one of the most critical factors to help manage water use efficiency in agriculture

[352]. Mapping the ET temporally and spatially can identify variations in the field,

which helps evaluate crop water status [350].

The tree canopy temperature from infrared thermometer (IRT) sensors is an ef-

199
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fective tool for detecting plant water stress. Research has been conducted on crops

and trees to relate the ∆T to irrigation management. The main reason is that

a significant increase in the midday infrared canopy to air temperature difference

(∆T) will indicate stomata closure and water stress conditions [443, 444, 445]. For

example, Zhang et al. evaluated the performance of using ∆T to manage posthar-

vest deficit irrigation of nectarine trees [446]. The results demonstrated that the

measured ∆T values above the tree canopy showed consistent differences among

irrigation treatment levels. Clawson et al. used canopy temperature variability

and average canopy temperature to schedule irrigation in corn (Zea mays L.).

They remarked that canopy temperature variability could show the plant water

stress and the need to schedule an irrigation event [447]. Furthermore, Wang et al.

investigated the infrared canopy temperature of early ripening peach trees under

postharvest deficit irrigation and monitored the stem water potential. The strong

correlation between stem water potential and ∆T (R2 ≈ 0.7) indicated that canopy

temperature could be used for water stress estimation.

However, little research could be found in the literature on using midday ∆T

derived from UAV thermal infrared (TIR) image as a primary input for map-

ping irrigation treatment levels of a pomegranate field at individual tree levels.

This article evaluated the feasibility and performance of using midday ∆T (UAV-

TIR) and machine learning algorithms for spatial mapping of irrigation treat-

ments. Recently, UAVs have been emerging as powerful platforms in agricultural

applications, such as irrigation management [24, 27], and water stress estimation

[146]. With lightweight sensors being mounted on UAVs, high spatial and tempo-

ral resolution imagery has been taken in massive amounts with low-cost [190, 448].

Because of the lightweight and low power consumption, the thermal camera has

been commonly used in agriculture research [191, 198]. The spatial resolution of

the UAV-based thermal imagery can be at the centimeter level and help identify,

standardize, and validate methods to calculate the spatial variability for clumped

canopy structures, such as trees and vines [449].

Machine learning (ML) models have been widely used in real-world applica-

tions, for example, image processing [23], natural language processing [25], and
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precision agriculture [137]. ML algorithms can simplify a solution and perform

better than traditional statistical approaches, which may require more hand-tuning

rules. However, training ML models may require a large amount of data, which may

not always be available for scientific problems [450]. Then, the smaller dataset may

cause ML models to lack robustness and cannot guarantee convergence. Therefore,

in this article, the authors proposed the concept of complexity-informed machine

learning (CIML) and the principle of tail matching (POTM). The original dataset

can exhibit a heavy-tailed distribution phenomenon, and tail-index analysis can

be used for ML algorithms [451, 12]. Specifically, tail information in the training

dataset variability and diversity should indicate the data representativeness. In

this sense, we can expect a “smaller dataset” rather than “big data” for ML un-

der the same performance requirement. In summary, we pursue “tail matching”

between the dataset and the ML algorithms.

The convolutional neural network (CNN) is one of the most common archi-

tectures, which includes the input layer, the convolution layer, the pooling layer

and the fully connected layer [452]. Because of its powerful ability for complex

data analysis, CNN models have been commonly used in agricultural applications,

such as yield estimation [453], water stress analysis [454], and pest management

[455]. For example, Yang et al. proposed to estimate corn yield by using the hy-

perspectral imagery and a CNN model in [456]. Research results showed that the

spectral and color image-based integrated CNN model had a classification accuracy

of 75.5%. In [455], Li et al. proposed an effective data augmentation strategy for

CNN-based method for pest detection. In the training phase, they adopted data

augmentation by rotating images with several degrees followed by cropping into

different grids. Then, a large number of extra multi-scale examples were obtained

and could be used to train a multi-scale pest detection model. Experimental re-

sults showed that their data augmentation strategy with CNN model achieved the

pest detection accuracy of 81.4%. Advances in CNN models have been leading to

significantly promising progress for agricultural research.

The objectives of this study were: 1. Evaluated the reliability of the UAV

thermal camera on individual tree canopy temperature measurements. 2. Inves-
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tigated and validate the approaches of irrigation treatment inference using UAV-

based ∆T at individual tree level. 3. Demonstrated the performance of the CIML

models on irrigation treatment inference. 4. Demonstrated the performance of the

CNN model on irrigation treatment inference. The major contributions of this

chapter were: 1. Developed a reliable tree-level water stress detection method us-

ing UAV-based high-resolution thermal images. 2. Proposed the concept of CIML

and proved its performance on the classification of tree-level irrigation treatments.

The rest of the chapter is organized as follows. 3. Proposed a CNN model and

proved its performance on the classification of tree-level water status. The rest of

the chapter is organized as follows. Section 2 introduces the materials and methods

being used for UAV-based irrigation treatment inference. Results and discussion

are presented in Section 3. In Section 4, the author draws conclusive remarks.

8.2 Material and Methods

8.2.1 Experimental Site and Irrigation Management

The study was conducted in a 1.3 ha pomegranate field in 2019 at the USDA-

ARS San Joaquin Valley Agricultural Sciences Center in Parlier, CA (36.594◦N,

119.512◦W). The pomegranate (Punica granatum L., cv ’Wonderful’) was planted

in 2010 with a 5 m spacing between rows and a 2.75 m within-row tree spacing

[439]. The soil type was a Hanford fine sandy loam (coarse-loamy, mixed, thermic

Typic Xerorthents). There are also two large weighing lysimeters, which are 2 m

× 4 m by 3 m in depth and have a resolution of 0.1 mm of water loss. As shown

in Fig. 8.1, the weighing lysimeters are located in the center of the pomegranate

field. The experimental site was randomly designed into 16 blocks, with four

replications, to test four irrigation rates on the pomegranate growth. As measured

by the lysimeter, the irrigation volumes were set up as 35%, 50%, 75%, and 100%

of ETc. The trees in the lysimeter were irrigated at the 100% treatment level. For

each irrigation treatment block, there were three rows with around 15 trees per

row. Only the central row of each block was used as the experimental row. The

height of trees was pruned and maintained at approximately 3 m.
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Figure 8.1: The pomegranate field at the USDA-ARS (36.594◦N, 119.512◦W). The
weighing lysimeter is located in the center of the pomegranate field, marked as a
red box. The blue marks are where the 14 IRT sensors were installed.

8.2.2 Ground Truth: Infrared Canopy and Air Tempera-

ture

The tree canopy temperature was measured with 14 IRT sensors (Model SI-100

series, Apogee Instruments, Inc., Logan, UT), which were installed 4.5 m above

the soil surface. The field of view (FOV) of the IRT sensor was 20◦ (Fig. 8.2).

The air temperature and relative humidity were also measured with a sensor in

the experimental site. Then, the author could evaluate the performance of using

midday infrared canopy to air temperature difference (∆T) to detect or classify

deficit irrigation of pomegranate trees.

8.2.3 The Thermal Infrared Remote Sensing Data

A quadcopter named “Hover” was used as the low-cost UAV platform (less

than $1000) to collect high-resolution thermal images at the height of 60 m. The

thermal camera ICI 9640P (Infrared Cameras Inc, Beaumont, TX, USA.) was

equipped with the UAV for collecting thermal images for the experimental field

(See more details of the UAV and sensor in Chapter 3).
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Figure 8.2: The IRT sensor was installed 4.5 m above the soil surface, with a FOV
of 20◦. A quadcopter was used as the low-cost UAV platform (less than $1000) to
collect high-resolution thermal images at the height of 60 m.

The UAV Thermal Image Collection and Processing

The author used the Mission Planner to program all flight missions. The flight

height was set up as 60 m. The overlapping of UAV imagery was set up as 80%

so that the UAV imagery of the pomegranate could be stitched together more

successfully during image processing. The UAV was flying at noon with clear

sky conditions to minimize the shading effect on the thermal images. Since the

thermal camera type is uncooled, it usually takes around 20 minutes to warm up

the thermal camera before flight missions. To calibrate the thermal camera, the

author took thermal images of ice water immediately before and after the flight

missions as the reference temperature. After the flight missions, all UAV thermal

images were stitched together to generate the orthomosaick images in Metashape

(Agisoft LLC, Russian).

The Tree Canopy Segmentation Using Support Vector Machine (SVM)

There were 746 trees in total for the pomegranate field. As mentioned earlier,

there were three rows with around 15 trees per row for each irrigation treatment

block. Only the central row of each block was used as the experimental row. To

obtain the individual tree canopy images of the 250 sampling trees (Fig. 8.3(B)),
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Figure 8.3: (A) All of the UAV thermal images were stitched together to generate
the orthomosaick images in Metashape (Agisoft LLC, Russian); (B) To obtain the
individual tree canopy images of the 250 sampling trees, the author used the SVM
for classifying the tree canopy. (C) Histogram was generated for each tree canopy
to check the variability of each tree canopy temperature.

the author used the SVM for classifying the tree canopy with ArcGIS Pro. Using

the SVM classifier could map the input data vectors into a higher dimensional

feature space. Then, the SVM optimally separated the data into different classes.

Since the file size of UAV-based thermal imagery was large, the SVM classifier

was adopted, which was less susceptible to noise, unbalanced number, or size of

training sites within each class. All the sampling trees were successfully segmented

using the SVM classifier. Then, the mean, variance, and histogram information

(Fig. 8.3(C)) were calculated using MATLAB 2021b as input features for CIML

models.

8.2.4 The Complexity-informedMachine Learning (CIML)

When the author discusses complexity-informed machine learning, he focuses

on variability analysis using the histogram information of individual tree canopy.
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Variability refers to several properties of the ML dataset. First, it refers to the

number of inconsistencies in the data, which needs to be understood by using

anomaly- and outlier-detection methods for any meaningful analytics to be per-

formed. Second, variability can also refer to diversity. For example, when the

author studied the individual tree-level ET estimation [449], it turned out that

the evapotranspiration for each tree is very close to each other. The reason was

that the mean pixel values were used for data analysis, making the ET classifica-

tion challenging to implement. Considering the complexity of each tree canopy,

embedding the complex information into the ML training process may have great

potential to detect or classify deficit irrigation for pomegranate trees. To analyze

the complex information in each tree, we need to use tail-index analysis methods.

8.2.5 The Principle of Tail Matching

In probability theory, heavy-tailed distributions are PDFs whose tails do not

decay exponentially [81]. The distribution of a real-valued random variable X is

said to have a heavy right tail if the tail probabilities P decay more slowly than

those of any exponential distribution. Consequently, they have more weight in

their tails than does an exponential distribution,

lim
x→∞

(
P (X > x)

e−λx
) = ∞, (8.1)

for every λ > 0 [85]. The tail information in the training dataset variability and

diversity should be used to indicate the data representativeness. In this article,

the Generalized Pareto distribution (GP) was developed to model tail index for

individual tree canopy thermal imagery.

The Pareto Distribution

A random variable is said to be described by a Pareto probability density

distribution (PDF) if its cumulative distribution function (CDF) is

F (x) =

1 − ( b
x
)a, x ≥ b,

0, x < b,
(8.2)
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where b > 0 is the scale parameter, and a > 0 is the shape parameter which is the

Pareto’s index of inequality [99]. The tail data of the tree canopy temperature were

fitted using the generalized Pareto distribution by maximum likelihood estimation.

Many fitting models may agree well with the data in high-density regions but

poorly in low-density areas. However, in many applications, fitting the data in

the tail may also contribute to model performance. The GP was developed as

a distribution that can model tails of a wide variety of distributions based on

theoretical arguments.

