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Abstract

The Value of Light:
Crop Response to Optical Scattering and Generalizable Earth Observation

by

Jonathan Neel Proctor

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Solomon M. Hsiang, Co-chair

Professor Maximilian Auffhammer, Co-chair

How does human manipulation of the quantity, directionality and spectral distribution
of sunlight affect global agricultural productivity? And how might we build a global
observation system to provide measurements to answer this and other key questions in
environmental science, economics and policy? This thesis quantifies the impact that at-
mospheric scattering from volcanic sulfate aerosols and clouds has on global crop yields.
In turn, this work informs how anthropogenic influences on the global optical environ-
ment – from geoengineering to air pollution to climate change – impact global food
production and food security. This thesis also develops a system that leverages satellite
imagery and machine learning to measure many social and environmental variables with
high skill, low cost and no alteration of method. The hope is that the generalizablity,
low cost, and simplicity of this system will democratize remote sensing, and accelerate
the pace of research into our Earth’s socio-environmental systems. Broadly, I hope this
thesis contributes to environmental policy and improves the wellbeing of life on Earth.
Chapter 1 provides the broad-scale motivation for my work.

Chapter 2 studies the agricultural impacts of Solar radiation management (SRM),
which is increasingly considered as an option for managing global temperatures. Yet
the economic impacts of ameliorating climatic changes by scattering sunlight back to
space remain largely unknown. Though SRM may increase crop yields by reducing
heat stress, its impacts from concomitant changes in available sunlight have never been
empirically estimated. Here we use the volcanic eruptions that inspired modern SRM
proposals as natural experiments to provide the first estimates of how the stratospheric
sulfate aerosols (SS) created by the eruptions of El Chichón and Mt. Pinatubo altered
the quantity and quality of global sunlight, how those changes in sunlight impacted
global crop yields, and the total effect that SS may have on yields in an SRM scenario
when the climatic and sunlight effects are jointly considered. We find that the sunlight-
mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice,
wheat) crops. Applying our yield model to a geoengineering scenario using SS-based
SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly



2

equal in magnitude to SRM benefits from cooling. This suggests that SRM – if deployed
using SS similar to those emitted by the volcanic eruptions it seeks to mimic – would
attenuate little of the global agricultural damages from climate change on net. Our
approach could be extended to study SRM impacts on other global systems, such as
human health or ecosystem function.

Chapter 3 explores how anthropogenic emissions of air pollutants and greenhouse
gases alter the amount, distribution and properties of cloud cover and, in turn, agri-
cultural productivity. Changing cloudiness may impact crop productivity by altering
temperature, precipitation and sunlight. While the impacts of temperature and precip-
itation on crop productivity are relatively well understood, the impacts of cloud optical
scattering have never been empirically estimated and remain poorly constrained be-
cause of the potentially offsetting effects of changes in total and scattered sunlight.
Here, I leverage remotely-sensed cloud observations and subnational crop yield data to
provide the first empirical estimates of the sunlight-mediated efffect of cloud optical
scattering on maize and soy yields in the United States, Europe, Brazil, and China. I
find a consistent concave response of yields to cloud optical thickness across crops and
regions. Changing ten days in the growing season from clear to the optimal cloud thick-
ness increases maize and soy yields by 4.0% and 4.4%, respectively; further increasing
cloud thickness to the 95th growing season percentile decreases maize and soy yields by
3.4% and 3.5%. Mechanistically, I find that the concavity in the cloud response is driven
by concavity in the response to total sunlight as well as – in some regions – benefits
from increased diffuse light. Applying these empirical estimates to earth system model
simulations, I find that changes in sunlight, due to anthropogenic air pollution-induced
changes in clouds, are suppressing maize and soy yields by as much as 5% in heavily
polluted areas of India and China by increasing the frequency of days with extremely
high cloud optical depths. This costs Chinese maize farmers roughly US$1 billion a
year. Changes in sunlight due to changes in clouds from a quadrupling of CO2 relative
to pre-industrial tend to decrease global maize yields and redistribute soy yields. The
methodology developed in this chapter could be extended study the impact of changes
to the global optical environment on other global-scale economic outcomes.

Chapter 4 develops a system combining satellite imagery with machine learning
(SIML) to observe many variables simultaneously. Current case-by-case solutions re-
quire custom systems, extensive expert knowledge, access to imagery, and major com-
putational resources in order to estimate a single variable (a task) using regional or
global imagery. Here, we develop a general solution to constructing global observa-
tions via SIML, where a single method for transforming satellite imagery is sufficiently
descriptive that it should be able to predict nearly any ground-level variables that are re-
coverable through inspection of a satellite image, including previously unstudied tasks.
Our approach is task-independent, allowing centralized computation of features to be
executed only once ever per image, then distributed and applied to potentially unlim-
ited future tasks by users who require neither domain expertise nor access to underlying
imagery. We demonstrate this generalizability across tasks by constructing high resolu-
tion (∼1km×1km) estimates for forest cover, population density, elevation, nighttime
lights, household income, total road length, and housing prices across the entire US
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using exclusively daytime images that are processed only once and in advance. Our
system outperforms spatial extrapolation of ground-truth data, especially over large
distances, and matches or exceeds performance of a state-of-the-art deep convolutional
neural network that is much more costly to implement. Our approach requires only
that users download a tabular data set, merge it to geolocated labels, and implement
a single regression on a personal computer. We demonstrate that our design scales
globally with no alterations and naturally achieves super-resolution, where estimates
are more spatially granular than the original labels used for training. Generalization
enables democratization of SIML, potentially increasing the pace of planet-scale obser-
vation and research, accelerating our understanding of global processes and enabling
progress towards tackling planetary challenges.
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Chapter 1

Introduction
The motivation for this dissertation stems from a belief that government policies can
promote human wellbeing by nurturing a healthy economy and environment. To design
effective environmental policies, however, we need a quantitative understanding of how
socio-environmental systems function. For example, Pigouvian taxes on pollutants like
carbon dioxide require an understanding of the marginal social cost of such emissions to
(theoretically) maximize aggregate wellbeing. Further, including distributional impacts
into policy design requires an even deeper understanding of our Earth’s systems.

While rigorous empirical analyses to inform such global environmental policies has
historically tended to be prohibitively costly, recent advances in data acquisition, stor-
age, and processing technologies facilitate sophisticated analyses of socio-environmental
systems. By combining global measurements of climate, volcanogenic aerosol, and yield
data, for example, the first chapter of this thesis estimates the impact of a potential
geoengineering deployment on global agricultural productivity. Such estimates have
the potential to inform environmental policies regulating the research or deployment
of geoengineering. Similarly, my second chapter estimates the impacts of cloud optical
scattering on yields and improves our understanding of how air pollution and climate
change shape global agricultural productivity. In turn, my hope is that this informs
calculations of the marginal damage of anthropogenic air pollution and greenhouse gas
emissions to global wellbeing, and in turn, environmental policy.

A key constraint to these types of analyses, however, is that researchers can only
study what is measured. Much of the empirical climate impacts literature, for example,
focuses on data-rich topics and locations such as agriculture or health in the United
States and Europe. Variables such as crop yields, mortality, or energy use have been
recorded in detail for decades because of their importance, yet many other key facets of
wellbeing, such as biodiversity, human population density, or built capital have received
less research and attention because of their lack of structured and precise measurement.

Remote sensing, and specifically recent advances combining satellite imagery and
machine learning, may enable substantially improved measurement of key social and
environmental variables. The final chapter of my dissertation proposes and demon-
strates the effectiveness of a user-friendly, generalizable and cheap system to measure
environmental and social variables at the global scale. Such measurements have the
potential to accelerate our understanding of socio-environmental systems and thus en-
gender effective policy.
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Chapter 2

Estimating global agricultural
impacts of geoengineering using
volcanic eruptions

Solar radiation management (SRM) is increasingly considered an option for managing
global temperatures [23, 74], yet the economic impacts of ameliorating climatic changes
by scattering sunlight back to space remain largely unknown [62]. Though SRM may
increase crop yields by reducing heat stress [82], its impacts from concomitant changes
in available sunlight have never been empirically estimated. Here we use the volcanic
eruptions that inspired modern SRM proposals as natural experiments to provide the
first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of
El Chichón and Mt. Pinatubo altered the quantity and quality of global sunlight, how
those changes in sunlight impacted global crop yields, and the total effect that SS may
have on yields in an SRM scenario when the climatic and sunlight effects are jointly
considered. We find that the sunlight-mediated impact of SS on yields is negative for
both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geo-
engineering scenario using SS-based SRM from 2050-2069, we find that SRM damages
due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling.
This suggests that SRM – if deployed using SS similar to those emitted by the volcanic
eruptions it seeks to mimic – would attenuate little of the global agricultural damages
from climate change on net. Our approach could be extended to study SRM impacts
on other global systems, such as human health or ecosystem function.

This chapter is joint work with Solomon Hsiang, Jennifer Burney, Marshall Burke, and
Wolfram Schlenker. It was published in the journal Nature in 2018 and is available at
https://doi.org/10.1038/s41586-018-0417-3

https://doi.org/10.1038/s41586-018-0417-3
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Geoengineering, the purposeful alteration of the climate to offset changes induced
by greenhouse gas emissions, is a proposed but still poorly understood approach to
limit future warming [76]. One of the most widely suggested geoengineering strategies
is ”solar radiation management” (SRM). SRM proposals typically involve spraying pre-
cursors to sulfate aerosols into the stratosphere to produce particles that cool the earth
by reflecting sunlight back into space [94]. The closest natural analogs to these SRM
proposals are major volcanic eruptions [93]. Eruptions of El Chichón (1982, Mexico)
and Mt. Pinatubo (1991, the Philippines) injected 7 and 20 Mt of sulfur dioxide into the
atmosphere, respectively, which was oxidized to form stratospheric sulfate aerosols (SS)
[92]. These particles propagated throughout the tropics over several weeks and spread
latitudinally over the following months, increasing the opacity of the stratosphere – as
measured by optical depth – more than an order of magnitude above baseline levels for
multiple years (Fig. 2.1 a-c,e).

The eruptions of El Chichón and Pinatubo had substantial impacts on the global
optical environment and climate. We analyze daily data from 859 insolation stations
(N= 3, 311, 553; Fig. 2.1d) [129] paired with stratospheric aerosol optical depth (SAOD)
[101] and cloud fraction data under all-sky conditions. We find that the Pinatubo
eruption (global avg. +0.15 SAOD) reduced direct sunlight 21%, increased diffuse
sunlight 20%, and reduced total sunlight 2.5% (Fig. 2.1f, Extended Data Table 2.1,
Supplementary Information II). These global all-sky results generalize previous clear-
sky estimates at individual stations [25] (Supplementary Information II.1). Globally,
this reduction in insolation led to cooling of ∼0.5C [92] and redistribution and net
reduction of precipitation [115], effects that were partially offset by a concurrent El
Niño event (Fig. 2.2). Based on these observations, it has been suggested that SRM
cooling could mitigate agricultural damages from global warming [82]. The net effect
of SRM, however, remains uncertain due to possible unintended consequences from SS-
induced changes. Here we empirically estimate how alteration of sunlight by SS may
directly affect agricultural yields, after accounting for impacts mediated by temperature,
precipitation and clouds.

The sign of SRM’s “insolation effect” on agriculture is theoretically ambiguous
[35, 95, 36, 37]. Scattering light decreases total available sunlight, which tends to
decrease photosynthesis, but also increases the fraction of light that is diffuse, which
can increase photosynthesis by redistributing light from sun-saturated canopy leaves to
shaded leaves below [36, 96]. It is unknown whether damages from decreasing total light
or benefits from increasing diffuse light dominate in the production of crop yield. The
sign of this insolation effect will depend primarily on two factors: the forward-scattering
properties of the aerosol and the relative benefit of diffuse light for the growth of edible
yield (Supplementary Information III.5). The latter may depend on canopy geometry,
photosynthetic pathway (e.g. C3 or C4), and ambient conditions [35, 7]. Previous
studies of unmanaged ecosystems tend to find that scattering increases biomass growth
[66, 36], though not always [7], and importantly, edible yield production may not di-
rectly correlate with biomass growth. Studies of agricultural systems tend to estimate
negative impacts of tropospheric aerosol scattering [37, 35] and positive effects of solar
brightening [114] on yields. Simulations of potential SRM impacts focus on cooling
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and precipitation effects [131] and suggest global yields may increase due to cooling
[82], although these analyses do not account for the full effect of scattering. This is
the first study to estimate and account for the net effects of SS radiative scattering on
yields, thereby testing whether the benefits of SS scattering demonstrated in unman-
aged ecosystems [36, 66] also apply to agricultural production, as is often hypothesized
[82, 95]. This analysis is the first global empirical study of the insolation effect on crops
as well as the first study to leverage a quasi-experimental design to estimate the total
impact of SRM on any economic sector.

The theoretically ideal experiment would measure the total effect of SRM on yields
using many identical Earths, half treated with SS. In practice, we approximate this
experiment with one Earth during sequential periods of high and low SS exposure,
exogeneously determined by volcanic eruptions. We identify the insolation effect of SS
on yields (Extended Data Fig. 2.1) [27] by comparing countries to themselves over time
with changing SS treatment–measured in SAOD composited from satellite and other
observations (Fig. 2.1e) [101]–while controlling flexibly for potentially confounding
climate variables including temperature, precipitation, cloud fraction, and the El Niño-
Southern Oscillation (ENSO) (Supplementary Information III.3). Our multivariate
fixed-effects panel estimation strategy (Supplementary Information Eqn. 2.16) accounts
for unobserved time-invariant factors, such as soil type or historical propensity for civil
unrest, as well as country-specific time-trending variables, such as access to fertilizers
or trends in damaging tropospheric ozone [46]. Our primary analysis focuses on the
Pinatubo eruption because the concentration and distribution of resulting SS were
substantially more accurately measured than earlier eruptions [113]. We validate the
model by verifying that the estimated responses of crop yields to temperature and
precipitation are consistent with previous studies [103] (Extended Data Fig. 2.2).

We find that the changes in sunlight from SS reduce both C4 (maize; p ¡ 0.01,
N=2,501) and C3 (soy, rice, wheat; p ¡ 0.05, N=4,828) yields 48% and 28%, respec-
tively, per unit SAOD (Fig. 3a Model 1). This implies that the global average scattering
from Pinatubo (+0.15 SAOD) would reduce C4 yields 9.3% and C3 yields 4.8% (Fig.
3b), although some of this loss was likely offset by SS-induced cooling, making it dif-
ficult to observe directly. In contrast, process models [66] and empirical analyses of
unmanaged-ecosystem biomass growth [36] tend to estimate a positive insolation effect,
suggesting that either the diffuse fertilization effect is weaker for crops than ecosystems
or scattering light alters the relative production of biomass and edible yield.

Our finding that SS scattering from Pinatubo negatively impacted yields is robust
to removing temperature, precipitation, ENSO, and cloud controls (Fig. 3a Models
2-5), estimating the effect separately for each crop, accounting for the zenith angle of
incoming sunlight, using two alternative datasets of SS SAOD, dropping observations
from countries where the major eruptions occurred, and adding surface CO2 as a control
(Extended Data Table 2.2). We examine the impact of future, current, and past SS
on current yields, finding that only contemporaneous SS exposure matters (Fig. 2.3d).
We estimate the yield-insolation response flexibly, and fail to reject that the response
is linear over the support of our data (Extended Data Fig. 2.3).

Extending the analysis back in time increases sample size but also measurement
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error due to weaknesses in the historical observational system. The estimated insolation
effect for both C3 and C4 crops becomes smaller and remains significant for C4 crops
as we sequentially include data from the eruptions of El Chichón (1982) (Fig. 3a Model
6) and Agung (1963) (Extended Data Table 2.2 Col. 9). This pattern is consistent
with both systematic ”attenuation bias” from the mis-measurement of SAOD before
the satellite era [128] and differences in the radiative properties of the SS generated by
Pinatubo and El Chichón, discussed below.

Two results support that our analysis captures a sunlight-mediated effect. First, the
response of C3 crops is less negative than that of C4 crops (p¡.01). C3 crops benefit from
scattering more than C4 crops because the C3 photosynthetic rate saturates at lower
light levels [35]. Second, per unit of SAOD, aerosols from El Chichón are both more for-
ward scattering (Extended Data Tables 2.1-2.3) and less damaging to yields (Fig. 2.3a
Models 7-8) than those of Pinatubo. This pattern is consistent with diffuse fertilization
increasing edible yield. It also suggests that aerosol radiative properties might explain
some heterogeneity in the estimated insolation effect across these eruptions. This het-
erogeneity substantially affects reconstructed yield losses from SS scattering (Fig 2.3c).
We are, however, unable to determine whether differences in SS radiative properties
or measurement errors (inducing attenuation bias) across eruptions are responsible for
differences in their estimated insolation effects (Supplementary Information III.6).

To calculate the total effect of SS on yields for a future SRM scenario, we apply
our empirical results (Fig. 2.3a Model 1) to output from an earth system model and
compare future yields under two scenarios: (1) climate change under Representative
Concentration Pathway 4.5, a modest mitigation pathway, and (2) the same, but with
sulfur dioxide injection to balance all additional anthropogenic forcing after 2020 [70].

Over cropped areas in this simulation (2050-2069), the SRM treatment (avg. 0.084
SAOD) decreases maize growing season average temperatures 0.88 C, reduces precip-
itation 0.26 mm/month, and increases cloud fraction by 0.0081 relative to the control
(Extended Data Fig. 2.4). In turn, average maize yields increase 6.3% due to this cool-
ing (Fig. 2.4a), decrease 5.3% due to SRM-induced dimming (Fig. 2.4b), and change
<0.2% due to altered precipitation and clouds (Fig. 2.4c-d). We sum these partial
effects, repeating the analysis for soy, rice, and wheat (Extended Data Fig. 2.5). We
find that SRM treatment, relative to the control, has no statistically discernible effect
on yields once optical effects are accounted for (p¿0.1 for all crops; Fig. 2.4e, Extended
Data Fig. 2.6). Failing to account for the insolation effect, as was done in the only prior
global estimate [82], substantially overestimates the benefits of SRM to agriculture.

Our analysis finds that volcanogenic SS have statistically significant and economi-
cally substantial insolation-mediated costs that are roughly equal in magnitude to their
benefits from cooling. This suggests that anthropogenic SS used in SRM may not be
able to substantially lessen the risks that climate change poses to global agricultural
yields and food security (Extended Data Fig. 2.7).

Our finding that SS from El Chichón were more forward scattering and less damaging
than SS from Pinatubo indicates that optimizing the radiative properties of particles
used in SRM might mitigate insolation-mediated damages. Although, we cannot rule
out that this difference was due instead to poor observation of SS from El Chichón.
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Farmer-level adaptations, such as switching to varieties more resistant to dimming,
could theoretically mitigate SRM’s insolation-mediated damage. However, given that
farmer-level adaptations to extreme heat have been modest [14], it is not clear that
adaptation to dimming will be easier.

Our quasi-experimental results are consistent with the sunlight-mediated impact of
tropospheric aerosols [37] and emissions of their precursors [13] on Indian wheat and
rice yields, further supporting that we capture a sunlight-mediated response. Still, it
is possible that other factors, such as increased UV exposure from stratospheric ozone
destruction, could explain part of the estimated effect. Notably, changes in tropospheric
ozone concentrations due to Pinatubo are thought to be negative [110], which would
increase yields, suggesting our results might underestimate the SS insolation effect.
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Figure 2.1: Large volcanic eruptions alter the global optical environment.
Stratospheric aerosol optical depth (SAOD) (1000nm) a, before the Pinatubo eruption
(March 1991); b, two months after the eruption (August 1991); and c, the next
year after the aerosol cloud has spread (March 1992). d, Surface insolation observing
stations used in our analysis of the effect of SAOD on insolation; light blue stations
additionally measure diffuse light. e, SAOD (550nm) from 1975-2010 [101]. f, Annual
average daily total (orange), direct (yellow) and diffuse (red) sunlight across all stations;
measurements were demeaned by station-by-day-of-year before averaging to remove
seasonal effects as well as differences in geography and observational protocols.
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Figure 2.2: Global summary statistics of key model variables. a, Stratospheric
aerosol optical depth increases for years following the eruptions of El Chichón (March-
April 1982) and Pinatubo (June 1991) (dotted lines). b, the ENSO 3.4 index, c, surface
air temperature, d, precipitation, and e, cloud fraction during the same period. f,
Yields of maize (orange), wheat (gray), soy (blue), rice (green) decline following the
eruptions. Climate and yield values are growing season averages, de-trended by country-
specific quadratic time trends and averaged over countries in the sample. SAOD data
is similarly processed but not de-trended.



CHAPTER 2. ESTIMATING GLOBAL AGRICULTURAL IMPACTS OF
GEOENGINEERING USING VOLCANIC ERUPTIONS 10

Figure 2.3: Empirical estimates of the insolation effect of SS on crop yield.
a, The estimated effect of increasing SS optical depth by one unit on C4 (blue) and
C3 (green) yields due to changes in sunlight (Model 1, Supplementary Information
Eqn. 2.16, and Extended Data Table 2). Models 2-5 drop and then sequentially add
temperature (T), precipitation (P), cloud (C) and ENSO (E) controls. Models 7-8
estimate effects separately for Pinatubo (year≥1990, circles) and Chichón (year<1990,
squares); Model 8 uses a different SAOD dataset (SPARC). b, Reconstructions of the
SS insolation effect using Model 1. Each line represents a single country over time.
c, Same as b, but using Model 7. d, Simultaneously estimated insolation effects 2
years prior to and 2 years following the current growing season. See Supplementary
Information III.2.3, III.2.2, III.4. In a,d whiskers represent 95% confidence intervals.



CHAPTER 2. ESTIMATING GLOBAL AGRICULTURAL IMPACTS OF
GEOENGINEERING USING VOLCANIC ERUPTIONS 11

Figure 2.4: Partial and total effects of SRM on yields. The partial effects of
SRM, relative to a climate-change-only scenario (RCP4.5), on expected maize yields
from 2050-2069 due to changes in a, temperature, b, insolation, c, precipitation
and d, cloud fraction. Statistically insignificant changes (p ¿ 0.05) are hatched. e,
Global partial and total effects (cropped-fraction weighted average) for maize (red),
soy (turquoise), rice (green) and wheat (purple). Error bars show 95% confidence in-
tervals for the predicted effect.
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Methods
To link the national annual yield data from the Food and Agricultural Organization of
the United Nations to the climatological data we summarize all gridded temperature,
precipitation, cloud and SAOD datasets to the annual-country level by averaging values
over cropped area [88] to the growing season [100] using a similar methodology to refs.
[12, 103].

Our analysis of the impact of SS on log insolation (N = 3,311,553 and 889,327 for
total, and direct/diffuse insolation, respectively) models SAOD, cloud fraction[51], and
ENSO (current and lagged) linearly (Supplementary Information Eqn. 2.2). We include
station by day-of-year fixed effects. Our analysis of the impact of SS on atmospheric
forward scattering shares the same specification (Supplementary Information Eqn. 2.5).

Our analysis of the impact of SS on log yields models the impact of SAOD linearly
(non-linear estimates do not significantly differ from the linear estimate (Extended Data
Fig. 2.3), the response of temperature [1], precipitation [127], and clouds [73] using
restricted cubic splines, and allows the response of ENSO (current and lagged) to differ
between teleconnected and non-teleconnected regions [48] (Supplementary Information
Eqn. 2.16). We include country fixed effects and country-specific quadratic time trends.
For all empirical insolation and yield analyses we calculate standard errors to account
for serial correlation within countries across years and for spatial autocorrelation within
years across countries [46].

To calculate the total effect of SRM relative to a climate change scenario we average
results over three ensemble members from the Max Planck Institute Earth System
Model [70]. Uncertainty in the total effect represents uncertainty in the estimated
parameters of the empirical yield model (Supplementary Information IV.4). We do
not consider carbon fertilization effects in calculation of the total effect because carbon
dioxide levels are the same in the SRM and climate change only scenarios.

Data availability. All data used in this analysis is from free, publicly available sources
and is available upon request from the corresponding author.
Code availability. Replication code is available upon request from the corresponding
author.
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Extended Data Table 2.1: Effect of SS on total, direct and diffuse insolation.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Radiation Type: Total Total Total Direct Direct Direct Diffuse Diffuse Diffuse
Years in Sample: [83-09] [79-09] [79-09] [83-09] [79-09] [79-09] [83-09] [79-09] [79-09]

SAOD −0.172∗∗∗ −0.067 −1.580∗∗∗ −1.395∗∗∗ 1.199∗∗∗ 1.197∗∗∗

(0.062) (0.058) (0.320) (0.295) (0.122) (0.125)

SAOD x (yr≤89) −0.024 −1.039 2.063∗∗∗

[Chichón] (0.079) (0.760) (0.102)

SAOD x (yr>89) −0.100∗ −1.406∗∗∗ 1.171∗∗∗

[Pinatubo] (0.054) (0.301) (0.115)

Cloud Fraction −0.946∗∗∗ −2.792∗∗∗ 0.499∗∗∗

(0.041) (0.179) (0.085)

Nino 3.4 0.002 0.002 0.002 0.018∗∗ 0.017 0.017 −0.001 0.0004 0.001
(0.002) (0.003) (0.003) (0.009) (0.012) (0.012) (0.003) (0.003) (0.003)

Nino 3.4 (lagged) 0.004 −0.001 −0.001 0.006 −0.011 −0.011 −0.003∗∗∗ 0.001 0.0003
(0.003) (0.003) (0.003) (0.010) (0.013) (0.013) (0.001) (0.001) (0.002)

Observations 3,311,553 4,371,586 4,371,586 889,327 1,000,776 1,000,776 889,327 1,000,776 1,000,776
Adjusted R2 0.766 0.750 0.750 0.552 0.413 0.413 0.722 0.744 0.744

Coefficients on SAOD describe the effect of increasing SS optical depth by 1 unit on the log of total, direct or diffuse sunlight.
Columns 1,4,7, show the preferred specification (Supplementary Material Eqn. 2.2). Columns 2,5,8 include data from 1979-2009
to capture the effect of both the Pinatubo and El Chichón eruptions. Columns 3,6,9 estimate the effect separately for El Chichón
and Pinatubo (Supplementary Material II.1). We do not control for cloud fraction in columns 2,3,5,6,8 and 9 because the cloud
data is only available beginning in 1983. All models account for station-by-day-of-year fixed effects. Standard errors of the mean,
shown in parentheses, are clustered by country and by year to account for serial correlation over time within a country and for
autocorrelation across space within a year. We calculate p values using a two-sided t-test; ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Extended Data Table 2.2: Robustness of the insolation effect of SS on yields
to changes in model specification, data sample, and data source.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Years in Sample [83-09] [83-09] [83-09] [83-09] [83-09] [83-09] [83-03] [83-05] [61-09] [83-09] [83-09] [79-03] [79-03]

Climate Controls None T TP TPC TPCE TPCE TPCE TPCE TPE TPCE TPCEO TPE TPE

SAOD Data Cos(SZA) SPARC SPARC2 Drop Add CO2 SPARC
Mex. & Phil.

Maize (C4)

SAOD -0.607*** -0.615*** -0.572*** -0.561*** -0.649*** -0.392*** -0.901*** -0.776*** -0.258** -0.672*** -0.644***
(0.127) (0.120) (0.115) (0.118) (0.112) (0.0656) (0.252) (0.162) (0.125) (0.116) (0.119)

SAOD x (yr≤89) -0.229 -1.073
[Chichón] (0.173) (0.764)
SAOD x (yr>89) -0.533*** -0.796***
[Pinatubo] (0.142) (0.247)

Observations 2,501 2,501 2,501 2,501 2,501 2,501 1,868 2,025 3,867 2,447 2501 2,322 2,211
R-squared 0.950 0.952 0.953 0.953 0.954 0.954 0.953 0.955 0.939 0.953 0.954 0.948 0.949

C3 - pooled

SAOD -0.294** -0.286** -0.293** -0.297** -0.331** -0.183** -0.559** -0.439** -0.0638 -0.349** -0.325**
(0.131) (0.131) (0.132) (0.129) (0.136) (0.0741) (0.232) (0.192) (0.135) (0.140) (0.144)

SAOD x (yr≤89) 0.0283 0.0669
[Chichón] (0.132) (0.606)
SAOD x (yr>89) -0.362** -0.545**
[Pinatubo] (0.165) (0.228)
Observations 4,828 4,828 4,828 4,828 4,828 4,828 3,618 3,916 7,431 4,694 4828 4,480 4,297
R-squared 0.940 0.941 0.941 0.942 0.942 0.942 0.946 0.946 0.928 0.941 0.942 0.942 0.943

Soy (C3)

SAOD -0.313 -0.327 -0.335 -0.356 -0.482* -0.319* -0.848** -0.860*** -0.152 -0.541* -0.483*
(0.287) (0.282) (0.276) (0.288) (0.270) (0.160) (0.381) (0.268) (0.280) (0.270) (0.271)

SAOD x (yr≤89) 0.227 1.888
[Chichón] (0.236) (1.290)
SAOD x (yr>89) -0.630** -0.843**
[Pinatubo] (0.233) (0.324)
Observations 1,256 1,256 1,256 1,256 1,256 1,256 937 1,026 1,897 1,202 1,256 1,169 1,118
R-squared 0.883 0.888 0.889 0.890 0.890 0.890 0.905 0.903 0.868 0.891 0.890 0.894 0.894

Rice (C3)

SAOD -0.395* -0.407* -0.424** -0.412* -0.301 -0.158 -0.298 -0.203 -0.191 -0.321 -0.283
(0.196) (0.198) (0.201) (0.202) (0.217) (0.118) (0.372) (0.267) (0.143) (0.228) (0.225)

SAOD x (yr≤89) -0.149 -1.125
[Chichón] (0.244) (1.059)
SAOD x (yr>89) -0.225 -0.353
[Pinatubo] (0.251) (0.368)
Observations 1,562 1,562 1,562 1,562 1,562 1,562 1,179 1,278 2,474 1,509 1,562 1,448 1,396
R-squared 0.935 0.935 0.935 0.935 0.936 0.935 0.941 0.941 0.907 0.935 0.936 0.932 0.933

Wheat (C3)

SAOD -0.201 -0.164 -0.161 -0.164 -0.257** -0.126** -0.594** -0.352* 0.103 -0.253** -.256**
(0.127) (0.122) (0.122) (0.118) (0.121) (0.0600) (0.249) (0.200) (0.114) (0.123) (0.114)

SAOD x (yr≤89) 0.0672 0.0118
[Chichón] (0.156) (0.564)
SAOD x (yr>89) -0.295* -0.529**
[Pinatubo] (0.158) (0.232)
Observations 2,010 2,010 2,010 2,010 2,010 2,010 1,502 1,612 3,060 1,983 2,010 1,863 1,783
R-squared 0.939 0.940 0.940 0.941 0.941 0.941 0.944 0.944 0.934 0.940 0.941 0.942 0.943

The table above shows the insolation effect of SS for maize, C3 crops pooled, and soy, rice and wheat yields individually across a range of robustness
checks (Supplementary Material III.4). The C3 response is estimated assuming that crops that share the C3 photosynthetic pathway (soy, rice,
wheat) have a common insolation effect (Supplementary Material Eqn. 2.18). Columns 1-5 drop all climate controls and then add temperature
(T), precipitation (P), cloud fraction (C) and ENSO (E) controls back in one at a time; column 5 is our preferred specification (Supplementary
Material Eqns. 2.16); column 6 accounts for the angle at which incoming light passes through the SS layer by diving SAOD by the cosine of the
solar zenith angle (SZA); columns 7 and 8 use two alternative SS datasets, SPARC and SPARC2 (Supplementary Material I.4); column 9 includes
data from 1961 - 2009 to span the eruption of Agung; column 10 drops Mexico and the Philippines, where the El Chichón and Pinatubo eruptions
occured, from the analysis; column 11 adds surface CO2 concentration as a control. column 12 estimates the effects for El Chichón and Pinatubo
separately; and column 13 does the same using the SPARC dataset. All models account for country fixed effects and country-specific quadratic
time trends. Standard errors of the mean, shown in parentheses, are clustered by country and by year to account for serial correlation over time
within a country and for autocorrelation across space within a year. We calculate p values using a two-sided t-test; *** p<0.01, ** p<0.05, *
p<0.1.
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Extended Data Table 2.3: Effect of SS on atmospheric forward scattering

(1) (2) (3)

Dep. Var. = Pr(photon reaches the surface — photon hits a particle)

Year [83-09] [79-09] [79-09]

SAOD 0.233∗∗∗ 0.243∗∗∗

(0.030) (0.030)

SAOD x (yr≤89) 0.345∗∗∗

[Chichón] (0.031)

SAOD x (yr>89) 0.240∗∗∗

[Pinatubo] (0.029)

Cloud Fraction −0.047∗∗∗

(0.018)

Nino 3.4 0.001 0.001 0.001
(0.001) (0.001) (0.001)

Nino 3.4 (lagged) −0.0004 −0.001 −0.001
(0.001) (0.001) (0.001)

Observations 886,287 997,142 997,142
Adjusted R2 0.228 0.227 0.227

The dependent variable is the probability that a pho-
ton of light makes it to the surface, conditional on
hitting a particle (w in Supplementary Material Eqn.
2.3). Coefficients on SAOD represent the effect of
increasing SAOD by 1 unit on w for the entire at-
mospheric column. Column 1 is our preferred spec-
ification (Supplementary Material Eqn 2.5). Col-
umn 2 drops cloud controls and includes both the
Pinatubo and El Chichón eruptions. Column 3 esti-
mates the effects for El Chichón and Pinatubo sepa-
rately. All models account for station-by-day-of-year
fixed effects. Standard errors of the mean, shown
in parentheses, are clustered by country and by year
to account for serial correlation over time within a
country and for autocorrelation across space within a
year. We calculate p values using a two-sided t-test;
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Extended Data Figure 2.1: Countries included in estimation of the
insolation-mediated effect of stratospheric aerosol optical depth on crop
yield. Countries in light green are included in estimation of the insolation-mediated
effect of SS on yields for both C3 (soy, rice, wheat) and C4 (maize) crops. Countries
in dark green are included only in estimation of the insolation effect for C3 crops,
and countries in red are included only in estimation of the insolation effect for maize.
Countries in grey are not included in the analysis due to missing data.
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Extended Data Figure 2.2: Estimated response of yields to changes in grow-
ing season average temperature (orange), precipitation (blue), and cloud
fraction (grey). Temperature, precipitation and cloud fraction axes show growing
season means. The y-axes show partial effects on yield relative to a value of zero for
each climatological variable (fT (Tit), fP (Pit), and fC(Cit) in Supplementary Informa-
tion Eqn. 2.16). Vertical dotted lines show the placement of the knots for the restricted
cubic splines specification. Dashed lines show the 95% confidence intervals. N = 2,501,
1,256, 1,562 and 2,010 for maize, soy, rice and wheat, respectively.
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Extended Data Figure 2.3: Flexible (blue) and linear (red) estimation of the
insolation-mediated impact of SS on crop yields. The SAOD axes show growing
season means. Each point on a curve gives the optical effect of SAOD, relative to a
value of zero (the slope of the red lines is β in Supplementary Information Eqn. 2.16).
Vertical dotted lines show the placement of the knots for the restricted cubic splines
specification. Dashed lines show the 95% confidence intervals.
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Extended Data Figure 2.4: Impact of SRM on climatological determinants
of yield. SRM-induced changes in maize growing season average SAOD, temperature,
precipitation, and cloud fraction, relative to the climate change only scenario.

