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ABSTRACT
A new two—dimensional statistical mechanics
model is solved. It is a general model with 32 free

parameters. The solution uses integrals over anti-

commuting variables.
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INTRODUCTION

Two fusdamental papers -(Samuel 1978 a, b) (to be referred
to as I and II) héve recently devéloped a ne& approach to atfacking
‘Ising-like'spin models and ferroelectric systems..tfhis paﬁer will
use the new methods ﬁo solve a né& ﬁodel called.éhe pséﬁaé;ffeé:iéa'
veftex model;

An enormous number qf staéistical mécﬁanics problems havé
graphical representations. This means that the partition‘function
is a suh overrgfaéhical configuratiéné appropriaéely weightéd by
Boltzmann factoré. Papers I and II show that it is»sometimes
possible to find a lattice fermonic-like figld theory which reproduces
the gréphical configufations with the correct weights. Tﬁe field
theory is written in path'intégr;l form. The.path'integral for
fermionic systems is an anticommuting variable one. Anticommuting
variables provide a powerful new approach fo statistical mechanics
problems. References I and II were devoted to developing their
application to interesting systemﬁ. These two bapers were pedagogical.
They reviewed the theor§ of anticommuting vﬁriables ana déveloped ways
of expreésing partition functions in termsAdf'them. Gfaphical methods
were introduced in II that quickly calculate pértition functions and
anticémmutiné variable correlation fu;ctions. A whole-éléssvof .
solvable modelg were resolved using the new methods as a cheik that

“

they did indeed work.

" This paper is concerned with thé pseudo-free 128 vertex
model. It has 32 free parameters and encompasses a wide range of

systems. A close relative is the 128 + 8 pseudo-free model. It is

even more general with 40 parameters. It is also solved in this‘paper.
Papers I and i1 systematically discussed the anticdmmuting

variablé‘techniques. For -this reason few details of the 128 vertex

:model calculations’are given. The model and the results are simply

presented. How to overcome various difficulties such as thé:sign
probiems, how to geﬁ»vertex weight factoré, etc. are straiéhf’fbfward.
It is suggested that the reader consult references I and II.

Section II givesva brief descripﬁién of the pseudo-free
128 vertex model, Sec. III calculates its partitidh fﬁnctioﬁ, and

Sec IV treats the 128 + 8 pseudo-free vertex model. Finally

Appendix A -discusses the minus sign problem due to anticommuting

variable reorderihqs.

It should be mentioned that, in principle, these models can
ﬁe solved usingbthe Pfaffian methods. As noted in reference I, the
integral over a quadratickaction is always a Pfaffian. The anti-
commuting variables have the advantage of easily determining minus
sign factors, of systematically organizing algebra, and of
establiéhing directly a connection with field theory. References to
Pfaffian methods can be found in I & II.

II THE MODEL

Ising models are, in general, related to closed polygon'
partition functiéns (CPPF's) where sides may overlap but cannot.
intersect. In such a CPPF, one sums over closed polygons weighting
the sides'by”"ﬁloéh wall"zﬁoltzmann factors. The two-dimensional

.'.

Ising model thus has such étrépfesentation . The Ising model is not

+ See the references in I and II.



the most general model which is easily solvable. The corners of ; ; i i
the pseudo-free 128 vertex model. It is the free-fermion generalization

polygons may also be weighted, resulting in the so-called free-fermion . .
i of the next nearest neighbor Ising model.
model described by the action of equation (I. 4.4) whose weights ) ' . .

E ) rg It has 32 parameters which may be varied independently. It
are given in figure I. 11. Let W be the weight of figure I. 1llp. se s

(p) g g p ) is thus a very general model. For example, it includes the pseudo-free

Then, the following constraint, known as the free-fermion constraint ) . : :
32 vertex model, which as Sacco and wu (1975) noted, contains

is sa;isfied;-Aw(a)w(h) + w(b)w(c) = w(d)w(f) + W(e)w(g)' Thus,

although the free-fermion model is not the most general eight-vertex

interesting models as subcases. Many new models are contained in the

pseudo~free 128 vertex model.

model, it is the most general easily solvable model. - . X .
' As its name implies 128 configurations can happen at a site.