8.2.6 Machine Learning Classification Algorithms

Several classification algorithms were adopted to evaluate the detection perfor-

mance for irrigation treatment levels. “Neural Net”, “Support Vector Machines

(SVM)”, “Random Forest”, “AdaBoost”, “Nearest Neighbors”, “Gaussian Pro-

cess”, “Naive Bayes”, “Quadratic Discriminant Analysis”, and “Decision Tree”

were chosen as the classification algorithms. A more detailed introduction can be

found in Chapter 6.

8.2.7 Image Preprocessing for the CNN Model

The individual tree canopy images were extracted from the UAV thermal im-

agery, 250 in total. Then, the dataset was distributed as 67% for training and

33% for testing using the train test split method. To verify that the dataset looks

correct, the authors plotted the first 25 images from the training set and displayed

the class name below each image (Fig. 8.4). All the images were resized into 32

× 32 × 3 in order to input into our CNN model using TensorFlow 2.0. The sum-

mary of the CNN model is shown in Table 8.1. The output of every Conv2D and

MaxPooling2D layer is a 3D tensor of shape (height, width, channels). The width

and height dimensions tend to shrink as we go deeper in the network. The num-

ber of output channels for each Conv2D layer is controlled by the first argument.

The authors fed the last output tensor from the convolutional base into the Dense

layers to perform classification. Dense layers take vectors as input (which are 1D),
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Figure 8.4: 25 images were randomly selected from the training set and the class
name for each image was displayed below. All the images were resized into 32 ×
32 × 3 in order to input into the CNN model.

while the current output is a 3D tensor. Considering the dataset has two classes,

the authors used a final Dense layer with 2 outputs.

8.3 Results and Discussion

8.3.1 Comparison of Canopy Temperature Per Tree Based

on Ground Truth and UAV Thermal Imagery

To evaluate the reliability of UAV thermal remote sensing, the author first

compared the canopy temperature per tree acquired by IRT sensors and the UAV

thermal camera. The correlation between the canopy temperature per tree mea-
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Table 8.1: The architecture of the CNN model.

Layer Type Output Shape Parameter Numbers

Conv2D (None, 30, 30, 32) 896

MaxPooling2D (None, 15, 15, 32) 0

Conv2D (None, 13, 13, 64) 18496

MaxPooling2D (None, 6, 6, 64) 0

Conv2D (None, 4, 4, 64) 36928

Flatten (None, 1024) 0

Dense (None, 64) 65600

Dense (None, 2) 130

Figure 8.5: The correlation between the canopy temperature per tree measured by
the IRT sensors and UAV thermal camera. The coefficient of determination (R2)
was 0.8668, which indicated that the difference between the ground truth and UAV
thermal camera was acceptable. The method was reliable for monitoring tree-level
canopy temperature.
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sured by the IRT sensors and UAV thermal camera was shown by their scatter-

related plot and the established regression equation (Fig. 8.5). The coefficient of

determination (R2) was 0.8668, which indicated that the difference between the

ground truth and UAV thermal camera was acceptable. The method was reliable

for monitoring tree-level canopy temperature.

8.3.2 The Relationship Between ∆T and Irrigation Treat-

ment

The effect of irrigation treatment on canopy-to-air temperature (∆T) was plot-

ted in this section (7-25-2019 and 8-7-2019). As shown in Fig. 8.6, the ∆T was

significantly higher in the 35% irrigation treatment than the 100% irrigation treat-

ment on different days. The values of ∆T decreased as the irrigation increased.

This finding emphasized the importance of irrigation on the tree canopy tempera-

ture response. Several researchers reported similar results [439, 446, 457]. At the

USDA-ARS, all the pomegranate trees were fully irrigated before 2012, which did

not show any significant difference for ∆T [439]. After the deficit irrigation started

in early 2012, the difference of ∆T was more significant.

8.3.3 The Classification Performance of CIML on Irriga-

tion Treatment Levels

For the CIML algorithms, the author focused on the variability analysis. Vari-

ability refers to the individual tree canopy temperature spatial diversity. Differ-

ent types of tree canopy temperature data were used as the primary input for

training, including (1.) mean and variance, (2.) tail index, mean, and variance,

(3.) histogram of tree canopy temperature. The tree canopy temperature of 250

sampling trees was distributed as 75% for training and 25% for testing using the

train test split method. For evaluating the trained CIML models, a confusion

matrix was used to compare the performances of different classifiers. A confusion

matrix was a summary of prediction results on a classification problem. The num-

ber of correct and incorrect predictions was tallied with count values and divided
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Figure 8.6: The ∆T was significantly higher in the 35% irrigation treatment than
the 100% irrigation treatment on different days. The values of ∆T decreased as
the irrigation increased. This finding emphasized the importance of irrigation on
the tree canopy temperature response.

into classes. The confusion matrix provided insight not only into the errors being

made by a classifier but, more importantly, the types of errors that were being

made. “True label” meant the ground truth of ETc based irrigation treatment

levels. “Predicted label” identified the irrigation treatment levels predicted by the

trained model. To simplify the visualization, 30% and 50% ET irrigation were

labeled as “0”, denoting low-level irrigation; 75% and 100% ET irrigation were

labeled as “1”, which meant high-level irrigation.

The trained models had distinct test performance for irrigation treatment pre-

diction at tree level (Fig. 8.7, Table 8.2, and Fig. 8.8). First of all, the most impor-

tant finding was that using the UAV-based tree canopy to air temperature (∆T)

and machine learning algorithms could successfully classify the irrigation treatment

or water stress at the individual tree level. The research results demonstrated that

∆T was highly related to irrigation management. As mentioned earlier, the main

reason was that a significant increase ∆T would indicate stomata closure and wa-

ter stress conditions [443, 444, 445]. Thus, UAV-based thermal remote sensing is a

reliable tool for tree irrigation management. The results were highly consistent for
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Figure 8.7: The summary of prediction results using histogram information on the
tree-level irrigation treatment inference. “True label” meant the ground truth of
ETc based irrigation treatment levels. “Predicted label” identified the irrigation
treatment levels predicted by the trained model.
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Table 8.2: The classification performance of CIML algorithms on irrigation treat-
ment levels at individual tree level. All the methods showed a state-of-art per-
formance, with an overall accuracy of 87%. The “Naive Bayes” had the highest
accuracy of 0.90.

Classification methods Prediction

accuracy

(histogram)

Prediction

accuracy

(mean, variance,

and tail index)

Prediction

accuracy

(mean +

variance)

“KNeighborsClassifier” 0.87 0.86 0.84

“Linear SVM” 0.89 0.86 0.84

“RBF SVM” 0.89 0.84 0.84

“Gaussian Process” 0.89 0.86 0.86

“Decision Tree” 0.84 0.89 0.87

“Random Forest” 0.89 0.87 0.89

“Neural Net” 0.87 0.89 0.44

“AdaBoost” 0.84 0.87 0.89

“Naive Bayes” 0.90 0.81 0.68

“QDA” 0.86 0.83 0.73

different methods. For example, when histogram information was used for training

and testing. All the methods showed a state-of-art performance, with an overall

accuracy of 87%. The “Naive Bayes” had the highest accuracy of 0.90.

Another finding was that tail-index information had great potential to benefit

training and testing performance. The mean and variance were a simplification

of complex information. By adding the tail information into the training dataset,

the prediction accuracy of some methods was increased, as shown in Table 8.2.

It inspired us that the tail information in the training dataset variability and

diversity should be used to indicate the data representativeness. Then, with more

complex information, the histogram information of tree canopy temperature had

the best prediction accuracy, without a doubt. In summary, all three situations

had overall accuracy above 80%, mainly because the ∆T was very sensitive to

irrigation treatments.
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Figure 8.8: The test performance for the histogram dataset. The t-distributed
stochastic neighbor embedding (TSNE) method was used for data visualization,
which learned the most critical axes between the classes. The axes were then used
to define the hyperplane to project the high-dimensional training data into two
dimensions, which gained important insight by visually detecting patterns. The
x-axis and y-axis had no scale because of hyperplane projection. The irrigation
treatment levels were successfully clustered into low-level (blue) and high-level
(green).
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Figure 8.9: The performance of the CNN model, training and validation accuracy
curves.

8.3.4 The Performance of the CNN Model

As mentioned earlier, there were 250 tree canopy images in total, which were

distributed as 67% for training and 33% for testing using the train test split

method. To train the CNN model, the ‘adam’ optimizer and the cross entropy

loss function were adopted during the training process. The epoch was set up as

100. For evaluating the trained CNN models, the authors plotted the training and

validation accuracy curves with the epochs increasing (Fig. 8.9). The test accu-

racy was 87%. To visualize the trained CNN model performance, the authors made

predictions about some images in the test dataset (Fig. 8.11). Correct prediction

labels are blue and incorrect prediction labels are red. The number gives the per-

centage (out of 100) for the predicted label. A confusion matrix was also used,

which was a summary of prediction results on a classification problem. “True label”

meant the ground truth of ETc based irrigation treatment levels. “Predicted label”

identified the irrigation treatment levels predicted by the trained CNN model. To

simplify the visualization, low irrigation (30% and 50% ET) were labeled as “0”;

high irrigation (75% and 100% ET) were labeled as “1” (Fig. 8.10). The detailed

information of precision and recall was shown in Table 8.3.
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Figure 8.10: The summary of prediction results on the irrigation treatment clas-
sification problem. “True label” meant the ground truth of ETc based irrigation
treatment levels. “Predicted label” identified the irrigation treatment levels pre-
dicted by the trained CNN model. To simplify the visualization, low irrigation
(30% and 50% ET) were labeled as “0”; high irrigation (75% and 100% ET) were
labeled as “1”.

Table 8.3: The CNN model performance.

Irrigation level Precision Recall F1-score

Low irrigation 0.92 0.81 0.86

High irrigation 0.83 0.93 0.87

Accuracy NA NA 0.87

Macro avg 0.87 0.87 0.87

Weighted avg 0.87 0.87 0.87
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Figure 8.11: To visualize the trained CNN model performance, the authors made
predictions about some images in the test dataset. Correct prediction labels are
blue and incorrect prediction labels are red. The number gives the percentage (out
of 100) for the predicted label.
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8.4 Conclusion and Future Research

The aim of this chapter was for irrigation treatment levels inference in the

pomegranate field at the individual tree level by using UAV-based thermal images

and machine learning algorithms. The author collected the ∆T by using a UAV-

based high-resolution thermal camera. Then, CIML algorithms were adopted for

the tree-level irrigation treatment classification problem. The author developed

a reliable tree-level irrigation treatment inference method using UAV-based high-

resolution thermal images. The research results showed that the best classification

accuracy of irrigation treatment levels was 90% when the “Naive Bayes” method

was adopted. The results of this research supported the idea that a significant

increase in the midday infrared canopy to air temperature difference (∆T) will

indicate stomata closure and water stress conditions. The author also proposed

the concept of CIML and proved its performance on the classification of tree-level

irrigation treatments. CIML models have great potential for future agriculture

research. With more complex information, it will benefit the training and testing

process of machine learning algorithms.