Extended Data Figure 2.5: Total effect of SRM on maize, soy, rice, and
wheat yields. Effects are relative to the climate change only scenario. Statistically
insignificant effects (p ¿ .05) are hatched. We calculate p values using a two-sided t-
test comparing the estimated effect of SRM to a null hypotheses of zero effect. When
calculating the distribution of the estimated SRM effect, we consider only statistical
uncertainty. This uncertainty is shown in Extended Data Table 2 and Extended Data
Fig. 2 and the calculations are described in Supplementary Information IV.4.
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Extended Data Figure 2.6: The finding that SRM mitigates little of the
damages of climate change is consistent across three ensemble runs. Bar
graphs show the total effect of SRM on global yields (cropped-fraction weighted aver-
age), relative to the climate change control, for each of the three ESM runs. Results
are similar across ensemble member runs. Maps on the right show the total effect of SS
on maize yields for each of the ensemble runs. Error bars in the bar graphs show 95%
confidence intervals for estimated mean effects. Statistically insignificant effects (p ¿
.05) are hatched in the maps. We calculate P values using a two-sided t-test comparing
the estimated effects to a null hypotheses of zero effect. Within each ensemble mem-
ber, we calculate the distributions of the estimated effects considering only statistical
uncertainty. This uncertainty is shown in Extended Data Table 2 and Extended Data
Fig. 2 and the calculations are described in Supplementary Information IV.4.
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Extended Data Figure 2.7: Effects of climate change and SRM relative to
a historical scenario. a, Identical to Figure 4e, but comparing a climate change sce-
nario (RCP 4.5) to a historical scenario (Supplementary Information IV.3). b, Identical
to Figure 4e but comparing a climate change with SRM scenario to a historical sce-
nario. Note that these calculations consider only climatological and sunlight-mediated
impacts; changes in yields due to carbon fertilization, or other factors that may differ
between scenarios, are not included. Error bars show 95% confidence intervals around
the estimated mean effect.
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Supplementary Information
Our analysis has three goals: to estimate the impact of SSAs on the quantity and
quality of insolation, to estimate the impact of these changes in insolation on yields,
and to estimate the total effect of changes in SSAs on yields in an SRM scenario. We
discuss the estimation of these three responses, as well as the data used in the analysis,
in the four supplementary information sections below.

I Data
This section describes and discusses the datasets used in this analysis.

I.1 Insolation

The World Radiation Data Centre (WRDC) provides daily insolation data from 1953
to 2013 [129]. Beginning with the entirety of their records (N = 8,394,737), we removed
all data that either had missing total radiation values, was flagged as poor quality
by the WRDC, or had higher reported diffuse radiation than total radiation (N =
7,334,570). In our main sample from 1983-2009 there are 3,311,553 observations from
859 stations of total insolation; of these, 889,327 observations from 324 stations split
the total insolation measurements into direct and diffuse light.

I.2 Yield

The Food and Agricultural Organization of the United Nations Statistics Division pro-
vides annual country-level yields of corn, soybeans, rice and wheat [27]. These four
crops make up roughly half of global caloric consumption. We included only countries
that have no missing observations from 1983-2009 to balance the panel; notably, this
drops countries created or dismantled by the break up of the Soviet Union in 1991.
The cleaned panel contains data for maize, soy, rice and wheat in 100, 50, 61 and 80
countries, respectively (Extended Data Fig. 2.1).

I.3 Growing season and cropped fraction

We obtained global crop planting and harvesting dates from Sacks et. al. 2010 [100].
We obtained cropped area fraction (all agricultural land and crop-specific) data from
Ramankutty et. al. 2008 [88] and Monfreda et. al. 2008 [67].

I.4 Stratospheric aerosol optical depth

We measure SSA concentrations using optical depth. Optical depth is a measure of
opacity, defined as the natural logarithm of the ratio of incoming to transmitted direct
light at a given wavelength:

optical depth = ln

(
incident direct light

transmitted direct light

)
(2.1)

We use three SAOD datasets in this analysis that share many similarities, but differ
in the observations included in the analysis, the way they were processed, and the
wavelength at which optical depth is measured.

For our main analysis we use the Goddard Institute for Space Studies (GISS)
dataset, which is an updated version of the data presented in ref [101].1 This dataset

1Data available at http://data.giss.nasa.gov/modelforce/strataer/; accessed 8/8/16.
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provides global SAOD (550nm) from 1850-2012 at 5 degree latitudinal resolution. We
use the GISS dataset as our preferred specification because it measures SAOD at 550
nm, which is at the center of the photosynthetically active range (400-700nm) and is
the same wavelength as the SAOD applied in the G3 SRM scenario that we use to cal-
culate the total effect of SSAs on yields. For the time period of our study (1979-2009),
the GISS dataset incorporates observations from satellites (Stratospheric Aerosol and
Gas Experiment (SAGE) I, SAGE II, Stratospheric Aerosol Measurement II) as well as
aircraft, ground-based observations and balloon measurements.

We corroborate our main findings by using two additional SAOD datasets that mea-
sure optical depth at 1000 nm. These datasets are interpolated using similar methods
and from similar data as the GISS dataset, but measure SAOD at a different wavelength
and have different spatial resolutions and temporal extents. The first, produced by the
Stratospheric Processes and their Role in Climate (SPARC) report [113], spans both
the El Chichón and Pinatubo eruptions (available 1979-2003) but has only latitudinal
resolution (5 degree, the same as GISS). The second, produced using a similar method-
ology to the SPARC dataset and which we call SPARC2,2 spans only Pinatubo (Oct
1984 - July 2005) but is interpolated to give both latitudinal and longitudinal spatial
resolution (5 x 15 degrees).

All three SAOD datasets used in our analysis combine observations from many
sources because of important gaps in the satellite record. The primary gaps in the SAGE
record are between November 1981 and October 1984, when there were no satellite
observations of stratospheric aerosols and during the Mount Pinatubo eruption (June
1991 to 1993) when the instruments on SAGE II were saturated by the unanticipated
density of particulate matter in the stratosphere. Though these gaps in the satellite
record were filled and re-calibrated using non-satellite observations, they present an
unavoidable source of measurement error. Measurement of SAOD before the satellite
era is very coarse. Further, because there were no low-latitude observing satellites
during the Chichón eruption, measurement following the Chichón eruption was much
less precise and accurate than after the Pinatubo eruption. The poor observation of
the Chichón eruption is why we focus our analysis on the Pinatubo eruption.

I.5 Climate variables

Our analysis uses historical temperature, precipitation, and cloud data as controls in
our empirical estimation of the insolation effect. The Berkeley Earth Daily Land grid-
ded dataset provides daily average surface temperature values from 1880 to present at
1-degree resolution [1] . The University of Delaware Air Temperature and Precipitation
dataset provides monthly total precipitation over land (mm/month) from 1900 to 2010
at 0.5-degree resolution [127]. The International Satellite Cloud Climatology Project
(ISCCP) gridded cloud product (D1) dataset contains 202 remotely sensed cloud pa-
rameters every 3 hours on a global 280 km equal area grid from July 1983 to December
2009 [51] . We use two versions of this dataset in our statistical estimation. Our analysis
of SSA impacts on yields uses a monthly cloud fraction dataset that was corrected for

2Acquired through personal communication with the author of the SPARC Assessment of Strato-
spheric Aerosol Properties (Chapter 4) report, Larry Thomason (07/10/2015).
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artefacts in the data [73]. Our analysis of SSA impacts on insolation uses the 3-hourly
cloud fraction records directly, which we average to daily temporal resolution (exclud-
ing nighttime observations). For our analysis of yields we use the corrected monthly
observations because the outcome is annual, so having daily cloud resolution does not
provide benefits relative to monthly averages.

II Insolation response
A central contribution of this study is to document the impact of SSAs on insolation at
a global scale and to test how these changes in insolation impact yields. In this section
we describe how we empirically estimate the effect of SSAs on insolation.

II.1 Estimating the impact of SSAs on insolation

To identify the impact of SSAs on insolation (Extended Data Table 2.1) at station i on
day τ we estimate:

ln(IXiτ ) = ψSim + ηCiτ + θ1Ey + θ2Ey−1 + φid + εiτ (2.2)

Where IX is either direct (ID), diffuse (IF ) or total (IT ) insolation, m is month of
sample, y is year of sample, and d is day of year. Sim are monthly SAOD measure-
ments, Ciτ are daily observations of cloud fraction, and Ey and Ey−1 are current and
lagged values of the average monthly Niño 3.4 index (E) from May-December [48]. The
parameter of interest is ψ, which describes the effect of SAOD on insolation. The low
temporal resolution of our SAOD measurements is a source of measurement error which
could attenuate our estimated coefficients towards zero. We include station-by-day-of-
year fixed effects (φid) to non-parametrically control for all time-invariant differences
between stations, such as average tropospheric aerosol optical depth, and for location-
specific seasonal patterns within each location, such as dust storms in the summer or
smog from heating in the winter. Any remaining variation in surface insolation that is
affected by tropospheric aerosols is assumed to be orthogonal to overhead SAOD vari-
ations (measured predominately by the SAGE II satellites) and thus captured by the
disturbance term (εiτ ), which is averaged out of the conditional expectation function.
Such idiosyncratic changes in insolation might be caused by, for example, the one-time
closure (or opening) of a coal power plant near an insolation station. As long as these
types of human-caused events are not systematically correlated with SAOD throughout
our sample, both over time and coherently around the world, then our estimated effect
of SAOD on insolation, ψ, will be unbiased. In this model ψ is identified by compar-
ing SAOD and insolation measurements across years within a station-day-of-year (e.g.
insolation and SAOD on March 1, 1990 in Berkeley, CA, USA is compared to inso-
lation and SAOD on March 1 1991 in Berkeley, CA, USA), after accounting for local
cloud cover and the global ENSO state. We compute standard errors allowing for arbi-
trary patterns of serial correlation over time between all stations in the same country
and for arbitrary patterns of autocorrelation across all station observations within the
same year [46]. In cases where the estimated variance-covariance matrix is non-positive
semi-definite, we apply the adjustment from Cameron, Gelbach & Miller [22].

To compare the response of insolation to SSAs from the eruptions of El Chichón and
Pinatubo (Extended Data Table 2.1 Cols. 3,6,9) we make two changes to the model.
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We replace ψSiτ with ψChichonSiτ1(τ ∈ [1979, 1989]) + ψPinatuboSiτ1(t ∈ [1990, 2009]),
which allows the effect of SSAs on insolation, ψ, to be different for the El Chichón and
Pinatubo eruptions. 1(.) is an indicator function which equals 1 if the day-of-sample is
within the specified years and 0 otherwise. We drop cloud controls because the cloud
data are available beginning in 1983, which is after the El Chichón eruption.

This analysis captures the average effect of SAOD on all-sky surface insolation across
859 stations (Fig. 2.1d). Using a global sample of stations enables us to average over
local heterogeneity in the effect of SAOD due to interactions of SAOD scattering with
further scattering and absorption by clouds or tropospheric aerosols. Though the higher
density of insolation stations in northern latitudes and near urban centers means that
our estimates are most representative of these areas, this global analysis is substantially
more representative than previous studies, which have been limited to a few individual
stations [42, 25].

This large sample of insolation stations also allows us to tease out the relatively
small SAOD signal from substantial background noise due to clouds and tropospheric
aerosols. This enables us to calculate the effect during all days–the crop-relevant effect–
rather than limiting our analysis to clear-sky and minimally cloudy days, as previous
analyses of individual stations have done [42, 25].

II.2 Estimating the impact of SSAs on atmospheric forward scattering

We define w as the proportion of light that makes it to the surface after being scattered:

w = Pr(photon reaches the surface|photon interacts with any particle)

=
IF

IF + IR

=
IF

I0 − ID

(2.3)

Where the third equality uses the identity that top of atmosphere insolation (I0) is the
sum of direct, diffuse, and reflected or absorbed light (IR):

I0 = ID + IF + IR

Thus, w can be calculated using data on IF (measured), ID (measured), and I0 (calcu-
lated as a function of latitude, longitude, and date). Rearranging Eqn. 2.3 shows that
w measures how much diffuse light is gained from the loss of one unit of direct light:

IFiτ = w
[
I0
iτ − IDiτ

]︸ ︷︷ ︸
blocked insolation

(2.4)

In our sample, w is on average 0.32 meaning that about one third of insolation that
does not make it to the surface as direct radiation ends up making it to the surface as
diffuse radiation.

To estimate the effect of SSAs on w (Extended Data Table 2.3) we estimate:

wiτ = αSim + ηCiτ + θ1Ey + θ2Ey−1 + φid + εiτ (2.5)
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The coefficient α describes the impact of a one unit increase in SAOD on the forward
scattering probability (w) of the entire atmospheric column. The other parameters in
Eqn. 2.5 are defined in the same way as in Eqn. 2.2. We model heterogeneous effects
of SSAs on w across volcanic eruptions (Extended Data Table 2.3 Col. 3) in the same
way that we model heterogeneous effects of SSAs on insolation across eruptions, which
is described in the previous section.

III Agricultural response
In this section we present a framework for empirically estimating the insolation effect
and the total effect of SSAs on yields.

III.1 Empirical framework

We consider a situation where yield (Y) is a function of inputs: insolation (I), temper-
ature (T), precipitation (P), cloud fraction (C), and other unobservable variables (U)
such as labor supply, or surface ozone concentration. Indexing observations by country
i and year t we have:

Yit = Y (Tit, Pit, Cit, Iit, Uit) (2.6)

A challenge in this context is that these inputs are themselves functions of SSAs (S),
ENSO (E), and other factors (Z):

Tit = T (Et, Sit, Zit) (2.7)

Pit = P (Et, Sit, Zit) (2.8)

Cit = C(Et, Sit, Zit) (2.9)

Iit = I(Et, Sit, Zit) (2.10)

Uit = U(Et, Sit, Zit) (2.11)

We discuss ENSO explicitly because the eruptions of both El Chichón and Pinatubo
coincided to some degree with strong El Niño events, which could confound our estima-
tion of the SSA insolation effect, and thus total effect, if not appropriately controlled
for. ENSO is a global phenomenon so Et itself does not vary by location; though its
impacts on T, P, C, I and U, and in turn on Y, may vary across space (Supplementary
Information III.2, III.3).

To consider the impacts of SSAs on yield, we differentiate Y (Eqn. 2.6) with respect
to S, which decomposes the effect of SSAs into an insolation term, a temperature term,
a precipitation term, a cloud term, and a term capturing any residual effects of SSAs:

dY

dS
=

∂Y

∂I

∂I

∂S︸ ︷︷ ︸
insolation effect

+
∂Y

∂T

∂T

∂S︸ ︷︷ ︸
temperature effect

+
∂Y

∂P

∂P

∂S︸ ︷︷ ︸
precipitation effect

+
∂Y

∂C

∂C

∂S︸ ︷︷ ︸
cloud effect

+
∂Y

∂U

∂U

∂S︸ ︷︷ ︸
residual effect

(2.12)

Ideally, to empirically recover the insolation effect (∂Y
∂I

) and the total effect (dY
dS

) we
would observe the changes in these climatic, insolation, and residual variables due to
SSAs (i.e. ∂I

∂S
, ∂T
∂S

, ∂P
∂S

, ∂C
∂S

, ∂U
∂S

), but we cannot measure these directly. What we are
able to observe instead is how some of these variables and SSAs change over time (i.e.
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∂S
∂t

, ∂T
∂t

, ∂P
∂t

, ∂C
∂t

). To see how these observations are useful, we differentiate our original
yield equation (Eqn. 2.6) with respect to time to get:

dY

dt
=
∂Y

∂T

dT

dt
+
∂Y

∂P

dP

dt
+
∂Y

∂C

dC

dt
+
∂Y

∂I

dI

dt
+
∂Y

∂U

dU

dt
(2.13)

Changes in yield over time are the combined effect of changes over time due to each
input. Differentiating the climate, insolation, and residual equations (Eqns. 2.7-2.11)
with respect to time and then substituting into Eqn. 2.13 gives the change in yield over
time due to changes over time in the factors that determine each input.

dY

dt
=
∂Y

∂T

[
∂T

∂E

dE

dt
+
∂T

∂S

dS

dt
+
∂T

∂Z

dZ

dt

]
︸ ︷︷ ︸

dT
dt

+
∂Y

∂P

[
∂P

∂E

dE

dt
+
∂P

∂S

dS

dt
+
∂P

∂Z

dZ

dt

]
︸ ︷︷ ︸

dP
dt

+
∂Y

∂C

[
∂C

∂E

dE

dt
+
∂C

∂S

dS

dt
+
∂C

∂Z

dZ

dt

]
︸ ︷︷ ︸

dC
dt

+
∂Y

∂I

[
∂I

∂E

dE

dt
+
∂I

∂S

dS

dt
+
∂I

∂Z

dZ

dt

]
︸ ︷︷ ︸

dI
dt

+
∂Y

∂U

[
∂U

∂E

dE

dt
+
∂U

∂S

dS

dt
+
∂U

∂Z

dZ

dt

]
︸ ︷︷ ︸

dU
dt

(2.14)

Because we observe and are able to control for them directly, we condense the dT
dt

,
dP
dt

, and dC
dt

terms:

dY

dt
=
∂Y

∂T

dT

dt
+
∂Y

∂P

dP

dt
+
∂Y

∂C

dC

dt
+
∂Y

∂I

[
∂I

∂E

dE

dt
+
∂I

∂S

dS

dt
+
∂I

∂Z

dZ

dt

]
+
∂Y

∂U

[
∂U

∂E

dE

dt
+
∂U

∂S

dS

dt
+
∂U

∂Z

dZ

dt

]
Re-arranging further shows the terms that will be represented directly in our empirical
model:

dY

dt
=

∂Y

∂T︸︷︷︸
∂
∂T
fT (.)

dT

dt
+

∂Y

∂P︸︷︷︸
∂
∂P

fP (.)

dP

dt
+

∂Y

∂C︸︷︷︸
∂
∂C

fC(.)

dC

dt

+

[
∂Y

∂I

∂I

∂E
+
∂Y

∂U

∂U

∂E

]
︸ ︷︷ ︸

∂
∂E

g(E)

dE

dt
+

[
∂Y

∂I

∂I

∂S
+
∂Y

∂U

∂U

∂S

]
︸ ︷︷ ︸

β

dS

dt
+

[
∂Y

∂I

∂I

∂Z
+
∂Y

∂U

∂U

∂Z

]
dZ

dt︸ ︷︷ ︸
ε

(2.15)

Observed quantities are in bold. Quantities estimated in our empirical model, dis-
cussed in the following section, are shown in underbraces.
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III.2 Empirical model

We estimate the structure of Eqn. 2.15 to recover the insolation-mediated impact of
SSAs on yields (∂Y

∂I
∂I
∂S

) (Fig. 2.3 Model 1, Extended Data Table 2.1) in country i year
t by fitting the model:

ln(Yit) = fT (Tit) + fP (Pit) + fC(Cit) + g(Et, Et−1, i) + βSit + λi + φi1t+ φi2t
2 + εit.

(2.16)

β is the insolation-mediated effect of SSAs on yields and is the coefficient of interest
in our study. It captures both the impact of decreasing total radiation and increasing
the diffuse fraction, as well as any residual impacts of SSAs not mediated through
T ,P , or C (i.e. ∂Y

∂U
∂U
∂S

), if they exist. Yit are yields of either maize, wheat, soy, or rice.
fT (.), fP (.), and fC(.) are restricted cubic splines which allow for estimation of a flexible
response [41]. λi are country fixed effects which account for all time invariant differences
between countries, such as topography or cultural history. φi1t + φi2t

2 are country-
specific quadratic time-trends which control for gradual country-specific developments,
such as smooth changes in technology or income. 3[46].

g(.), defined as

g = (θ1Et + θ2Et−1)1(i ∈ tele) + (θ3Et + θ4Et−1)1(i /∈ tele), (2.17)

controls for current and lagged values of the average monthly Niño 3.4 index (E) from
May-December, and allows the responses of teleconnected regions to differ from those of
non-teleconnected regions [48]. 1 is an indicator function, so 1(i ∈ tele) = 1 if country
i is teleconected and 0 otherwise. εit captures factors that impact yield, and vary over
time within a country but are not captured by the quadratic country-specific time trend
or the climate controls, and are uncorrelated with SAOD, such as the price of oil. In
all yield regressions we compute our standard errors allowing for arbitrary patterns of
serial correlation within countries over time and for arbitrary patterns of autocorrelation
within years across countries [46]. In cases where the estimated variance-covariance
matrix is non-positive semi-definite, we apply the adjustment from Cameron, Gelbach &
Miller [22]. We model the impact of SAOD on yields linearly because flexible estimation
of the response suggests that a linear fit is appropriate over the support of SAOD values
observed during the eruptions of El Chichón and Pinatubo as well as those used in the
SRM projections (Extended Data Fig. 2.3).

3Controlling for spatial-unit-specific polynomial time trends is a commonly used approach to ac-
count for gradual changes in yields, such as those driven by adoption of new technology. Though
aggregation up to the national level will likely smooth out changes that are discontinuous at the lo-
cal level, some abrupt or discontinuous changes in national crop production technologies will not be
accounted for by these polynomial trends. Directly measuring and accounting for each change in agri-
cultural technology is not possible. Thus, instead, to address these unobserved variables we leverage
the notion that SSA concentrations were as good as randomly assigned by the unanticipated eruptions
of El Chichón and Pinatubo to obtain an unbiased estimate of the impact of SSAs on yields, despite the
potential presence of these omitted variables. With this strategy, in order for a discontinuous change
in technology to bias our estimated effects of SSAs, it would need to be the case that technology all
around the world changed abruptly, discontinuously, and coherently at the time of these eruptions.
Given the gradual nature of agricultural technological diffusion, we do not find this plausible. See
Supplementary Information III.3 for an in-depth discussion of identification.
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III.2.1 Pooled C3 response Soy, rice and wheat share the same metabolic pathway
for carbon fixation and thus their yields may respond similarly to changes in sunlight
induced by SSAs. To estimate a pooled insolation effect for these C3 crops (Fig. 2.3,
Extended Data Table 2.2) we fit the model:

ln(Yitj) = βC3Sitj + fTj(Titj) + fPj(Pitj) + fCj(Citj) + gj(Et, Et−1, i)

+ λij + φi1jt+ φi2jt
2 + εitj

(2.18)

where j indexes crop (soy, rice, wheat). This is the same model as for individual
crops except that here, changes in SSAs, and in turn insolation, are assumed to have
a common effect (βC3) across all C3 crops. Temperature effects, precipitation effects,
cloud effects, ENSO effects and time trends are still allowed to be crop-specific. gj(.)
shares the same form as Eqn. 2.17 for each crop j. Thus, all parameters other than βC3

are estimated ‘as if’ individual versions of Eqn. 2.16 were estimated for each crop.

III.2.2 Heterogeneous effects across eruptions To compare the response of
crops to the eruptions of El Chichón and Pinatubo (Fig 2.3a Models 7-8) we make
two changes to Eqn. 2.16. We replace βSit with βChichonSit1(t ∈ [1979, 1989]) +
βPinatuboSit1(t ∈ [1990, 2003]), which allows the estimated insolation effect to differ
across the two eruptions. We also drop cloud controls because the cloud data are only
available beginning in 1983 (after the El Chichón eruption). We similarly alter Eqn.
2.18 to allow the C3 insolation effect to vary across the two eruptions.

III.2.3 Leads and lags To estimate the effect of SSAs in years prior to and after
the current growing season on the current growing season’s yield (Fig 2.3d) we use the
same form as Eqn. 2.16 and include two years of lags and leads for SAOD, temperature,
precipitation, cloud fraction and ENSO into the model.4 Coefficients for leads, lags and
the contemporaneous effects are estimated simultaneously.

III.3 Identification strategy

Our experimental design and model specification address three main challenges to em-
pirically estimating the insolation effect of SSAs on yields. First, the countries most
heavily treated with SSAs (e.g. those in the tropics) may have different average yields
than those that were less heavily treated. Second, there may be time-varying factors
that are correlated with SSA exposure and affect yield. Third, in addition to affect-
ing yields by changing sunlight, SSAs may affect yields by altering a variety of other
yield inputs including temperature, precipitation, and cloud cover (as expressed in Eqn.
2.14).

Our fixed-effects panel estimation strategy estimates the impact of SSAs on yields
by comparing countries to themselves over time with varying exposure to SSAs. This
is achieved by including an indicator variable for each country in the model, which
accounts for all time-invariant differences between countries. We identify the insolation
effect using the remaining variation in yields and SSAs within individual countries over

4Because ENSO is already lagged, the creation of two leads and lags for each variable creates
duplicated ENSO controls in the model; we drop these before estimation.
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time. We also account for time-trending differences between countries using country-
specific quadratic time trends.

We address potential confounding from unobserved time-varying determinants of
yield by leveraging the quasi-random variation in SSAs induced by unanticipated vol-
canic eruptions and subsequent stratospheric aerosol transport. These natural exper-
iments cause SSA concentrations over countries and over time to vary in a way that
is arguably as good as randomly assigned. This quasi-random assignment of SSAs,
like random assignment in a randomized control trail, balances unobserved covariates
within countries before and after volcanic treatment.

A further complication specific to this study is that the SSA distribution engendered
by the eruptions of El Chichón and Pinatubo happened, by chance, to coincide tem-
porally and spatially with strong El Niño events, which are global climatic phenomena
that affect yields through similar pathways to SSAs (Eqn. 2.14). We address this by
both conditioning on the pathways through which ENSO is likely to affect yields (tem-
perature, precipitation, and cloud cover) and by conditioning directly on the current
and lagged ENSO index to account for any remaining pathways through which ENSO
variation might impact yields (i.e. ∂U

∂E
dE
dt

or ∂I
∂E

dE
dt

).
In addition to accounting for these time-varying factors, we address potential con-

founding due to the impacts of SSAs on other determinants of yield by directly con-
trolling for observable determinants of yield that SSAs affect, such as temperature,
precipitation, and clouds (Section III.1).

III.3.1 Identifying assumptions This identification strategy rests on two assump-
tions. First, we assume that the aerosol treatment is independent of other variables
that impact yield, conditional on the model’s controls. Put another way, we assume
that a country before and after an eruption is a good ”control” for the same country
during overhead SSA ”treatment,” after conditioning on climate controls, ENSO, fixed
effects, and time trends. 5 Second, we assume that SSAs affect yields through changing
only insolation, temperature, precipitation, and clouds:

∂Y

∂U

∂U

∂S
= 0 (2.20)

If both of these assumptions hold, then our estimate of the insolation effect will not be
confounded. If Eqn. 2.19 (in footnote) holds but 2.20 does not, then instead of captur-
ing only the insolation effect, β will additionally capture any residual effects of SSAs on
yields that are localized to a country and that are not mediated though changes in tem-
perature, precipitation, or clouds (i.e. ∂Y

∂I
∂I
∂S

+ ∂Y
∂U

∂U
∂S

). Such potential channels include
increases in ultraviolet radiation (UV), [122] and decreases in tropospheric ozone [130].
It is unlikely that changes in tropospheric ozone are the mechanism that explain the
estimated negative effect of SAOD on yields. Because tropospheric ozone reduces crop

5 More formally, we assume that:

Sit |= εit|fT (Tit), fP (Pit), fC(Cit), g(Et, Et−1, i), λi, φi1t, φi2t
2 (2.19)

where notation in the above equation is borrowed from our empirical model (Eqn. 2.16).
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yields [65], concentrations of tropospheric ozone would have to be positively correlated
with SAOD to explain the negative impacts of SSAs on yields. To the contrary, there is
evidence that Pinatubo did [110] and SRM would [130] decrease tropospheric and sur-
face ozone concentrations. Though it is unknown whether this had a measurable effect
on yields during the Pinatubo eruption, if anything these changes in ozone would cause
us to under-estimate insolation-mediated SAOD damages, rather than over-estimate
them. It is possible that changes in UV radiation may explain part of our estimated
”insolation effect” because UV radiation damages crop yields and there is some evidence
that the decrease in ozone following the eruption let in more UV light than the sulfate
aerosols directly blocked [122]. Future research should further explore the mechanisms
responsible for these empirically estimated effects of SSAs on yields.