Slightly more complicated than the basic Ising model would N .
This is to be compared to the eight vertex model where there are

be to include one set of diagonal next rest i i i .
} ag ne neare nelghbor}lnteractlons only eight. Of course, the solvable pseudo-free 128 vertex model

Such a system is equivalent to the Ising model on a triangular lattice. : . .
Y w : g g : does not assign arbitrary weights to all 128 configurations, only

It is again related to a CPPF. By weighting corners as well as sides :
9 Y welg el ! about one fourth of these are independent. The rest are determined

a free-fermion generalization, known as the pseudo-free 32 vertex .
? i ! ° by "free-fermion constraints". Vertex models are related to

model (Satto and Wu 1975) is obtained. Thev have solved this model . .
) v oce ferroelectric systems. From this point of view the pseudo-free 128

and discussed some of its interesting submodels and critical . :
- vertex model can be considered as a very general ferroelectric model.

phenomenon. . CL - .
As discussed in references I & II, the partition function

When both next nearest neighbor interactions are included, . s . : N
can be written as an anticommuting variable integral over an action,

the Ising model cannot be solved. Spins sit on the sites of a - 128 i . . £ th . A128 A128 and
. A . The action consists of three pieces, wall’ “corner’
square lattice (fiqure la). Bonds are drawn between sites which 128 )
: They are given by

: monomer
interact (fiqure 1lb). The four directions inclined, horizontal, -

diagonal, and vertical, are respectively denoted by "i", "h", "4", 128 E: f iT hT h +z nd*n +z nV+ v
i : Aall = [ naBnaHB -1 Y Znapa1s T Za"ag o141 lagMag+r |
and "v" as shown in figure 2. The polygons of the corresponding aB- (2.1)
CPPF are drawn on the lattice of figure la using the bonds of
. - Is
figure 1b. The number of polygons is arbitrary. Although edges z: E: 1 f g 2 gfnff 3 *nf 4 ng nf ¢
. - ’
. corner ‘ { f9 aBnaB gfnuB (013} gf aB aB gf af aB
may intersect (figure 3a), they are not allowed to overlap aB (f,g)es
. ) (2.2)
(figure 3b). Weighting the corners of polygons results in a more ) ] .

general CPPF. The most general, easily solvable CPPF of this form is

&



it t 1 vt

128 B h h a . d i

Pponomer = E: [b naBnaB bhnaBnaB +b naBnaB +b ndBnaBJ . (2.3)
af .

The n's are anticommuting variables. There are four types
at each site: inclined;‘horizontal, diagonal, and vertical ones.
In additioﬂ, there is a daggered and updagger‘ version of each. The
o and B label sites, that is, (a,B) . are é site's cartesian
coordinates.

The tefms in (2.1) have the graphical representation of figuré
4. The conventions established in references I & II are used:
daggefea variables and undaggered variables correspona' té "x"'s
and "o"'s, the direction of a iine entering a variable determines
whether it is an inclined, horizontal, diagonal, or vertical type,

h'

LY and z,r are the Bloch wall Boltzmann factors. Each inclined,

and arrows denote the order of bilinears. The constants, 21' z

horizontal, diagonal, or vertical unit of wall is weighted by Zir Zys

z. or z_.
q’ v

In equation (2.2), S is the following set of ordered pairs:

= {ti,p, G, (1,9, (4, G,v), @] (2.4)

" The set, S, 1is uSed so that equation (2.2) can be written

cbncisely. The constants, cig (L=1,2, 3, 4 and- (f: 9) €S),

allow corners to be weighted. Like the z's, their values are at

one's disposal. There are 24 of them. The terms in (2.2) correspondb

to those of figure 5. It is useful to define

p

Aoz 3

gt = gf ’

2 .2

fg:~- Tgf "’

(2.5)

3 _ 1 :

fg gf '

4 _ 4

Seq = ot
for (f,9)ES. Then,

1 f* 12 ot st 4 g £ ] 0

1 .6)

Acorner E: 2_ l £9" a8 uS *3 cgf”aB“aB 2 CgtMap o8

aB fg

where the sum is over distinct £ and g among the set {i, h, 4, v}
Equation (2.3) contains the monomer terms and the remaining

four free parameters, bi’ bh’ bd’ and bv' .