Chapter 9

Scale-aware Pomegranate Yield

Prediction Using UAV Imagery

and Machine Learning

Monitoring the development of trees and accurately estimating the yield are

important to improve orchard management and production. Growers need to es-

timate the yield of trees at the early stage to make smart decisions for field man-

agement. However, methods to predict the yield at the individual tree level are

currently not available because of the complexity and variability of each tree. This

study aimed to evaluate the performance of an unmanned aerial vehicle (UAV)-

based remote sensing system and machine learning (ML) approaches for tree-level

pomegranate yield estimation. Lightweight sensors, such as multispectral cam-

era, were mounted on the UAV platform to acquire high-resolution images. Eight

features were extracted, including normalized difference vegetation index (NDVI),

green normalized vegetation index (GNDVI), red-edge normalized difference veg-

etation index (NDVIre), red-edge triangulated vegetation index (RTVIcore), in-

dividual tree canopy size, the modified triangular vegetation index (MTVI2), the

chlorophyll index-green (CIg), and the chlorophyll index-rededge (CIre). First,

direct correlations were made, and correlation coefficient (R2) was determined be-

tween these vegetation indices and tree yield. Then, machine learning approaches

were applied with the extracted features to predict the yield at the individual
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tree level. Results showed that the decision tree classifier had the best prediction

performance, with an accuracy of 85%. The study demonstrated the potential

of using UAV-based remote sensing methods, coupled with ML algorithms, for

pomegranate yield estimation. Predicting the yield at the individual tree level will

enable the stakeholders to manage the orchard at different scales, thus improving

the field management efficiency.

9.1 Introduction

Due to the recurring water shortages in California, many growers started grow-

ing crops that have drought resistance and high economic value to a certain de-

gree, such as pomegranate [439]. There is around 11,000 ha of pomegranate in

California, evidence suggests that the pomegranate trees have strong adaptability

to a wide range of soil conditions and climates [440, 458]. Research results show

that pomegranate has great potential for human disease treatment and preven-

tion, such as cancer [459, 460]. Pomegranate yield estimation can provide critical

information for stakeholders and help them make better decisions on field opera-

tions. Therefore, efficient pomegranate yield prediction is economically important

in pomegranate production.

The yield of field and woody crops is usually determined by their genotype and

environmental conditions, such as soil physical and chemical properties, irrigation

management, weather conditions, etc., making the yield prediction complicated

and inaccurate [461, 462]. Thus, many researchers have been working on the

yield prediction using a plethora of approaches [463, 464, 465, 466, 467]. For

example, [463] developed statistical models using the stochastic gradient boosting

method for early and mid-season yield prediction of almond in the central valley

of California. Multiple variables were extracted from the remote sensing images,

such as canopy cover percentage (CCP) and vegetation indices (VIs). Research

results demonstrated the potential of automatic almond yield prediction at the

individual orchard level. In [456], Yang et al. estimated the corn yield by using the

hyperspectral imagery and convolutional neural networks (CNNs). Results showed
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that the spectral and color image-based integrated CNN model has a classification

accuracy of 75% for corn yield prediction.

Recently, UAVs and lightweight payloads have been used as a reliable remote

sensing platform by many researchers to monitor the crop status temporally and

spatially [449, 137, 468, 140]. Equipped with lightweight payloads, such as RGB

camera, multispectral camera, and thermal camera, UAV-based remote sensing

system can provide low-cost and high-resolution images for data analysis. For

example, in [464], Yang et al. proposed an efficient CNN for rice grain yield

estimation. A fixed-wing UAV was adopted to collect RGB and multispectral

images to derive the vegetation indices. Results showed that the CNNs trained

by RGB and multispectral imagery had better performance than the VIs-based

regression model. In [465], Stateras et al. defined the geometry of olive tree

configurations and developed a forecasting model of annual production in a non-

linear olive grove. Digital terrain model (DTM) and digital surface model (DSM)

were generated with high-resolution multispectral imagery. Results showed that

the forecasting model could predict the olive yield in kilograms per tree.

However, few studies have investigated the correlation between the tree canopy

characteristics and yield prediction at the individual tree level. Thus, this article

aims to estimate the pomegranate tree yield with ten different tree canopy charac-

teristics, which are normalized difference vegetation index (NDVI), green normal-

ized vegetation index (GNDVI), red-edge normalized difference vegetation index

(NDVIre), red-edge triangulated vegetation index (RTVIcore), canopy size, canopy

temperature, irrigation level, the modified triangular vegetation index (MTVI2),

the chlorophyll index-green (CIg) and the chlorophyll index-rededge (CIre). For

example, the NDVI has been commonly used for vegetation monitoring, such as

water stress detection [232], crop yield assessment [224], and evapotranspiration

(ET) estimation [28]. The value of NDVI is a standardized method to measure

healthy vegetation. When the NDVI is high, it indicates that the vegetation has a

higher level of photosynthesis. In [461], Feng et al. demonstrated that the NDVI

and yield had a Pearson correlation coefficient of 0.80. The GNDVI and yield had

a correlation of 0.53.
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The objectives of this chapter were: 1.) To investigate the correlation be-

tween the pomegranate yield and eight different features extracted from UAV

high-resolution images. 2.) To establish a scale-aware yield prediction model

using machine learning approaches. Estimating the yield with scale-aware models

will help stakeholders make better decisions for field management at the block or

orchard levels.

9.2 Material and Methods

9.2.1 Experimental Field and Ground Data Collection

This study was conducted in a pomegranate research field at the USDA-ARS,

San Joaquin Valley Agricultural Sciences Center (36.594 ◦N, 119.512 ◦W), Parlier,

California, 93648, USA. The soil types are a Hanford fine sandy loam (coarse-

loamy, mixed, thermic Typic Xerorthents). The San Joaquin Valley has a Mediter-

ranean climate with hot and dry summers. Rainfall is insignificant during the

growing season, and irrigation is the only source of water for pomegranate growth

[440]. Pomegranate (Punica granatum L., cv ‘Wonderful’) was planted in 2010

with a 5 m spacing between rows and a 2.75 m within-row tree spacing in a 1.3 ha

field [439].

The pomegranate field was randomly designed into 16 equal blocks, with four

replications, to test four irrigation levels (Fig. 9.1). The irrigation volumes were

35%, 50%, 75%, and 100% of crop evapotranspiration (ETc), measured by the

weighing lysimeter in the field. There were five yield sampling trees in each block,

80 sampling trees in total, marked with red labels in Fig. 9.2.

9.2.2 UAV Platform and Imagery Data Acquisition

The UAV-based remote sensing system consisted of a UAV platform, called

“Hover”, and a multispectral camera (Rededge M, Micasense, Seattle, WA, USA).

See more details of the UAV and sensor in Chapter 3. A software Mission Planner

was used to design the flight missions. The flight height was designed as 60 m above
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Figure 9.1: The pomegranate field was randomly designed into 16 equal blocks,
with four replications, to test four irrigation levels. The irrigation volumes were
35%, 50%, 75%, and 100% of ETc, which were measured by the weighing lysimeter
in the field.

Figure 9.2: There were five sampling trees in each block, 80 sampling trees in total,
marked with red labels.
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Table 9.1: UAV image features used in this study.

Features Equations Related traits References

NDVI Equation (9.1)
Yield, leaf chlorophyll content,

biomass
[469, 475, 461]

GNDVI Equation (9.2)
Yield, leaf chlorophyll content,

biomass
[470, 461]

NDVIre Equation (9.3) Nitrogen, yield [471, 476]

RTVIcore Equation (9.4)
Lear area index, biomass, ni-

trogen
[472, 477]

MTVI2 Equation (9.5) Leaf chlorophyll content [473, 478]

CIg Equation (9.6) Yield, leaf chlorophyll content [474, 479]

CIre Equation (9.7) Yield, leaf chlorophyll content [480, 481]

ground level (AGL). The UAV image overlapping was designed as 75% in forward

and 70% sideward to stitch UAV images successfully by Agisoft Metashape.

9.2.3 UAV Image Feature Extraction

The orthomosaick image was used to extract image features defined in Table

9.1. Seven image features were extracted from the multispectral orthomosaick

image acquired by the UAV platform. All the vegetation indices or features have

been commonly used in monitoring the plant health, nitrogen, biomass, and yield

estimation [469, 470, 471, 472, 473, 474].

The Normalized Difference Vegetation Index (NDVI)

The NDVI has been commonly used for vegetation monitoring, such as water

stress detection [232], crop yield assessment [224], and ET estimation [143]. The

value of NDVI is a standardized method to measure healthy vegetation, allowing

to generate an image displaying greenness (relative biomass). The NDVI takes

advantage of the contrast of the characteristics of two bands, which are the chloro-

phyll pigment absorptions in the red band (R) and the high reflectivity of plant

materials in the near-infrared band (NIR). When the NDVI is high, it indicates

that the vegetation has a higher level of photosynthesis. The NDVI is usually

calculated by
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NDV I =
NIR−R

NIR + R
, (9.1)

where NIR and R are the reflectance of near-infrared and red band, respectively.

The Green Normalized Difference Vegetation Index (GNDVI)

The GNDVI is commonly used to estimate photo synthetic activity and deter-

mine water and nitrogen uptake into the plant canopy [470, 461]. The GNDVI is

calculated by

GNDV I =
NIR−G

NIR + G
, (9.2)

where G stands for the reflectance of the green band.

The Red-Edge Normalized Difference Vegetation Index (NDVIre)

The NDVIre is a method for estimating vegetation health using the red-edge

band. The chlorophyll concentration is usually higher at the late stages of plant

growth; the NDVIre can then be used to map the within-field variability of nitrogen

foliage to help better understand the fertilizer requirements of crops [471, 476]. The

NDVIre is calculated by

NDV Ire =
NIR−RedEdge

NIR + RedEdge
, (9.3)

where RedEdge is the reflectance of the red-edge band.

The Red-Edge Triangulated Vegetation Index (RTVIcore)

The RTVIcore is usually used for estimating the leaf area index and biomass

[472, 477]. It uses the reflectance in the NIR, RedEdge, and G spectral bands,

calculated by

100(NIR−RedEdge) − 10(NIR−G). (9.4)
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The Modified Triangular Vegetation Index (MTVI2)

The MTVI2 method usually detects the leaf chlorophyll content at the canopy

scale, which is relatively insensitive to the leaf area index [473]. MTVI2 uses the

reflectance in the G, R and NIR bands, calculated by

1.5[1.2(NIR−G) − 2.5(R−G)]√
(2NIR + 1)2 − (6NIR− 5

√
R) − 0.5

. (9.5)

The Green Chlorophyll Index (CIg)

The CIg is for estimating the chlorophyll content in leaves using the ratio of

the reflectivity in the NIR and G bands [474], which is calculated by

NIR

G− 1
. (9.6)

The Red-Edge Chlorophyll Index (CIre)

The CIre is for estimating the chlorophyll content in leaves using the ratio of

the reflectivity in the NIR and RedEdge bands [474], which is calculated by

NIR

RedEdge− 1
. (9.7)

9.2.4 The Machine Learning Methods

Several ML classifiers were adopted to evaluate the performance of pomegranate

yield estimation, such as “Random Forest” [338], “AdaBoost” [150], “Nearest

Neighbors” [339], and “Decision Tree” [340]. Please refer to Chapter 6 for more

details of the ML methods.

9.3 Results and Discussion

9.3.1 The Pomegranate Yield Performance in 2019

The pomegranate fruit was harvested from 80 sampling trees in 2019. As

mentioned earlier, there were four different irrigation levels in the field, 35%, 50%,
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Figure 9.3: The pomegranate yield performance at the individual tree level in
2019. For the 35% irrigation treatment, the total fruit weight per tree was 23.92
kg, which produced the lowest yield. For the 50% irrigation treatment, the total
fruit weight per tree was 27.63 kg. For 75% and 100% irrigation treatment, the
total fruit weight per tree was 29.84 kg and 34.85 kg, respectively.