III.4 Robustness of the SSA insolation effect on yields

Here we examine the sensitivity of our estimation of the insolation effect of SSAs on
yields to different model specifications, data samples, and data sources (Fig. 2.3, Ex-
tended Data Table 2.2).

To test the sensitivity of our results to the temperature, precipitation, cloud and
ENSO controls we run the analysis without these climate controls (Extended Data
Table 2.2 Column 1) and then add in temperature, precipitation, clouds and ENSO
one at a time (Columns 2-5). Column 5 is our preferred specification. We see that the
effect of SSAs is robust to removing these climate controls; all coefficients across all 5
specifications and all 5 crops and crop groups are negative, and tend to have similar
magnitudes and precisions to our preferred specification.

To test the sensitivity of our results to different measures of SSA exposure, we
divide SAOD by the cosine of the solar zenith angle (SZA) (Column 6). Motivation
for this model stems from the insolation mechanism: if a ray of light passes through
an aerosol layer at an angle, it interacts with more of the aerosol layer than if it passes
through perpendicularly. Accounting for the angle of incident sunlight mechanically
increases the treatment values (i.e. SAOD < SAOD

cos(SZA)
) and thus decreases the size of

the estimated coefficient. The predicted average treatment effect between the CSZA
and preferred specifications, however, is essentially unchanged.6 We avoid using the
CSZA transformation as our preferred specification because it gives similar predictions
and increases the conceptual and computational complexity of our model.

To test whether local, direct volcanic damages (e.g mudflows or avalanches of ash)
are driving the global result, we drop the countries where these major eruptions occurred
(Mexico and the Philippines) from our analysis; we find little difference in the results
from our preferred specification (Column 10).

To test whether interannual fluctuations in carbon dioxide (CO2) concentrations are
driving the main result, we measure and control for surface CO2 concentrations in our
empirical model. We calculate the CO2 concentration (ppm) for each year, country and
crop by averaging monthly average CO2 concentrations over the growing season. We

6In 1992, the average SAOD at 550nm across countries is 0.13 and the SAOD coefficient is -.649,
which gives a predicted effect on yields of -8.2%. Similarly, the average SAOD

cos(SZA) across countries is

0.21 and the coefficient for maize is -.392, which gives a predicted effect on yields of -8.3%.
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use data from Mauna Loa [3] and Cape Grim [2] to measure CO2 concentrations in
the Northern and Southern Hemispheres, respectively. 7 We find that controlling for
surface CO2 concentrations has little impact on the main results (Column 11).

We test the robustness of the results across different SAOD datasets, by re-estimating
the model with the SPARC and SPARC2 datasets, described in Supplementary Infor-
mation IV (Columns 7,8,12). Though the coefficients are larger–because for a given
concentration of SSAs, SAOD measured at 1000nm is smaller than SAOD measured at
550nm due to the fact that SSA particles block light at 550nm more efficiently than
they do at 1000nm–we calculate predicted effects using these datasets that are similar
to predicted effects using the preferred GISS dataset. 8

III.5 Interpretation of the insolation effect

Here we analyze what our estimation of the insolation effect (∂Y
∂I

∂I
∂S

= β) suggests about
the strength of the diffuse fertilization effect for the production of crop yield. From our
most general yield model in the previous section we have:

Y = Y (T, P, C, I, U)

Allowing the effects of direct and diffuse light to differ, and taking a first order Taylor
approximation gives:

Y = γ1I
D + γ2I

F + f(T, P, C)

Differentiating with respect to S to get the marginal impacts of SSAs gives:

∂Y

∂S
= γ1

∂ID

∂S
+ γ2

∂IF

∂S︸ ︷︷ ︸
insolation effect

+
∂

∂S
f(T, P, C) (2.21)

Here, the insolation effect (∂Y
∂I

∂I
∂S

) is represented by the sum γ1
∂ID

∂S
+ γ2

∂IF

∂S
. Equation

2.4 showed how w for the entire atmospheric column determines how much diffuse light
is gained from the scattering of a unit of direct light. Differentiating Eqn. 2.4 with
respect to S gives:

∂IF

∂S
=
∂w

∂S

[
I0 − ID

]
+ w

∂

∂S

[
I0 − ID

]
(2.22)

7We assume that CO2 concentrations are homogeneous within each hemisphere since within-
hemisphere variation in CO2 is relatively small (¡3ppm) [61] and finer-scale measurements, such as
those from remote sensing, are not available during our study period.

8In 1992, the average SPARC SAOD at 1020nm across countries is 0.076 and the SAOD coefficient
is -.901, which gives a predicted effect on yields of -6.9%. Similarly, the average SPARC2 SAOD at
1020nm across countries is 0.099 and the coefficient for maize is -.776, which gives a predicted effect
on yields of -7.8%. Tests for difference between these predicted effects and the predicted effect using
the GISS dataset (-8.2%, see previous footnote) fail to reject the null hypothesis that the effects are
the same (p¿0.1).
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which describes how the optical behavior of the entire atmospheric column changes
with respect to the concentration of SSAs. To limit the focus of this equation to the
effects of scattering due to only SSAs, we define a new variable:

wss = Pr(photon reaches the surface|photon hits a SSA particle) (2.23)

and substitute it in for w in Eqn. 2.22 to get:

∂IF

∂S
=
∂wss
∂S

[
I0 − ID

]
+ wss

∂

∂S

[
I0 − ID

]
(2.24)

Note that the definition of wss is identical to that of w except that wss is specific to SSA
particles and w describes the scattering properties of the entire atmospheric column.
Because ∂wss

∂S
and ∂I0

∂S
equal zero9 we can simplify this to:

wss = −
∂IF

∂S
∂ID

∂S

(2.25)

Thus, similar to w, wss is both the probability that a ray of light makes it to the surface
conditional on hitting a particle of SSA and the amount of diffuse light that is gained
from the loss of one unit of direct light due to SSA scattering. Now, solving for ∂IF

∂S
in

Eqn. 2.25 and substituting into Eqn. 2.21 we get:

∂Y

∂S
= (γ1 − γ2wss)

∂ID

∂S︸ ︷︷ ︸
insolation effect

+
∂

∂S
f(T, P, C) (2.26)

This formulation of the yield model allows us analyze the relative contribution of direct
and diffuse light to yield using our estimations of the insolation effect and the optical
properties of SSA. Here, the insolation effect is (γ1−γ2wss)

∂ID

∂S
, where wss describes the

optical properties of the SSAs and γ1 and γ2 describe how direct and diffuse light impact
yields. Because scattering blocks the transmission of direct light, ∂I

D

∂S
is negative. Thus,

the insolation effect is positive if γ1 − γ2wss < 0 and negative if γ1 − γ2wss > 0. The
diffuse light fertilization effect suggests that diffuse light is used more efficiently in the
production of yield than direct light, which means that γ2 > γ1. However, a unit of
diffuse light comes at the cost of 1

wss
units of direct light. If the benefit of diffuse light

(γ2) after accounting for the loss of direct light (wss) exceeds the benefit of direct light
(γ1), then γ1 < γ2wss and scattering will increase yields. If wss is too small, or the
relative benefit of diffuse to direct light is too small, then γ1 > γ2w and scattering
decreases yields.

9Stating that ∂wss

∂S = 0 rests on the assumption that adding more SSAs to the atmosphere does not
impact the optical behavior of the SSAs already there (i.e. no multiple scattering). This assumption
is likely to hold reasonably well over the range of optical depths observed during the Pinatubo and El
Chichon eruptions as well as the SRM simulations [28].
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Our finding that the insolation effect is negative suggests that γ1 > γ2w. Calculation
of wss using our insolation data, suggests that wss ≈ 0.85.10 This means that γ2 < 1.2γ1,
meaning that diffuse light is less than 1.2 times more efficiently used for the production
of yield than direct light. This finding is in contrast to previous studies, which have
found that scattering light tends to substantially increase plant growth [66, 36], though
there are exceptions [107]. Our results suggest that either increasing the diffuse fraction
increases photosynthesis less for crops than for other ecosystems,11 or that scattering
light reduces the harvest index,12 or that past estimates have confounded the impacts
of diffuse light with the effects of cooling. Though this calculation gives a rough upper
bound for the strength of the diffuse fertilization effect in the production of crop yield,
further research should more rigorously estimate the magnitude of this effect as well as
how it depends on environmental conditions.

III.6 Discussion of potential mechanisms causing the differences in the
estimated insolation effect between eruptions

Here, we expand our discussion in the main text of whether the differences in the in-
solation effect between the El Chichón and Pinatubo eruptions should be interpreted
as a product of either attenuation bias or of differences in SSA radiative properties.
We add two points to those made in the main text. First, if attenuation bias were the
only mechanism at work, we might expect the estimated impact of SSAs on insolation
(e.g. Extended Data Tables 2.1,2.3) to be attenuated towards zero as well. Rather,
we estimate larger marginal effects of SSAs on diffuse radiation and on forward scat-
tering during the El Chichón eruption than the Pinatubo eruption, which supports the
argument that differences in SSA radiative properties may have played a role. The
distribution of insolation stations, however, is concentrated in areas, such as Europe,
where non-satellite measurements of SSAs would also be most available and accurate.
Thus, it is possible that the measurement error of SSA concentrations is smaller over
the insolation stations than over the countries included in the yield regressions, which
include many tropical and subtropical countries with limited insolation and SSA mon-
itoring. If that is the case, then the observed differences in the insolation effect could
still be due to attenuation bias.

Second, as mentioned in the paper, we find that including data from the El Chichón
and Agung eruptions, consecutively, makes the estimated insolation effect progressively
closer to zero, though still negative. If SSA radiative properties are driving this, we
would expect the radiative properties of the SSAs from the El Chichón and Agung
eruptions to be more similar to each other than to the radiative properties of the
SSAs from the Pinatubo eruption. Though we are unable to directly estimate the
insolation impacts of the SSAs erupted by Agung using data from insolation stations,
other measurements suggest that the SSAs from Agung were roughly similar in size

10To estimate wss, we re-estimate Eqn. 2.2 using ID and IF , rather than ln(ID) and ln(IF ) as

outcome variables. We get ∂IF

∂S = 1, 909 Wh
m2day per unit SAOD (p¡.01) and ∂ID

∂S = −2, 238 Wh
m2day per

unit SAOD (p¡.01), which gives a wss of 0.85 using Eqn. 2.23.
11Selective breeding for upright architectures and high photosynthetic capacity may be one reason

for the relatively weaker diffuse fertilization effect in crops.
12The harvest index is the mass of edible yield divided by the total plant mass.
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to those of Chichón [101], and particle size is a key determinant of SSA radiative
characteristics. This is consistent with SSA radiative properties contributing to the
differences in the insolation effect between eruptions, though it should be noted that
measurements of the particle size of Agung’s SSAs were likely imprecise. Future research
will hopefully clarify the degree to which attenuation bias or differences in SSA radiative
properties explain the differences in the insolation effect across eruptions.

IV Total effect estimation in SRM simulations
The last step of our analysis is to estimate the total effect of SSAs on yields in a SRM
scenario. The SRM scenario we examine is the G3 experiment from the Geoengineer-
ing Model Intercomparison Project [57]. In the G3 scenario, SO2 is injected into the
stratosphere to keep the top of atmosphere radiation flux at 2020 levels by offsetting
anthropogenic forcing from RCP4.5 [111]. The climate data we use in our analysis
comes from the Max Planck Institute Earth System Model (MPI-ESM) [70]. We use
stratospheric aerosol optical depth, surface air temperature, precipitation and cloud
fraction fields generated by the experiment. We chose the MPI-ESM model because it
participated in the GeoMIP G3 experiment and specifically modeled SRM with sulfur
injection rather than direct dimming of the solar constant.13 To calculate the total
effect of SSAs on yields we compare a scenario with climate change – following RCP
4.5 – and SRM to a scenario with climate change only (CC) from 2050-2069:

Total effect = Yields with SRM and climate change− Yields with climate change only
(2.27)

IV.1 Model

The total effect of SRM on agriculture is the sum of SRM’s effects through each de-
terminant of yield that SRM affects. Our agricultural model from the previous section
(Eqn. 2.12) breaks the total effect of SSAs down into an insolation effect, a temperature
effect, a precipitation effect, a cloud effect and a residual effect:

dY

dS
=

∂Y

∂I

∂I

∂S︸ ︷︷ ︸
insolation effect

+
∂Y

∂T

∂T

∂S︸ ︷︷ ︸
temperature effect

+
∂Y

∂P

∂P

∂S︸ ︷︷ ︸
precipitation effect

+
∂Y

∂C

∂C

∂S︸ ︷︷ ︸
cloud effect

+
∂Y

∂U

∂U

∂S︸ ︷︷ ︸
residual effect

To get the change in yields due to SRM we multiply through by the change in SAOD
due to a given SRM scenario (G, for geoengineering):

dY

dG
=
dY

dS

dS

dG
=

dS

dG︸︷︷︸
ESM

[
∂Y

∂I

∂I

∂S
+
∂Y

∂U

∂U

∂S

]
︸ ︷︷ ︸

βSAOD

+
dS

dG

∂T

∂S︸ ︷︷ ︸
ESM

∂Y

∂T︸︷︷︸
∂
∂T
fT (.)

+
dS

dG

∂P

∂S︸ ︷︷ ︸
ESM

∂Y

∂P︸︷︷︸
∂
∂P

fP (.)

+
dS

dG

∂C

∂S︸ ︷︷ ︸
ESM

∂Y

∂C︸︷︷︸
∂
∂C

fC(.)

(2.28)

13The MPI model does not internally calculate the evolution of SO2 in the stratosphere; rather
it intakes aerosol radiative properties calculated from an aerosol microphysical model that simulates
equatorial injection of SO2 at 60hPa.
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Here, the change in yields due to SRM is expressed in terms that we can calculate using
an ESM and our fitted empirical yield model. We model the SRM-induced changes
in SAOD ( dS

dG
), temperature ( dS

dG
∂T
∂S

), precipitation ( dS
dG

∂P
∂S

) and cloud fraction ( dS
dG

∂C
∂S

)
induced by SRM using the MPI-ESM, and we estimate the impacts of these changes
(β, fT (.), fP (.), fC(.)) using our statistical yield model (Eqn. 2.16).

IV.2 Calculation of the total effect of SRM on crop yield

To calculate the total effect of SRM on crop yield we first use bilinear interpolation to
regrid all of the historical climate observations to the same resolution as the climate
model output. We then mean-debias the climate model data by month [24], average
the climate model data over the growing season for each crop for each year and then
evaluate our statistical crop model at these growing season values to get an estimate of
the yield for each year. We apply the statistical crop model fitted to data from 1983-2009
(Fig. 3a Model 1) because the SSAs from Pinatubo were substantially more accurately
measured than those of any other major eruption [113], and the cloud data does not
reach back to the Chichón eruption. We do the steps above for each crop (maize, soy,
rice, wheat), each scenario (SRM, CC), each ensemble member (each scenario is run
three times with slightly different initial conditions), and each year. We then average
across years and ensembles to get an estimate of the future expected yield for each crop
under each scenario. To compare scenarios, we subtract their average yields.

Specifically, we calculate the effect of SRM on yields for each crop j in each year t
and pixel p as the difference in yields in the SRM and CC scenarios:

∆Y

∆G tpj
= Y SRM

tpj − Y CC
tpj

= βjS
SRM
tpj − βjSCCtpj + fTj(T

SRM
tpj )− fTj(TCCtpj )

+ fPj(P
SRM
tpj )− fPj(PCC

tpj ) + fCj(C
SRM
tpj )− fCj(CCC

tpj ),

(2.29)

where superscripts denote the scenario.14 We then calculate the expected change in
yields due to SRM for each pixel (Extended Data Fig. 2.5) by averaging over 2050-
2069:

∆Y

∆Gpj
=

∑
t∈2050−2069

1

20

∆Y

∆G tpj
(2.30)

And finally we calculate the global average total effect of SRM on yields (Fig. 2.4e)
by averaging expected yield changes over pixels:

∆Y

∆Gworld,j
=

∑
p∈world

νpj
∆Y

∆Gpj
(2.31)

Here, νpj is a cropped-fraction and pixel-area weight such that
∑

p∈world νpj = 1. We
calculate the total effect separately for each ensemble member, as shown in Eqns. 2.29-
2.31 and then average the effects. We do not include ENSO in our analysis of the

14Thus, fTj(T
SRM
tpj )− fTj(T

CC
tpj ) calculates the temperature-mediated impact of SRM on the yield

of crop j in year t and pixel p.
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total effect because its long term average effect is mean zero by construction. CO2

fertilization effects will be equal in the SRM and climate change only scenarios, and
thus do not affect our calculation of the total effect of SRM.

We note that calculation of the total effect will be accurate even if the assumption
in Eqn. 2.19 is not satisfied. This is because β captures all effects of SSAs on yields not
mediated by temperature, precipitation or clouds and thus captures both the insolation
and residual effects (∂Y

∂I
∂I
∂S

+ ∂Y
∂U

∂U
∂S

) in Eqn. 2.28, if any residual effects exist.

IV.3 Comparisons to historical scenarios

To corroborate our methodology, we compare the CC scenario to a historical scenario
(1940-1959). Using a similar methodology to estimation of the total effect of SRM on
yields, we estimate that changes in temperature (2.6 ◦C), precipitation (1.0 mm/month)
and cloud fraction (-0.03) from 1940-1959 to 2050-2069 under RCP4.5 decrease yields
by 18%, 6%, 16%, and 6% for maize, rice, soy, and wheat, respectively (Extended Data
Fig. 2.7a). These estimates are within the range of estimates reported by the IPCC
[83].

Similarly, we compare the SRM scenario to the historical scenario. We find that
SRM and climate change together decrease yields by 17%, 6%, 14%, and 7% for maize,
rice, soy, and wheat, respectively (Extended Data Fig. 2.7b). Comparing the SRM -
historical impacts to the CC - historical impacts, we see that SRM mitigates yield losses
from rising temperatures, but imposes equally-sized sunlight-mediated damages. Thus,
we see again that, on net, SRM mitigates little to none of the damages from climate
change to global agricultural production.

We note that we have not considered the effects of carbon fertilization when com-
paring SRM and climate change only scenarios to the historical scenario. Thus, we
interpret these calculations as the impacts of changes in temperature, precipitation,
clouds and sunlight only.

IV.4 Uncertainty of the total effect

We analyze uncertainty in the total effect of SSAs on yield from two sources. Statistical
uncertainty comes from the fact that our crop model was estimated using historical
data and thus its coefficients are not perfectly known due to sampling variability (this
uncertainty is shown Extended Data Table 2 Column 5 and Extended Data Fig. 2).
Variances depicted in maps of the total effect are of ∆Y

∆Gpj
and variances depicted in

the bar graphs are of ∆Y
∆Gworld,j

. The error bars and hatchings in all figures that display

analyses of the total SSA effect represent statistical uncertainty only. Model uncertainty
comes from the fact that climate models do not perfectly predict the future climate. We
estimate model uncertainty by calculating the effects separately for each of the three
ensemble members rather than for their average (Extended Data Fig. 2.6) and find
that our result that SRM mitigates little of the damages of climate change is stable
across the three ensemble runs.
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Chapter 3

Estimating the effect of cloud
optical scattering on global crop
yield
Anthropogenic emissions of air pollutants and greenhouse gases alter the amount, dis-

tribution and properties of cloud cover; yet the economic impacts of these manipulations
remain largely unknown. Changing cloudiness may impact crop productivity by altering
temperature, precipitation and sunlight. While the impacts of temperature and precip-
itation on crop productivity are relatively well understood, the impacts of changes in
sunlight from cloud scattering remain poorly constrained because of the potentially off-
setting effects of changes in total and diffuse sunlight. Here I leverage remotely-sensed
cloud observations and subnational crop yield data from the United States, Europe,
Brazil, and China to provide the first empirical estimates of the sunlight-mediated ef-
fect of cloud optical scattering on maize and soy yields. I find a consistent concave
response of yields to cloud optical thickness across crops and regions. Changing ten
days in the growing season from clear to the optimal cloud thickness increases maize
and soy yields by 4.0% and 4.4%, respectively; further increasing cloud thickness to
the 95th growing season percentile decreases maize and soy yields by 3.4% and 3.5%.
Mechanistically, I find that the concavity in the cloud response is driven by concavity
in the response to total sunlight as well as – in some regions – benefits from increased
diffuse light. Applying these empirical estimates to earth system model simulations,
I find that changes in sunlight, due to anthropogenic air pollution-induced changes in
clouds, are suppressing maize and soy yields by as much as 5% in heavily polluted areas
of India and China by increasing the frequency of days with extremely high cloud opti-
cal depths. This costs Chinese maize farmers roughly US$1 billion a year. Changes in
sunlight due to changes in clouds from a quadrupling of CO2 relative to pre-industrial
tend to decrease global maize yields and redistribute soy yields. The methodology
developed in this paper could be extended study the impact of changes to the global
optical environment on other global-scale economic outcomes.
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Anthropogenic activity such as emissions of air pollutants and greenhouse gases
alter the amount, distribution and properties of global cloud cover; yet the agricultural
impacts of these manipulations due to the resulting changes in sunlight remain largely
unknown [11, 72, 45, 125, 126]. While the impacts of changes in temperature and
precipitation on yields have been well documented [104, 118], the impacts of changes
in sunlight on yields are less well understood.

A key uncertainty regarding the radiative impacts of cloud scattering on yields is to
what degree the benefits from increased diffuse light outweigh losses from reductions in
total light. Since each leaf of a crop has diminishing marginal photosynthetic returns
to sunlight, atmospheric scattering is thought to increase radiation use efficiency by
redistributing light from the sun-saturated leaves at the top of the canopy to the shaded
leaves below [56, 60]. The strength of this diffuse fertilization effect (DFE) – and, in
turn, atmospheric scattering’s impact on yield – is highly debated, with some analyses
showing large benefits of atmospheric scattering to plant productivity and crop yields
[102, 60, 135, 36] while others find substantial costs [38, 84, 108, 7]

The impact of scattering on agricultural yield depends primarily on the optical prop-
erties of the scattering particle, and the relative contributions of direct and diffuse light
to the production of yield. This, in turn, can depend on crop type, climate conditions,
nutrient availability, and importantly, the background optical environment upon which
additional scattering occurs [56, 35]. Previous empirical studies show positive effects
of solar brightening in the U.S. [114] and increased sunlight hours [136] in China, and
negative effects of tropospheric [38] and stratospheric [84] aerosol scattering on Indian
and global crop yields, respectively. Simulation studies [102], controlled experiments
[60], and studies using flux tower measurements [135, 36], however, find that optical
scattering increases plant productivity and crop yields.

Part of this discrepancy may be explained by a non-linear relationship between
optical scattering and crop yields. At low levels, scattering may benefit yields by in-
creasing light diffusivity and reducing damages from extreme insolation such as those
from photoinhibition and other cellular damage, water stress, or high leaf temperatures
[56]. With more intense scattering, however, total light availability can be so low that
it suppresses yields. Such a non-linear response has been posited and described for
un-managed ecosystem productivity [56, 75] but never before empirically estimated for
agricultural yields, which may respond differently than edible yield [84]. Empirically
quantifying the impact of optical scattering on crop yields provides an improved, gen-
eralized understanding of agricultural response to changes in insolation and, in turn,
informs the impacts of historical, current, and future changes in the optical environment
on global agricultural productivity such as those due to air pollution, climate change,
or potentially solar geoengineering [11, 125, 84].

This study combines remotely-sensed cloud observations from the International
Satellite Cloud Climatology Project (ISCCP) [98] (Fig. 3.1a) and subnational yield
data from the United States, European Union, China and Brazil (Extended Data Fig.
3.1) to provide, to my knowledge, the first empirical estimates of the sunlight-mediated
impact of clouds on international maize and soy yields. Estimating the non-linear im-
pact of cloud optical scattering on yields tests the strength of the diffuse fertilization
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effect at a global scale and over a range of scattering environments. In turn, this
enables the first empirically-based estimates of the cloud-mediated effects of climate
change and air pollution on yields due to changes in sunlight. The study’s large sam-
ple (N = 166,651 administrative-unit-by-year observations) enables estimation of an
internationally-representative response by averaging out potentially unrepresentative
heterogeneous effects and noise. Studying clouds as a source of atmospheric scattering
enables precise estimation of a nonlinear response because clouds are the primary de-
terminant of growing season to growing season variation in insolation and span a range
of optical depths an order of magnitude larger other sources of atmospheric scattering,
such as sulfate or black carbon aerosols.

The theoretically ideal experiment would measure the non-linear impact of cloud
scattering on yield by seeding clouds of different thicknesses above a set of admin-
istrative units (i.e. counties), cooling and drying these units to hold all variables
other than sunlight fixed, and comparing the resulting yields to a set of identical and
un-manipulated control units. In practice, I approximate this ideal experiment us-
ing historical growing season to growing season variation in cloudiness. I identify the
sunlight-mediated impact of cloud scattering on yield by comparing administrative units
(e.g. counties) to themselves over time with differing cloud amounts and cloud optical
depths – a measure for how difficult it is for light to pass directly through the cloud
without being scattered or absorbed. I use a multivariate fixed-effects panel estimation
strategy to account for unobserved time-invariant factors, such as soil type, as well
as administrative-unit-specific time-trending variables, such as access to agricultural
technologies (Supplementary Information Eqn. 3.12). I isolate the effects of changes
in sunlight by flexibly accounting for potentially confounding climate variables includ-
ing temperature, precipitation, wind speed and aerosol optical depth (Supplementary
Information Section III.3). These variables are correlated with both cloud cover (Fig.
3.1 and Extended Data Fig. 3.2) and yield (Extended Data Fig. 3.6) and thus would
bias estimates if not accounted for (Extended Data Fig. 3.4). I validate the model
by verifying that the estimated regional responses of crop yield to temperature and
precipitation are consistent with previous estimates in the literature (Extended Data
Fig. 3.6) [104].

I empirically estimate the impact of cloud optical depth on total, direct and diffuse
shortwave insolation using 859 global insolation monitors (N = 3,428,474 station-days)
to inform the mechanisms driving the impact of cloud scattering on yield and to validate
the remotely sensed cloud data (Supplementary Information Section II). I find that,
given an average cloud amount of 70 %, diffuse insolation peaks at 13.5 optical depth,
increasing 36.5% or 400 Wh

m2day
from baseline; total light decreases across the entire

support (Fig. 3.1, Extended Data Fig. 3.3, Extended Data Table 3.1). These findings
globally generalize previous analyses that use only a handful of stations [56, 75].

In turn, I find that the sunlight-mediated effect of cloud scattering on maize and
soy yields is concave, with a yield-maximizing optical depth of 15 (Fig. 3.2). Increasing
cloud optical depth for ten days during the growing season from 0 (clear-sky) to 15
increases maize and soy yields by 4.0% and 4.4%, respectively, due to changes in sunlight
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– given the growing season average cloud amount of 70% (Supplementary Information
Section III.2). Relative to a clear day, an increase in 15 optical depth coincides with
an increase in diffuse light of 36% or 391 Wh

m2day
and a decrease in total light of 51 % or

2,284 Wh
m2day

. Further increasing cloud scattering to 30 optical depth – roughly the 95th
percentile growing season thickness – for 10 days decreases growing season maize and
soy yields by 3.4% and 3.5%, relative to an optical depth of 15.

Compared to an optically ideal growing season with a constant optical depth of 15,
realized optical depths lower cropped-fraction-weighted-global-average maize yields by
51% and soy yields by 56% (Supplementary Information section III.8). This is a similar
reduction to that caused by realized temperatures, which previous analyses have shown
suppress yields by 48% relative to the thermally ideal growing season [14].

The finding of a concave cloud scattering effect peaking near 15 optical depth is
consistent across the two crops and four regions analyzed. Regional heterogeneity in
the strength of this effect may be due either to heterogeneous impacts of clouds on
sunlight – potentially due to differing solar zenith angles or cloud optical properties
– or to heterogeneous sensitivities of crops to sunlight – potentially due to differing
varietals, climate conditions, or nutrient and water availability [56]. The estimated
impact of cloud optical scattering is robust to adding or altering the climate controls
(i.e. additionally controlling for vapor pressure deficit, multiple flexible forms of av-
erage, maximum and minimum daily temperature, a different precipitation data set,
and nighttime cloud cover), changing the fixed-effects in the panel regression (to in-
clude cubic adm-2 level trends or to use quadratic adm-1 level trends), estimating the
response with alternative functional forms (i.e. non-parametrically using bins and with
additional knots in the restricted cubic spline), and weighting the response by planted
area (Extended Data Fig. 3.5) .

Mechanistically, the damages from extreme cloudiness are likely due to light limita-
tion. The benefits of scattering at optical depths less than 15, however, could be due
to the diffuse fertilization effect, to reduced damage from extreme insolation, or to a
combination of the two [56]. To empirically test the relative contributions of these po-
tential mechanisms, I estimate the effect of photosynthetically active radiation (PAR)
[30] on yields, allowing the effect of PAR to vary as a function of the diffuse fraction
(Supplementary Information Section IV, Extended Data Table 3.2).

I find that both maize and soy yields – in the pooled sample and regional subsamples
– have a concave response to PAR when the impact of PAR is evaluated at the average
diffuse fraction observed for each level of PAR (Fig. 3.3 a). This is consistent with the
finding of a concave response to cloud scattering. I find that this concavity – and thus
the concavity in the response to cloud scattering – is driven by a concave response to
total sunlight and not by the diffuse fertilization effect in the pooled sample (Fig. 3.3
c). I do, however, find evidence for the diffuse fertilization effect in the Chinese maize,
U.S. maize and E.U. soy subsamples. For U.S., Chinese and E.U. maize, a positive
diffuse fertilization effect is the primary driver of concavity in the PAR, and thus cloud
scattering, response (Extended Data Fig. 3.7). For Brazilian maize and all regions of
soy the response to PAR is concave regardless of the diffuse fraction and only E.U. soy
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has a positive diffuse fertilization effect. Future research should investigate the drivers
of these regional differences in the mechanisms driving the concave responses to cloud
scattering.

Anthropogenic activities such as the emission of aerosol precursors or greenhouse
gasses shape the distribution and properties of global clouds and, in turn, the global
optical environment. To estimate how anthropogenic changes in clouds alter sunlight
and, in turn, yields I apply empirical relationships between cloud optical scattering
and crop yield (Supplementary Information Section III.7 and Extended Data Fig. 3.9)
to output from five global climate models and compare yields in two scenerios. (1) I
estimate the sunlight-mediated effect of anthropogenic air pollution by comparing the
contribution of cloud scattering to yields in identical worlds with global aerosol distri-
butions set to pre-industrial (1860) and year 2000 levels, following [133]; (2) I estimate
the sunlight-mediated effect of climate change by comparing the contribution of cloud
scattering to yields in identical worlds with global carbon dioxide concentrations set
to pre-industrial and quadrupled-pre-industrial levels, following [133] (Supplementary
Information section V).