In a functional ihtegral»thése three actions draw polygons;

128 128 128 .,
y rms A fills
Awall draws the walls, Acorner fo. corners,»and monomer _

-unfilled sites. The integral is an anticommuting variable one over

the.actlon, A128:

128 128 128
= + + L. 2.7
A128 Awall Acorner Amonomer ( )

The psuédo-free 128 vertex model is a fermionic-like pseudo-free
field theory.

By expanding the aqtion, the CPPF configurations are obtained.
Table 1 shows the weights of each vertex coﬁfiguration after Bloch
wall Boltzmann factors have been extracted. It turns out that the
overall sign of a vertex weight is determined by the number of line

intersections as figure 6 illustrates. The total weight of any



polygonal configuration is the product of table 1 vertex weights at

1 . 11 2 4 11 2 4
- ' Cefigs - Seg’efsi T ge’tgii T %ei®ifig T %3e%t5i9 , (PP
each site times the Bloch wall Boltzmann factors, - zf(f =i, h, 4, v), ! i ! ! ' ) rE
£ h it of 11 The first £ vabl 1 h h fi i 02 = Cl c2 - c2 Cl + c1 c2 - c2 c1 (2.13)
or each unit of wall. e first page of table as the con igurations ef;gj - %eqCqf;j 9e%£g;3 ei%t;qg 5¢£5;9 .
where six edges enter a site; pages two through four contain ‘4 4 1 1 a4 4 1 1 4
R , cef-gj = Cegcgf-j = S eCqiq t cejc.f_ - cjecf'- ’ (2.14)
configurations with four lines entering; and page five has those where ! S ge t9id Itig )9
t d t The t ini £fi ti th ith E£ = cz F.+b c'Q +b cg + cz (2.15)
wo edges enter. e two remaining configurations, ose with zero ef;gi - Cef gj ‘ i%ef:g gCef;3 efigy " f
or eight lines entering (boxes 127 and 128), are placed at the top 11 2 4
L ng = —cfgcgf + g cgf , (2.16)
of page two. i g
One must be careful of minus signs which result from e : _ . Egg E bfbg + ng ' (2.17)
reordering the anticommuting variables. -Appendix A pro&es that the 11 ’ 2 4 ' 11 © g 4
. F = -¢c__C + c_.C -c_c + c c , (2.18)
. . . . . efg ef fe;qg ef fe;qg eg ge; f eg ge;f
overall sign of a closed non self-intersecting polygon is plus. .
The overall sign for intersecting polygons is (—l)I, where I is . a E;fg = bebfbg + beng + beeg + bgFef + Fefg o (2.19)
the number of intersections. For intersections which occur at a ) 1 1 2 4
. . . . _ Finav = |~ Cida;n%i;v * Ciasnai;v
. vertex the minus sign factors have been included in the weights of .
table 1. There are, however, intersections which do not occur at a . L cl cl kc2 c4
i iv;d vi;h . iv;d vi;h
vertex (see figure 7). An additional minus sign factor must be )
. . ' 1 1 2 4
included for each of these types of intersections. . = Cinh,;vChi;a cih-vchi'd (2.20)

The veftex weights are expressed in terms of the following

: - cl cl c2 c4
cocfficients: ) . ‘ iv;h7vi;d iv;h vi;d
1 1 2 4
A&zt -2t (2.8) ' " ©in;a%i;v T €in;ahisv
ef;g eg gf ge fg .
. _ c1 ”CI s 4
2 _ 1 2 2 1 id;v©ai;h - ia;vCaih :
c = c ¢ -c_c ’ _ (2.9) .

ef;g eg gf ge fg

} . In equations (2.8) - (2.19), each e, £, g, and j stands for any of
4 1 1 4
¢ ¢ . ~-c_ ¢ ' (2.10)

'S
"

C =
ef;g eg gf ge fg _ the i, h, d, and v. All subscripts must be distinct. In (2.11)
-, 2 2
= + 2.11) . and (2.15) %=1, 2, or 4.
Cef;g bgcef Cef;g ’ (2.11) ' rer