75%, and 100% of ET. The author then calculated the total fruit weight per tree

(kg) and drew the boxplot for each irrigation level (Fig. 9.3). For the 35% irrigation

treatment, the total fruit weight per tree was 23.92 kg, which produced the lowest

yield. For the 50% irrigation treatment, the total fruit weight per tree was 27.63 kg.

For 75% and 100% irrigation treatment, the total fruit weight per tree was 29.84

kg and 34.85 kg, respectively. The pomegranate yield performance at the USDA

was consistent with previous research work [439]. Since the author had the yield

data for each sampling tree, machine learning algorithms were used for individual

tree level yield estimation with the eight image features mentioned earlier.

9.3.2 The Correlation between the Image Features and

Pomegranate Yield

Before the vegetation indices were used as input features for ML algorithms, the

author first investigated the correlation (R2) between the vegetation index and the
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pomegranate yield (Fig. 9.4). Each dot represented a mean value of 20 sampling

trees. According to the research results, the NDVIre and CIre had relatively higher

R2, which were 0.6963 and 0.6772, respectively. Research results showed that the

NDVI and the pomegranate yield had an R2 of 0.6273. The GNDVI and the

yield had an R2 of 0.5166. The MTVI2 and CIg had R2 of 0.4293 and 0.5059,

respectively. The RTVIcore had the lowest R2 of 0.1216. The canopy size had

an R2 of 0.6192. These findings emphasized the importance of yield estimation

using vegetation indices. Several researchers reported that vegetation indices could

be used for yield estimation [469, 475, 470, 471, 472, 473, 480, 479, 461]. The

performance of ML algorithms on yield prediction is discussed in the following

section.

9.3.3 The ML Algorithm Performance on Yield Estimation

The pomegranate yield data (80 sampling trees) was distributed as 75% for

training and 25% for testing using the train test split method. Considering the

dataset was relatively small, the author used K-fold cross-validation, splitting the

training dataset into K folds, then making predictions and evaluating each fold

using an ML model trained on the remaining folds [20]. The classes were defined as

low yield and high yield for yield prediction based on a threshold value of 25 kg per

tree. For evaluating the trained models, a confusion matrix was used to compare

the performances of different classifiers. The “True label” meant the ground truth

of the yield. The “Predicted label” identified the individual tree yield predicted

by the trained model.

The trained ML classifiers had distinct test performance for individual tree

level yield prediction. The “Decision Trees” classifier had the highest accuracy of

0.85. Table 9.2 and Fig. 9.5 showed the details of the “Decision Trees” method, a

non-parametric supervised learning methods commonly adopted for classification

problems. The objective was to create an ML model that predicted the value of

a target variable by learning simple decision rules inferred from the data features

(Fig. 9.5). A tree can be seen as a piecewise constant approximation. “Decision

Trees” usually uses a white box model, which means the explanation for the con-
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(a) NDVI. (b) GNDVI.

(c) NDVIre. (d) RTVIcore.

(e) MTVI2. (f) CIg.

(g) CIre. (h) Canopy size.

Figure 9.4: The correlation between the vegetation index and yield.
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Table 9.2: The “Decision Tree” performance on yield prediction. “NA” stands for
“Not available”.

Yield prediction Precision Recall F1-score

Low yield 0.92 0.85 0.88

High yield 0.75 0.86 0.80

Accuracy NA NA 0.85

Macro avg 0.83 0.85 0.84

Weighted avg 0.86 0.85 0.85

dition is easily explained by Boolean logic if a given situation is observable in a

model. As shown in Fig. 9.5, the “Decision Trees” ML model started at the root

node, if the NDVIre value were less than 0.334, the prediction process would move

to the leaf child node. In this case, the model would predict that the input was a

low-yield pomegranate tree. A node’s gini attribute measures its impurity: a node

is “pure (gini = 0)” if all the training instances it applies are from the same class.

For the other classifiers’ test performance, the accuracy of the k-nearest neigh-

bor was 0.8. “Support Vector Classification (SVC)” had an accuracy of 0.7. The

“Random Forest” had a test accuracy of 0.65. The “AdaBoost”, “Gaussian Pro-

cess”, and “Gaussian Naive Bayes” had an accuracy of 0.8, 0.75, and 0.6, re-

spectively. The “Quadratic Discriminant Analysis (QDA)” also had a prediction

accuracy of 0.8 (Table 9.3 and Fig. 9.6).

9.4 Conclusion and Future Research

The aim of the research was for individual tree level yield prediction in the

pomegranate field using a UAV-based remote sensing method. The author col-

lected the yield data and calculated the vegetation indices derived from the high-

resolution UAV imagery. Then, machine learning algorithms were adopted for the

yield prediction classification. The research results showed that the best classifi-

cation accuracy of yield was 85% when the “Decision Trees” method was being

adopted. For the other ML models’ test performance, the accuracy of the k-nearest
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Figure 9.5: The “Decision Trees” method training process. The “Decision Trees”
usually uses a white box model, which means the explanation for the condition
is easily explained by Boolean logic if a given situation is observable in a model.
As shown here, the “Decision Trees” ML model started at the root node, if the
NDVIre value were less than 0.334, the prediction process would move to the leaf
child node. In this case, the model would predict that the input was a low-yield
pomegranate tree. A node’s gini attribute measures its impurity: a node is “pure
(gini = 0)” if all the training instances it applies are from the same class.
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Figure 9.6: The comparison of the eight different ML classifiers on individual tree
level yield prediction. “True label” meant the ground truth of the yield. “Predicted
label” identified the individual tree yield predicted by the trained model. The value
0 meant the low yield; value 1 meant the high yield.
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Table 9.3: The performance of ML methods on yield prediction.

Classification methods Prediction accuracy

“Decision Trees” 0.85

“Nearest Neighbors” 0.80

“Support Vector Machine” 0.70

“Random Forest” 0.65

“AdaBoost” 0.80

“Gaussian Process” 0.75

“Gaussian Naive Bayes” 0.60

neighbor was 0.8. “Support Vector Classification (SVC)” had an accuracy of 0.7.

The “Random Forest” had a test accuracy of 0.65. The “AdaBoost”, “Gaussian

Process”, and “Gaussian Naive Bayes” had an accuracy of 0.8, 0.75, and 0.6, re-

spectively. The “QDA” also had a prediction accuracy of 0.8. The pomegranate

yield information could be reflected by vegetation index data. The research results

supported the idea that vegetation indices could be used for yield estimation. Fur-

thermore, the findings of this research provided insights for the scale-aware yield

prediction using phenotyping and machine learning technology.
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Chapter 10

Intelligent Bugs Mapping and

Wiping (iBMW): An Affordable

Robot-driven Robot for Farmers

10.1 Introduction

Navel orangeworm (NOW) is a common pest of almonds in California. Accord-

ing to [482], California almond harvests is worth of more than five billion dollars

before processing. The NOW can cause around 30 percent product loss in almonds

from direct consumption [483]. First-instar larvae can bore into the nutmeat, then,

the larvae can consume most of the nut, which will produce lots of webbing and

frass. Later, the larvae damage can also cause fungal infections as soon as hull

splits occur. With 2% total damage from the NOW, almond growers’ loss can be

$158.75 per acre. For those who had 20% total damage, the loss can be as high

as $1742.50 per acre, which is 24% of the total profit $7200 per acre [484]. This

summer’s NOW threat to almond orchards could rival that of 2017, when damage

to almonds by the pest was at historic levels. Therefore, NOW is economically

important in California and early detection of pest population distribution in agri-

cultural system is critical to enabling timely interventions and reducing crop yield

losses [290]. Each year in California, eradication of pests is not always available,
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because of either the fast expanding distribution of the pest or restrictions regard-

ing the tools available to attempt eradication. As mentioned about NOW, they can

fly a quarter-mile or more to find new host, which makes it more difficult mapping

their distribution. Monitoring is able to give some warnings, but the growers have

to respond fast. Traditionally, people use pheromone traps to monitor the flights

of NOW, but it needs labors counting the number of moths and tracking the data,

which is time consuming and needs a lot of labor effort.

Typically, growers must take four critical steps in their Integrated Pest Man-

agement (IPM) program to reduce NOW damage:

1. Winter sanitation to remove mummy nuts.

2. Mapping NOW population and timing of moth flights.

3. Pesticide applications or biological control.

4. Prompt harvest before a third generation of NOW.

In this chapter, the author will focus on the second and third section. The goal

is to develop an intelligent bugs mapping and wiping (iBMW) robot to perform pest

population spatial and temporal distribution and “surgical precision spraying” for

pest wipeout. The iBMW is an affordable (less than $1000) robot-driven robot,

which has a Turtlebot 3 worked as the robot’s brain and an unmanned ground

vehicle serviced as the work platform. According to the design, the robot will be

capable to recognize and classify the NOW by using deep learning neural networks.

Several iBMWs can also work in the field together in swarming mode day and

night, so that it can realize temporal and spatial bugs mapping. Then, based on

the mapping results, the iBMWs can determine which areas are at the greatest

risk and whether wiping treatment is needed in those areas.

Being able to target treatment of infestations will result in lower use of toxic

insecticide, time saving, reduced production costs, and greater crop yields. Less

pesticide usage can also reduce both air and water contamination so that it can

reduce the environmental impact. All of these make farming more economically

viable, and have the potential to provide us safety, health, and sustainability in

food systems for our growing world population.
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10.2 Existing Solutions

The current state-of-the-art methods to identify pest population distribution

require farmers to use egg traps, pheromone traps, or degree-day calculations to

monitor the first and second generations of navel orangeworm.

Egg traps usually have a mixed of almond meal and almond oil. They will

encourage female moths to lay eggs on the traps. The egg traps are usually placed

with a density of 1 trap per 5 acres. Farmers or growers usually check the traps

twice a week to get the eggs data and determine the egg-laying peaks. Pheromone

traps are mainly placed in the tree canopies at around 6 to 8 feet to map the flights

of adult male moths [485]. Farmers need to count the number of moths in the trap

and identify peaks in adult activity in the orchard. Although these methods can

help prevent almonds from NOW damage in some degree, scouting in the field and

collecting data is still very time consuming. It also needs lots of labor to finish

the field work. Also, counting the number of moths is an empirical job, even ex-

perienced farmers may make mistakes. For example, meal moth (Pyralis farinalis)

is also attracted to the traps, which looks very similar with navel orangeworm.

Another disadvantage is the traps are point measurement, which can hardly stand

for the temporal and spatial distribution for a whole orchard.

After collecting the data from egg or pheromone traps, researchers or farmers

will make treatment decisions. The first hullsplit is the most effective timing to

apply for insecticide. Spraying the pesticide at the beginning of hullsplit if eggs

are laid on egg traps. Researchers or farmers can also spray pesticide if pheromone

traps indicate that the second flight is starting. Usually, commercial spray rigs

are used in almond orchards, such as D2-40 engine driven or GB-36 power take-off

(PTO), manufactured by Air-O-Fan (Reedley, CA, USA) [486]. The Progressive

Ag tower is another top choice for spraying applications. Cone-jet nozzles (Teejet

Technologies, Wheaton, IL, USA) have also been widely used. Spraying speed for

those machines is usually set up as 2 to 4 mph. Spray applications of insecticides

are mostly empirically based on crop phenology and degree-days using a lower

threshold of 55◦F and an upper threshold of 94◦F. Mating disruption, which uses

female-moth pheromones to confuse male moths, is another tool used with insecti-
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cides together. The cost estimation for mating disruption is $120 to $160 per acre.

For insecticide application, it’s $40 to $60 per spraying.