I find that changes in sunlight due to changes in clouds from to anthropogenic
aerosols have, on average, decreased maize and soy yields (Fig. 3.4a-b) by decreasing
the frequency of medium optical depth clouds (3.6 < OD < 23) – which tend to increase
yields – and increasing the frequency of extremely thick (OD > 23) clouds – which tend
to decrease yields (Extended Data Fig. 3.8). In heavily polluted areas such as China,
maize and soy yields are reduced by 2.7% and 1.1%, respectively, amounting to roughly
US$1 billion a year of Chinese maize production. I find that climate-change-induced
changes in cloud optical scattering tend to decrease maize yields and redistribute soy
yields (Fig. 3.4c-d, Supplementary Information Section V). Though these projections
are not predictions of climate change or air pollution impacts because they assume away
adaptation, estimate only the sunlight-mediated effects due to changes in cloud cover
thereby omitting other effects such as direct damages from air pollutants or benefits
from carbon dioxide fertilization, and rely on notoriously difficult-to-predict changes
in cloud distributions [11] that incite substantial inter-model variation into predicted
effects (Extended Data Fig. 3.10); they do provide the first demonstration of how
empirical and physical models can be paired to quantify the agricultural externalities
stemming from anthropogenic dimming and brightening of the global optical environ-
ment due to changes in cloud cover [125].

The finding of a statistically significant and economically substantial non-linear ef-
fect of cloud optical scattering on yield suggests that the impact of future anthropogenically-
induced atmospheric scattering – due to air pollution, climate change, or potentially
geoengineering – will depend on the background optical depth. Farmer adaptation,
which is not modelled explicitly, could theoretically lessen any negative impacts of fu-
ture changes to the global optical environment, yet the degree to which farmers have
historically adapted to changes in insolation, and their ability to adapt to future changes
is unknown.

The finding of a concave response of yields to atmospheric scattering is consistent
with theoretical predictions and observations of unmanged ecosystem productivity [56],
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yet the estimated damages from high cloud optical depths are not as severe as past
measurements of damages due to increased tropospheric and stratospheric aerosol op-
tical depth [37, 84]. This difference may be explained by either increasing cloudiness
being correlated with some omitted variable that both acts to increase yield and is un-
correlated with the model’s controls in both the primary specification and robustness
checks, or by differing impacts of clouds and aerosols on the intensity, diffusivity and
spectral distribution of insolation [56, 44] causing different impacts on crops.
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Figure 3.1: Clouds alter the global optical environment. a, Average growing
season cloud optical depth 1983-2009 from the International Satellite Cloud Climatol-
ogy Project. b-c, Empirical estimates of the effect of clouds on total (N = 3,428,474
station-days) and scattered (N= 928,202) sunlight using a network of global stations
(Supplementary Information Section II). d-e, Empirical correlation between growing
season cloud optical depth and growing season temperature and precipitation. Dashed
lines in b-e show 95% confidence intervals. Responses to optical depth are shown for
the average growing season cloud amount of 70%.
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Figure 3.2: Empirical estimates of the sunlight-mediated effect of cloud
scattering on crop yield. Curves show the estimated effect of increasing the cloud
optical depth of cloudy areas from zero to a given value for three daytime hours during
the growing season on growing season yield. A consistent concave response of yields to
cloud scattering is recovered in the pooled sample (black, N = 166,651 for maize and
96,727 for soy), as well as in Brazil (green, N = 93,468 for maize and 61,480 for soy),
China (red, N = 27,451 for maize), the European Union (yellow, N = 2,248 for maize
and 703 for soy), and the United States (blue, N = 43,484 for maize and 34,544 for
soy). Regional impacts are estimated independently. Models include climate controls
and adm-2 (e.g. county) specific fixed effects and adm-2 specific quadratic time trends.
Responses to optical depth are shown for the average growing season cloud amount of
70%. Dotted lines represent the 95% confidence interval for the pooled effect, which
is calculated allowing for arbitrary temporal and spatial correlation within adm-1 (e.g.
state) units. The histogram shows the distribution of daytime 3-hourly cloud optical
depth during the growing season.
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Figure 3.3: Empirical estimates of the effect of sunlight on crop yield. The
estimated effect of changing photosynthetically active radiation (PAR) on maize and
soy yields for an hour during the growing season. A consistent concave response of
yields to PAR is recovered in the pooled sample (black), as well as in Brazil (green),
China (red), the European Union (yellow), and the United States (blue). The effect
of changing PAR is evaluated at the average diffuse fraction for each level of PAR.
Models include climate controls and adm-2 (e.g. county) specific fixed effects and adm-
2 specific quadratic time trends. Dotted lines represent the 95% confidence interval
for the pooled effect, which is calculated allowing for arbitrary temporal and spatial
correlation within adm-1 (e.g. state) units. The histogram shows the distribution of
hourly PAR during each day in the growing season in the pooled sample. Whisker plots
show empirical estimates of the impact of the diffuse fraction on the marginal impact of
PAR on crop yield, which is a measure for the strength of the diffuse fertilization effect
(α3 in Supplementary Information Equation 3.22). If α3 = 0.004, as in U.S. maize,
increasing the diffuse fraction for an hour from 0 to 1 when PAR is at 200 W

m2 increases
growing season yields by 0.08 %.



CHAPTER 3. ESTIMATING THE EFFECT OF CLOUD OPTICAL
SCATTERING ON GLOBAL CROP YIELD 47

−0.04

−0.02

0.00

0.02

Log Yield 

−0.04

−0.02

0.00

0.02

Log Yield

−0.04

−0.02

0.00

0.02

Log Yield

c

−0.04

−0.02

0.00

0.02

Log Yield

a

d

bAir Pollution Impact, Maize Air Pollution Impact, Soy

Climate Change Impact, Maize Climate Change Impact, Soy

Figure 3.4: The sunlight-mediated impact of anthropogenic changes in cloud
cover on global crop yield. a,b The sunlight-mediated effect due to changes in cloud
cover of year-2000 relative to pre-industrial air pollution on maize and soy yields. c,d
The sunlight-mediated effect due to changes in cloud cover of a quadrupling of pre-
industrial atmospheric carbon dioxide concentrations on maize and soy yields.
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Methods
To match the administrative yield data from the United States (obtained from the
United States Department of Agriculture’s National Agricultural Statistics Service),
Brazil (from the Brazilian Institute of Geography and Statistics) the European Union
(from [47]) and China (from [47]) to the climate data, I summarize all gridded cloud
[98], temperature[1], precipitation [127], aerosol optical depth [30], wind speed [30], and
insolation [30] data to the growing season administrative unit level by taking the mean of
values over cropped area [67] and the growing season [100] using a methodolgy similar
to previous studies [104] and tailored to the analysis in this paper (Supplementary
Information Section III.5). In all aggregation and analyses, clear sky is defined as
having a cloud optical depth of 0.

To estimate the impact of cloud scattering on insolation I pair the ISCCP cloud
data with station measurements of total, direct and diffuse insolation [129]. I model
the effect of cloud scattering on log yields using restricted cubic splines, and account for
station-by-day-of-year fixed effects to account for any season-specific differences between
stations (Supplementary Information Equation 3.1). The calculation of standard errors
allows for arbitrary correlation across stations within a country over time as well as
within a year across stations.

To estimate the response of cloud optical scattering to crop yields I model the
impacts of cloud optical depth, temperature and precipitation using restricted cubic
splines, and the effect of maximum hourly wind speed and aerosol optical depth using
cubic polynomials (Supplementary Information Equation 3.13). To estimate the re-
sponse of crop yields to PAR I model the impact of PAR using restricted cubic splines,
and allow that impact to vary linearly with the diffuse fraction (Supplementary Infor-
mation Equation 3.22); I model the climate controls identically to those in the model of
cloud optical scattering on crop yields. The calculation of standard errors for the regres-
sions of crop yield on clouds and sunlight allow for arbitrary correlation of observations
across space and over time within an administrative level-1 unit (e.g. state). Analyses
are conducted separately for maize and soy, as well as for estimation of regional effects.

Data used to calculate the sunlight-mediated impact of anthropogenic changes in
cloud distributions on crop yield come from the Coupled Model Intercomparison Project
models: CanESM2, HadGEM2 (-A and -ES for the aerosol and climate change scenarios,
respectively), IPSL-CM5A-LR, MIROC5 and MRI-CGCM3.
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Log Insolation

Total Diffuse Direct

(1) (2) (3)

Cloud Optical Depth RCS Feat. 1 −0.077∗∗∗ 0.050∗∗∗ −0.271∗∗∗

(0.001) (0.009) (0.007)

Cloud Optical Depth RCS Feat. 2 0.163∗∗∗ −0.331∗∗∗ 0.719∗∗∗

(0.006) (0.043) (0.031)

Cloud Optical Depth RCS Feat. 3 −0.307∗∗∗ 0.802∗∗∗ −1.444∗∗∗

(0.014) (0.101) (0.071)

Climate Controls None None None
Projected R2 0.628 0.182 0.589
Observations 3,428,474 928,202 928,202
R2 0.887 0.757 0.766

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 3.1: Effect of cloud optical depth on total, diffuse,
and direct insolation Coefficients are the maringal impact of the restricted cubic
spline features of cloud optical depth (plotted in Fig. 3.1). All models include station-
by-day-of-year fixed effects. Standard errors, shown in parentheses, are clustered by
country and by year to account for serial correlation over time within a country and
for autocorrelation across space within a year.
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Insolation

Total Diffuse Direct

(1) (2) (3)

MERRA2 Total PAR 2.002∗∗∗

(0.071)

MERRA2 Diffuse PAR 1.188∗∗∗

(0.091)

MERRA2 Direct PAR 1.864∗∗∗

(0.079)

Climate Controls None None None
Projected R2 0.466 0.159 0.45
Observations 4,696,137 1,149,146 1,149,146
R2 0.848 0.713 0.747

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 3.2: Comparison of total, diffuse and direct MERRA2
PAR to WRDC station measurements. Coefficients represent the increase in mea-
sured station insolation that correlates with a 1 unit increase in MERRA2 predicted
photosynthetically active radiation. Coefficients tend to be larger than 1 because only
a portion of the shortwave solar spectrum measured by the WRDC stations is photo-
synthetically active. All models include station-by-day-of-year fixed effects. Standard
errors, shown in parentheses, are clustered by country and by year to account for serial
correlation over time within a country and for autocorrelation across space within a
year.
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Maize yield (log)

Subnational Pooled US EU China Brazil

Cloud Optical Depth RCS Feat. 1 0.101∗∗∗ 0.056∗∗∗ 0.001 0.027 0.128∗∗∗

(0.021) (0.015) (0.022) (0.021) (0.035)

Cloud Optical Depth RCS Feat. 2 −0.549∗∗∗ −0.322∗∗∗ −0.045 −0.204 −0.679∗∗

(0.133) (0.107) (0.139) (0.131) (0.268)

Cloud Optical Depth RCS Feat. 3 1.306∗∗∗ 0.733∗∗∗ 0.129 0.504 1.650∗∗

(0.333) (0.284) (0.358) (0.327) (0.703)

Climate Controls T,P,A,W T,P,A,W T,P,A,W T,P,A,W T,P,A,W
Projected R2 0.065 0.254 0.167 0.066 0.045
Observations 166,651 43,484 2,248 27,451 93,468
R2 0.993 0.721 0.864 0.713 0.817

Soy yield (log)

Subnational Pooled US EU Brazil

Cloud Optical Depth RCS Feat. 1 0.116∗∗∗ 0.068∗∗∗ 0.065 0.132∗∗∗

(0.028) (0.018) (0.047) (0.045)

Cloud Optical Depth RCS Feat. 2 −0.619∗∗∗ −0.405∗∗∗ −0.432 −0.654∗

(0.209) (0.099) (0.285) (0.390)

Cloud Optical Depth RCS Feat. 3 1.483∗∗∗ 0.978∗∗∗ 0.990 1.561
(0.538) (0.246) (0.720) (1.029)

Climate Controls T,P,A,W T,P,A,W T,P,A,W T,P,A,W
Projected R2 0.131 0.293 0.174 0.1
Observations 96,727 34,544 703 61,480
R2 0.994 0.708 0.725 0.792

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 3.3: The impact of cloud optical scattering on maize
and soy yields. Coefficients represent the marginal impact of the changing the grow-
ing season average of restricted cubic spline features of cloud optical depth on yield
(plotted in Fig. 3.2). All models include temperature (T), precipitation (P), aerosol
optical depth (A) and precipitation (P) controls as well as administrative unit fixed
effects and administrative-unit-specific quadratic time trends. Standard errors, shown
in parentheses are clustered by adm-1 (e.g. state) to account for correlation over time
and space within adm-1 units.
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Maize yield (log)

Subnational Pooled US EU China Brazil

(1) (2) (3) (4) (5)

Sunlight (PAR) RCS Feat. 1 0.027 −0.003 −0.002 0.027∗ 0.025
(0.016) (0.019) (0.020) (0.015) (0.039)

Sunlight (PAR) RCS Feat. 2 −0.051∗∗ −0.002 −0.001 −0.042∗ −0.053
(0.024) (0.032) (0.031) (0.023) (0.057)

Diffuse Fert. Eff. (PAR x DF) −0.002 0.010 0.015∗∗ 0.013∗∗ −0.008
(0.005) (0.007) (0.007) (0.005) (0.006)

Climate Controls T,P,A,W T,P,A,W T,P,A,W T,P,A,W T,P,A,W
Projected R2 0.065 0.252 0.173 0.067 0.044
Observations 166,651 43,484 2,248 27,451 93,468
R2 0.993 0.720 0.865 0.713 0.817

Soy yield (log)

Subnational Pooled USA EU Brazil

(1) (2) (3) (4)

Sunlight (PAR) RCS Feat. 1 0.057∗∗∗ 0.048∗∗∗ 0.035 0.066
(0.022) (0.018) (0.030) (0.042)

Sunlight (PAR) RCS Feat. 2 −0.095∗∗∗ −0.078∗∗∗ −0.065 −0.111∗

(0.033) (0.028) (0.054) (0.063)

Diffuse Fert. Eff. (PAR x DF) −0.010∗ 0.011∗∗ −0.007 −0.016∗∗

(0.005) (0.005) (0.015) (0.007)

Climate Controls T,P,A,W T,P,A,W T,P,A,W T,P,A,W
Projected R2 0.128 0.301 0.159 0.097
Observations 96,727 34,544 703 61,480
R2 0.994 0.712 0.720 0.791

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Extended Data Table 3.4: The impact of PAR on maize and soy yields.
Coefficients represent the marginal impact of changing the growing season average of
the restricted cubic spline features of PAR as well as the interaction between PAR
and the diffuse fraction (plotted in Fig. 3.3). All models include temperature (T),
precipitation (P), aerosol optical depth (A) and precipitation (P) controls as well as
administrative unit fixed effects and administrative-unit-specific quadratic time trends.
Standard errors, shown in parentheses are clustered by adm-1 (e.g. state) to account
for correlation over time and space within adm-1 units.
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Extended Data Figure 3.1: Measurements of maize and soy yield and some of
their climatological determinants. Twenty-five-year maize and soy growing-season-
average yield, cloud optical depth, photosynthetically active radiation, temperature,
and precipitation in the subnational areas included in the analysis.
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Extended Data Figure 3.2: Correlation of cloud optical depth with other
climatological determinants of yield. The estimated correlation of temperature,
precipitation, wind speed and aerosol optical depth with cloud optical depth in the
pooled sample. Regressions to estimate the effect of cloud optical depth on each variable
include the other three climate variables and administrative level-2 fixed effects and
quadratic time trends as controls to mirror the identifying variation in the estimation
of cloud impacts on yields. Dotted lines represent the 95% confidence interval, which
is calculated allowing for arbitrary temporal and spatial correlation within adm-1 (e.g.
state) units.
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Extended Data Figure 3.3: Empirical estimates of the impact of clouds on
shortwave insolation. Estimates are identical to those in Fig. 3.1 except that sunlight
is modeled in levels rather than in logs (Supplementary Information Section II).
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Extended Data Figure 3.4: The effect of adding controls to the estimated
effect of cloud scattering on maize and soy yields. The estimated effect of cloud
scattering on maize and soy yields in the pooled and regional samples adding controls
in one-at-a-time. Generally, adding precipitation (P) and temperature (T) into the
model decrease the benefits of cloudiness while adding aerosol optical depth (A) and
wind speed (W) have little effect. Dotted lines show the 95% confidence interval for
the cloud response in the model with no controls. The confidence interval is calculated
allowing for arbitrary temporal and spatial correlation within adm-1 (e.g. state) units.
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Extended Data Figure 3.5: Robustness of empirical estimates of the
sunlight-mediated effect of cloud scattering on crop yield. Each curve shows
the estimated effect of increasing the cloud optical depth of cloudy areas from zero to a
given value for three hours during the growing season in the pooled sample. In all panels,
dotted lines represent the 95% confidence interval for the pooled effect. a, Climatic con-
trols in the primary specification (”BASE”, black) (Supplementary Information Equa-
tion 3.13) are altered to use a different precipitation dataset (red), model temperature
non-parametrically using bins (green), model temperature using degree days calculated
from a sinusoidal interpolation of daily maximum and minimum temperature (yellow),
control for nighttime cloud cover (grey) and for vapor pressure deficit (blue) (Supple-
mentary Information, section III.4). b, The fixed-effects in the primary specification
(black) are changed from administrative unit level-2 specific quadratic trends, to ad-
ministrative unit level-2 cubic trends (yellow) and administrative unit level-1 quadratic
trends (blue). c, The functional form used to calculate the cloud response is altered
from the preferred specification which uses a restricted cubic spline with four knots
(black) to a restricted cubic spline using 3 knots (blue) and 5 knots (yellow) as well
as a cubic polynomial (green), and non-parametric bins of optical depth (red). d, The
observational weights are changed from standard OLS weights to planted-area weights
(red).
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Extended Data Figure 3.6: Estimated climate control functions from the
model of cloud scattering impacts on maize and soy yield. Regional climate
response functions from the pooled model (Supplementary Information Equation 3.14)
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season precipitation, temperature, wind speed and aerosol optical depth on growing
season log yield. Daily effects can be calculated by dividing the growing season response
by the number of days within the growing season (roughly 150 days, depending on the
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Extended Data Figure 3.7: Empirical estimates of the effect of changing the
diffuse fraction on the response of maize and soy yields to photosynthetically
active radiation. The estimated effect of changing photosynthetically active radiation
(PAR) on maize and soy yields for an hour during the growing season in the pooled
sample (black), Brazil (green), China (red), the European Union (yellow), and the
United States (blue). The effect of changing PAR is evaluated at a diffuse fraction of 0
(a), the average diffuse fraction of 0.4 (b) and a diffuse fraction of 1 (c) (Supplementary
Information Section IV). Dotted lines represent the 95% confidence interval for the
pooled effect, which is calculated allowing for arbitrary temporal and spatial correlation
within adm-1 (e.g. state) units.
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Extended Data Figure 3.8: Changes in cloud distributions due to anthropogenic
aerosol and climate change emissions. Simulated changes in cloud amount (CA) for nine
cloud types in the air pollution and climate changes scenarios. Growing season changes
are averages over 5 climate models and 30 years of data (Supplementary Information
Section V).
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Extended Data Figure 3.9: Marginal impact of cloud optical scattering by
cloud type on maize and soy yields. Circles show the estimated marginal impact
of growing season cloud amount on yield for nine cloud types in the pooled sample
(Supplementary Information Section III.7) used to project the sunlight-mediated impact
of anthropogenic changes in cloud distributions on yields. For maize, the model R2 is
0.99 and the projected R2 is 0.07. For soy, the R2 is 0.99 and the projected R2 is 0.14.
Whiskers show the 95% confidence interval, which is calculated allowing for arbitrary
temporal and spatial correlation within adm-1 (e.g. state) units.
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Extended Data Figure 3.10: Model spread of the projected effect of air
pollution and climate change on crop yields due to cloud-induced changes
in sunlight. Maps show the pixel-wise minium and maximum impacts projected by
the 5 climate models for maize and soy yields.
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Supplementary Information

I Data
Insolation data The World Radation Data Centre (WRDC) provides daily measure-
ments of total, direct and diffuse insolation from 1953-2013 [129]. The data is cleaned
as in [84]. The sample has 3,428,474 station-day observations of total insolation and
928,202 station-day observations of diffuse light.
Yield data I use subnational maize and soy yields from the United States, Brazil,
China and the European Union in the analysis. I use data from 1985 - 2009 because
yields recorded in 1984 have growing seasons that include data from 1983 which is par-
tially missing in the cloud data, which begins July 1, 1983. I drop any administrative
unit-year observation that is has missing data, that is in the top or bottom 1% of the
national yield to remove outliers, and that is missing over 5% of within growing sea-
son cloud or temperature measurements to reduce measurement error. Subsequently,
I drop any administrative unit which has fewer than 13 (i.e. half) remaining obser-
vations to increase the balance of the final panel. I calculate yield as production

area planted
in all

regions other than the EU, where only harvested area is available and thus I calculate
yield as production

area harvested
. The resulting panel has 93,468/61,480 municipio-year obsevations

from Brazil, 43,484/34,544 county-year observations from the United States, 27,451/NA
county-year observations from China, and 2,248/703 NUTS1 and NUTS2 regions from
Europe for maize/soy, respectively.
Cloud data Data on cloud amount, cloud optical depth and cloud type are from the
International Satellite Cloud Climatology Project (ISCCP) Climate Data Record, H-
Series (HGG). These data have global 3-hourly coverage, from July 1983 to December
2009 on a 1-degree equal area grid.1,2 [98]. The ISCCP data were selected for the length
of the series (25+ years), the high temporal resolution, and the ability to match consis-
tently with output of global climate models through ISCCP simulators (Supplementary
Information Section V).

From the ISCCP data I used data on cloud amount, cloud optical depth of cloudy
pixels, and cloud amount by cloud type. Details on how these data were processed
from raw geostationary and polar orbiting satellites with a native resolution of around
0.1 degree and measurements of surface conditions can be found in the Climate Data
Record Program’s Climate Algorithm Theoretical Basis Document for the International
Satellite Cloud Climatology Project, Cloud Properties, H-Series.3

Primary specification controls The Berkeley Earth Daily Land gridded dataset gives
daily average surface temperature values from 1880 to present at a resolution of 1-degree
[1]. The University of Delaware Air Temperature and Precipitation dataset provides
monthly total precipitation over land (mm/month) from 1900 to 2010 at 0.5-degree
resolution [127]. The Modern-Era Retrospective Analysis for Research and Applica-

1Data available at: https://www.ncei.noaa.gov/data/international-satellite-cloud-climate-project-
sccp-h-series-data/access/isccp-basic/hgg/.

2Data extended to June 2015 as of December 2018; these data could be included in future analyses.
3https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/

AlgorithmDescription_01B-29.pdf

https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
https://www1.ncdc.noaa.gov/pub/data/sds/cdr/CDRs/Cloud_Properties-ISCCP/AlgorithmDescription_01B-29.pdf
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tions, version 2 (MERRA-2) gives hourly data on total column aerosol optical depth
(TOTEXTTAU) and hourly maximum wind speed (SPEEDMAX) at 0.625 degrees
longitude by 0.5 degrees latitude resolution [30].
Photosynthetically Active Radiation MERRA-2 gives hourly measurements of to-
tal (PARTOT), direct (PARDR) and diffuse (PARDF) photosynthetically active inso-
lation [30].
Additional controls for robustness tests The Berkeley Earth Daily Land gridded
dataset gives daily maximum and minimum temperature, which are used to calculate
vapor pressure deficit as well as hourly growing degree days and killing degree days
(Supplementary Information Section III.4). The Global Meteorological Forcing Dataset
for land surface modeling gives monthly precipitation from 1901-2012 at 0.5 degree
resolution [105].
Growing season and cropped fraction data Growing season planting and harvest-
ing dates are from [100]; cropped fraction data (crop-specific) are from [67].

II Estimating the effect of cloud scattering on sunlight
To estimate the impact of cloud scattering on total (IT ), direct (ID), and diffuse (IF )
insolation I follow [84] and pair the 3-hourly (h) cloud amount (CA) and cloud optical
depth τ data with daily WRDC insolation data and estimate:

ln(IXid ) = fCIX (Cid) + εid = ψ1

∑
h∈day

CAihr1(τih)

#h ∈ day
+ ψ2

∑
h∈day

CAihr2(τih)

#h ∈ day

+ ψ3

∑
h∈day

CAihr3(τih)

#h ∈ day
+ φij + εid

(3.1)

Where d is day of sample, h is 3-hour of sample, j is day of year, day is daytime
(i.e. positive insolation), and ε is an error term. That is, I regress daily insolation
on the daytime average restricted cubic spline expansions of cloud optical depth to
estimate ψ1, ψ2, and ψ3, which paramatarize the response of insolation to clouds, fCIX .
r1(.), r2(.) and r3(.) are restricted cubic spline feature expansions [41] with knots at
τih = 0, 15, 30, 60. Impacts on total (IT ), direct (ID), and diffuse (IF ) insolation
are estimated separately. Station-by-day-of-year fixed effects, φid, account for all time-
invariant differences between stations, such as latitude, as well as for all location-specific
seasonal patterns such as summer dust or smoke. fCIX is identified by comparing
insolation measurements and cloudiness across years within the same day-of-year. For
example, diffuse light and cloudiness on November 26, 1991 is compared to diffuse light
and cloudiness November 26, 1992. Standard errors are computed allowing for arbitrary
patterns of serial correlation over time between all stations in the same country and
for arbitrary patterns of autocorrelation across all station observations within the same
year [46].
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III Estimating the sunlight-mediated effect of cloud
scattering on crop yield

The primary goal of this analysis is to estimate the sunlight-mediated effect of cloud
scattering on yield. In this section I describe how I estimate this effect.

III.1 Empirical framework

Consider yield Y in administrative unit i and year t as a function of temperature (T ),
precipitation (P ), sunlight (I), air pollutants (A) and other variables (U):

Yit = Y (Tit, Pit, Iit, Ait, Uit) (3.2)

A challenge in this context is that these inputs are themselves functions of Clouds (C)
and other factors (Z):

Tempit = T (Cit, Zit) (3.3)

Precipit = P (Cit, Zit) (3.4)

Insolationit = I(Cit, Ait, Zit) (3.5)

Air Pollutionit = A(Cit, Zit) (3.6)

Wind Speedit = W (Cit, Zit) (3.7)

Unobservableit = U(Cit, Zit) (3.8)

Further, clouds themselves are dependent on temperature and air pollution [11]:
Cit = C(Tit, Ait, Zit).

Differentiating yield with respect to C, following [84], decomposes the effects of
clouds into a temperature term, a precipitation term, an insolation, and an air pollution
term:

dY

dC
=

∂Y

∂T

∂T

∂C︸ ︷︷ ︸
temperature effect

+
∂Y

∂P

∂P

∂C︸ ︷︷ ︸
precipitation effect

+
∂Y

∂I

∂I

∂C︸ ︷︷ ︸
insolation effect

+
∂Y

∂A

∂A

∂C︸ ︷︷ ︸
air pollution effect

+
∂Y

∂W

∂W

∂C︸ ︷︷ ︸
wind speed effect

+
∂Y

∂U

∂U

∂C︸ ︷︷ ︸
other effect

(3.9)

The insolation-mediated effect, (∂Y
∂I

∂I
∂C

) is difficult to recover directly because we
do not observe the change in yields due directly to changes in insolation. Rather, we
observe only the changes in these variables over time. To see how we can use these, we
take the derivative of Y with respect to time:

dY

dt
=
∂Y

∂T

dT

dt
+
∂Y

∂P

dP

dt
+
∂Y

∂I

dI

dt
+
∂Y

∂A

dA

dt
+
∂Y

∂W

dW

dt
+
∂Y

∂U

dU

dt
(3.10)
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Then, taking the derivatives of the variables we don’t observe directly (equations
3.5,3.8) with respect to t and substituting into equation 3.10, we get:

dY

dt
=
∂Y

∂T

dT

dt
+
∂Y

∂P

dP

dt
+
∂Y

∂A

dA

dt
+
∂Y

∂W

dW

dt

+
∂Y

∂I

[
∂I

∂C

[
∂C

∂T

dT

dt
+
∂C

∂A

dA

dt
+
∂C

∂Z

dZ

dt

]
+
∂I

∂A

dA

dt
+
∂I

∂Z

dZ

dt

]
︸ ︷︷ ︸

dI
dt

+
∂Y

∂U

[
∂U

∂C

dC

dt
+
∂U

∂Z

dZ

dt

]
︸ ︷︷ ︸

dU
dt

(3.11)

Variables whose changes over time we observe are left as is because they can be
directly accounted for in the empirical model. Re-arranging and simplifying terms
gives:

dY

dt
=

 ∂Y

∂T︸︷︷︸
∂
∂T
fT (.)

+
∂Y

∂I

∂I

∂C

∂C

∂T

 dT

dt
+

∂Y

∂P︸︷︷︸
∂
∂P

fP (.)

dP

dt
+

∂Y

∂W︸︷︷︸
∂
∂W

fW (.)

dW

dt

+

∂Y∂A +
∂I

∂A︸ ︷︷ ︸
∂
∂A
fA(.)

+
∂Y

∂I

∂I

∂C

∂C

∂A

 dA

dt

+

[
∂Y

∂I

∂I

∂C
+
∂Y

∂U

∂U

∂C

]
︸ ︷︷ ︸

∂
∂I
fC(.)

∂C

∂Z

dZ

dt︸ ︷︷ ︸
exogeneous cloud variation

+

[
∂I

∂Z
+
∂Y

∂U

∂U

∂Z

]
dZ

dt︸ ︷︷ ︸
ε

(3.12)

which leads directly to the structure of the empirical model, whose terms are shown
in bold.

Note that cross-variable terms such as the effect of temperature on yields mediated
by cloud-induced changes in sunlight (∂Y

∂I
∂I
∂C

∂C
∂T

) will not contribute to the estimation
of either fT (.) or fC(.) because when estimating each, the effect of the other variable
is projected out, as can be seen by the Frisch–Waugh–Lovell theorem. Thus, when
estimating the impact of clouds all variation due to temperature is projected out, and
when estimating the impact of temperature all the variation due to changes in clouds
is projected out; in practice both are estimated simultaneously in a single multivariate
regression, as described below.
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III.2 Empirical model

Following equation 3.12 I recover the insolation-mediated effect of clouds on yield
(∂Y
∂I

∂I
∂C

) in administrative unit i and year t by fitting:

Yit = fT (Tit) + fP (Pit) + fA(Ait) + fW (Wit) + fC(Cit) + λi + φi1t+ φi2t
2 + εit (3.13)

Here, fC(Cit) is the sunlight-mediated effect of clouds on yields, which includes the
effects of decreasing total insolation, increasing (or decreasing) diffuse insolation, and
inducing changes in the relative intensities of insoaltion across the solar spectrum. It
also includes any residual impacts of clouds on yields not mediated through or corre-
lated with T, P, A, or W (i.e. ∂Y

∂U
∂U
∂C

), if they exist. Yit are log yields of maize or soy
(each crop estimated separately). fT (.) and fP (.) are restricted cubic splines of daily
average temperature and monthly precipitation and fA(.) and fW (.) are cubic polyno-
mials of hourly daytime aerosol optical depth and hourly maximum wind speed, which
control flexibly for these variables [46]. The administrative-unit-specific fixed effects,
λi, control for any time-invariant differences between administrative units such as soil
type, and the unit-specific quadratic time trends, φi1t + φi2t

2, control for unit-specific
trending variables such as tchnological adoption or income. The residual, εit, captures
all factors that vary within administrative units over time but are uncorrelated with
cloud scattering as well as the other factors in the model, such as the price of fertilizer.
I compute standard errors clustering by administrative level-1 unit (e.g. state), which
allows for arbitrary patterns of correlation between all observations from administra-
tive level-2 units (e.g. counties) within each administrative level-1 unit. This allows for
both spatial and temporal correlation of errors [46].