Researchers or farmers usually spray a whole orchard to deal with potential

pest risks, for which the insecticide is not used efficiently. Research results [487]

proved that much of the pesticide was not used on the target trees. Seiber found

that 88% of pesticide was on the orchard floor instead of the trees [488]. Cross also

investigated the effects of spray droplet size and application volumes of 10 to 80

gallons per acre on spray deposition in an orchard [489]. The results showed that

43% to 61% of the applied spray was lost to ground deposit within 15 feet of the

row being sprayed. The off-target pesticides result in a significant waste of money

as well as environmental issues, such as air pollution and water contamination.

To reduce the pesticide usage and to improve the efficiency, researchers tried

several different new technologies. For example, sensor-equipped sprayers, also

called “Smart sprayer”, use ultrasonic or optical sensors to detect the presence or

absence trees [490]. Giles found that this technology could save 28% to 34% of

pesticide when using this system. The basic idea is to turn on the spray nozzles

when the target trees show up in the spray zones [487]. The sprayer will turn off

when it’s between trees or where trees are absent. The experiment was designed in

a commercial almond orchard near Modesto, CA. The majority of the trees were

about 20 years, which are planted on a 23-foot diamond pattern. In principle,

however, these sprayers are the same with conventional sprayers. They did not

consider the pests population temporal and spatial distribution. In this chapter,

the author believes iBMWs can improve pesticide spraying efficiency a lot based

on the innovations mentioned in the next section.

10.3 iBMW Innovation

As mentioned previously, the iBMW is an intelligent robot which can recog-

nize and classify the NOW by using deep learning neural networks. As shown

in Fig. 10.1, by using swarming mechanism, several iBMWs can scout in orchard

together to realize pest population mapping in a large scale. Based on the map-
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ping analysis, the iBMWs can determine which areas are at the greatest risk and

whether wiping treatment is needed. Once the whole system is working, the final

goal is to use the iBMWs system to monitor more kinds of trees, such as walnut,

pistachio, and pomegranate. Such flexibility can make iBMWs have impact on

more than just one type of field. Based on farmers’ requirements, the author will

add more agricultural applications, such as soil moisture monitoring, water stress

detection [232] and 3D modelling of canopies, on this taskable robot platform.

Figure 10.1: The iBMW workflow. The iBMW is an intelligent robot which can
recognize and classify the NOW by using deep learning neural networks. By using
swarming mechanism, several iBMWs can scout in orchard together to realize pest
population mapping in a large scale. Based on the mapping analysis, the iBMWs
can determine which areas are at the greatest risk and whether wiping treatment
is needed.

Currently, the objective is to make the iBMWs work perfectly in an almond

orchard in Merced (37.493◦N, -120.634◦W). There are three kinds of almonds:

Nonpareil, Carmel, and Monterey, all planted on Lovell peach rootstock, spaced

at 5.5 m × 6.1 m, with Rocklin loam and Greenfield sandy soil [232]. In order to

achieve the pest mapping and wiping, our team has been working in the almond

orchard several times to collect videos and images to feed into the deep learning

algorithms to realize the cognition of the iBMW. We will collect more data in

different almond orchards in the future to make iBMWs more robust and adaptive.



240

Figure 10.2: The concept of the iBMW.

10.3.1 Cognitive of Pest Population Mapping and Wiping

Instead of set up in the almonds’ canopies, the egg traps or pheromone traps

will be equipped on iBMW’s deluxe rod actuator, as shown in Fig. 10.2, which can

change the height to six or eight feet when running in the field. Then, iBMWs can

scout in orchard together to record number of moths in the traps by using high

resolution RGB cameras mounted on the iBMWs. High resolution images enable

that eggs and adult moths can be seen clearly in images. Then, deep learning neural

networks, such as Faster RCNN [491], Fully Convolutional Neural Networks [492],

can be used to train images datasets to get a NOW detection model. The model

will be used to recognize and classify the NOW in the images.

Several iBMWs can work in the field together in swarming mode day and night

if necessary. Thus, it can map the NOW in almond orchard temporally and spa-

tially. The high temporal and spatial resolution images will help the farmers to

determine where, when, and what kind of treatments are needed. For example,

the iBMW can pinpoint infestations and problems areas, so that it’s unnecessary

to treat all areas in a large scale of field. Sprayer system can be mounted on the

iBMWs to realize pesticide applications. This will definitely save lots of labors
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for scouting in the field and less pesticide will be used. It will directly or indi-

rectly contribute to agricultural, environmental and economic sustainability due

to minimized application pesticides and improve yields estimation.

The challenges for NOW detection highly depend on how accurate our deep

learning algorithms will be. During the image processing, NOW may not be treated

as bugs or other pests on traps may be recognized as NOW, both could happen

during the training process. We will carefully select training and testing data

samples during the image processing. Several image processing techniques will be

applied to make sure we can get the best accuracy results.

10.3.2 iBMW with TurtleBot 3 as “Brain”

For the iBMW platform, we used a TurtleBot 3 which is operated by ROS

(Robot Operating System), as the robot’s brain and control the iBMW’s behaviors

in the field. ROS is a flexible framework for writing robot software, so that it can

save us a lot of time on software development. TurtleBot 3 is a low cost robot

platform with open-source software. There are mobile base, 3D sensor and laptop

computer in the TurtleBot 3 kit. TurtleBot 3 has many similar abilities of the

large company’s robot platforms, such as PR2. With the TurtleBot 3 components,

we can even create real-time obstacles avoidance and autonomous navigation.

10.3.3 Real-time Vision Processing

We will also use the Jetson TX2 to realize cognition mechanism by deep learning

algorithms. Field road detection experiment results are shown in Fig. 10.3. Jetson

TX2 is the fastest, most power-efficient embedded AI computing device. It is

built around an NVIDIA GPU, loaded with 8GB of memory, and 59.7GB/s of

memory bandwidth, which will benefit the iBMWs to react faster in a real time

pest monitoring. Deep learning can allow the iBMW to adapt to field conditions

based on computer vision instead of only relying on GPS (GPS sometimes is weak

under tree canopies). The iBMW currently can run 3.7 miles per hour. Emergency

shut-off can also avoid injury to workers or crops if an object shows up in iBMW’s
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Figure 10.3: Road detection by Jetson TX2.

path accidentally. All of these advantages will make the iBMW more time efficient,

consistent and reliable.

iBMW, which includes artificial intelligence platform, can also enable researchers

to conduct proximate sensing and mapping missions without human intervention.

Real-time vision processing enabled by cognition algorithms is one of the most im-

portant factor. Typically, there are three steps of the iBMW movement behaviors,

stimulus perception, judgement and decision making, and stimulus performance.

In a recent cognitive algorithm used by robot, it can even recognize specific objects

in the environment, by using cognitive algorithms to develop a deeper understand-

ing of the scene based on objects and their spatial relationships.

Reconstruction and mapping Monocular Simultaneous Localization and Map-

ping (SLAM) can also be applied on iBMW platform. SLAM relies on cognition

techniques to calculate the position of the robot and to map the environment [303].

Real-time monocular SLAM was thought not possible because of the high com-

putational cost. However, there are many kinds of SLAM packages now, such as
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LSD-SLAM [304], RatSLAM [305], and SVO [306]. Researchers compared many

different open-source vision-based SLAM packages in a paper at 2016 [307]. It

turned out that ORB-SLAM [308] is the best performing package. ORB-SLAM

uses ORB features, which are binary features that are invariant to rotation and

scale [303]. ORB-SLAM also allows the robots to initialize with no user input,

which is important for iBMW platforms as an autonomous robot system. Addi-

tionally, when the ORB-SLAM is matching features, the number of key frames

increases because of the complexity of the images. This is done by “culling” key

frames that are not used, and allows for ORB-SLAM to run for longer periods of

time [303].

Using deep learning, recognition can bridge the gap between perception and

intelligence. For example, perception missions can collect lots of data, but much

of it was discarded to simplify interpretation by higher level tasks [309], e.g. a 3D

object can become a point in space. In Arne’s paper [309], it used a deep learning

framework to replace these interfaces with learned interfaces. This allows for error

back-propagation that can adapt each module to the robot’s task. Deep learning is

also a state-of-art technique for image processing. It can target land cover and crop

type classification from the images collected from sensors and cameras [23]. Safety

is another concern by farmers and growers, the iBMW should have the ability to

detect workers and farmers, then will make the right decision in the field.

10.3.4 Optimal Path Planning Enabled by iBMW

The iBMW can also contribute to optimal path planning research. Tradition-

ally, there is not much path planning knowledge for field operations [493]. Re-

searchers execute field operations based on experience. According to a study of

spraying vehicles with a positioning system, it showed that 16% of the driving

distance could be saved, which expressed a clear need for robot path planning. In

the past few years, many algorithms have been developed to realize real time path

planning systems for robots. For example, in [494] , the author used a visibility

graph algorithm and Dijikstra’s algorithm to choose optimal path for a robot to

traverse in the environment.
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Usually, a path planning algorithm needs to meet the following rules [495]:

1. The path planning should have the lowest cost.

2. The resulting path should be fast and accurate.

3. The algorithm should be adaptive with different maps.

The iBMW, as a low-cost robot platform, can be used for basic research of

path planning. As mentioned in previous section, iBMWs use Turtlebot 3 compo-

nents to control the robot’s behavior. We can create real-time obstacles avoidance

and autonomous navigation based on the ROS. With the Jetson TX2, the iBMW

currently can do emergency shut-off, which avoids injury to workers or crops if an

object shows up in iBMW’s path accidentally. All of these advantages will make

the iBMW more time efficient, consistent and reliable for path planning research.

10.3.5 Ethical, Cultural and Legal Matters

With any new practice growers are concerned about if it works and will it save

them time and money. Growers would probably worry there is no time or money

saved, as any time or money spent checking traps or setting up pheromone traps

would just be spent maintaining machines. This would probably be a big concern,

as these are unfamiliar and perceptually more complex machines for growers. We

are competing with a large market that has been promising a lot with automation

and mechanization over the years and have not really delivered. Thus, growers

are getting more skeptical. Getting Bowles Farming Company involved is a good

step as we need to get growers to buy-in to get other growers to buy into the

concept. We will prefer to spend more time convincing one grower than a full

room of growers. If we can convince one person and he or she use it and it works,

they will go about convincing other growers, as well as, this naturally happening

when a neighbor uses something and it works.
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10.4 Measuring Success

There are three outcome indicators that the author will be monitoring through-

out the iBMWs project, the pest population temporal and spatial distribution, the

amount of pesticide being used, and the target trees almond yield.

10.4.1 NOW Population Temporal and Spatial Distribu-

tion

The egg traps are usually placed in the orchard on March at a rate of 1 trap

per 10 acres. Researchers also hang one pheromone traps per 50 acre and at least

two traps per orchard. Farmers usually monitor the traps once a week. The pest

population distribution data acquired by using the above method will be used as

groudtruth. The author will compare the iBMW’s pest population temporal and

spatial distribution with the groudtruth to see if we can get similar or even better

results. This will definitely reduce the labor cost, and early detection of the pest

will also reduce crop losses made by NOW.

10.4.2 The Amount of Pesticide Being Used

The pesticide usage is another indicator to measure during the growing season.

The author will set up several homogeneous almond blocks. The author will use

commercial spray rigs to spray half of the almond blocks. The iBMWs will be

used to spray the rest according to iBMWs pest population distribution results.

Each spray amount will be recorded during the growing season. The total amount

of pesticide for both methods will be calculated after the last spray at the end of

growing season. As mentioned in the existing solution section, Giles found that

his technology could save 28% to 34% of pesticide when using his system [490].

In principle, however, these sprayers are the same with conventional sprayers.

They did not consider the pests population temporal and spatial distribution.

The author believes iBMWs can improve pesticide spraying efficiency by reduced

use of large-scale pesticide. This low-environmental impact solution will reduce

air and water contamination resulting from orchard pesticide usage. Therefore,



246

it can provide us a safe, healthy and sustainable food systems. The reduction

of pesticide cost can be substantial. Based on UC Cooperative publications, the

estimate pesticide costs per acre in California orchard crops can be around $250

[496]. Based on [487], their method saved 10% - 20% pesticide in Sacramento

Valley almonds. The author will evaluate iBMWs in the following season to see

our results.

10.4.3 The Target Trees Almond Yield

The almond yield will be measured by the researchers or farmers in orchard.

The author will compare the results between conventional method and iBMWs to

see if iBMWs have any benefit to the almond yield when applied iBMWs spray

system.

10.5 Conclusions and Future Research

In general, this chapter proposed an intelligent bugs mapping and wiping

(iBMW) robot concept to perform pest population spatial and temporal distri-

bution and “surgical precision spraying” for pest wipeout. Based on the design,

the robot will be able to recognize and classify the NOW by using an innovative

method for NOW population temporal and spatial distribution. Several iBMWs

can also work in the field together in swarming mode. Then, based on the mapping

results, the iBMWs can determine which areas are at the greatest risk and whether

wiping treatment is needed in those areas.

Being able to target treatment of infestations will result in lower use of toxic

insecticide, time saving, reduced production costs, and greater crop yields. Less

pesticide usage can also reduce both air and water contamination so that it can

reduce the environmental impact. All of these make farming more economically

viable, and have the potential to provide us safety, health, and sustainability in food

systems for our growing world population. Based on research purpose, the author

can also use this iBMW robot platform for more agricultural applications, such as

onion irrigation treatment detection [24], tree canopies segmentation [23, 26] and
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so on.



Chapter 11

A Non-invasive Stem Water

Potential Monitoring Method

Using Proximate Sensor and

Machine Learning Algorithms

11.1 Introduction

Improving the capacity to determine plant water status is critical to solve the

drought responses and water requirements of crops and trees [497]. The stem water

potential (SWP) is a direct measure of water tension within the plant, implying

the water status directly in the plant-soil-atmospheric continuum [498]. The SWP

also summarizes the effects of both soil moisture and evapotranspiration. These

advantages make it a popular index in crops and trees. The details of SWP mea-

surement methods can be referred to [499]. The water mass per leaf area (WMA)

and relative water content (RWC) are also critical indices. The WMA represents

the absolute tissue water content normalized by the leaf area. The RWC is normal-

ized by the saturated water content, which provides information about cell volume

shrinkage [500]. However, those traditional methods require the excision of tissues

and laboratory analysis, either gravimetric in the case of WMA and RWC, or using
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the pressure chamber for SWP [501]. For example, it is labor-intensive and time

consuming to conduct the SWP measurement, requiring at least 10 minutes after

the leaf being covered with a foil bag until the water potential is well balanced

all around the leaf. Thus, measurement of plant water status has commonly been

limited to small study scales [502].

Compared with the traditional methods, noninvasive methods have great po-

tential for improving ground-based and remote sensing in water relations research

and their applications in agriculture. In [502], Browne et al. demonstrated a re-

fined method and physical model to predict WMA, RWC, and leaf water potential

using terahertz transmission. With the development of UAVs technology, UAVs

have been commonly used in water stress related research, such as irrigation man-

agement [24], evapotranspiration estimation [137], and tree canopy detection [23].

However, UAVs are limited by flight time and payload capability. Such limitations

do not apply to proximate sensors. It was the objective of this study to collect data

with a pocket-sized, cutting-edge technology radio frequency tridimensional sen-

sor, and then implement several scikit-learn classifiers to detect SWP in a walnut

orchard.

In this study, the author proposed a low-cost proximate radio frequency tridi-

mensional sensor “Walabot” and machine learning classification algorithms to pre-

dict the walnut SWP. Walnut leaves from trees of different SWP were placed on this

sensor to test if the Walabot can detect small changes in the water stress levels.

Hypothetically, waveforms generated by different signals may be useful to clas-

sify SWP levels. Scikit-learn classification algorithms, such as “Neural Networks,”

“Random forest,” “Adam optimizer,” “Decision Tree,” “Support Vector Machine,”

and “Nearest Neighbors” were applied for data processing and evaluation.

11.2 Material and Methods

11.2.1 Walnut Study Area

This study was conducted in a walnut orchard at Merced, CA, 95340, USA

(37.47◦N, 120.45◦W). There were three types of spacing treatment, 22’ × 22’,
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Figure 11.1: This study was conducted in a walnut orchard at Merced, CA, 95340,
USA (37.47◦N, 120.45◦W). There were three types of spacing treatment, 22’ × 22’,
26’ × 26’, and 30’ × 30’. The region of interest was marked with the red box.
To determine the SWP of a walnut tree, midday SWP was measured by using a
pressure chamber weekly from May to September 2018.

26’ × 26’, and 30’ × 30’. The region of interest was marked with the red box

(Fig. 11.1). To determine the SWP of a walnut tree, midday SWP was measured

by using a pressure chamber weekly from May to September 2018.

11.2.2 Reflectance Measurements with A Radio Frequency

Sensor

The SWP data was collected with a radio frequency 3D sensor called Walabot

(Vayyar Imaging Ltd, Yehud-Monosson, Israel). The Walabot was used to measure

the reflectance of radio frequencies of the walnut leaves. Then, the reflectance was

visualized using PyTorch. For each measurement, a time-domain reflectance signal

was recorded. Records of the different reflectance strengths were visualized in the

dataset. See more details about the sensor in Chapter 6.

11.2.3 Data Collection and Processing

In this study, the Walabot was used to measure radio frequency reflectance from

the walnut leaves in 8-28-18 and 9-10-18. There were 16 sampling trees, which had
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Table 11.1: The stem water potential of walnut leaves. There were 16 sampling
trees, which had unique ID numbers. For example, “20-4” meant the fourth tree
on row 20. Each sampling tree was measured five times to reduce the likelihood of
errors or anomalous results.

Sampling trees SWP (8-28-2018) SWP (9-10-2018)

20-4 4.14 5.67

20-12 4.53 4.95

20-20 4.63 4.26

26-4 5.10 4.95

26-12 3.76 4.17

26-20 4.25 4.02

26-28 5.25 4.44

32-4 3.53 4.85

32-12 2.84 1.36

32-20 3.78 5.27

38-4 5.06 5.37

38-12 3.46 3.56

38-20 3.64 4.28

44-4 4.60 4.58

44-12 3.45 4.49

44-20 4.07 4.29

unique ID numbers (Table 11.1). For example, “20-4” meant the fourth tree on row

20. Each sampling tree was measured five times to reduce the likelihood of errors

or anomalous results. Based on the SWP range, the walnut trees were classified

into three levels (Table 11.2).

11.2.4 Scikit-learn Classification Algorithms

Six different methods in generating classifiers were used to evaluate the detec-

tion performance for SWP levels. “Neural Net,” “Random Forest,” “AdaBoost,”

“Support Vector Machine,” “Nearest Neighbors,” and “Decision Trees” were used
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Table 11.2: The SWP levels of walnut leaves. Based on the SWP range, the walnut
trees were classified into three levels.

SWP levels Pressure applied (Bar)

Level 1 < 3.5

Level 2 3 - 5

Level 3 > 5

as classification algorithms. For example, the “Decision Trees” are a non-parametric

supervised learning method used for classification and regression. The goal was

to create a model that predicted the value of a target variable by learning simple

decision rules inferred from the data features.

11.3 Results and Discussion

The collected SWP data were converted into 2048-dimension vectors for scikit-

learn algorithms data processing. The data was distributed as 70% for training

and 30% for testing. For evaluating the trained models, a confusion matrix was

used to compare performances of different classifiers. The ML models had different

levels of performance (Fig. 11.2). The confusion matrix provided insight not only

into the errors being made by a classifier but, more importantly, the types of errors

that were being made. The “True label” meant the ground truth of SWP levels.

The “Predicted label” identified the SWP levels predicted by the trained model.

The “Decision Tree” had the highest accuracy of 0.78 (Table 11.3). The accuracy

of the “Support Vector Machine” was 0.62. The “Random Forest” also had a low

prediction accuracy of 0.60. The “AdaBoost,” “Nearest Neighbors,” and “Neural

Network” had an accuracy of 0.60, 0.65, and 0.62, respectively.

In the analysis as “Decision Tree” for the SWP Level 1, the trained model

predicted the test data was in the range of Level 3 (Table 11.4). Therefore, the

prediction accuracy (F1-score) of Level 1 was zero. The model successfully classi-

fied 22 out of 25 samplings in Level 2. For the Level 2, the model had performance

with an F1-score of 0.92. For the Level 3, the model classified 9 out of 10 sam-
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Figure 11.2: A comparison of six classifiers in Scikit-learn on SWP prediction. (a)
“Decision Trees”; (b) “Nearest Neighbors”; (c) “Neural Net”; (d) “AdaBoost”; (e)
“Random Forest”; (f) “Support Vector Machine”. “True label” meant the ground
truth of SWP levels. “Predicted label” identified the SWP levels predicted by the
trained model.
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Table 11.3: The performance of classification methods. The accuracy of the “Sup-
port Vector Machine” was 0.62. The “Random Forest” also had a low prediction
accuracy of 0.60. The “AdaBoost,” “Nearest Neighbors,” and “Neural Network”
had an accuracy of 0.60, 0.65, and 0.62, respectively.

Classification methods Prediction accuracy

“Neural Network” 0.62

“Support Vector Machine” 0.62

“Random Forest” 0.60

“AdaBoost” 0.60

“Nearest Neighbors” 0.65

“Decision Tree” 0.78

plings. The overall prediction accuracy of the trained model was 0.78. The model

had poor performance when the SWP was low. Perhaps the difference between

features was minimal when the SWP was at this low level and could not be de-

tected. Another reason might be the performance of the “Decision Tree” classifier.

Further study needed to be conducted to find better algorithms for SWP detection.

The dataset was also very small. More data will be collected and added to train a

more robust model for SWP detection.

11.4 Conclusion and Future Work

The detection of walnut SWP is important in the walnut industry for man-

agement decision support. In this study, a proximate sensor was used to classify

different walnut SWP levels. By using the “Decision Tree” classifier, the Walabot

could classify the walnut SWP levels with an accuracy of 78%. As a cutting-edge

technology for radio sensing, the sensor could be used flexibly in walnut orchards

and provided accurate data information. In the future, more data will be collected

for training the model. With more data from the walnut trees, more training data

will hypothetically improve the accuracy of the model.
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Table 11.4: The “Decision Trees” performance on SWP prediction. In the analysis
as “Decision Tree” for the SWP Level 1, the trained model predicted the test data
was in the range of Level 3. Therefore, the prediction accuracy (F1-score) of Level
1 was zero. The model successfully classified 22 out of 25 samplings in Level 2. For
the Level 2, the model had performance with an F1-score of 0.92. For the Level 3,
the model classified 9 out of 10 samplings. The overall prediction accuracy of the
trained model was 0.78.