All models using the pooled sample estimate a single cloud scattering effect across
regions and allow the effect of climate controls to vary in each region, r:

Yit = f rT (Tit) + f rP (Pit) + f rA(Ait) + f rW (Wit) + fC(Cit) + λi + φi1t+ φi2t
2 + εit (3.14)

When plotting the estimated response of yields to cloud scattering, fC(Cit), we
assume a cloud fraction of 0.7, roughly the global average. Plotting the response for a
different assumed cloud amount is a simple linear re-scaling of the curve. To plot the
response to changes in optical depth for a fully cloudy day (a cloud fraction of 1), for
example, one would simply multiply the shown curves by 1

0.7
, or roughly 1.4.

III.3 Identification strategy

A key challenge to identifying the sunlight-mediated effect of cloud scattering on yields
is that clouds can both affect and be affected by variables that impact yield including
temperature, precipitation, aerosols and wind speed. The model accounts for these
potentially confounding variables by directly observing them and flexibly controlling
for them in the model. Similarly, the model’s unit-specific fixed effects remove any
time-invariant differences between observations, and thus account for all potentially
confounding correlations between climatological cloudiness and average yields. The
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model’s unit-specific time trends account for any potentially confounding correlation
between tends in yields and trends in cloudiness, such as those potentially due to
industrialization.

Thus, to identify the sunlight-mediated effect of cloud scattering on yields I examine
how yields within an admistriative unit vary year-to-year with varying cloud cover af-
ter accounting for changes in yields and clouds due to temperature, precipitation, wind
speed, aerosols, and unit-specific fixed effects and time trends. The identifying assump-
tion is that the variation in yields (after partitioning out variation due to fixed effect and
controls) that is correlated with variation in cloudiness (similarly conditioned – ∂C

∂Z
dZ
dt

) is
due to changes in sunlight (i.e. Cit |= εit|fT (Tit), fP (Pit), fA(Ait), fW (Wit), λi, φi1t, φi2t

2).
Put another way, I assume that clouds impact yield only through changes in sunlight,
after potential cloud impacts due to temperature, precipitation, air pollution and wind
speed have been accounted for, and that there are no variables omitted from the model
that are correlated with both clouds and yield.

III.4 Robustness of the sunlight-mediated impact of clouds on yields

To test the robustness of the estimated sunlight-mediated impact of clouds on yields I
re-estimate the model (equation 3.13) using alternative and additional climate controls,
functional forms for fC(.), fixed effects, and observation weights.

Climate controls: To test for potential bias due to mis-measurement of precipi-
tation I replace the station-based precipiation dataset with a reanalysis product, the
Global Meteorological Forcing Dataset for land surface modeling [105]. To test for po-
tential miss-specification of temperature I estimate the effect replacing the restricted
cubic spline temperature controls with a flexible non-parametric function using 1-degree
bins of temperature [46] as well as a ”degree-day” piecewise linear function of hourly
temperature (from sinusoidal interpolation of daily maximum and minimum tempera-
ture) [104]. To test for potential confounding from relative humidity and, in turn, water
stress I additionally control for vapor pressure deficit [90]. To test for whether the effect
is driven by factors correlated with the creation of clouds and not already accounted
for by the controls in the model I add a cubic in nighttime cloud optical depth into
the model. The model is robust to each of these changes other than the addition of
nighttime cloud optical depth (Extended Data Fig. 3.5). Including nighttime optical
depth into the model preserves the non-linear shape of the response but attenuates the
benefits of cloudiness, which may be due to either the existence of confounding variables
or to attenuation bias from removing a substantial amount of the identifying variation
in daytime cloudiness.

Functional Form: To test sensitivity to the functional form of FC(.), I re-estimate
the model using a flexible non-parametric ”binned” function of optical depth (Sup-
plementary Information Section III.5), restricted cubic splines of optical depth using
three and five knots (the base specification has four knots), and a cubic polynomial in
optical depth. All of these models find a concave response to cloud scattering though
the optimal amount of scattering and the magnitude of the benefits and damages from
low and high amounts of scattering differ.

Fixed Effects: To test the sensitivity to model specification, I re-estimate the
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model using a set of less flexible (quadratic administrative level-1 time trends) and
more flexible (cubic administrative level-2 time trends) non-parametric controls, and
find similar responses.

Weighting: To test the sensitivity of the model to weighting, I weight each obser-
vation by planted area, and find similar results.4

III.5 Derivation of the estimating equation for the non-linear impact of
cloud optical depth

Here, I derive and interpret the estimating equation for the non-linear response of annual
yield to sub-daily changes in cloud optical depth. Following the models in [104, 10] for
temperature impacts, I assume that in each county i, log productivity is some function
of the average cloud optical depth, τih during the 3-hour period h.

ln(yih) = fC(τih) + εih (3.15)

In this paper, I use flexible linear models,
∑K

k=1 θk(τih), to estimate f – the non-
linear effect of cloud optical depth on productivity:

ln(yih) =
K∑
k=1

θk(τih) + εih (3.16)

For the simplicity of exposition, here I use a second order polynomial, though I use
restricted cubic splines and other flexible functional forms in the analysis.

ln(yih) = β1τih + β2τ
2
ih + εih (3.17)

Summing over the growing season, t, I get:

∑
h∈t

ln(yih) = β1

∑
h∈t

τih + β2

∑
h∈t

τ 2
ih +

∑
h∈t

εih (3.18)

Or equivalently:

ln(
∏
h∈t

yih) = β1

∑
h∈t

τih + β2

∑
h∈t

τ 2
ih +

∑
h∈t

εih (3.19)

Following [104, 9], we assume that the growing season yield, Yit is the product of
withing-growing season productivity,

∏
h∈t yih = Yit. Put another way, we assume plant

growth compounds over the growing season. This gives:

4For samples within the EU, observations are weighted by harvested area because planted area
data is unavailable.



CHAPTER 3. ESTIMATING THE EFFECT OF CLOUD OPTICAL
SCATTERING ON GLOBAL CROP YIELD 70

ln(Yit) = β1

∑
h∈t

τih + β2

∑
h∈t

τ 2
ih +

∑
h∈t

εih (3.20)

or equivalently:

ln(Yit) =
β1

#h∈t
τit +

β2

#h∈t
τ 2
it + εit (3.21)

which is our estimating equation. #h∈t is the number of 3-hour daytime observations
of clouds during the growing season, τit is the growing season average optical depth,
and τ 2

it is the growing season average of squared 3-hourly optical depth.
In practice, we measure τih, the optical depth of a county during a 3-hour period, as

the cropped-area-weighted average of ISCCP-pixel-average optical depth values. Simi-
larly, we measure τ 2

ih, the squared optical depth of a county during a 3-hour period, as
the cropped-area-weighted average of ISCCP-pixel-average squared optical depth val-
ues. ISCCP pixels are roughly 111km by 111km, but measure optical depth at the 10km
by 10km level before averaging over cloudy pixels, so our analysis closely approximates
the average squared optical depth at the 10km resolution.5

ISCCP provides measurements of cloud amount and cloud optical depth for cloudy
pixels. We calculate the average cloud optical depth τ 2

it by noting that it is equivalent
to the cloud fraction times the optical depth of cloudy pixels.

III.6 Functional Forms for fC(τ)

To test robustness of the main result, I estimate fC(τ) using a variety of specifications
(Extended Data Fig. 3.5). Each of these is estimated by computing a different set of
non-linear transformations of τih – i.e.

∑K
k=1 θk(τih) – and then learning an approxima-

tion of fC(τ) using linear regression.
To estimate a model using restricted cubic splines I calculate

∑K
k=1 θk(τih) using the

rcspline.eval function from the R package Hmisc V4.2-0 and as described in [41]. I used
four knots placed at τih = 0,15,30,60 chosen to span the distribution of τih during the
growing season.

To estimate a binned model, I calculate
∑K

k=1 θk(τih) =
∑K

k=1 1(τih ∈ Bk) for bins
Bk in (0,2], (2,8], (8,14], (14,20], (20,30], (30,50], (50,100], (100, ∞), where 1 is the
indicator function. Bins were chosen to span the distribution of τih during the growing
season.

To estimate a model using a cubic polynomial I calculate
K∑
k=1

θk(τih) =
3∑

k=1

τ kih.

5If all 10km by 10km cloudy pixels within the 111km by 111km pixel had the same optical depth
then the approximation would be exact. Heterogeneity of cloud optical depth within cloudy pixels will
lead to measurement error, which could attenuate the estimated model coefficients.
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III.7 Cloud type model for fC(.)

As a complement to paramatarizing the impact of cloud cover as a non-linear function of
cloud optical depth, I estimate a model paramatarizing cloud optical scattering impacts
as a function of cloud type. Cloud types in the ISCCP data are defined by thresholds
of cloud height and cloud optical depth. Thus, paramatarizing clouds by cloud type is
essentially a flexible non-parametric binned model of cloud optical depth that allows
for clouds of different heights to have different effects. Cloud height could affect cloud
optical impacts because clouds of different heights – and thus different temperatures –
may have different optical properties.

In this model, I paramatarize fC(Cit) as
9∑
v=1

βvCAv where CA is the cloud amount

for each cloud type v. The 9 cloud types are defined by the cross of three cloud optical
depth bins: (0-3.6],(3.6,23],(23-∞) and three cloud top heights (measured as pressure
in mb) bins (1000, 680], (680, 440], (440, 0].

This paramatarization, though more difficult to interpret, has similar predictive skill
as the model using the optical depth paramatarization (Extended Data Fig. 3.9).

III.8 Comparison to the ideal cloud distribution

To calculate the suppression of yields due to the present climate relative to an optically
ideal climate for each crop, I first estimate the contribution of cloud optical scattering to
global actual and ideal yields using the trained statistical yield model (Supplementary
Information Eqn. 3.13). Actual yields are evaluated using observed cloud optical depths
from 1984-2009, and the ideal climate assumes the empirically estimated optimal optical
depth of 15 during the entire growing season. I then subtract the ideal from the actual,
calculate a global cropped-fraction weighted average and convert to percent to arrive
at the yield supression due to the actual global optical scattering environment.

IV Estimating the strength of the diffuse fertilization effect
and response to insolation for crop yield.

Cloud scattering changes the total amount of insolation, the fraction of that insolation
that is diffuse, as well as the distribution of insolation across the solar spectrum. Flex-
ibly estimating the impact of optical scattering on yields captures all of these effects
as a function of optical depth. Here, I specify and estimate a functional form for how
total light and the diffuse fraction impact yields to learn the potential mechanisms that
are driving the impact of optical scattering on yields.

A common way to model the diffuse fertilization effect is to allow a higher diffuse
fraction to increase the radiation use efficiency of crops [102]. I model the impact of
photosynthetically active radiation (PAR, or R) on crops by allowing the effect of R to
flexibly impact yield, and allowing the marginal effect of R to vary linearly with the
diffuse fraction (DF):

Yit = fT (Tit) + fP (Pit) + fA(Ait) + fW (Wit) + fR(Rit) + λi + φi1t+ φi2t
2 + εit (3.22)

with
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fR(Rit) = α1r1(Rit) + α2r2(Rit) + α3RitDFit + εit

where r1 and r2 are restricted cubic spline features of hourly insolation with knots
at 10, 100, and 325 W

m2 .6 The impact of total PAR on yields is defined by α1, α2, and
α3. α3 describes how the marginal effect of total PAR on yields changes with increasing
diffuse fraction. A positive value of α3 is evidence of the diffuse fertilization effect. Since
most of the variation in sunlight is due to changes in clouds, identifying the effect of
PAR on yields faces the same challenges as identifying the insolation-mediated impacts
of clouds on yields – thus we similarly account for potentially confounding variables as
in equation 3.13 when estimating equation 3.22.

IV.1 Validation of MERRA2 PAR using the WRDC station data

To validate the MERRA2 observations of total, direct and diffuse PAR, I compare the
MERRA2 reanalysis measurements to station-measurements of shortwave irradiance
from the WRDC. I compare the two by regressing the WRDC station measurements
on the MERRA2 PAR measurements. I control for station-by-day-of-year fixed ef-
fects to account for season-specific differences across locations and to test ability of
the MERRA2 measurements to explain day-to-day variation in PAR within a location,
which is similar to the variation I use when estimating the effect of insolation on crop
yields. I find that the MERRA2 data explain 46%, 16% and 45% of the WRDC mea-
sured day-to-day variation in shortwave insolation (Extended Data Table 3.2). I find
that each Wh

m2day
increase in PAR correlates with a 2 Wh

m2day
increase in shortwave insola-

tion, which is consistent with previous findings that slightly less than half of shortwave
solar irradiance is photosynthetically active [77]. The lack of perfect correlation between
these two measurements of PAR may be due to differences in attenuation between short-
wave irradiance and PAR, to heterogeneity of insolation within the MERRA2 grid cell,
or to other sources of error in the MERRA2 or WRDC station measurements.

V Calculating the sunlight-mediated impact of
anthropogenic changes in clouds on global maize and soy
yields

To place the impact of cloud optical scattering on yields in context, I calculate the
sunlight-mediated effects of anthopogenic changes in clouds on yields in two scenarios.
First, I calculate the how changes in sunlight due to changes in cloud distributions from
anthropogenic aerosols impact yield (the ”aerosol-cloud effect”). And second, I calcu-
late how changes in sunlight due to changes in cloud distributions from anthropogenic
climate change impact yield (the ”carbon-cloud effect”).I calculate these effects by com-
bining climate model estimates of how cloud distributions change due to human activity
with statistical estimates of how changes in sunlight due to clouds impact yield (Sup-
plementary Information Section III.7 and Extended Data Fig. 3.9). These estimates
inform the long-standing question of how observed ”global dimming and brightening”

6Similarly to the regression features for estimating the effect of cloud optical depth, I calculate the
restricted cubic spline features before averaging over the growing season.
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due to anthropogenic emissions of air pollutants impacts crop productivity [125, 126].
While these estimates give valuable context for the statistical analyses of cloud impacts
on yield, they should not be interpreted as predictions of future impacts because they
abstract away from some potentially important factors such as heterogeneity of local
effects and adaptation.

To estimate the aerosol-cloud effect, I compare yields in a control world with pre-
industrial (1860) aerosol levels (sstClim, following the nomenclature of [112])) to an
identical world with aerosol levels set to more modern (2000) levels (sstClimAerosol),
following [133]. To estimate the carbon-cloud effect, I compare yields in a control world
with pre-industrial CO2 levels (piControl) with an identical world with quadrupled CO2
levels (1pctCO2), following [134].

I calculate the impact of air pollution and climate change on growing season cloud
distributions using the output of five climate models participating in phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5): CanESM2, HadGEM27, IPSL-CM5A-
LR, MIROC5 and MRI-CGCM3. These models were selected because each ran the
four experiments described above (i.e. sstClim, sstClimAerosol, piControl, 1pctCO2),
implemented the ISCCP simulator to output cloud variables in a manner consistent
with the observed ISCCP products [124], was available at https://esgf-node.llnl.

gov/search/cmip5/, and simulated 30 years of monthly cloud data.
These models do not report cloud optical depth, which prevents direct application

of estimates from equation 3.13. Instead, the models report cloud amount by cloud
type, with cloud types defined by thresholds of optical depth and cloud height. To
link changes in cloud distributions measured in cloud amount by cloud type (Extended
Data Fig. 3.8) to changes in yields, I estimate a non-parametric empirical model of
yield as a function of cloud amount by cloud type using a form very similar to equation
3.13 (Supplementary Information Section III.7). I then average the cloud data over the
growing season and evaluate the statistical crop model at these growing season values
to get an estimate of yield for each crop, year and experiment. I then calculate the
expected yields in each experiment by averaging yields across years. To calculate the
aerosol-cloud effect I subtract expected yields in the sstClim experiment from those
in the sstClimAerosol experiment; and to calculate the carbon-cloud effect I subtract
expected yields in the piControl experiment from those in the 1pctCO2 experiment.

In this analysis I consider only changes in yields due to cloud-induced changes in
sunlight. Estimates of the full impact of anthropogenic aerosol emissions and greenhouse
gas emissions on yields would have to consider both the impacts of these emissions on
crops through changes in variables other than clouds (such as carbon fertilization)
and impacts through changes in clouds due to variables other than sunlight (such as
temperature or precipitation).

7I use HadGEM2-A and HadGEM2-ES for the aerosol and climate change scenarios, respectively.

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
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Chapter 4

Generalizing Earth observation
with satellite imagery and machine
learning

Numerous global challenges, such as managing planetary resources, require globally
comprehensive observation of many variables simultaneously. Combining satellite im-
agery with machine learning (SIML) presents an opportunity for assembling such obser-
vations [19, 64, 140], but current case-by-case solutions require custom systems, exten-
sive expert knowledge, access to imagery, and major computational resources in order
to estimate a single variable (a task) using regional or global imagery [40, 78, 50, 52, 91].
Here, we develop a general solution to constructing global observations via SIML,
where a single method for transforming satellite imagery is sufficiently descriptive
that it should be able to predict nearly any ground-level variables that are recover-
able through inspection of a satellite image, including previously unstudied tasks. Our
approach is task-independent, allowing centralized computation of features to be exe-
cuted only once ever per image, then distributed and applied to potentially unlimited
future tasks by users who require neither domain expertise nor access to underlying
imagery. We demonstrate this generalizability across tasks by constructing high resolu-
tion (∼1km×1km) estimates for forest cover, population density, elevation, nighttime
lights, household income, total road length, and housing prices across the entire US
using exclusively daytime images that are processed only once and in advance. Our
system outperforms spatial extrapolation of ground-truth data, especially over large
distances, and matches or exceeds performance of a state-of-the-art deep convolutional
neural network that is much more costly to implement. Our approach requires only
that users download a tabular data set, merge it to geolocated labels, and implement
a single regression on a personal computer. We demonstrate that our design scales
globally with no alterations and naturally achieves super-resolution, where estimates
are more spatially granular than the original labels used for training. Generalization
enables democratization of SIML, potentially increasing the pace of planet-scale obser-
vation and research, accelerating our understanding of global processes and enabling
progress towards tackling planetary challenges.
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Introduction
Addressing complex global challenges—such as managing global climate changes, popu-
lation movements, ecosystem transformations, or economic development—requires high-
resolution, continuous-time, planet-scale observational systems of many variables simul-
taneously, including some that are not yet specified. Ground-based monitoring systems
are generally prohibitively costly for this purpose, and most remain incomplete. Satel-
lite imagery presents a viable alternative for gathering globally comprehensive data,
with over 700 earth observation satellites currently in orbit [117], and application of
machine learning could be an effective approach for transforming these vast quantities
of unstructured imagery data into structured observations that can support research
and decision-making. However, observing a single new variable globally using state-
of-the-art SIML currently requires a major research program and is inaccessible to
non-specialists, facts that restrict the deployment of SIML to solve global challenges.
At present, there exists no unified system that generalizes SIML-based Earth obser-
vation such that non-specialists can study unlimited new variables, relevant to their
context, with no alteration of method.

Current applications of SIML either (i) provide many users with access to a small
number of pre-defined output variables or (ii) give a limited number of experts tools and
data to study individual variables of their choosing. Most research falls in the first cate-
gory (i), where specialists develop custom methods to measure specific variables—such
as forest cover [40], surface water [78], land use [50], poverty rates [52] and population
density [91]—and the output of the analysis is then distributed in the form of maps
for broader use. This approach enables widespread application of these specific maps,
but observing a single global snapshot of any new variable (hereafter, a task) demands
a major enterprise involving a combination of task-specific domain knowledge, remote
sensing and engineering expertise, customization and tuning of sophisticated machine
learning architectures, specialized data storage systems, and large computational re-
sources. The resulting high costs of development and deployment limit the scope,
frequency, and availability of current SIML-based global observations. Recognizing this
bottleneck, efforts in category (ii) develop pipelines that accelerate specialized earth ob-
servation research, for example by consolidating data-sets and computational resources
[34]. These investments have effectively enabled experts participating in category (i)
to produce custom output faster or at larger spatial scales [54], but do not provide a
generalizable system that empowers non-experts to independently and reliably solve
arbitrary future tasks.

Here, we are the first to develop, demonstrate, and disseminate a fully general ap-
proach that allows almost any individual to deploy SIML rapidly, consistently, and at
planet-scale to study essentially any variable detectable from orbit. We demonstrate the
simultaneous accessibility and generalizability of Multi-task Observation using Satel-
lite Imagery and Kitchen Sinks (“MOSAIKS”) by solving a diverse set of large-scale
problems on a personal computer using a single set of features that were computed
before the problems were selected. To our knowledge, MOSAIKS is the only unified,
rigorously evaluated, publicly available system to reliably and rapidly generalize SIML
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at global-scale and high-resolution for new variables without the need for specialized
knowledge or computing resources.

Constructing global observations from satellite imagery involves predicting variable
y` at location ` using an image I`. For each task, denoted s, it is typically posited that
there exists some nonlinear mapping f(·) such that

ys` = f s(I`) + εs` (4.1)

for some reasonably small error εs`. Under this assumption, each researcher r tries to
find a statistical approximation f s,r(·) from a collection of data using contextual expert
knowledge. The challenge is to find a set of candidate functions such that approximating
Eq. (4.1) is tractable and prediction quality remains high on newly collected data.
Because such problems are difficult, to date, efforts have focused on crafting specific
features that serve as basis functions to approximate f s for a particular task. For
example, a researcher studying forests might construct pixel-level features based on
prior knowledge of plant physiology or they might use an algorithmic approach, such as
a neural-network, to search for a set of features that predict forest conditions. However,
we hypothesize that there exists a single set of finite and computable basis functions
that is sufficiently general to approximate nearly all well-posed f s and can be easily
applied to global-scale datasets. Finding such a general basis for imagery would allow
Eq. (4.1) to be reliably solved non-parametrically, regardless of the task. Under such
a general basis transformation, minimizing squared error in Eq. (4.1) using real data
becomes a linear regression problem.

We propose an approximate basis of convolutional random kitchen sinks [86, 55] (see
Methods and Supplementary Information Section II.3), motivated by their strong theo-
retical foundation [87] and prior performance encoding genetic sequences [68], classifying
photographs [21], and predicting solar flares [55]. Our approach is label-independent
and has useful properties for analyzing satellite imagery, such as capturing spatial
structure of objects while being invariant to their translation. Furthermore, with a
sufficiently large approximate basis and enough data, this approach can theoretically
describe any well-behaved f s in Eq. (4.1) [87] (see Methods). We show that, in practice,
despite an implementation with a restricted basis and finite samples, this approach is
nonetheless highly effective for approximating Eq. (4.1) across diverse tasks when ap-
plied to real imagery. Conceptually, rather than evaluating the content of an image by
computing features at test time and applying them to Eq (4.1), as is the task-by-task
solution, MOSAIKS “pre-organizes” all images in the sample according to many dimen-
sions of their content (i.e. lifting images to a rich feature space) and then quickly learns
and exploits only those dimensions that are useful for a specific task when presented
with a novel set of labels (Figure 4.1A).

MOSAIKS provides a general solution to Earth observation problems with the form
of Eq. (4.1) using a single, centralized, unsupervised, featurization combined with un-
limited, decentralized, supervised, linear regressions that use these features to solve for
each task of interest. Specifically, MOSAIKS transforms the daytime image I` into a
single vector of random features x(I`). Researcher r then merges their own limited
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sample of training labels ys,r` to these tabular data and solves the linear regression

ys,r` = x(I`)β
s,r + εs,r` , (4.2)

then uses the weights β̂s,r to estimate ŷs,r via Eq. (4.2) in new locations where imagery
is available but ground truth ys,r is not (Fig. 4.1B, Methods, and Fig. S4). Raw
imagery is never analyzed by users. Crucially, the featurization x(·) is rich and highly
descriptive, encoding enough image information such that future researchers can solve
Eq. (4.2) for tasks that are unknown at the time of encoding (see Methods). Thus,
MOSAIKS transforms the costly problem of finding case-by-case solutions to Eq. (4.1)
to the reduced problem of solving a single, pre-determined, linear regression (Eq. (4.2)).

The regression associated with Eq. (4.2) is simple and fast (Methods, Supplementary
Information Section II.4), with sampling uncertainty that can be efficiently estimated.
Each task studied here is solved using two commands (a merge and a ridge regression)
that take minutes to execute on a personal computer (Supplementary Information Sec-
tion III.2), achieving performance better than a state-of-the-art deep convolutional
neural network trained on a high-performance computing cluster (Supplementary In-
formation Section III.1).

Results
We first demonstrate that MOSAIKS generalizes at scale by applying it to many tasks
(Fig. 4.2) across the continental United States (US). This allows systematic evaluation
of performance in a data-rich environment before extending estimates globally, where
ground-truth may be unavailable or unreliable. Using only a single matrix of features
X derived from ∼1km×1km (256-by-256 pixels) daytime images spanning the US, we
are able to estimate ground-level forest cover (R2 = 0.91), elevation (R2 = 0.68), pop-
ulation density (R2 = 0.72), nighttime lights (R2 = 0.84), income (R2 = 0.45), road
length (R2 = 0.53), and house price (R2 = 0.47) in a holdout test sample (Fig. 4.2,
Supplementary Information Section II.6 and Table S2). Solving Eq. (4.2) for each task
took 7.5 minutes to compute on ten cores (Intel Xeon CPU E5-2630). These results
represent all tasks attempted to date (see Methods & Supplementary Information Sec-
tion III.2). We compare MOSAIKS’s performance to a leading image analysis method -
the ResNet-18 CNN architecture - using identical imagery and labels, and we find that
MOSAIKS provides predictive skill exceeding this computationally expensive alterna-
tive for each task (Supplementary Information Section III.1 and Fig. S12). MOSAIKS
also outperforms ridge regression models using features extracted from a pre-trained
CNN (Supplementary Information Section III.1), an unsupervised featurization tech-
nique that often outperforms other unsupervised approaches [17]. These results indicate
that MOSAIKS is skillful for a diverse range of possible applications without changing
the procedure or features and without task-specific expertise. These results indicate
the range of performance that might be reasonably expected in new tasks.

Note that some patterns of variation are not recovered by MOSAIKS, consistent
with the hypothesis that some prediction errors are irreducible if key factors are fun-
damentally impossible to observe from satellite imagery. For example, extremely high
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elevations (>3,000m) are not reliably distinguished from high elevations (2,400-3,000m)
that appear visually similar; and roughly half the variation in incomes and housing
prices is unresolved, presumably because they depend on factors not observable from
orbit, such as tax policies or school districts. Thus, we expect a performance ceiling,
in the sense that R2 may be bounded substantially below one, that is specific to each
task and cannot be known with certainty.

The dimensionality of MOSAIKS’s featurization, and in turn its computational cost
and predictive skill, is easily manipulated by dropping or adding additional random
features. Cross-validation experiments indicate that increasing the dimensionality of the
feature space provides minor gains above K = 1, 000 features (Fig. 4.3A). A majority
of the observable signal with our baseline of K = 8, 192 features is recovered using only
100 random features (min 81% for income, max 96% for nighttime lights).

Training sets with N = 8, 000 obtain near-maximum performance relative to that
obtained with N = 64, 000 (Fig. 4.3A), but significant signal is recovered for many
outcomes using only N = 500 (min 56% for road length, max 87% for forest cover),
with the exception of income and housing price tasks, which require larger samples.

A key motivation for using satellites is the ability to collect information in large
contiguous areas where labels are not available. To systematically evaluate performance
under such conditions, we partition the US in a checkerboard pattern (Fig. 4.3B),
training on the “black squares” and testing on the “white squares.” Increasing the size
of squares (δ) in the checkerboard increases the average distances between train and
test observations, simulating increasingly large spatial extrapolations.

For δ = 4◦ (444km×341km regions at sample centroid) we find limited loss of per-
formance (R2 declines < 10%, see Fig. 4.3C and Fig. S9) except for modest declines
for income (33%) and road length (38%) and intermediate declines for housing price
(52%). Extending extrapolations to δ = 16◦ (1778km×1366km) produces limited ad-
ditional loss in performance (R2 declines < 10% further), except for larger losses for
income (17%) and elevation (41%) and the collapse of road length performance, pos-
sibly due to missing label and data quality (Supplementary Information Section I.1.6
and Figure S1).

MOSAIKS substantially outperforms optimized spatial interpolation of observa-
tions, a widely used approach to “fill in” large regions of missing data, across all tasks
except elevation and housing price (Fig. 4.3C, grey dashed lines). At its highest per-
formance (δ = 0.5◦), spatial interpolation recovers only 25% (nighttime lights) to 80%
(forest cover) of the MOSAIKS R2 except for elevation, where interpolation performs
almost perfectly over small ranges (δ = 0.5◦ : R2 = 0.95), and housing price, where
interpolation slightly outperforms MOSAIKS at small ranges. In both elevation and
housing price, interpolation performance converges to that of MOSAIKS over larger
distances. Thus, in addition to generalizing across tasks, MOSAIKS generalizes out-of-
sample across space with moderate to high fidelity, outperforming spatial interpolation
of ground-truth in 5 of 7 tasks.

Having evaluated MOSAIKS systematically in the US, where data sources are rela-
tively diverse and reliable, we demonstrate its ability to scale globally on four of our orig-
inal tasks for which global labels exist. Using a random sub-sample of locations (train-
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ing and validation: N = 444,820, test: N = 111,205; Supplementary Information Sec-
tion II.10), we construct the first high-resolution planet-scale estimates for the distribu-
tion of forest cover (R2 = 0.59), elevation (R2 = 0.25), population density (R2 = 0.57),
and nighttime lights (R2 = 0.42) using only a single set of label-independent features
(K = 2048, Fig. 4.4A). Inconsistent image quality and label reliability, as well as plau-
sibly heterogeneous relationships between imagery and task outcomes across the globe,
appear to lower performance relative to the US-only experiments above (Supplementary
Information Section II.10). However, increasing training samples and additional opti-
mization will likely improve performance beyond these demonstrated levels (Table S4).
Similar to the US-only experiments, predicting extremely high elevations exhibits the
largest systematic prediction errors across attempted tasks.