SWP levels Precision Recall F1-score

Level 1 0 0 0

Level 2 0.96 0.88 0.92

Level 3 0.53 0.90 0.67

Accuracy NA NA 0.78

Macro avg 0.50 0.59 0.53

Weighted avg 0.73 0.78 0.74



Chapter 12

A Low-cost Soil Moisture

Monitoring Method by Using

Walabot and Machine Learning

Algorithms

12.1 Introduction

In [503], Engman et al. defined soil moisture as the temporary storage of

precipitation within a shallow layer of the earth. The soil moisture plays an im-

portant role in hydrological applications, such as agriculture [24], climate change

[504], and meteorology [505]. For example, the data analysis from soil moisture

monitoring can be used for crop yield estimation, irrigation treatment inference

[27], and warning of drought [503]. Soil moisture monitoring can also be applied

for pest management [506] and evapotranspiration estimation [142]. Therefore,

it is important to monitor the soil moisture accurately. Typically, there are two

types of methods for monitoring the soil moisture, proximate sensing and remote

sensing.

Proximate sensing methods for soil moisture are currently restricted to point-

specific measurements [507]. For example, researchers usually put the soil moisture
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probes in the test field for monitoring. However, these discrete measurements can

not represent the spatial and temporal soil moisture distribution for the whole

field.

With the development of remote sensing technology, the satellite has been

widely used for soil moisture remote sensing [508]. Many researchers have proved

that optical and thermal remote sensing can be used for soil moisture measure-

ments. For example, in [509], Wang et al. proposed the normalized multiband

drought index (NMDI) for remotely sensing the soil based on the soil spectral

characteristic. Since variations of soil moisture have a significant influence on soil

surface temperature [510], thermal infrared remote sensing is also used for mea-

suring the soil temperature to correlate it with soil moisture. Active and passive

microwave remote sensing techniques are also commonly used for soil moisture

measurements [511]. For passive microwave sensors, they can measure the inten-

sity of microwave emission from the soil, which is proportional to the brightness

temperature, a product of the surface temperature and emissivity [507, 512]. How-

ever, there are disadvantages to these methods. Limited surface penetration can

be a problem both for optical and thermal remote sensing. Cloud contamination

can be another issue [507]. The data acquired from the microwave has a low spatial

resolution.

Therefore, in this study, the author proposed a new low-cost (less than $1000)

soil moisture monitoring method by using a Walabot sensor and machine learn-

ing algorithms. Walabot is a pocket-sized device and cutting-edge technology for

Radio Frequency tridimensional sensing, which has already been used in many

research topics, such as nematodes detection [334], and battery voltage detection

[336]. It can work flexibly in the field and provide data information accurately

than remote sensing methods with machine learning algorithms. First, the sensor

was used to collect radio frequency reflectance of sampling soil, which could de-

tect the physical structure of the soil moisture. Second, the collected data were

pre-processed by data enhancement or a wavelet transform. Third, processed data

was used by PCA [513] and LDA [514] for analysis. Results showed that the Wal-

abot successfully classified the different levels of soil moisture with a state-of-art
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performance. Moreover, with the development of wireless technology and micro-

electromechanical systems, and computer vision, we might even use the Walabot

to recognize real-time soil moisture monitoring in future research.

12.2 Material and Methods

12.2.1 Study Site

This research was conducted at Mechatronics, Embedded Systems and Au-

tomation (MESA) Lab in Atwater, California, USA (37.37◦N, 120.57◦W).

12.2.2 The Proximate Sensor

The sensor being used was Walabot Developer (Vayyar Imaging Ltd), as shown

in Fig. 12.1. Based on the technical specs [484], the Walabot can sense the envi-

ronment by transmitting, receiving, and recording signals from multiple antennas.

Multiple transmit-receive antenna pairs’ recordings are analyzed to build a 3D im-

age of the environment. Then, researchers can detect changes in the environment

by analyzing the sequences of images. The sensor is also capable of short-range

imaging into dielectric environments, such as drywall and concrete. Therefore, it

can be used in many study areas as follows:

1. In room/wall imaging.

2. Object detection, location and tracking.

3. Speed measurement and motion sensing.

4. Dielectric properties of materials sensing.

12.2.3 The Experiment Setup

In this study, the author used Walabot to detect different levels of soil moisture.

The experiment was conducted in the MESA Lab. The soil was sampled in an

almond field near the lab and was divided into 3 cups, as shown in Fig. 12.1. All

the soil samplings were from the same spot in the almond field to make sure they

are homogeneous. The soil was dried out to make sure all the 3 cups of soil were
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Figure 12.1: Walabot data collection. The experiment was conducted in the MESA
Lab. The soil was sampled in an almond field near the lab and was divided into 3
cups.

at the same lowest moisture level. The weights of three cups of dry soil were 632

grams, 630 grams, and 634 grams. 6 g or 8 g water was added in every cup each

time (10 times in total) to increase the soil moisture until the soil moisture was

saturated, as shown in Table 12.1.

12.2.4 Data Collection and Processing

The Walabot was used to measure the soil moisture every time after the water

was added. Each measurement by the Walabot was repeated ten times to reduce

the likelihood of errors or anomalous results so that it could increase the confi-

dence interval. For image processing, the author used two different machine learn-

ing methods, the Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA). Both of them could reduce the dimensionality of the datasets and

increase the classification accuracy. More details about PCA and LDA definitions

can be found in Chapter 4.
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Table 12.1: Soil samplings. All the soil samplings were from the same spot in the
almond field to make sure they are homogeneous. The soil was dried out to make
sure all the 3 cups of soil were at the same lowest moisture level. The weights of
three cups of dry soil were 632 grams, 630 grams, and 634 grams. 6 g or 8 g water
was added in every cup each time (10 times in total) to increase the soil moisture
until the soil moisture was saturated

Soil condition Soil sample 1 Soil sample 2 Soil sample 3

Dry 632g 630g 634g

1 640g 638g 642g

2 648g 646g 648g

3 654g 652g 656g

4 660g 660g 664g

5 668g 668g 670g

6 676g 674g 678g

7 682g 682g 686g

8 690g 690g 692g

9 696g 696g 700g

10 (Saturated) 704g 704g 708g
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12.3 Results and Discussion

Each radio frequency reflectance image was converted into a 2048-dimension

vector for data processing. The data was distributed as 67% for training and 33%

for testing. Since the dataset was small for training eleven classifiers, the author

distributed the eleven soil conditions into five different levels from dry to saturation.

As shown in Fig. 12.2 and Fig. 12.3, “Dry” meant the dry soil. “WetTotal” standed

for the saturated soil. Soil conditions 1, 2, and 3 were included in “Wet1”. “Wet2”

contained the soil conditions 4, 5, and 6. “Wet3” included the soil conditions 7, 8,

and 9.

Several classifiers in scikit-learn were used for comparison, such as “Nearest

Neighbors,” “Linear SVM,” “RBF SVM,” “Gaussian Process,” “Decision Tree,”

“Random Forest,” “Neural Net,” “AdaBoost,” “Naive Bayes,” and “QDA”. In this

soil moisture monitoring problem, the accuracy of these classifiers was shown in

Table 12.2. The best classifiers were “Nearest Neighbors,” “Gaussian Process,”

“Decision Tree,” “Random Forest,” “Neural Net,” and “Naive Bayes” with an

accuracy of 95%. The “QDA” was with 90% accuracy. The “Linear SVM” and

“AdaBoost” were worst with 55% accuracy.

Scikit-learn’s accuracy classification score function evaluated the performance

of the classifiers. This function computed the subset accuracy, in which the labels

predicted for sampling must exactly match the corresponding true labels. Esti-

mators used this score method as the evaluation criterion for the classification

problems. All scorer objects followed the convention that higher return values

were better than lower return values.

12.3.1 The Linear Discriminant Analysis Performance

Several LDA methods were used for soil moisture classification, as shown in

Table 12.3. decision function(X) was for predicting confidence scores of soil sam-

ples. fit(X, y[, store covariance, tol]) was for fitting the LDA model according

to the given soil images training data and parameters. fit transform(X[, y]) was

for fitting data and transform it. get params([deep]) was used for setting param-
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Table 12.2: The classifier accuracy. The best classifiers were “Nearest Neighbors,”
“Gaussian Process,” “Decision Tree,” “Random Forest,” “Neural Net,” and “Naive
Bayes” with an accuracy of 95%. The “QDA” was with 90% accuracy. The “Linear
SVM” and “AdaBoost” were worst with 55% accuracy.

Classifiers Accuracy

“Nearest Neighbors” 0.95

“Linear SVM” 0.40

“RBF SVM” 0.95

“Gaussian Process” 0.95

“Decision Tree” 0.95

“Random Forest” 0.95

“Neural Net” 0.95

“AdaBoost” 0.55

“Naive Bayes” 0.95

“QDA” 0.90
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Table 12.3: The LDA Methods. Several LDA methods were used for soil moisture
classification.

Methods

decision function(X)

fit(X, y[, store covariance, tol])

fit transform(X[, y])

get params([deep])

predict(X)

predict log proba(X)

predict proba(X)

score(X, y[, sample weight])

set params(**params)

transform(X)

eters for the estimator. Then, predict(X) could predict the class labels for soil

samples. predict log proba(X) and predict proba(X) could estimate the probabil-

ity. Finally, score(X, y[, sample weight]) could return the mean accuracy on the

given soil images test data and labels. set params(**params) was for setting es-

timator parameters. transform(X) was for projecting data to maximize soil class

separation.

The performance of the LDA for soil moisture monitoring was shown in Fig. 12.2.

There were five different soil moisture levels with different colors, “Dry,” “Wet1,”

“Wet2,” “Wet3,” and “WetTotal”, which meant the soil sampling was saturated.

LDA classifiers firstly reduced the original dimension to 2 components. As seen

from Fig. 12.2, different colors meant different soil moisture levels and the axes of

the figure were dimensionless. The LDA could classify the five different levels of

soil moisture in different areas of the coordinate, so that the LDA could classify

the soil moisture with an state-of-art performance.
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Figure 12.2: LDA results for soil moisture measurement. There were five different
soil moisture levels with different colors, “Dry,” “Wet1,” “Wet2,” “Wet3,” and
“WetTotal”, which meant the soil sampling was saturated. LDA classifiers firstly
reduced the original dimension to 2 components. Different colors meant different
soil moisture levels and the axes of the figure were dimensionless. The LDA could
classify the five different levels of soil moisture in different areas of the coordinate,
so that the LDA could classify the soil moisture with an state-of-art performance.
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Table 12.4: The PCA Methods.

Methods

fit(self, X[, y])

fit transform(self, X[, y])

get covariance(self)

get params(self[,deep])

get precision(self)

inverse transform(self, X)

score(self, X[, y])

score samples(self, X)

set params(self, params)

transform(self, X)

12.3.2 The Principal Component Analysis Performance

In PCA methods, fit(self, X[, y]) was to fit the model with the input soil images

data X. fit transform(self, X[, y]) was for fitting the model with X and apply the

dimensionality reduction on X. get covariance(self) was for computing the data co-

variance with the generative model. get params(self[,deep]) was to get parameters

for the estimator. get precision(self) was for computing the data precision matrix

with the generative model. Then, inverse transform(self, X) could transform the

data back to its original space. Finally, score(self, X[, y]) could return the average

log-likelihood of all samples. score samples(self, X) could return the log-likelihood

of each sample. set params(self, params) could help set the parameters of the es-

timator. transform(self, X) was being used for applying dimensionality reduction

to soil images input.

In Fig. 12.3, PCA could also classify the soil moisture successfully but not

entirely. As shown in Fig. 12.3, “WetTotal” points were on the left and right sides

of the image. The “Wet3” and “Wet2” data points did not drop in the same area.

The reason might be that the PCA could not detect the features difference from the
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data. Similar to LDA, the PCA classifiers firstly reduced the original dimension

to 2 components. Then, each classifier was tested against reduced dimensionality

data with the component as 2. Results showed that LDA performs much better

than the PCA method.

12.4 Conclusion and Future Research

Soil moisture monitoring is essential in precision agriculture, which has a signif-

icant effect on crop evapotranspiration, the exchange of water, and energy fluxes.