In addition to global scalability, our approach naturally delivers observations that
are more finely resolved than the labels in the original training data, thus achieving
super-resolution in label predictions. Specifically, MOSAIKS estimates outcomes for
sub-regions within images even though image-level labels are only ever used in train-
ing (Fig. 4.4B and Fig. S11). Super-resolution results naturally from the linearity of
Eq. (4.2) combined with labels being linear combinations of ground-level conditions
(Supplementary Information Section II.9 and Fig. S10). Essentially, MOSAIKS esti-
mates the relative contribution of sub-regions within an image to the overall image-level
labels. To demonstrate this property, we examine forest cover, our only task where raw
ground-truth data is available at substantially finer resolutions than our images. Train-
ing only with image-level labels, we nonetheless recover within-image signal (within-
image R2 = 0.31-0.10, see Fig. 4.4C and Supplementary Information Section II.9) when
estimating forest cover in 4 to 64 sub-images per image, although signal-to-noise ratios
decline at high super-resolutions (> 256 subimages).

Discussion
MOSAIKS aims to complement major prior efforts to both deploy satellite-based in-
struments globally and harmonize and post-process the massive data sets they retrieve.
MOSAIKS allows these Earth observation data to be applied to arbitrary tasks with-
out customization or expert knowledge, while still achieving performance comparable to
highly tuned SIML systems designed for specialized tasks (Supplementary Information
Section III.1).

Generalization of SIML across tasks dramatically reduces overall costs for a global
research ecosystem where imagery is collected and then analyzed to evaluate or monitor
a large number of outcomes at planet-scale (Supplementary Information Section III.2).
Thus we hope that MOSAIKS will democratize and accelerate access to Earth observa-
tion, especially in low-income and data-poor contexts [39, 132], empowering unprece-
dented progress toward resolving pressing global challenges [140].

Here, we purposefully restrict our analysis to high-resolution tri-band daytime im-
agery to explore the capabilities of MOSAIKS, but it is straightforward to extended this
approach to other remotely sensed and/or gridded products, including hyper-spectral
and non-optical data.
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Our experiments demonstrate that MOSAIKS is generally more accurate than inter-
polation from nearby ground-truth data. However, we expect that hybrid approaches
which leverage both data sources might improve performance, especially for tasks with
important factors unobservable from satellites (e.g. housing price).

The ability of MOSAIKS to match and exceed the performance of a fine-tuned
ResNet-18 CNN across all tasks leads us to consider whether concepts from this work
can contribute to continued improvement of CNNs applied to SIML. We hypothesize
that CNN performance may benefit from incorporating wider, and perhaps shallower,
architectures.

We expect that future work may further enhance the performance of MOSAIKS
and, in some cases, bespoke task-specific solutions to Eq. (4.1) may achieve higher per-
formance, especially after extensive tuning. Future work should compare MOSAIKS
performance to that of task-tailored models such as in [[52, 40, 78]]. To aid in develop-
ment, bench-marking, and comparisons of SIML approaches, labels used in this study
are made publicly available; to our knowledge this represents the largest multi-label
benchmark dataset for SIML regression tasks.

Methods
Here we first provide some additional information on our implementation of MOSAIKS
and experimental procedures. We then provide more description of the theoretical foun-
dation underlying MOSAIKS. Additional details are contained in the Supplementary
Information.

Implementation of MOSAIKS
Each feature xk generated by MOSAIKS for an image I` is created by convolving an
M ×M × S “patch”, Pk, across the entire image, where M is the width and height
of the patch in units of pixels and S is number of spectral bands. In each step of
the convolution, the inner product of the patch and an M ×M × S sub-image region
is taken, and a ReLU activation function with bias bk = 1 is applied. Each patch
is a randomly sampled sub-image from the set of training images (Fig. S4). We use
patches of width and height M = 3 (Fig. S5) and S = 3 bands (red, green, and blue).
To create a single summary metric for the image-patch pair, these values are then
averaged across the entire image, generating the kth feature xk(I`). The dimension
of the resulting feature space is equal to K, the number of patches used, and in all
of our main analyses we employ K = 8, 192 (i.e. 213). Both images and patches are
whitened according to a standard image preprocessing procedure before convolution
(Supplementary Information Section II.3).

In practice, this one-time featurization can be centrally computed and then dis-
tributed to users in tabular form. The featurization described above with K = 8, 912
features results in a roughly 6 to 1 compression of stored and transmitted imagery data
in the cases we study. Notably, storage and computational cost can be traded off with
performance by using more or fewer features from each image (Fig. 4.3). Since features
are random, there is no natural value for K that is specifically preferable.
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Users acquire the centrally calculated feature set, merge a dataset of labels based on
geographic location, and then learn nonlinear mappings from the original image pixel
values to the labels by training a linear regression of the labels on the features. We
show strong performance across seven different tasks using ridge regression in this last
step, although future work may demonstrate that other fitting procedures yield similar
or better results for particular tasks.

Experimental procedures
Task selection and data Tasks were selected based on diversity and data availability,
with the goal of evaluating the generalizability of MOSAIKS (Supplementary Informa-
tion Section I.1). Results for all tasks evaluated are reported in the paper. We align
image and label data by projecting imagery and label information onto a ∼1km × 1km
grid, which was designed to ensure zero spatial overlap between observations (Supple-
mentary Information Sections II.1 and II.2). Images are obtained from the Google Static
Maps API (Supplementary Information Section I.2) [33], and labels for the seven tasks
are obtained from refs. [[40, 8, 16, 71, 119, 120, 138]]. Details on data are described in
Supplementary Information Table S1 and Section I.

US experiments From this grid we sample 20,000 hold-out test cells and 80,000 train-
ing and validation cells from within the continental US (Supplementary Information
Section II.4). To span meaningful variation in all seven tasks, we generate two of these
100,000-sample data sets according to different sampling methods. First, we sample uni-
formly at random across space for the forest cover, elevation, and population density,
tasks which exhibit rich variation across the US. Second, we sample via a population-
weighted scheme for nighttime lights, income, road length, and housing price, tasks for
which meaningful variation lies within populated areas of the US. Some sample sizes
are slightly reduced due to missing label data (N = 91, 377 for income, 73, 411 for
housing price, and 67, 968 for population density). We model labels whose distribution
is approximately log-normal using a log transformation (Supplementary Information
Section II.5 and Table S3).

Because fitting a linear model is computationally cheap, relative to many other
SIML approaches, it is feasible to conduct numerous sensitivity tests of predictive skill.
We present cross-validation results from a random sample, while also systematically
evaluating the behavior of the model with respect to: (a) geographic distance between
training and testing samples, (b) the dimension K of the feature space, and (c) the
size N of the training set (Fig. 4.3, Supplementary Information Sections II.7 and II.8).
We also benchmark model performance and computational expense against an 18-layer
Residual Network, a common deep network architecture that has been used in satellite
based learning tasks [80] (Supplementary Information Sections III.1 and III.2).

Global experiment To demonstrate performance at scale, we apply the same ap-
proach used within the data-rich US context to global imagery and labels. We employ
a target sample of N = 1, 000, 000, which drops to a realized sample of N = 556, 025
due to missing imagery and label data outside the US (Fig. 4.4). We generate pre-
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dictions for all tasks with globally available labels (forest cover, elevation, population
density, and nighttime lights) (Supplementary Information Section II.10).

Super-resolution experiment Predictions at super-resolution (i.e. higher resolution
than that of the labels used to train the model), shown in Fig. 4.4B, are generated for
forest cover and population density by multiplying the trained ridge regression weights
by the un-pooled feature values for each sub-image (Supplementary Information Sec-
tion II.9). Additional examples of super-resolution performance are shown in Fig. S11.
We quantitatively assess super-resolution performance (Fig. 4.4C) using forest cover,
as raw forest cover data are available at substantially finer resolution than our common
∼1km x 1km grid. Performance is evaluated by computing the fraction of variance (R2)
within each image that is captured by MOSAIKS, across the entire sample.

Theoretical foundations
MOSAIKS is motivated by the goal of enabling generalizable and skillful SIML pre-
dictions. It achieves this by embedding images in a basis that is both descriptive (i.e.
models trained using this single basis achieve high skill across diverse labels) and effi-
cient (i.e. such skill is achieved using a relatively low-dimensional basis). The approach
for this embedding relies on the theory of “random kitchen sinks” [87], a method for
feature generation that enables the linear approximation of arbitrary well-behaved func-
tions. This is akin to the use of polynomial features or discrete Fourier transforms for
function approximation generally, such as functions of one dimension. With inputs of
high dimension, such as the satellite images we consider, it has been shown experimen-
tally [68, 21, 55] and theoretically [87] that a randomly selected subspace of the basis
often performs as well as the entire basis for prediction problems.

Convolutional random kitchen sinks Random kitchen sinks approximate arbitrary
functions by creating a finite series of features generated by passing the input variables
z through a set of K nonlinear functions g(z; Θk), each paramaterized by draws of a
random vector Θ. The realized vectors Θk are drawn independently from a pre-specified
distributions for each of k = 1...K features. Given an expressive enough function g and
infinite K, such a featurization would be a universal function approximator [86]. In
our case, such a function g would encode interactions between all subsets of pixels in
an image. Unfortunately, for an image of size 256 × 256 × 3, there are 2256×256×3 such
subsets. Therefore, the fully-expressive approach is inefficient in generating predictive
skill with reasonably concise K because each feature encodes more pixel interactions
than are empirically useful.

To adapt random kitchen sinks for satellite imagery, we use convolutional random
features, making the simplifying assumption that most information contained within
satellite imagery is represented in local image structure. Random convolutional features
have been shown to provide good predictive performance across a variety of tasks from
predicting DNA binding sites [68] and solar flares [55] to clustering photographs [21]
(kitchen sinks have also been used in a non-convolutional approach to classify individ-
ual pixels of hyper-spectral satellite data [81]). Applied to satellite images, random
convolutional features reduce the number of effective parameters in the function by
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considering only local spatial relationships between pixels. This results in a highly
expressive, yet computationally tractable, model for prediction.

Specifically, we create each Θk by extracting a small sub-image patch from a ran-
domly selected image within our image corpus. These patches are selected indepen-
dently, and in advance, of any of the label data. Each patch is then convolved across
the satellite image being featurized, and passed through a pixel-wise ReLU nonlinear-
ity to form an activation map. This convolution captures information from the entire
R256×256×3 image using only 3 ·M2 free parameters for each k. Creating and subse-
quently averaging over the activation map defines our instantiation of the kitchen sinks
function g(z; Θk) as g(I`; Pk, bk) = xk(I`), where bk is a scalar bias term. Our choice of
this functional form is guided by both the structural properties of satellite imagery and
the nature of common SIML prediction tasks, and it is validated by the performance
demonstrated across tasks.

Relevant structural properties of satellite imagery and SIML tasks Three
particular properties provide the the motivation for our choice of a convolution and
average-pool mapping to define g.

First, we hypothesize that convolutions of small patches will be sufficient to capture
nearly all of the relevant spatial information encoded in images because objects of
interest (e.g. a car or a tree) tend to be contained in a small sub-region of the image.
This is particularly true in satellite imagery, which has a much lower spatial resolution
that most natural imagery (Supplementary Information Figure S5).

Second, we expect a single layer of convolutions to perform well because satellite
images are taken from a constant perspective (from above the subject) at a constant
distance and are (often) orthorectified to remove the effects of image perspective and
terrain. Together, these characteristics mean that a given object will tend to appear the
same when captured in different images. This allows for MOSAIKS’s relatively simple,
translation invariant featurization scheme to achieve high performance, and avoids the
need for more complex architectures designed to provide robustness to variation in
object size and orientation.

Third, we average-pool the convolution outputs because most labels in Earth obser-
vation problems can be approximately decomposed into a sum of sub-image characteris-
tics. For example, forest cover is measured by the percent of total image area covered in
forest, which can equivalently be measured by averaging the percent forest cover across
sub-regions of the image. Labels that are strictly averages, totals, or counts of sub-
image values (such as forest cover, road length, population density, elevation, and night
lights) will all exhibit this decomposition. While this is not strictly true of all SIML
tasks, for example income and average housing price, we demonstrate that MOSAIKS
still recovers strong predictive skill on these tasks. This suggests that some components
of the observed variance in these labels may still be decomposable in this way, likely
because they are well-approximated by functions of sums of observable objects.

Additional interpretations The full MOSAIKS platform, encompassing both fea-
turization and linear prediction, bears similarity to a few related approaches. Namely,
it can be interpreted as a computationally feasible approximation of kernel ridge re-
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gression for a fully convolutional kernel or, alternatively, as a two-layer CNN with an
incredibly wide hidden layer generated with untrained filters. A discussion of these
interpretations and how they can help to understand MOSAIKS’s predictive skill can
be found in Supplementary Information Section II.3.
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Figure 4.2: High resolution prediction of many tasks across the continental
US using daytime images processed once, before tasks were chosen. 100,000
daytime images were each converted to 8,192 features and stored. Seven tasks were
then selected based on coverage and diversity to evaluate performance. Eq. (4.2) is
solved for each task using the same procedure. Left maps: 80,000 observations used for
training and validation, aggregated up to 20km×20km cells for display. Right maps:
concatenated validation set estimates from 5-fold cross-validation for the same 80,000
grid cells (observations are never used to generate their own prediction), identically
aggregated for display. Scatters: Validation set estimates (vertical axis) vs. “ground-
truth” (horizontal axis); each point is a ∼1km×1km grid cell. Black line is at 45◦.
Test set and validation set performance are essentially identical (Table S2), validation
set values are shown for display purposes only since there are more observations. The
top three tasks are uniformly sampled across space, bottom four tasks are sampled
using population weights (Supplementary Information Section II.1); grey areas did not
generate a sample in the experiment.
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Figure 4.3: Fidelity achieved for smaller K, N , and over large contiguous
regions with no ground truth data. (A) Validation set R2 performance for all
seven tasks while varying the number of random features K and holding N = 64, 000
(left) and while varying N and holding K = 8, 192 (right). Shaded bands indicate the
range of predictive skill across 5 folds. Lines indicate mean skill. (B-C) Evaluation of
performance over regions of increasing size that that are excluded from training sample.
(B) Data is split in half using a “checkerboard” partition, where the width and height of
each square is δ (measured in degrees). Example partitions with δ = 0.5◦, 8◦, 16◦. For
a given δ, training occurs using data sampled from “black squares” and performance is
evaluated in “white squares.” (C) Colored lines are average performance of MOSAIKS
in the US across δ values for each task. Benchmark performance from Fig. 4.2 are
indicated as circles at δ = 0. Grey dashed lines indicate corresponding performance
using only spatial interpolation with an optimized radial basis function kernel instead of
MOSAIKS (Supplementary Information Section II.8). To moderate the influence of the
exact placement of square edges, training and test sets are resampled four times for each
δ with the checkerboard position re-initialized using offset vertices (see Supplementary
Information Section II.8 and Fig. S9). The range of outcomes are plotted as colored or
grey bands.
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Figure 4.4: Scaling MOSAIKS to observe multiple variables simultaneously
across the planet and achieving super-resolution. (A) Training data (left maps)
and estimates using a single featurization of daytime imagery (right maps). Insets (far
right) marked by black squares in global maps. Training sample is a uniform random
sampling of 1,000,000 grid cells, 556,025 for which imagery were available and could be
matched to task labels. Out-of-sample predictions are constructed using 5-fold cross-
validation. For display purposes only, maps depict ∼50km × 50km average values
(ground truth and predictions at ∼1km × 1km). (B-C) Both labels and features in
MOSAIKS are linear combinations of sub-image ground-level conditions, allowing βs

to be applied to imagery of any spatial extent (Supplementary Information Section
II.9). Thus, the system achieves super-resolution by generating meaningful estimates
at spatial resolutions finer than the original labels used for training. (B) Example
super-resolution estimates at 2×, 4×, 8×, and 16× label resolution (See Fig. S11
for additional examples). (C) Systematic evaluation of within-image R2 across the
entire sample recovered in the forest cover task (US only; Supplementary Information
Section II.9).
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Supplementary Information
The primary goal of our analysis is to develop, evaluate and contextualize the perfor-
mance of MOSAIKS. In the following three supplementary sections we describe the
data used in this evaluation, the experiments conducted, and how MOSAIKS compares
to other approaches in the literature. We also describe the intuition behind and the
mechanics of MOSAIKS’s algorithms in greater detail.

I Data
This section describes the datasets we use to construct our ground truth labels across
all seven of our tasks: forest cover, elevation, population density, nighttime lights,
income, road length, and housing price. In addition, we describe the imagery used in
the analysis. In Section II.2 we detail our method for linking the labeled data for each
outcome to the imagery (Fig. S3).

In evaluating the ability of MOSAIKS to generalize, we are interested in its ability
to recover different types of variables, including: (i) variables that are averages of sub-
image properties, (ii) variables that not directly observable through daytime imagery
but are a function of visible objects in the image, such as nighttime lights, and (iii)
variables that are an underlying factor that determines what material appears in the
image, such as elevation. Labels may also be a combinations of (i)-(iii), such as housing
price or household income. An advantage of MOSAIKS is that it solves all these cases
without any alteration of method. In the main text, we use the the same set of image
features to predict all seven outcomes and, in principle, this set of features can be used
to predict an unlimited number of outcomes (Section II.3, so long as the outcomes and
the images are aligned as described in Section II.2).

For each task, we obtain an up-to-date and geographically complete publicly avail-
able datasource to match with the images. Most of these data are based on measure-
ments from 2010 - 2015, though our data on population density draws from sources
that date back as far as 2005 in order to achieve global coverage. Our imagery data,
from the Google Static Maps API (Section I.2), was mostly acquired in 2018, though
in some cases images may be a few years older.

Task Units Native resolution Data source

Forest cover % forest cover ∼30m × 30m [40]
Elevation meters ∼611.5m × 611.5m [8]
Population density people per sq. km. ∼1km × 1km [16]
Nighttime lights radiance ∼500m × 500m [71]
Income USD per household census block group [119]
Road length km polyline [120]
Housing price USD per sq. ft. geocoded point data [138]

Extended Data Table S1: Data sources for all tasks. Note that for all raster data
sets (forest cover, elevation, population density, and nighttime lights) stated resolutions
apply to grid cells located at the equator; raster size in Euclidean distance will vary
with latitude.
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I.1 Labels

Tasks were chosen to represent outcomes of classes (i)-(iii) above subject to the condition
that high resolution and up-to-date label data is available across the US. Below we
describe these data sources. See Section II.2 and Fig. S3 for a description of how we
assign raw label data to images.

I.1.1 Forest cover To measure forest cover, we use globally comprehensive raster
data from [[40]], which is designed to accurately measure forest cover in 2010. This
dataset is commonly used to measure forest cover when ground-based measurements
are not available [6, 15]. Forest in these data is defined as vegetation greater than 5m in
height, and measurements of forest cover are given at a raw resolution of roughly 30m by
30m. These estimates of annual maximum forest cover are derived from a model based
on Landsat imagery captured during the growing season. Specifically, the authors train
a pixel-level bagged decision tree using three types of features: “(i) reflectance values
representing maximum, minimum and selected percentile values (10, 25, 50, 75 and 90%
percentiles); (ii) mean reflectance values for observations between selected percentiles
(for the max-10%, 10-25%, 25-50%, 50-75%, 75-90%, 90%-max, min-max, 10-90%, and
25-75% intervals); and (iii) slope of linear regression of band reflectance value versus
image date.” These estimates of forest cover were derived using different spectral bands
than we observe in our imagery, and using information about how surface reflectance
changes over the growing season, which we did not observe. This gives us confidence
that we are indeed learning to map visual, static, high-resolution imagery to forest
cover, rather than simply recovering the model used in [[40]].1

I.1.2 Elevation We use data on elevation provided by Mapzen, and accessed via the
Amazon Web Services (AWS) Terrain Tile service. These Mapzen terrain tiles provide
global elevation coverage in raster format. The underlying data behind the Mapzen tiles
comes from the Shuttle Radar Topography Mission (SRTM) at NASA’s Jet Propulsion
Laboratory (JPL), in addition to other open data projects.

These data can be accessed through AWS at different zoom levels, which range from
1 to 14 and, along with latitude, determine the resolution of the resulting raster. To
align with the resolution of our satellite imagery, we use zoom level 8, which leads to a
raw resolution of 611.5 meters at the equator.2

I.1.3 Population density We use data on population density from the Gridded
Population of the World (GPW) dataset [16]. The GPW data estimates population
on a global 30 arc-second (roughly 1 km at the equator) grid using population census
tables and geographic boundaries. It compiles, grids, and temporally extrapolates pop-
ulation data from 13.5 million administrative units. It draws primarily from the 2010
Population and Housing Censuses, which collected data between 2005 and 2014. GPW
data in the US comes from the 2010 census.3

1These data can be accessed at:
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php.

2We accessed these data via the R function get aws terrain from the elevatr package. Code
and documentation can be found here: https://www.github.com/jhollist/elevatr.

3These data can be accessed at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4

https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
https://www.github.com/jhollist/elevatr
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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I.1.4 Nighttime lights We use luminosity data generated from nighttime satellite
imagery, which is provided by the Earth Observations Group at the National Oceanic
and Atmospheric Administration (NOAA) and the National Geogphysical Data Center
(NGDC). The values we use are Version 1.3 annual composites representing the average
radiance captured from satellite images taken at night by the Visible Infrared Imaging
Radiometer Suite (VIIRS). We use values from 2015, the most recent annual composite
available.

This composite is created after the Day/Night VIIRS band is filtered to remove the
effects of stray light, lightening, lunar illumination, lights from aurora, fires, boats, and
background light. Cloud cover is removed using the VIIRS Cloud Mask product. These
values are provided across the globe from a latitude of 75N to 65S at a resolution of 15
arc-seconds. The radiance units are nW cm−2 sr−1 (nanowatts per square centimeter
per steradian).

Like forest cover, these labels are themselves derived from satellite imagery. How-
ever, because they capture luminosity at night, while our satellite imagery is taken
during the day, the labels for luminosity and the imagery used to predict luminosity
represent independent data sources. Our ability to predict nighttime lights depends on
how well objects visible during the day are indicative of light emissions at night.4

I.1.5 Income We use the American Community Survey (ACS) 5-year estimates of
median annual household income in 2015. These data are publicly available at the
census block group level, of which there are 211,267 in the US, including Puerto Rico.
On average, block groups are around 38 km2, though block groups are smaller in more
densely populated areas.5

I.1.6 Road length We use road network data from the United States Geological
Survey (USGS) National Transportation Dataset, which is based on TIGER/Line data
provided by US Census Bureau in 2016. Shapefiles for each state provide the road
locations and types, including highways, local neighborhood roads, rural roads, city
streets, unpaved dirt trails, ramps, service drives, and private roads. Road types are
indicated by a 5-digit code Feature Class Code which is assigned by the Census Bureau.6

The variable we predict is road length (in kilometers), which is computed as the total
length of all types of roads that are recorded in a given grid cell.

The Census Bureau database is created and corrected via a combination of partner
supplied data, aerial images, and fieldwork. The spatial accuracy of linear features
of roads and coordinates vary by source materials used. The accuracy also differs by
region, causing cases in which some regions lack recordings of certain road types, the
most common one being private roads and dirt trails. For example, private roads are
rarely recorded in Indiana and some regions in Ohio (Fig. S1A), despite satellite images
that suggest they are present (Fig S1B).7

4These data can be accessed at https://www.ngdc.noaa.gov/eog/viirs/download_dnb_

composites.html#NTL_2015.
5These data are accessible using the acs package in R [32], table number B19013.
6https://www.census.gov/geo/reference/mtfcc.html
7The data can be accessed at: https://prd-tnm.s3.amazonaws.com/index.html?prefix=

https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html#NTL_2015
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html#NTL_2015
https://www.census.gov/geo/reference/mtfcc.html
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Tran/Shape/
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Tran/Shape/
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A B

Extended Data Figure S1: Quality of ground truth road data varies by
region. (A) Private roads in the northern Midwest recorded in the USGS National
Transportation Dataset. The conspicuous lack of recorded private roads in Indiana and
sections of Ohio suggests that road data quality in certain regions may be lacking. (B)
Overlaying recorded roads of all types (shown in white) over a single satellite image in
Indiana, demonstrates that some roads that are easily visible from satellite imagery are
missing in the available data that we use to construct labels.

I.1.7 Housing price We estimate housing price per square foot using sale price and
assessed square footage values for residential buildings, obtained through the Zillow
Transaction and Assessment Database (ZTRAX). This dataset aggregates transaction
and assessment data across the United States, combining reported values from states
and counties with widely varying regulations and standards. Thus, significant data
cleaning is required. Furthermore, because some states do not require mandatory dis-
closure of the sale price, we currently have limited data for the following states: Idaho,
Indiana, Kansas, Mississippi, Missouri, Montana, New Mexico, North Dakota, South
Dakota, Texas, Utah, and Wyoming. To address data quality issues, we develop a
quality assurance and quality control (QA/QC) approach that is based on approaches
employed in previous work [69, 31, 116] but adapted for our case.

ZTRAX contains data on the majority of buildings in the United States, initially
comprising 374 million detailed records of transactions across more than 2,750 counties.
The data is organized into two components - transaction data and assessment data.
These two datasets are linked, allowing us to merge the latest sale price of a property
to the latest assessment data. To minimize the effect of nation-wide trends in housing
price that would be unobservable from our cross-sectional satellite imagery, we limit
our dataset to sales occurring in 2010 or later. Further, we restrict our analysis to
buildings coded as “residential” or “residential income - multi-family” and drop any
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Extended Data Figure S2: Correlation of labels across tasks. Each figure
shows a scatter plot of labeled outcomes for one of our seven tasks against another. All
points come from a population-weighted random sampling of grid cells (as described
in Section II.1) across the US. Scatters and R2 values are shown across approximately
100,000 grid cell labels, depending on the data availability for each task.

sale that was coded as an intra-family transfer. To obtain a square footage value, we
follow the example in Zillow Research’s GitHub repository [139] and take the maximum
reported square footage for a given improvement, and then sum over all improvements
on a given property.

To reduce the number of potentially miscoded outliers at the bottom end of the
distribution of sale price and property size, we drop any remaining sales that fall under
$10,000 USD, any properties that fall under 100 sq. ft., and any $/sq. ft. values under
$10. To address outliers on the high end of the distribution, we take this restricted
sample and further cut our dataset at the 99th percentile of $/sq. ft. by state. After-
wards, we select the most recent recorded sale price for each property (divided by the
most recent assessed square footage) to comprise our final dataset of housing price per
square foot.
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I.1.8 Correlation of outcomes across tasks The seven tasks described above
were selected in order to evaluate the performance of MOSAIKS across many diverse
contexts. Figure S2 evaluates the extent to which this was achieved, by plotting label
values against one another. A few of the labels are moderately correlated, most notably
population density and nighttime lights, but in general there is substantial orthogonal
variation across these seven tasks.

I.2 Imagery

We use satellite imagery from Google Static Maps API [33], zoom level 16 (see Fig. 4.1A
for examples). This gives roughly 1km × 1km images which are 640 × 640 pixels across
and 3 dimensions deep (red, green, and blue spectral bands). We coarsen these images
to 256 × 256 × 3 prior to featurizing, meaning that our models are trained on images
with roughly 4m resolution. These images can be composites of several satellite images
– sources include the Landsat, Sentinel, SPOT, Pleiades, WorldView and QuickBird
satellites.8 Prior to downloading, images were geo-rectified and pre-processed to remove
cloud occlusions.9

II Methods
This section describes the methods that we use to define samples (Section II.1), to
construct labels (Section II.2), and to construct features (Section II.3) for each image.
It then describes how we separate data for training and evaluation (Section II.4), train
models (Section II.5), test predictive skill (Section II.6), test sensitivity to the dataset
size (Section II.7) and test model extrapolation performance (Section II.8). Next, we
describe tests of model performance at sub-label or “super” resolution as well as at the
global scale (Sections II.9 and II.10).

II.1 Grid definition and sampling strategy

II.1.1 Grid definition: To evaluate the generalizability of MOSAIKS performance
across tasks we need a standardized unit of observation to link raw labels for all tasks
and imagery. To do this, we construct a single global grid onto which we project both
satellite imagery and labeled data. We design the grid to match our source of satellite
imagery to ensure adjacent images do not overlap. Each element of the grid, i.e. each
“grid cell,” was designed to be a square in physical space. Because the earth is a sphere,
the angular extent of grid cells changes across latitudes.10

II.1.2 Sampling strategy: For our primary experiment in the continental US we
subsample sets of 100,000 observations, roughly 1.25% of the grid cells in the continental
US, using two distinct sampling strategies.11 First, we sample uniformly-at-random

8In some cases aerial photography is also integrated into images.
9More information is available at: https://developers.google.com/maps/documentation/

maps-static/dev-guide.
10For the continental US (spanning 25 to 50 degrees latitude and -125 to -66 longitude), the grid

cells are 0.0138 degrees in width (1.39 km) at the southern edge of the grid, and 0.0138 degrees in
width (0.98 km) at the northern edge of the grid. The grid cells are 0.012 degrees in height (1.39 km)
at the southern edge of the grid, and 0.0089 degrees in height (.98 km) at the northern edge of the
grid.

11We discard marine grid cells, but do not discard grid cells that are composed only of lakes or
smaller inland bodies of water.

https://developers.google.com/maps/documentation/maps-static/dev-guide
https://developers.google.com/maps/documentation/maps-static/dev-guide
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(UAR) from all grid cells within the continental US. This sampling strategy is most
appropriate for tasks like forest cover, where there is meaningful variation in most
regions of the country. Second, we implement a population-weighted (POP) sampling
strategy. To generate this sample, each grid cell is weighted by population density values
taken from Version 4 of the Gridded Population of the World dataset, which provides
a raster of population density estimates for the year 2015.12 This weighted sampling
strategy is most applicable to tasks like housing price, where the most meaningful
variation lies in more populated regions of the US. We use the UAR grid when sampling
population density to avoid any issues that might arise from sampling a task using the
same variable as sampling weights. In both the UAR and POP samples, we randomly
sample just once; all results in the paper are displayed using the same two subsets of
the full grid. Note that these sub-sampled grid cells, by construction, are each covered
by exactly one satellite image without having to process data over the entire US.

In our main results, we use the UAR sample for the forest cover, elevation, and
population density tasks. We use the POP sample for nighttime lights, income, road
length, and housing price. See Section II.10 for a discussion of how we extend this grid
and sampling procedure to the global scale.

II.2 Assigning labeled data to sampled imagery

To assign labels to each grid cell, we spatially overlay our raw labeled data and our
custom grid. The native format and spatial resolution of the labeled data vary across
the tasks studied, necessitating different aggregation or disaggregation procedures for
each task. Here, we describe the approach taken in each task (Fig. S3).

The raw forest cover, elevation, population density and nighttime lights data are
provided natively as rasters with higher spatial resolution than our custom grid. For
these tasks, we perform aggregation by calculating the mean of all labeled pixels with
centroids that fall within the imagery grid cell. The resulting labels indicate mean forest
cover, mean elevation, mean population density, and mean nighttime lights across the
image grid cell.

Our road length data are provided as high-resolution spatial line segments. To
aggregate these data to the image grid cell, we calculate the sum of road length segments
within each image. The resulting labels indicate the total length of recorded roads that
fall within an image grid cell.

Our housing price data are available as individual geocoded house sales. We aggre-
gate these geocoded prices to the image grid cell by taking the average housing price
per square foot across all sale prices that fall within the extent of the image. The
resulting labels indicate the average housing price per square foot across all observed
houses within a grid cell.

Our income data are provided at the block-group level (see Section I.1 for details).
In some parts of the U.S., these block-groups are larger in total area than our image
grid cells. However, in other regions, block-groups are smaller than our image grid
cells. To treat both cases consistently, we aggregate incomes to the grid cell level by

12These data are available at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/

sets/bro

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/bro
http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/bro
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Extended Data Figure S3: Calculation of grid cell labels from raw data. We
calculate labels by spatially overlaying our grid cells and raw labeled data. We calculate
labels as the average of raw label values that fall within the grid cell, except for roads
where we calculate the label as the sum of road length within the grid cell.

taking the weighted average of block-group incomes, where the weights are the area of
intersection between the image grid cell and the block-group polygons. These weights
are normalized to unity for each grid cell. The resulting labels indicate the area-weighted
average median income across the grid cell.

Future users of a production-scale version of MOSAIKS would employ label data of
arbitrary format and resolution. The above approaches provide guidelines for how to
match various forms of label data to the pre-computed image feature grid, but other
methods may be used. In the simplest case, for example, sparse point data could be
directly matched to the nearest grid cell centroid.

II.3 Featurization of satellite imagery

II.3.1 Notation In our context, the input variable z is a set of satellite images I, each
corresponding to a physical location, `. We use brackets to denote indexing into images,
with colons denoting sub-regions of images (e.g. I`[i, j] is the (i, j)th pixel of image I`,
I`[i : i + M, j : j + M ] is the square sub-image of size M ×M starting at pixel (i, j).)
Because images have a third dimension (spectral bands), a colon I`[i, j, :] denotes all
bands at pixel (i, j). Indexing into non-image objects is denoted with subscripts (e.g.
the kth element of vector x is denoted as xk and the kth patch in a set of patches
P is denoted as Pk). We denote inner products with angular brackets 〈·, ·〉 and the
convolution operator with ∗.
II.3.2 Connection to the kitchen sinks framework The random kitchen sink
featurization used in MOSAIKS relies on a nonlinear mapping g(z; Θk), where z is an
input variable and Θk is a randomly drawn vector. Here, we describe the implemen-
tation details of this featurization in the context of satellite imagery. Connecting our
implementation and notation to the framework of random kitchen sinks, the random
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Extended Data Figure S4: MOSAIKS process from featurization to multi-
task prediction. Given a large sample of N satellite images (A), a random sample
of K patches (B) are drawn. (C) These K random patches Pk are convolved over each
image I` and (D) passed through a nonlinear function φ(·) to generate K activation
maps. (E) Pixel-specific activations are pooled across each image to generate one set
of N ×K features that are stored and distributed to all users. (F) The same random
feature vector x is used in cross-validated ridge regression across many distinct tasks,
after labeled and geo-referenced data y` is matched to features from each image I` (as
shown in Fig. 1B of the main text). (G) Models trained via ridge regression can be used
to generate predictions across unrestricted tasks for any location with satellite imagery.

variables Θk are instantiated as the values of a random patch Pk and the bias bk. The
input variable z is an image I`, and g(z; Θk) represents the convolution of the patch
over the image, followed by addition of the bias bk and application of a element-wise
ReLU function and an average pool, as described in the Methods of the main article
and detailed below.

II.3.3 Methodological Details Fig. S4 depicts our featurization process. As de-
scribed in Section I.1 and II.1, we begin with two sets (uniform and population-weighted
samples) of N = 100, 000 satellite images, each of which measures 640× 640× 3 pixels
(the third dimension represents the visible red, green, and blue spectral bands). We
then coarsen the images to 256 × 256 × 3 pixels to reduce computation. Next, we
draw K/2 = 4, 096 small sub-image “patches” of size M ×M × 3 uniformly at random
from the 80,000 images that comprise our training and validation set, and calculate
the negative of each patch to get another 4, 096 patches (Fig. S4A, S4B). Our chosen
specification sets M = 3, so that each patch Pk is of dimension 3× 3× 3 (see Fig. S5
for performance in experiments using different patch sizes).

We then “whiten” each patch by zero components analysis (ZCA), a common pre-
processing routine in image processing [58]. ZCA whitening pre-multiplies each patch
by a transformation such that the resulting empirical covariance matrix of the whitened
patches is the identity matrix. We then convolve each patch Pk over each of the N
images (Fig. S4C) to obtain a set of 254 × 254 × 1 pixel matrices for each image
I`

13.During the convolutions each 3 × 3 × 3 sub-image I`[i : i + M, j : j + M, :] is also

13To improve efficiency of the featurization process, our implementation calculates the inner product
of patch and image only for the original K/2 patches. We then create an additional K/2 values equal
to the negative of each of the original inner products.
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whitened according to the same whitening matrix as is applied to the patches.14 We
then apply a pixel-wise nonlinearity operator Φ to each resulting matrix to obtain K
nonlinear activation maps Ak(I`) = Φ(Pk ∗ I` + bk) for each image I` (Fig. S4D) so
that the (i, j)th pixel of the kth activation map is defined as

Ak(I`)[i, j] = Φ(〈I`[i : i+M, j : j +M, :],Pk〉+ bk),

where bk is a bias term from the constant bias matrix bk, in which every element is
equal to bk = 1. We use Φ(I`; Pk,bk) = ReLU(Pk ∗ I` + bk) := max{Pk ∗ I` + bk, 0} as
the nonlinear operator. We then aggregate across the image by taking the average of
the nonlinear activation maps (Fig. S4E). The combination of the nonlinear operator
Φ(·) and average pooling composes the function g(·) above, and creates a scalar value
for each patch k and image ` pair:

xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j] (4.3)

Stacking these scalars across all K patches provides the resulting K-dimensional feature
vector, x(I`) :=

[
x1(I`) x2(I`) ... xK(I`)

]
∈ RK . This featurization thus embeds the

original image I` into a K-dimensional feature space, which can then be mapped to
many different outcomes using task-specific models (s) implemented by researchers (r):
ys,r` = x(I`)β

s,r + εs,r` , as in Eq. (4.2) and illustrated in Fig. S4F. Although Eq. (4.2) is
linear in these features, it may express a function that is highly nonlinear with respect
to I` because these features themselves are nonlinear with respect to the images.

II.3.4 Patch size and sampling We approximate the idealized complete convo-
lutional basis, which contains features for all patch sizes, with the simpler truncated
basis where we use only a single patch size. Throughout our main analysis, we use a
3×3×3 patch size for Pk. While larger patches may, in principle, enable the detection
of image features with larger spatial structure, we find that, in practice, patch size
M = 3 performs best across all seven tasks (Fig. S5). This finding suggests that most
information contained within satellite imagery of this resolution can be represented by
local-level image structure, and that the inclusion of “non-local” relationships reduces
the efficiency of the function approximator by introducing more degrees of freedom.
This empirical finding is consistent with previous applications of kitchen sink features
[106].

We draw patches randomly from the empirical distribution of M ×M × 3 patches
from our training data set of satellite images. Drawing patches from the empirical dis-
tribution, rather than generating them randomly, allows us to sample efficiently from
the distribution of sub-images we will encounter in the sample. This patch selection
process is almost identical to the filter selection methods described in [[20, 89, 4]]. It
may be valuable for future research to explore whether MOSAIKS performance and

14In practice, we apply the whitening operator as a right multiplication to the original 8192 × 27
whitened patch matrix in order to reduce computation.
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Extended Data Figure S5: Performance by patch size. Featurization in MO-
SAIKS relies on convolving an M×M×3 patch Pk across satellite images. M indicates
the width in pixels of each sub-image patch, and the third dimension indexes the 3 spec-
tral bands used throughout the analysis in this paper (an analogous approach can be
applied to hyperspectral data). This figure shows, for each task, test set R2 for patch
sizes M = 1, 2, 3, 6, 12 and 24, using K = 1, 024 patches for each M . The dotted gray
line indicates the benchmark model used throughout the paper, with M = 3.

computational efficiency could be improved through patch selection algorithms. For
example, one goal in selecting patches-based features is to promote relative sparsity in
the resulting patch-based features, as in [[97]]. However, any attempt to tailor patch
selection or featurization to a particular task of interest requires sacrificing the gener-
alizability of this task-agnostic featurization. It remains an open question whether a
non-randomly selected set of basis patches could potentially achieve similar (or greater)
performance than what we present here when applied to arbitrary new tasks.

II.3.5 Alternative interpretations relating MOSAIKS to kernels and CNNs
The main article and methods section describes how MOSAIKS’s convolutional random
features enable nonparametric approximations of nonlinear functions through an em-
bedding in a rich basis that expresses local spatial relationships. We believe that the
description in the main article is the simplest and most direct explanation for the design
of MOSAIKS and why it achieves high performance, but there are alternative ways to
imagine a design process and implementation that would also lead to MOSAIKS as a fi-
nal product. Here, we provide two of these alternative interpretations of the approach,
the first relating to kernel methods and the second relating to convolutional neural
networks. While these are not our preferred interpretations, we believe they provide
useful lenses to consider why MOSAIKS works and they may be helpful to researchers
thinking about related problems.

First, one could interpret the design of MOSAIKS as if we were attempting to design
a computationally tractable approximation to implementing a ridge regression using a
convolutional kernel and the kernel trick. Under this interpretation, one could arrive at
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the same design of MOSAIKS using the following logic: (i) Design a kernel that allows
us to describe the “similarity” of every image to every other image in the sample. (ii)
For any new task, we want to use a kernel regression to predict the unobserved labels of
new images based on their similarity to all other images—specifically, predicted labels
would be a weighted sum of all observed labels using weights determined by this kernel-
based measure of image similarity, i.e. the kernel trick. (iii) Unfortunately, calculating
such a kernel exactly would be computationally intractable on a data set as large
as the one we use, so instead use convolutional kitchen sinks (i.e. the featurization
in MOSAIKS) to approximate the desired kernel regression. This last step follows
from prior work demonstrating two concepts. First, random features can approximate
the lifted feature space induced by well-known kernels [85] as the number of random
features increases. Second, convolutions of random patches drawn from joint Gaussian
distributions has been proven to approximate, in the limit, a kernel in which every
sub-image from one image is compared with every sub-image from another using an
arc-cosine distance function [55]. Thus, convolutions with random patches should, in
the the limit, approximate a kernel that compares every sub-image with every other
sub-image in the sample. However, because our distribution of patches is drawn from
training imagery, rather than from Gaussian distributions, there is not an analytical
expression that is known for the kernel being approximated by MOSAIKS in the limit.

The above logic would arrive at a design essentially the same as MOSAIKS, although
it is not our preferred motivation or interpretation of why MOSAIKS works because it
is a more complicated rationale than is needed. Ref. [[87]] showed that the existence
of an associated kernel is not necessary for performance using kitchen sinks. Rather, it
is simply the embedding of an input in a descriptive basis that provides the predictive
skill, the insight that motivates our preferred—and we think simpler—interpretation
presented in the main text. Nevertheless, the interpretation of MOSAIKS in the context
of kernels motivates one way to understand the mechanism through which MOSAIKS
achieves predictive skill at low computational cost. Namely, it enables the approxima-
tion of a nonparametric kernel regression, using some (unknown) fully convolutional
kernel that is sufficiently rich to represent meaningful similarity between images but
costly enough to prohibit a direct application of the kernel trick.

An additional way to contextualize MOSAIKS is in terms of its computational el-
ements. In particular, MOSAIKS uses image convolutions and nonlinear activation
operations common to convolutional neural networks (CNNs) [5]. Indeed, MOSAIKS
is mathematically identical to the architecture one would arrive at if one designed a
very shallow and very wide CNN without using backpropogation and instead using ran-
dom filters. Specifically, MOSAIKS could be viewed as a two-layer CNN that has an
8,192-neuron wide hidden layer with untrained weights that are randomly initialized by
drawing from sub-images in the sample, and that uses an average-pool over the entire
image. In contrast to the conventional CNN approach of optimizing weights (via back-
propogation), the random initialization with no subsequent optimization significantly
reduces training time and avoids numerical challenges associated with non-convex op-
timization procedures (such as vanishing gradients). Thus, in the main text, we do not
frame MOSAIKS as a CNN because MOSAIKS does not exploit the primary benefits of
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a deep CNN, since MOSAIKS lacks intermediate layers and does not implement back-
propogation. Nonetheless, some readers may find this description more intuitive, and,
as mentioned in the main article, we believe that the high performance of MOSAIKS
might motivate the design of CNN architectures that share some of these computational
elements.

Because deep CNNs are a state-of-the-art tool for SIML tasks, we provide further
comparisons of MOSAIKS performance and cost relative to this benchmark in Sec-
tions III.1 and III.2, respectively.

II.4 Data separation practices and cross-validation

We split our data into a 20% holdout test sample and an 80% training and validation
sample. Within the training and validation sample, we perform 5-fold cross validation
in our primary analysis, splitting the training and validation sample into 5 sets of 80%
training data (64% of full sample) and 20% validation data (16% of full sample), such
that the validation sets are disjoint.

II.4.1 Creating the holdout test set Before any of the label data are touched, we
remove a hold-out test set that is chosen uniformly at random from the entire sample,
consisting of 20% of the original data. The analysis and diagnostic procedures that
follow use only the remaining 80% of the observations. The held-out test set is only
used once, for the purposes of comparison to the validation set performance in Table S2.
It is important to keep these data untouched until this point to ensure that our final
performance results do not suffer from over-fitting.

II.4.2 Tuning hyperparameters We choose the optimal λ in Eq. (4.5) for each out-
come through 5-fold cross-validation over the training and validation sample. Specif-
ically, λ is chosen to maximize average performance (R2) across 5 folds, from a list
of candidate values.15 For tasks with the same sampling scheme (i.e. UAR versus
population-weighted sampling), the folds are consistent across tasks, so that each of
the five folds comprises the same set of locations across the tasks.

II.4.3 Using cross-validation to measure model robustness In addition to be-
ing a principled way of selecting hyperparameters, cross-validation gives us a notion
of how robust our model is to changes in the training and validation samples. Since
each of the 5 validation sets is disjoint and randomly selected, the empirical spread
of performance across folds gives us a notion of the variability of our model when ap-
plied to new data sets from the same distribution. Understanding this variation is one
way of understanding the performance of our model; it gives us a notion of variance
of aggregated performance (e.g. R2 over the entire sample, for a given set of hyperpa-
rameters). A useful aspect of MOSAIKS’s low computational cost of model training,
however, is that it enables researchers to calculate the variance of individual predictions
by bootstrapping.

15We choose these candidate values so as to ensure the chosen optimal λ is not the minimum or
maximum of all λs supplied.
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II.5 Training and testing the model

In our primary model (results shown in Fig. 4.2 of the main text) we solve for grid
cell labels as a linear function of random convolutional features using a ridge regression
model and a cross-validation procedure. To obtain training and validation sets, we
follow the data separation practices outlined in Sec. II.4, and drop any observations
with missing values. The resulting combined training and validation set sizes are N
= 80,000 for forest cover, 80,000 for elevation, 54,375 for population density, 80,000
for nighttime lights, 73,102 for income, 80,000 for road length, and 58,729 for housing
price.

Population density, nighttime lights, and housing price have label distributions that
are approximately log-normal (Fig. S6), so we take a log transformation of the labels.
We add 1 before logging to avoid dropping labels with an initial value of zero (see
Section II.6.2 for performance in logs and levels for all tasks).16

With these labels and features in hand, we regress each outcome ys` for each task s
on features x` as follows:

ys` = x(I`)β
s + εs` (4.4)

which is the same as Eq. (4.2) from the main text. We solve for βs by minimizing the
sum of squared errors plus an l2 regularization term:

min
βs

1

2
||ys` − x(I`)β

s||22 +
λs

2
||βs||22 (4.5)

We use ridge regression across all outcomes to demonstrate the generalizability of
using a single set of image features across many simple regression models. Further, this
standardized methodology facilitates comparison of performance and sensitivity across
tasks. We note that other modeling choices could potentially improve fit (e.g. using
a hurdle model for zero-inflated outcome distributions such as road length); we leave
such task-specific explorations for future research.

In visual display of results and calculation of performance metrics such as R2, we
clip our predictions for each task at the minimum and maximum values observed in the
labeled data.

The resulting weights (i.e. regression coefficients) β̂s obtained from estimation of
Eq. (4.4) indicate, along with the variance of the features, which features k (derived
from random patch Pk) capture meaningful information for prediction in each task.
Fig. S7 demonstrates that the recovered weights are stable across cross-validation folds
within a task. The first two columns show standardized weights that are estimated from
disjoint training and validation splits for the same task.17 Values corresponding to each
axis are the regression weights estimated when the corresponding fold composes the

16Since housing price per square foot is always positive, for that variable we use just a log transfor-
mation.

17For consistency across comparisons, R2 is calculated on standardized regression weights, which
have been demeaned and divided by their standard deviations. The number of random features is set
to K = 1, 024 for visual display purposes.
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Extended Data Figure S6: Distribution of outcome variables in levels and
logs. Histograms show the distribution of each outcome variable over all sampled
image grid cells (approximately 100,000 observations, depending on data availability).
Forest cover, elevation, and population density are sampled uniform at random across
the continental US, while all other variables are randomly sampled with population
weighting. The first column shows the distribution in levels, and the second in logs.
For elevation, population density, nighttime lights, and road length, logs were taken
after adding 1 to the raw values, given the propensity of zero values in these outcomes.

training set. High R2 values indicate a strong correlation between regression weights
from different folds within a single task (forest cover, elevation, and population density
are shown), demonstrating that similar linear combinations of features are selected by
the regression model, even when the sample of training images changes. This suggests



CHAPTER 4. GENERALIZING EARTH OBSERVATION WITH SATELLITE
IMAGERY AND MACHINE LEARNING 105

Extended Data Figure S7: Regression weights across folds within a task vs.
across tasks within a fold. All scatterplots indicate regression weights for forest
cover, elevation and/or population density. Each point depicts estimated coefficent
values for the kth feature (βsk) when trained on either different samples or different
labels. In the across-fold examples (first two columns), we learn weights for disjoint
training and validation splits for the same task via cross-validation in which one fold acts
as the training set and the other as the validation set. Values corresponding to each axis
are the regression weights when that fold is the training set (e.g. the top left scatter
shows {βforest1k , βforest0k }), and indicate a strong correlation across regression weights
from different folds. In the across-task examples (last column), regression weights are
shown for the same training and validation sets for two distinct tasks (e.g. the top
right scatter shows {βelevation0

k , βforest0k }). We see that there is virtually no correlation
in regression weights across tasks, demonstrating that predictions across tasks lie in
orthogonal subspaces of the feature space. Across all examples here, we set the number
of random features to K = 1, 024. For consistency across comparisons, R2 is calculated
on standardized regression weights, which have been demeaned and divided by their
standard deviations.

that specific sets of patches consistently contain valuable information in predicting
outcomes for a specific task. However, different combinations of patches are useful for
different tasks, and we find no correlation in the weights recovered between tasks. For
example, in the last column of the figure, we show that regression weights that are
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recovered for forest cover and elevation (top right) are essentially orthogonal as are
regression weights recovered for forest cover and population (lower right). In these two
plots, regression weights are shown for the same training and validation sets, but for
two distinct tasks. Sets of features that are relevant for prediction in one task appear
to be irrelevant for another, as there is virtually no correlation in regression weights.

II.5.1 Intuition The consistency of weights recovered in MOSAIKS across folds
within a task, and the orthogonality of weights recovered within a fold but across tasks,
provides some intuition for why MOSAIKS provides consistent results and generalizes
across a very large (potentially infite) number of potential tasks. The rich featurization
x(I`) locates image I` in a very high-dimensional (K-dimensional) feature space. Solv-
ing for βs in Eq. (4.4) then identifies the K-dimensional vector βs that points in the
direction of most rapid ascent (the gradient vector) for labels ys, when the position of
images x(I`) are projected onto this vector. Because the feature space is so large — our
baseline model has an 8,192-dimensional feature space — there are a vast number of
orthogonal gradient vectors that can be drawn through this space along which images
can be organized for different tasks. The left and center panels of Fig. S7 illustrate that
similar K-dimensional gradient vectors βs are selected when solving for the same task
but using different samples (each point depicts an element of the vector βs). The right
panels shows that for different tasks, the gradient vectors are orthogonal and point in
completely unrelated directions in the feature space. This orthogonality means that
predictions ŷs for different tasks will be independent of one another, even though both
are constructed as linear combinations of the same set of features.

II.6 Primary model test set performance, robustness to functional form,
and spatial distribution of errors

Here, we describe how we test for overfitting to the training and validation set in our
primary model, test for primary model performance robustness to alternative functional
forms, and characterize the spatial distribution of primary model error.

II.6.1 Performance in a holdout test set To test for overfitting, we evaluate the
performance of our primary model on a randomly sampled 20% holdout set. These data
were never used for model selection and were only touched at the end of our analysis
to check for overfitting. To conduct this test, for each outcome, we use cross-validation
within the training set to determine the outcome-specific optimal λ. We then retrain
the model on the full training set using this optimal λ, and evaluate this model on the
holdout test set. We find that performance in the test set is nearly identical to that of
the validation set (Table S2), which indicates that our models were not overfit to the
data. For some performance metrics, such as the maps in the main text, we present
validation set performance (instead of the test set) because the sample is larger and the
performance is unchanged.

II.6.2 Robustness of model to alternative functional forms Throughout the
main text, we report primary model performance in each task from a model estimated
with labels that are either logged (e.g. population density), or in levels (e.g. forest
cover). The decision regarding functional form for each task was made based on the
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Cross-validation Test set
Task R2 R2

Forest cover 0.91 0.91
Elevation 0.68 0.68
Population density 0.73 0.72
Nighttime lights 0.85 0.84
Income 0.45 0.45
Road length 0.52 0.53
Housing price 0.46 0.47

Extended Data Table S2: Model performance in the hold out test set. For
each outcome, we use 5-fold cross-validation within the training/validation set using
80% of our labeled data to optimally select task-specific hyperparameters in ridge re-
gression (i.e. λ). We then retrain each model on the full training set using this optimal
λ. Performance on the validation set (column 1) is compared to that of the held out
test set (column 2).

underlying distribution of labels across our image grid cells. Many outcomes, such
as housing prices, display exceptionally skewed distributions that approximate log-
normality (see Fig. S6). For these outcomes, we take the natural log of the image
grid cell values in model training and testing. Table S3 shows model performance
for all tasks under both the levels and logs functional forms.18 Tasks with highly
skewed distributions, such as population density, housing price per square foot, and
nighttime lights have substantially higher performance (R2 increases by 10-64%) after
being logged. Tasks whose labels display much less skew in levels, such as road length,
income, and elevation show small to modestly reduced performance (4-21%) when their
outcomes are modeled in logs.

II.6.3 Spatial distribution of errors Fig. S8 shows the distribution of errors over
space, for the model predictions presented in Fig. 4.2. The model systematically over-
predicts low values and under-predicts high values across all tasks. This is likely due
to our choice of ridge regression, which favors predictions that tend toward the mean
due to the `2 penalty. The structured correlation of errors across space suggests that
there is substantial room for model improvement, potentially from including task spe-
cific knowledge. For example, our models of housing price and elevation could likely,
respectively, be improved by adding in information about school districts –to address
clustering of house price error in parts of big cities – or location – to help identify
large areas of high elevation such as the Rocky Mountains. We recognize that there
exists substantial room for task-specific model performance, which we leave for future
research. Further, discontinuities in the error structure over political boundaries can
help identify inconsistency in label quality. For example, the sharp increase in road

18In tasks where negative values or zeros are present (e.g. forest cover, elevation, and nighttime
lights), we drop negative values and add one to zero values before taking logs for this test.



CHAPTER 4. GENERALIZING EARTH OBSERVATION WITH SATELLITE
IMAGERY AND MACHINE LEARNING 108

Log model Levels model
Task R2 R2

Forest cover 0.89 0.91
Elevation 0.59 0.68
Population density 0.73 0.52
Nighttime lights 0.85 0.77
Income 0.43 0.45
Road length 0.41 0.52
Housing price 0.46 0.28

Extended Data Table S3: Model performance across tasks and functional
forms. All R2 values indicate performance using the optimal hyperparameter λ after
5-fold cross-validation. In the log model, the outcome variable is defined as the natural
logarithm of the original labeled data (e.g. natural log of the average forest cover over
an image gridcell). In the levels model, the outcome variable is simply the level of the
aggregated labeled data, as defined in Section II.2. Values in bold are reported in the
main text.

length prediction error moving across the border from Louisiana to Texas suggests that
the raw data labeling in these two states may differ methodologically, which introduces
error into the label, and in turn, the model.

II.7 Altering the number of features and training set size

To better understand factors that could improve the primary model, we test the sensitiv-
ity of its performance to the number of features and the training set size (results shown
in Fig. 4.3 in the main text). Understanding the returns to additional features and
observations enables better optimization of model performance given cost constraints.

Since features in MOSAIKS are generated randomly, there is no theoretical reason
to select a specific number of features. To test the sensitivity of the primary model
performance to the number of features, we train a model identically to our primary
specification (Section II.5) except that we vary the number of features across the values
{100, 200, 500, 1000, 2000, 4096, 8192} (Fig. 4.3A). For each set of features and each task,
we conduct 5-fold cross-validation to recover the optimal hyperparameter λ.

Notably, using only 100 features recovers a substantial amount of the variation across
tasks. Of the tasks, the least variation is recovered for income (R2 using 100 features
is 81% of R2 using 8,192 features) and the most variation is retained in nighttime
lights (R2 using 100 features is 96% of R2 using 8,192 features). This suggests that in
computation or memory-limited settings, fewer features could be used with only minor
losses in performance. On the other hand, even with 8,192 features, performance does
not fully flatten out (on a logarithmic scale). This suggests that performance could be
improved further by increasing the number of features past K = 8, 192. At the limit of
our testing, a doubling of K from 4, 096 to 8, 192 led to a largest performance increase
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Extended Data Figure S8: Labels and prediction errors over space for each
task. Left maps: 80,000 observations used for training and validation, aggregated up to
20km x 20km cells for display. Right maps: prediction errors from concatenated valida-
tion set estimates from 5-fold cross-validation for the same 80,000 grid cells, identically
aggregated for display.
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of 0.026 R2 for income and a smallest of 0.010 R2 for forest cover.
To test the sensitivity of primary model performance to the number of training

samples, we train a model identical to our primary specification (with 8,192 features)
except with a varying size of training set (from 500 to 64,000 images) (Fig. 4.3A).19 In
cases where the training set has fewer than 64,000 total observations due to missing
data (e.g. population density, income, road length and housing price), we use the full
training data set to construct our largest training sample.

Similarly to increasing the number of features, increasing the training set size in-
creases model performance with diminishing marginal returns. Notably, models trained
on only 500 observations recover at minimum 56% (road length) of performance rela-
tive to N = 64, 000 and at maximum 87% (forest cover), excluding income and housing
price, which require larger samples to attain performance. This suggests that, for all
but the most difficult SIML tasks, MOSAIKS may be useful even when label collection
is very costly. For the tasks with the best R2 performance (forest cover, nighttime
lights), performance plateaus out as the number of training observations approaches
64, 000. However, for the remaining five tasks, these results show that more training
data could substantially increase performance further. The range of performance gain
from increasing N = 32, 000 to 64, 000 is bounded below by forest cover (.005 R2) and
above by road length (.027 R2).

II.8 Testing generalizability across space and comparison to kernel-based
interpolation.

To understand the ability of our model to predict outcomes in large contiguous re-
gions with no ground truth, we design an experiment where we evaluate models using
training and validation sets that are increasingly far away from each other in space.
Specifically, we iteratively create a grid over the US with a side length of δ degrees
and then use this grid to divide the training and validation dataset (N = 80, 000) into
spatially disjoint sets of roughly equal size. We create these disjoint sets by assigning
observations that lie in every other box within the grid to the train set and test set,
respectively, creating a checkerboard pattern with the train set and test set, as shown
in Fig. 4.3B. We vary the width δ of each square in the grid range across the values of
{0.5, 1.5, 2, 4, 6, 8, 10, 12, 14, 16} degrees (roughly 40 to 1400 km) in sequential runs of
the experiment. As δ increases, validation set observations become on average farther
away from the training set points. This distance makes prediction on the validation
set more difficult, because observations in the validation set are now likely to be less
similar to those in the training set. We learn the model on the training set using ridge
regression. To assess the stability of this performance, we offset the checkerboard and
re-run the above analysis four times – once in the original location and then three more
times – shifting the grid up, right, and both up and right by half the width of the grid
(see Fig. S9). The `2 regularization term, λ, is selected to maximize average perfor-
mance in the four validation sets, as we would select in in a standard cross-validation
procedure.

19The same per-fold validation sets are used for each iteration of this analysis as well as for the
primary analysis and for the test of model performance sensitivity to the number of features.
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Extended Data Figure S9: Illustration of the procedure to systematically
shift train and validation sets in space when assessing the performance of
MOSAIKSover regions with no ground-truth data. To assess the ability of
MOSAIKS to generate meaningful predictions when extrapolating across large spatial
distances, we conduct a “checkerboard” experiment (Section II.8, Fig. 3B-C of the main
text) in which the training set (“black squares”) and validation set (“white squares”)
are separated by increasingly large distances. The length of a square in each experiment
is δ, measured in degrees. This figure demonstrates the four different train/validation
splits that are created by shifting a given spatial checkerboard (split 1) by δ/2 to the
right (split 2), δ/2 up (split 3), and both simultaneously (split 4).

The performance plotted in Fig. 4.3C is the performance on the the resulting val-
idation sets. We find that across most tasks, performance degrades only slightly as
the distance between training observations and testing observations increases. This
suggests that MOSAIKS is indeed learning image-label mappings that transfer across
spatial regions.

II.8.1 Comparison of MOSAIKS to kernel-based spatial interpolation In
these experiments we demonstrate that MOSAIKS outperforms spatial interpolation
(or extrapolation, depending on geometry) – a commonly used simple technique to
fill in missing data (Fig. 4.3C). This suggests that MOSAIKS, and SIML generally,
exploits the spectral and structural content of information within an image to generate
predictions at national scale that extend beyond what can be captured by geographic
location alone.

We compare MOSAIKSto kernel-based spatial interpolation using a Gaussian Radial
Basis Function (RBF) kernel, a simple and general widely used approach. In this
approach, the value for a point in the validation set at location `v ∈ R2 is predicted to
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be a weighted sum of the values of all the points in the training set `t, as follows:

ŷsv =

∑
`t∈[Train]

ystw(`t, `v)∑
`t∈[Train]

w(`t, `v)
; w(`t, `v) = e−

1
2σ2
‖`t−`v‖2

Here, w is the weight assigned to each observation in the training set based on kernel
values that are indexed to distance, such that w decreases as the distance between the
point being predicted and the point in the training set increases. We select σ – the
parameter that determines the rate at which w degrades with distance – to maximize
average performance on the validation set across all four spatially-offset runs, similar to
how we tune λ in the spatial extrapolation experiment described above. The optimal
value of the bandwidth parameter σ will depend on the task at hand, as well as the
average distance from points in the validation set to points in the training set. To ensure
comparability, spatial interpolation based predictions and performance are computed
for the exact same samples as used for MOSAIKS in each checkerboard partition.

II.9 Super-resolution

As discussed in the Methods section of the main text, the featurization method in
MOSAIKS exploits the fact that many image-level outcomes of interest are linearly
decomposable across sub-image regions. This is done by creating image-level features
that are averages of statistics from all sub-image regions. Because these features are
ultimately used in linear regression (i.e. Eq. (4.2)), a natural property of this approach
is that weights estimated from Eq. (4.2) can be used not only to generate predictions
of outcome variables at the image-scale, but also at the scale of any sub-image region.
As satellite imagery are available at increasingly high spatial resolution, this “super-
resolution” property is both practical and powerful, enabling researchers to generate
novel predictions at higher resolution than available ground truth data.