Soil moisture can be measured by many remote sensing or proximate sensing tech-

niques, such as thermal, optical, and microwave measurements. However, there

are limiting factors for the applications of these methods, such as low spatial reso-

lution, limited surface penetration and vegetation. In this study, the author used

a portable sensor to classify different soil moisture successfully. By using the PCA

and LDA machine learning methods, the Walabot could recognize small changes

in different levels of soil moisture and could detect soil moisture difference with

a state-of-art performance. As a pocket-sized device cutting-edge technology for

radio frequency tridimensional sensing, the author believes the sensor can work

flexibly in the field and provide data information more promptly and accurately

than traditional remote sensing or proximate sensing method.

So far, the Walabot can only detect the difference in soil moisture. In the

future, the author will compare it with different soil moisture sensors to see if

one can find the regression model and quantify the soil moisture measurements by

using the Walabot. With the development of wireless technology, and computer

vision, it might be able to be mounted on UGVs for proximate sensing [250, 515].

Thus, we can use the sensor to recognize real-time soil moisture monitoring.
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Figure 12.3: PCA results for soil moisture measurement. “WetTotal” points were
on the left and right sides of the image. The “Wet3” and “Wet2” data points did
not drop in the same area. The reason might be that the PCA could not detect
the features difference from the data. Similar to LDA, the PCA classifiers firstly
reduced the original dimension to 2 components. Then, each classifier was tested
against reduced dimensionality data with the component as 2.



Chapter 13

Conclusions and Future Research

13.1 Concluding Remarks

This dissertation presented the concept and importance of smart big data to-

wards precision agricultural applications. Smart big data restructures and en-

hances the dataset that AI and ML algorithms use. In this dissertation, the smart

big data acquisition platforms were introduced, such as small UAVs and Edge-AI

sensors. Smart big data cleans and transforms the data into useful information

that is valuable and relevant to crops and trees growing status.

In this dissertation, the concept of plant physiology-informed machine learning

and how to use advanced analytics and fractional-order thinking to make con-

tributions are proposed in Chapter 1 and Chapter 2. Smart big data acquisition

platforms are mainly discussed. A UAV platform for remote sensing data collection

and a reliable image processing workflow are proposed. The challenges and oppor-

tunities for UAV image processing are also discussed in Chapter 3. In Chapter

4, the concept of IoLT is proposed and several proximate sensors are introduced.

The potential of UGV platforms for agriculture is briefly discussed in Chapter 5.

In Chapter 6, a non-invasive proximate sensing method for early detection

of nematodes was proposed. Microwave reflectance from walnut leaves was ana-

lyzed using ML algorithms to classify the nematode infection levels in the walnut

roots. In Chapter 7, reliable tree-level ET estimation methods were proposed

using the UAV high-resolution imagery, ML algorithms and platforms, such as

268
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Python, MATLAB, Pytorch, and TensorFlow. In Section 7.4, the author pro-

poses to estimate crop coefficient with UAV-based imagery and the SCN model.

Then, the reliable tree-level ET estimation methods are proposed in Section 7.5.

In Chapter 8, individual tree-level water status inference was performed using the

high-resolution UAV thermal imagery and complexity-informed machine learning.

The performance of the CNN model on irrigation treatment inference is demon-

strated. In Chapter 9, a scale-aware pomegranate yield prediction method using

UAV imagery and machine learning was proposed. Predicting the yield at the in-

dividual tree level will enable the stakeholders to manage the orchard at different

scales, thus improving the field management efficiency. Then, an intelligent bugs

mapping and wiping robot for farmers is discussed in Chapter 10, which has great

potential for pest management in the future. A non-invasive stem water potential

monitoring method using proximate sensor and ML algorithms for a walnut or-

chard is proposed in Chapter 11 and a low-cost soil moisture monitoring method

is proposed in Chapter 12.

Smart big data is the use of various methods, such as ML algorithms and arti-

ficial intelligence, to analyze and transform the agricultural data into information

from which valuable insight can be drawn. It incorporates advanced analytics to

enhance plant physiology-informed machine learning. The application of smart

big data can help researchers and stakeholders develop a better understanding of

the data with the goal of developing better precision agriculture. So far, these

are still the initial steps for the development of the smart big data applications in

precision agriculture. More explicit definition of the steps of the smart big data

framework integrated with advanced analytics, ML algorithms, and AI is required

to demonstrate the capabilities of this innovative methodology.

13.2 Future Research Towards Smart Big Data

in Precision Agricultural Applications

Based on the research presented, a comprehensive work has been done towards

the smart big data in precision agricultural applications. There is still plenty of
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work. Thus, the future research plans will be:

• Further investigate the necessity of smart big data and the correlation be-

tween smart big data, machine learning, and plant physiology.

• Design and test a UGV platform for agricultural applications, such as pest

management.

• Develop an intelligent bugs mapping and wiping system using UGVs for pest

management.

• Evaluate the remote sensing methods of early detection of nematode using

small UAVs and lightweight sensors, such as SWIR, TIR and multispectral

cameras.

• Combine the proximate sensing methods and remote sensing methods to

generate a comprehensive framework for early detection of nematodes.

• Develop a computer vision-based nematode counting and segmentation method

using ML algorithms for nematode image processing.

• Investigate TSEB and DTD methods for reliable tree-level ET estimation

using small UAVs and remote sensing sensors.

• Demonstrate the importance of spatial and temporal analysis for tree-level

yield estimation using small UAVs and remote sensing sensors.

• Develop a robust and adaptive individual tree-level irrigation treatment in-

ference system using high-resolution UAV thermal imagery and complexity-

informed machine learning.

• Define and implement the concept of complexity-informed machine learn-

ing and principle of tail matching with Edge-AI sensors for more agricultural

applications, such as soil moisture monitoring and stem water potential mea-

surement.

• Further improve the concept of IoLT and demonstrate its key role with ML

and Edge-AI sensors.
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D. Goldhamer, and E. Fereres, “A PRI-based water stress index combining
structural and chlorophyll effects: Assessment using diurnal narrow-band
airborne imagery and the CWSI thermal index,” Remote Sensing of Envi-
ronment, vol. 138, pp. 38–50, 2013.

[142] H. Niu, T. Zhao, D. Wang, and Y. Chen, “Estimating evapotranspiration
with UAVs in agriculture: A review,” in Proceedings of the ASABE An-
nual International Meeting, American Society of Agricultural and Biological
Engineers, 2019.

[143] H. Niu, D. Wang, and Y. Chen, “Estimating crop coefficients using linear and
deep stochastic configuration networks models and UAV-based normalized
difference vegetation index (NDVI),” in Proceedings of the 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 1485–1490, IEEE,
2020.

[144] Y. Che, Q. Wang, Z. Xie, L. Zhou, S. Li, F. Hui, X. Wang, B. Li, and
Y. Ma, “Estimation of maize plant height and leaf area index dynamic using
unmanned aerial vehicle with oblique and nadir photography,” Annals of
Botany, 2020.

[145] R. Deng, Y. Jiang, M. Tao, X. Huang, K. Bangura, C. Liu, J. Lin, and
L. Qi, “Deep learning-based automatic detection of productive tillers in rice,”
Computers and Electronics in Agriculture, vol. 177, p. 105703, 2020.



283

[146] T. Zhao, Y. Chen, A. Ray, and D. Doll, “Quantifying almond water stress
using unmanned aerial vehicles (UAVs): Correlation of stem water poten-
tial and higher order moments of non-normalized canopy distribution,” in
Proceedings of the ASME 2017 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference,
American Society of Mechanical Engineers, 2017.

[147] B. T. Polyak, “Some methods of speeding up the convergence of iteration
methods,” USSR Computational Mathematics and Mathematical Physics,
vol. 4, no. 5, pp. 1–17, 1964.

[148] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-
line learning and stochastic optimization.,” Journal of Machine Learning
Research, vol. 12, no. 7, pp. 2121–2159, 2011.

[149] G. Hinton and T. Tieleman, “Slide 29 in lecture 6, 2012, rmsprop: “Divide
the gradient by a running average of its recent magnitude”..”

[150] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[151] G. M. Viswanathan, V. Afanasyev, S. Buldyrev, E. Murphy, P. Prince, and
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288

“Estimation of energy balance components over a drip-irrigated olive or-
chard using thermal and multispectral cameras placed on a helicopter-based
unmanned aerial vehicle (UAV),” Remote Sensing, vol. 8, no. 8, p. 638, 2016.
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[227] J. I. Córcoles, J. F. Ortega, D. Hernández, and M. A. Moreno, “Estimation of
leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle,”
Biosystems Engineering, vol. 115, no. 1, pp. 31–42, 2013.

[228] P. Lazicki, D. Geisseler, and W. R. Horwath, “Onion production in Califor-
nia,” CDFA, June, 2016.

[229] T. Zhao, B. Stark, Y. Chen, A. Ray, and D. Doll, “More reliable crop water
stress quantification using small unmanned aerial systems (sUAS),” IFAC-
Papers on Line, vol. 49, no. 16, pp. 409–414, 2016.

[230] T. Zhao, B. Stark, Y. Chen, A. L. Ray, and D. Doll, “Challenges in water
stress quantification using small unmanned aerial system (sUAS): Lessons
from a growing season of almond,” Journal of Intelligent & Robotic Systems,
vol. 88, no. 2-4, pp. 721–735, 2017.

[231] T. Zhao, D. Doll, D. Wang, and Y. Chen, “A new framework for UAV-based
remote sensing data processing and its application in almond water stress
quantification,” in Unmanned Aircraft Systems (ICUAS), 2017 International
Conference on, pp. 1794–1799, IEEE, 2017.

[232] T. Zhao, D. Doll, and Y. Chen, “Better almond water stress monitoring
using fractional-order moments of non-normalized difference vegetation in-
dex,” in 2017 ASABE Annual International Meeting, p. 1, American Society
of Agricultural and Biological Engineers, 2017.

[233] R. Ballesteros, J. F. Ortega, D. Hernandez, and M. A. Moreno, “Onion
biomass monitoring using UAV-based RGB imaging,” Precision Agriculture,
vol. 19, no. 5, pp. 840–857, 2018.



291

[234] W. Wang, C. Li, and R. D. Gitaitis, “Optical properties of healthy and dis-
eased onion tissues in the visible and near-infrared spectral region,” Trans-
actions of the ASABE, vol. 57, no. 6, pp. 1771–1782, 2014.

[235] I. Jolliffe, Principal Component Analysis. Springer, 2011.

[236] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical Learn-
ing, vol. 1. Springer Series in Statistics New York, 2001.

[237] A. Soliman, R. J. Heck, A. Brenning, R. Brown, and S. Miller, “Remote sens-
ing of soil moisture in vineyards using airborne and ground-based thermal
inertia data,” Remote Sensing, vol. 5, no. 8, pp. 3729–3748, 2013.

[238] A. M. Jensen, M. McKee, and Y. Chen, “Procedures for processing thermal
images using low-cost microbolometer cameras for small unmanned aerial
systems,” in Geoscience and Remote Sensing Symposium (IGARSS), 2014
IEEE International, pp. 2629–2632, IEEE, 2014.

[239] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[240] K. F. Wallis, “Seasonal adjustment and relations between variables,” Journal
of the American Statistical Association, vol. 69, no. 345, pp. 18–31, 1974.

[241] R. A. Burckle and V. WinSystems, “Pc/104 embedded modules: The new
systems components,” 2003.

[242] J. Berni, P. Zarco-Tejada, L. Suárez, V. González-Dugo, and E. Fereres,
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