This section gives mathematical justification for a simple method to use MOSAIKS
to predict outcomes of interest at a finer resolution than available labeled data. We dis-
play the super-resolution properties of MOSAIKS visually, and quantitatively document
the empirical performance of this super-resolution approach.

Why MOSAIKS naturally achieves super-resolution for label predictions
Given an image-label pair {I`, ys`}, the goal of super-resolution is to resolve which sub-
regions of the image I` contribute to high or low values of ys` . Recall that for image I`,
feature vector x(I`) is a K dimensional vector, where each scalar element xk(I`) of x(I`)
is an average across the pixels of the image of the values obtained by convolving sub-
regions of the image with patch Pk. As in Section II.3, denote by X the full random
feature matrix in RN×K , so that X`k denotes the kth element of the feature vector
describing image I`. By Eq. (4.3), we can decompose the feature elements as:

X`k := xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

where Ak is the activation map associated with patch Pk. Since we’re using a linear
model to form predicted values, we can trace these values back to subregions of the
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Extended Data Figure S10: Illustration of the procedure to construct pre-
dictions at image resolution and super-resolution. Panel A illustrates the stan-
dard MOSAIKS prediction pipeline. After convolution with random patches, nonlinear
activation maps Ak(I`) are averaged across images to construct a set of image-level
features xk(I`) used in linear regression to generate predictions at image-scale (Section
II.3). Panel B illustrates how the weights trained using labels and features at image-
scale in panel A can be used to generate predictions at resolutions higher than the
images and labeled data, achieving predictions at super-resolution. The scalar product
of the entire activation map Ak(I`) and the estimated weights vector β̂ generates super-
resolution predictions at any desired sub-image scale larger than pixel-level. The last
column of panel B illustrates the fact that super-resolution predictions, when averaged
across an image, are identical to predictions generated from the standard process in
panel A.
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original image. When we perform a linear regression for task s, the resulting regression
weights are a vector β̂s ∈ RK such that the scalar β̂sk describes the relative weight of
feature k in the image-resolution label predictions. The prediction of outcome s using
image I` thus decomposes as:

ŷs` = X`β̂
s

=
K∑
k=1

X`k · β̂sk

=
K∑
k=1

(
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

)
· β̂sk

=
1

2542

254∑
i=1

254∑
j=1

(
K∑
k=1

β̂sk · (Ak(I`)[i, j])

)
︸ ︷︷ ︸

super-resolution prediction

where the third line follows from substituting X`k according to Eq. (4.3). Therefore,
we can associate with each pixel indexed by (i, j) a predicted super-resolution value:

ŷs`,(i,j) =
K∑
k=1

β̂sk · (Ak(I`)[i, j]) (4.6)

which is that pixel’s predicted label value, and thus its contribution to the overall
predicted image-level label value ŷ` for I`. These pixel-level predictions can be average-
pooled to larger sub-image scales as shown in Fig. 4.4B. If averaged over the en-
tire image, the standard full-image prediction ŷs` is recovered. The procedure to con-
struct super-resolution predictions, and a comparison of it to the precedure to construct
impage-level predictions, is illustrated in Fig. S10.

Fig. S11 demonstrates empirical performance of Eq. (4.6) using ten examples of this
approach at super-resolutions on both the forest cover and population density outcomes.
The ten images were randomly selected from the union of observations with forest cover
> 10% and population density > 100 people/km2 to ensure that all images considered
had a non-negligible value for each variable.20

In our formulation, super-resolution predictions are easily estimable during featur-
ization. Consider again the per-pixel contributions of Eq. (4.6). An alternative way to
express this is

ŷs`,(i,j) =

(
K∑
k=1

β̂sk ·Ak(I`)

)
[i, j]

That is, super-resolution estimates are just a linear combination of the activation maps
Ak(I`) weighted by β̂sk (see Fig. S10). Every time we featurize a new image I′`, we

20To ensure that weights decomposed as a sum, as in Eq. (4.6), we used level values (i.e. not
log-transformed) for population density labels in Fig. S11.



CHAPTER 4. GENERALIZING EARTH OBSERVATION WITH SATELLITE
IMAGERY AND MACHINE LEARNING 115

must perform the step of computing the K activation maps {Ak(I
′
`)}Kk=1 (Fig. S4 D).

Therefore, if we already have a suitable regression weight vector β̂s for task s, for
any new images I′` that we featurize, we can compute the super-resolution predictions∑K

k=1 β̂
s
k·Ak(I`) as weighted combinations of the activation maps at negligible additional

cost, prior to pooling, in the existing featurization pipeline.
Evaluating super-resolution performance
To systematically evaluate the ability of MOSAIKS to accurately predict outcomes

at super-resolution, we evaluate the within-image label variation that MOSAIKS’s
super-resolution predictions accurately explain. We use forest cover for this test because
the raw label resolution is substantially finer than the grid cell used to construct labels
(see Section II.1 and Fig. S3), so we are able to attach “true” labels to super-resolution
predictions within each image. In our main analysis, we construct grid cell forest cover
labels by averaging fine-resolution raw forest cover data (see Section II.2). Here we
leverage the fine resolution of the raw data to compare super-resolution performance
of a model trained on aggregated labels but tested on high-resolution raw forest cover
data.

Specifically, we take a randomly drawn subset of N = 16, 000 grid cells from the
U.S. UAR grid as our super-resolution dataset. We solve for the regression weights
β̂s using ridge regression (with λ = 1e321 Note that these weights β̂s are trained on
aggregate labels averaged over the grid cell as shown in Fig. S3). We then use the
super-resolution prediction technique described above (Eq. 4.6) to get 254× 254 pixel-
level predictions as in Fig. S10B, using the weights derived from image-level labels, as
in panel A of the same figure. These pixel-level predictions can then be aggregated
to any super-resolution, where increasing aggregation (lower super-resolution) reduces
noise in the predictions at the cost of lower resolution.

We assess the performance of super-resolution at a variety of scales by calculating
the percent of the variance of the raw within-image forest cover labels that can be
explained by the super-resolution predictions at each scale. For example, to assess
the performance of 2× super-resolution predictions, we average predictions from the
254× 254 super-resolution predictions by quadrants, resulting in four predicted values
(twice the original resolution). We perform the same per-quadrant average for the raw
fine-resolution forest cover labels. We demean both the within-image predictions and
labels to eliminate any across-image variation, thereby focusing this test on the ability
of the predictions to explain residual within-image variation. We then concatenate
these within-image predictions and labels across the N = 16, 000 images, so that the
resulting R2 value reported is the percent of super-resolution label variance explained
by super-resolution predictions, across 64, 000 = 16, 000 · 22 label-prediction pairs.

The resulting performance of super-resolution predictions at different scales is shown
in Fig. 4.4C for width scales of 2×, 4×, 8×, 16×, and 32×. A width of size w results
in w2 predictions per image. We go up to w = 32 because the native width of the
forest cover labels (∼ 30m) is just under 1/32 the width of the original image (∼ 1km).

21While setting λ to zero would recover the per-image predictions exactly, we found that having a
higher regularization value resulted in more stable per-pixel value attributions.
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Super-resolution predictions are trained only on the aggregate label at the image-level,
as in Eq. (4.2). Nonetheless, as Fig. 4.4C shows, we are able to explain over 31% of
the within-image label variations at 2× super-resolution, and over 18% of the variation
using 4× super-resolution grids. This performance degrades for super-resolution widths
≥ 16×, which are closer to the (hidden) native resolution of the labels themselves.

Comparisons to other within-image prediction algorithms The most simi-
lar approach in the literature to MOSAIKS’s super-resolution predictions are methods
specifically designed for pixel-level classification, or semantic labelling of satellite im-
agery [26, 123]. However, these approaches make use of sub-image labels for training,
as opposed to our setting, where only one label per image (per task) is provided. Such
semantic labelling approaches tend to use a downsample-then-upsample approach in-
spired by auto-encoders [121] to learn lower-dimensional latent representations which
are then up sampled to image-size prediction maps from which per-pixel classifications
can be made. The upsampling procedure introduces more parameters to be tuned
during model training, as well as additional computational cost in producing predic-
tions. We again contrast this complex machinery with the simplicity of MOSAIKS ’s
approach, which calculates super-resolution predictions as a weighted sum of activation
maps.

Conditions where super-resolution is most easily interpretable The linear
decomposition of Eq. (4.6) holds when using labels that represent the average or sum
of values within a grid cell, such as forest cover, elevation, population density, night-
time lights, income, or road length. However, it does not hold exactly when values are
transformed nonlinearly after aggregation (e.g. log(

∑
y) 6=

∑
log(y)).22 In these cases,

the interpretation of super-resolution estimates requires care. Another case in which
the interpretation of the sub-image predictions is difficult is when an image-level char-
acteristic is not directly the sum of sub-image parcels. For instance, when predicting
mean housing price in a grid cell, a manicured park might contribute to a higher value,
yet that component of the image does not, in itself, have any associated housing price.
In this case, we we would interpret the sub-image predictions as “contributions to grid
cell mean housing price” rather than the more natural interpretation as simply “a finer
resolution prediction of housing price.”

22This issue could be addressed – in the case of logged variables – if one obtained a geometric mean
image-level outcome rather than an arithmetic mean.
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II.10 Global model

For our global analysis, we create a global grid, composed of roughly 420 million cells
just over 1km2 in size, using an identical structure to that described in Section II.1
for the US. To obtain observations for our global analysis, we sub-sample 1,000,000
cells from this grid, sampling UAR from non-marine grid cells. These relatively sparse
sampling of global data is simply due to the cost of obtaining imagery data.

One of the difficulties in sub-sampling from the global grid is that there are many
grid cells where no Google imagery is available (there are negligibly few missing images
in the US grid). After discarding grid cells with missing imagery from our original
sample of 1,000,000 observations, we are left with N = 556, 025 valid observations
which we use to train/validate (80%, N = 444, 820) and test (20% N = 111, 205) the
model.

When generating features (K = 2, 048) for our global model, we conduct featuriza-
tion as described in Section II.3. Note that we use patches drawn randomly from the
global sample of images, not just from within the US.

II.10.1 Performance of the global model in the continental US In Figure 4.4
of the main text, we demonstrate the ability of MOSAIKS to scale globally in four of
our tasks where global labels exist (forest cover, nighttime lights, population density,
and elevation). We show in the main text how MOSAIKS performs when trained on
this relatively sparse sample of global images and labels. However, for researchers
focused on a particular region of the world, a model trained with more densely sampled
data in that region (as in our US analysis) is likely to perform much better than the
sparsely-sampled globally-trained model shown in the main text.

To demonstrate this, we contrast the performance of the globally-trained model
within the continental US only, with that of our primary specification that was trained
and tested in the US using a much more densely sampled set of labels and a sampling
scheme well-suited to each task (i.e. nighttime lights sampling is population weighted).
Results are shown in Table S4). The globally-trained model was trained on just N =
18, 414 US observations for all four globally-available tasks. This contrasts with N
= 80,000 for forest cover, elevation, nighttime lights, and road length, and 54,375 for
population density, 73,102 for income, and 58,729 for housing price in the US-only
model. Table S4 makes clear that while the global model has substantial explanatory
power within the sparsely-sampled US, there are gains from focusing model training
and data sampling to the region of interest for a particular application.

III Comparisons to other models
Here, we compare the performance and computational cost of MOSAIKS to other ap-
proaches in the literature.

III.1 Benchmarking performance

Convolutional neural networks (CNNs) have become the default “gold standard” in
many image recognition tasks [59], and are increasingly used in remote sensing applica-
tions [52, 123, 29, 80, 91, 79, 53, 137, 49, 63]. Simultaneously, alternative generalizable
and efficient pipelines have been developed incorporating unsupervised featurization
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Global model
US model US model US model US model in US
N=80,000* N=18,414 N=80,000* N=18,414 NUS=18,414

Task K=8,192 K=8,192 K=2,048 K=2,048 K=2,048

Forest cover (R2) 0.91 0.90 0.88 0.88 0.67
Elevation (R2) 0.68 0.64 0.63 0.60 0.24
Population density (R2) 0.73 0.72 0.69 0.69 0.48
Nighttime lights (R2) 0.85 0.83 0.82 0.81 0.66

Extended Data Table S4: Model performance in the continental US using
a model trained within the US versus one trained globally with sparse US
data sampling. The main text shows performance with a global model trained on
substantially less densely sampled observations (NGlobal = 556, 025; NGlobal in US =
18, 414) and number of features (K = 2, 048) than in the model trained within the
continental US (N = 80, 000, K = 8, 192). This table compares performance across
models trained and tested within the US (columns 1 – 4) with the model trained on
a global sampled and tested on the US (column 5). Column 1 uses the full sample
of observations and number of features shown in the main text. Column 2 degrades
the sample by limiting N , retraining the model within the US using the same number
of observations as fall within the US in the sample used to train the global model.
Column 3 degrades the sample by limiting K, retraining the model within the US
using the same number of image features as used to train the global model. Column
4 degrades the sample by limiting both N and K, retraining the model within the US
using the number of observations and features used to train the global model. Column
5 shows the performance of the global model within the continental US. Each column
displays R2 values indicating performance using the optimal hyperparameters after 5-
fold cross-validation. Note that the global model relies on substantially poorer data
quality than the model trained within the US and that nighttime lights is sampled with
population weights in the US model but not in the global model. *N=80,000 for all
tasks except population density, where N = 73, 102.

and/or a classification or regression algorithm [17, 18, 79, 50, 81]. MOSAIKS is low-
cost and generalizable like these latter models but – unlike these other models – it offers
performance for regression problems similar to that of leading CNN architectures. Here
we quantitatively assess the performance of MOSAIKS relative to (a) a CNN trained
end-to-end with the outcomes of interest and (b) a similarly cheap, unsupervised featur-
ization used in place of random convolutional features in the MOSAIKS infrastructure.
For (b), we use the features generated by the last hidden layer of a pre-trained variant
of the CNN (trained on natural imagery). This common approach is unsupervised in
that the weights of the CNN are not trained using the labels of the outcome of interest,
and such an approach has been shown to have better predictive performance than many
other unsupervised featurization algorithms (e.g. GIST, SIFT, Bag of Visual Words)
on satellite image tasks [17].
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Extended Data Figure S12: Comparison of test accuracy between MO-
SAIKS, ResNet, and a regression model using features from a pre-trained
CNN. Panel A shows task-specific performance of MOSAIKS (dark bars), in contrast
to: an 18-layer variant of the ResNet Architecture (ResNet-18) trained end-to-end
for each task (middle bars); and an unsupervised featurization that uses the last hid-
den layer of a 152-layer ResNet variant that was pre-trained using natural imagery in
combination with ridge regression (lightest bars). Panel B shows the performance of
ResNet-18 by task and training epoch, demonstrating that all tasks reached an asymp-
tote after 400 epochs. Dark lines indicate the cumulative maximum performance by
epoch, while light lines indicate epoch-specific performance.

III.1.1 Comparison to a deep convolutional neural network and an alterna-
tive unsupervised featurization First, we compare the performance of MOSAIKS
to that of a tuned Residual Network (ResNet)[43] – a common, versatile deep network
architecture used in recent satellite-based learning tasks [80]. We train this network
end to end to predict outcomes in all seven tasks across the continental US, using as
input the same imagery as that used by MOSAIKS.

We train an 18-layer variant of the ResNet Architecture using stochastic gradient
descent to minimize the mean squared error (MSE) between the predictions and labels
with an initial learning rate of 1e − 4 and momentum parameter of 0.9, training the
model for 400 epochs, at which point performance reaches an asymptote (Fig. S12B). We
employ a standard train/test split of 80%/20%, matching our approach when evaluating
MOSAIKS.

Second, we compare MOSAIKS performance to a similarly cheap, unsupervised
featurization generated by the last hidden layer of a pre-trained variant of the CNN
used above, trained on natural imagery. To execute this comparison, we use the features
from the last layer of a 152-layer variant of the ResNet Architecture, and then run ridge
regression on these features for each task, as is done in MOSAIKS.
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Fig. S12A demonstrates that MOSAIKS (dark bars) performs better or on par
with ResNet (middle bars) across all seven tasks, while providing substantially greater
performance than ridge regression run on features from the pre-trained CNN (lightest
bars).

III.1.2 Interpretation of test accuracy comparisons Note that the performance
of these models represents a reasonable lower bound on potential performance; some
task-specific enhancements could be used to improve predictive power for each of these
methods. For example, more layers could be added to ResNet or alternative architec-
tures could be tested for specific tasks. In the case of MOSAIKS and the pre-trained
ResNet features, more flexible regression models could have been used to estimate a
variant of Eq. (4.2), such as increasing K, using a nonlinear model, or leveraging a hur-
dle model in tasks with a large number of zero observations. While these task-specific
changes may marginally improve performance of any of these approaches, prior research
on similar image recognition tasks suggests further gains for the ResNet are likely to be
minimal [141]. While the similarity of performance in Fig. S12 is perhaps surprising, it
is also encouraging for further research. This comparison suggests that wide, shallow
networks using local-level features (analogous to random convolutional features) are as
descriptive as more complex, highly optimized CNN architectures for satellite remote
sensing, across many tasks.

We note that the similarity in performance of MOSAIKS and ResNet across tasks
(Fig. S12) is consistent with a hypothesis that both approaches are reaching the limit
of information that is provided by satellite imagery for predicting the outcomes we
test. A human prediction baseline has not been established but could provide insight
on whether there is substantial room for improvement in skill for each of these tasks,
although we suspect many of these tasks will be difficult for nonexpert humans (e.g.
nightlights or house prices).

III.2 Comparing costs

In practice, high computational costs can limit the use of SIML methods – especially
when resources are scarce, such as in government agencies of low-income countries [39]
or research teams and NGOs with limited budgets. Specifically designed to address
this challenge, MOSAIKS scales across many research tasks by decoupling featuriza-
tion from task selection, model-fitting, and prediction. The computationally costly step
of featurization is done centrally on a fast computer with a graphics processing unit
(GPU); individual practitioners need only download the pre-computed features, merge
on labels for the task they select, and run regressions. Because features are created and
stored by a central entity, the research community makes use of a cached set of computa-
tions, reducing the overall computational burden of widespread SIML and any external
social costs generated by these computations [109]. Additionally, this decoupling of
task-agnostic computations from task-specific computations allows practitioners to run
more diagnostic analyses on their tasks, such as those presented in Fig. 4.3 of the main
text.

From the perspective of a user who can access pre-computed MOSAIKS features to
train and validate a new task, we find that MOSAIKS is 1080× faster than a state-of-
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the-art neural net architecture (ResNet) (Table S5). Moreover, the ResNet does not
achieve better predictive performance on the tasks we have studied (Fig. S12). From
the perspective of the entire computational ecosystem, which bears the cost of image
featurization in addition to model training and testing, we find that MOSAIKS is 32×
faster than the ResNet. The times in Table S5 reflect our wall-clock time on a single
Amazon EC2 instance and with seven domains specified in advance, so that the time
costs are similar to that of introducing a single new domain ex post.23 These ecosystem-
wide costs of featurization per task continuously decline as MOSAIKS becomes more
widely adopted, because features can be cached centrally and distributed to multiple
users who are training and/or testing SIML in common locations.

We considered only one CNN architecture, which we chose because of its use in
previous remote sensing applications [52]. We did not attempt to innovate in neural
net architectural design or algorithms. While one could pursue targeted innovations in
neural networks for remote sensing, such as in [[137]], we emphasize that our method
is currently three orders of magnitude faster for the user than off-the-shelf fine-tuned
CNN methods (Table S5), does not require a GPU for prediction,24 and achieves the
same or better prediction performance (Fig. S12). There is recent work that aims to
train networks to learn a “common representation” that can generalize across tasks, but
this is a subject of ongoing research [99], requires the tasks to be known in advance,
and has yet to be demonstrated or evaluated at scale.

ResNet MOSAIKS
Component Time Time
Training set featurization (N = 80k) ∼ 2.7 days

∼ 1.2 hours
Model training ∼ 3.5 minutes
Holdout set featurization (N = 20k) ∼ 40 seconds

∼18 minutes
Holdout set prediction 0.1 seconds
Total cost to ecosystem ∼ 2.7 days ∼ 1.6 hours
Total cost to user ∼ 2.7 days ∼ 3.6 minutes

Extended Data Table S5: Wall-clock times of components of MOSAIKS
compared with a fine-tuned CNN. Bold times are those that a practitioner using
each method would incur. MOSAIKS times use the full K = 8, 192 features. All
operations were run for seven domains on an Amazon EC2 p3.xlarge instance with a
Tesla V100 GPU and 16GB of onboard RAM. Cost of computation on this machine is
roughly $3/hr.

23The computational cost of training and testing models on 7 domains known a priori is similar to
the cost of training and testing one new domain because if domains are known a priori one can solve
the regressions and train the CNN jointly for all domains.

24Table S5 shows wall-clock times for ResNet and MOSAIKS on a GPU. However, future users of
MOSAIKS are more likely to train and test their models on a standard laptop. We find that the total
cost to the user of training and testing a new task on a standard laptop is approximately 6 minutes,
less than 2× the value shown for a GPU.
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[30] R. Gelaro, W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A.
Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cul-
lather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. da Silva, W. Gu, G. K.
Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Paw-
son, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao.
The modern-era retrospective analysis for research and applications, version 2
(MERRA-2). Journal of Climate, 30(14):5419–5454, 2017.

[31] M. Gindelsky, J. Moulton, and S. Wentland. Valuing Housing Services in the Era
of Big Data: A User Cost Approach Leveraging Zillow Microdata. Forthcoming
in NBER-CRIW, Volume on, 2019.

[32] E. H. Glenn. acs: Download, Manipulate, and Present American Community
Survey and Decennial Data from the US Census, 2019.

[33] Google Developers. Maps Static API.

[34] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore.
Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote
Sensing of Environment, 202:18–27, 2017.

[35] R. Greenwald, M. H. Bergin, J. Xu, D. Cohan, G. Hoogenboom, and W. L.
Chameides. The influence of aerosols on crop production: A study using the
CERES crop model. Agricultural Systems, 89(2-3):390–413, 2006.

[36] L. Gu, D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Ur-
banski, and T. a. Boden. Response of a deciduous forest to the Mount Pinatubo
eruption: enhanced photosynthesis. Science, 299(5615):2035–2038, 2003.

[37] R. Gupta, E. Somanathan, and S. Dey. Global warming and local air pollution
have reduced wheat yields in India. Climatic Change, 2016.

[38] R. Gupta, E. Somanathan, and S. Dey. Global warming and local air pollution
have reduced wheat yields in India. Climatic Change, 140(3-4):593–604, 2017.



BIBLIOGRAPHY 126

[39] B. Haack and R. Ryerson. Improving remote sensing research and education in
developing countries: Approaches and recommendations. International Journal
of Applied Earth Observation and Geoinformation, 45:77–83, mar 2016.

[40] M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. a. Turubanova,
A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, a. Kom-
mareddy, A. Egorov, L. Chini, C. O. Justice, J. R. G. Townshend, P. Pat-
apov, R. Moore, M. Hancher, S. a. Turubanova, A. Tyukavina, D. Thau, S. V.
Stehman, S. J. Goetz, T. R. Loveland, A. Kommaredy, A. Egorov, L. Chini,
C. O. Justice, and J. R. G. Townshend. High-Resolution Global Maps of. Sci-
ence, 342(November):850–854, 2013.

[41] F. Harrell. Regression Modeling Strategies. Springer-Verlag, New York, 1st edi-
tion, 2001.

[42] T. Hayasaka, N. Iwasaka, G. Hashida, I. Takizawa, and M. Tanaka. Changes
in stratospheric aerosols and solar insolation due to Mt. Pinatubo eruption as
observed over the western Pacific. Geophysical Research Letters, 21(12):1137–
1140, 1994.

[43] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[44] M. Hess, P. Koepke, and I. Schult. Optical properties of aerosols and clouds.
Bulletin of the American Meteorological Society, 79(5):831–844, 1998.

[45] S. Hsiang and R. E. Kopp. An Economist’s Guide to Climate Change Science.
Journal of Economic Perspectives, 32(4):3–32, 2018.

[46] S. M. Hsiang. Climate Econometrics. Annual Review of Resource Economics,
(July):1–33, 2016.

[47] S. M. Hsiang, D. Lobell, and M. Roberts. Climate Change and Crop Choice :
Evidence from Australia , Brazil , China , Europe and the United States. 2015.

[48] S. M. Hsiang and K. C. Meng. Tropical economics. American Economic Review,
105(5):257–261, 2015.

[49] W. Hu, J. H. Patel, Z.-A. Robert, P. Novosad, S. Asher, Z. Tang, M. Burke,
D. Lobell, and S. Ermon. Mapping Missing Population in Rural India: A Deep
Learning Approach with Satellite Imagery. In Conference on Artificial Intelli-
gence, Ethics, and Society, Honolulu, HI, 2019.

[50] J. Inglada, A. Vincent, M. Arias, B. Tardy, D. Morin, and I. Rodes. Operational
high resolution land cover map production at the country scale using satellite
image time series. Remote Sensing, 9(1):95, 2017.



BIBLIOGRAPHY 127

[51] ISCCP. International Satellite Cloud Climatology Project (ISCCP) D1. Accessed
07/02/2016.

[52] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon. Combining
satellite imagery and machine learning to predict poverty. Science, 353(6301):790–
794, 2016.

[53] N. Jean, S. Wang, A. Samar, G. Azzari, D. Lobell, and S. Ermon. Tile2Vec:
Unsupervised representation learning for spatially distributed data. 2018.

[54] Z. Jin, G. Azzari, C. You, S. Di Tommaso, S. Aston, M. Burke, and D. B. Lobell.
Smallholder maize area and yield mapping at national scales with Google Earth
Engine. Remote Sensing of Environment, 228(March):115–128, 2019.

[55] E. Jonas, M. Bobra, V. Shankar, J. Todd Hoeksema, and B. Recht. Flare Pre-
diction Using Photospheric and Coronal Image Data. Solar Physics, 293(3):1–22,
2018.

[56] K. D. Kanniah, J. Beringer, P. North, and L. Hutley. Control of atmospheric
particles on diffuse radiation and terrestrial plant productivity: A review. Progress
in Physical Geography, 36(2):209–237, 2012.

[57] B. Kravitz, A. Robock, O. Boucher, H. Schmidt, K. E. Taylor, G. Stenchikov,
and M. Schulz. The Geoengineering Model Intercomparison Project (GeoMIP).
Atmospheric Science Letters, 12(2):162–167, 2011.

[58] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012.

[60] T. Li, E. Heuvelink, T. A. Dueck, J. Janse, G. Gort, and L. F. Marcelis. En-
hancement of crop photosynthesis by diffuse light: Quantifying the contributing
factors. Annals of Botany, 114(1):145–156, 2014.

[61] D. B. Lobell and C. B. Field. Estimation of the carbon dioxide (CO2) fertilization
effect using growth rate anomalies of CO2 and crop yields since 1961. Global
Change Biology, 14(1):39–45, 2008.

[62] D. G. Macmartin, B. Kravitz, J. C. S. Long, and P. J. Rasch. Geoengineeringwith
stratospheric aerosols: What do we not know after a decade of research? Earth’s
Future, 4(11):1–6, 2016.

[63] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez. Convolutional Neural Net-
works for Large-Scale Remote-Sensing Image Classification. IEEE Transactions
on Geoscience and Remote Sensing, 55(2):645–657, feb 2017.



BIBLIOGRAPHY 128

[64] A. E. Maxwell, T. A. Warner, and F. Fang. Implementation of machine-learning
classification in remote sensing: An applied review. International Journal of
Remote Sensing, 39(9):2784–2817, 2018.

[65] J. M. McGrath, A. M. Betzelberger, S. Wang, E. Shook, X.-G. Zhu, S. P. Long,
and E. A. Ainsworth. An analysis of ozone damage to historical maize and soybean
yields in the United States. Proceedings of the National Academy of Sciences of
the United States of America, 112(46):14390–5, 2015.

[66] L. M. Mercado, N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and
P. M. Cox. Impact of changes in diffuse radiation on the global land carbon sink.
Nature, 458(7241):1014–1017, 2009.

[67] C. Monfreda, N. Ramankutty, and J. A. Foley. Farming the planet: 2. Geographic
distribution of crop areas, yields, physiological types, and net primary production
in the year 2000. Global Biogeochemical Cycles, 22(1):1–19, 2008.

[68] A. Morrow, V. Shankar, D. Petersohn, A. Joseph, B. Recht, and N. Yosef. Con-
volutional Kitchen Sinks for Transcription Factor Binding Site Prediction. (Iid),
2017.

[69] J. Moulton and S. Wentland. Monetary Policy and the Housing Market. In
Annual Meeting of the American Economic Association, Philadelphia, PA, 2018.

[70] U. Niemeier, H. Schmidt, K. Alterskjær, and J. E. Kristjánsson. Solar irradiance
reduction via climate engineering: Impact of different techniques on the energy
balance and the hydrological cycle. Journal of Geophysical Research Atmospheres,
118(21):11905–11917, 2013.

[71] NOAA National Centers for Environmental Information. Version 1 VIIRS
Day/Night Band Nighttime Lights, 2019.

[72] J. R. Norris, R. J. Allen, A. T. Evan, M. D. Zelinka, C. W. O’Dell, and S. A. Klein.
Evidence for climate change in the satellite cloud record. Nature, 536(7614):72–75,
2016.

[73] J. R. Norris and A. T. Evan. Empirical removal of artifacts from the ISCCP
and PATMOS-x satellite cloud records. Journal of Atmospheric and Oceanic
Technology, 32(4):691–702, 2015.

[74] Ocean Studies Board. Climate Intervention: Reflecting Sunlight to Cool the
Earth. National Academies Press, 2015.

[75] A. J. Oliphant, D. Dragoni, B. Deng, C. S. B. Grimmond, H. P. Schmid, and
S. L. Scott. The role of sky conditions on gross primary production in a mixed
deciduous forest. Agricultural and Forest Meteorology, 151(7):781–791, 2011.



BIBLIOGRAPHY 129

[76] R. K. Pachauri, M. R. Allen, V. R. Barros, J. Broome, W. Cramer, R. Christ,
J. A. Church, L. Clarke, Q. Dahe, P. Dasgupta, and Others. Climate change
2014: synthesis report. Contribution of Working Groups I, II and III to the fifth
assessment report of the Intergovernmental Panel on Climate Change. IPCC,
2014.

[77] G. Papaioannou, N. Papanikolaou, and D. Retalis. Theoretical and Applied Cli-
matology Relationships of Photosynthetically Active Radiation and Shortwave
Irradiance. Theoretical and Applied Climatology, 27:23–27, 1993.

[78] J. F. Pekel, A. Cottam, N. Gorelick, and A. S. Belward. High-resolution mapping
of global surface water and its long-term changes. Nature, 540(7633):418–422,
2016.

[79] O. A. Penatti, K. Nogueira, and J. A. Dos Santos. Do deep features gener-
alize from everyday objects to remote sensing and aerial scenes domains? In
Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pages 44–51, 2015.

[80] A. Perez, C. Yeh, G. Azzari, M. Burke, D. Lobell, and S. Ermon. Poverty Pre-
diction with Public Landsat 7 Satellite Imagery and Machine Learning. (Nips),
2017.
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