The coefficients satisfy the following symmetry properties:’

2 4 -2 —4 .
the ¢''s, ¢'s, ¢'s, and c 's are antisymmetric in the two

'=§‘ :
. 1277 Fingy F{PiPpbPg) + (B Fg, + bbi

) +b b'Fdh-f‘bdbhF' +b bhF'd +b b F.)
indices before the semicolon and symmetric in the indices after the vai b LoV v ¥ v d ih
semicolon. For example cz. = - c2 c2 = - c2 = c2' ’ + (b.F + b F + b F +b F (2.21)
" Cef;g fesq’ Sefigi T T “feigi T Cef;ig o ey Y Prfiav * Pa Five t PyFian) .
.2 . = . : . : .
= - cfe-gj'The F's and F's are completely symmetric in their indices.
a . : : . + (F.hFd tEGFL T FFa) t -
They have the following interpretation. Corners can combine +h av id hv v ihdv’
to fill the anticommuting variable sites. ng (respectively, 'Fefg - Table 1 along with figure 7, essentially defines the model.
and Fihdv) is the Weight‘which results in filling the f and g ' ' II THE ‘SOLUTION
(e, £, g and all) sites by using tWo (three and four) corners. The partition function can be related to a miniature dimer
Fingy S¥cludes terms in which two pairs are filled separately, i.e. ) problem using the methods developed in II. If one, then, interchanges
there is no term proportional to FinFave Efg (respectively, Eefg) dagger and undaggered variables for (-s, -t) variables, a
is the way £, g (e, £, g) sites cah be filled by using monomers and . determinant is obtained.
corners. - : ’ : Define
Likewise, two corners can combine to form a third. ¢ _- . i = - i - i
» ’ ‘ * efig _ ip,, py) = b; - z;explip, 1py) .
{respectively, c:f~gj) is ‘the way two (three) corners combine to form
- ] h(px) = b, - zexplip ) ,
a c_¢ corner and in the process use up the g (g and. j) variables - x
;2 ' (respectivel El ) is the way a cl corner can be formed o . 3 i i @1
efig e Y Cefig Y@ Cer ’ (P, By) = by = ZE¥plip, + ip) .

in which g (g and 3j) sites get filled, by using both monomers

1]
o
|

v(py) zvexp(ipy).

and corners.’

All the definitions of functions in table 1 have been supplied T Let D be the following 8X'8 diagonal matrix:

except for the weight, w127, of box 127. It is
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12
ip_, p)
X Yy 4 4 4
ih i@ Civ
hip_ ) .

X 4 4

0 c c
4 hd hv

al( ) ) c = : (3.5)
Pxt Py o : A o 4 : :
) ®an Cav
bp, ., p ) = - vip_)
P PY Py 4 a .
Svh vd :
i(‘le -py)
11t . . . - 1
( ) Let [C ] denote the 4 X 4 matrix which is the transpose of C.
h(-p :
x : .
Define the 8 %X 8 matrix, ‘M(px. py), by
d(-vPx ,'Py)
v(-p )
( ny

R

Let . Cl, CZ, and C4 be the following 4 X 4 arrays of numbers:

= + .
M(px, py) D(p,. py) _ _(3 6)
][]
o b 1 ot [C ¢ ,
ih id iv
1o ! ot , '
1 i .. hd hv (3.3) . and set
c =

cl cl 0 cl

di “dh av. - o : L(p ., py) = Det M(p,, P ), (3.7
cl cl c1 0

vi vh vh 4 . . ‘

where Det stands for the determinant. The partition function for
o 2 2 2 the pseudo-free 128 vertex model; Z128' in the thermodynamic limit,
°in - %ia Civ ' '
is . T T

2 2 2 : o 1 dry ey .

°rs 0 g Shy . Z128 =exp|T 5 —ET_T >rT lnL(px, Py) ’ (3.8)
c? - ‘ (3.4) -n -

2 c2 0 c2
€ai “an av

2 2 2

“Svi Svn vd /. , ’ ’ ) -
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Where T is the ﬁctal number of sites. The free energy per site,

1087 18

1 " dp_ fMap - o
1. k3 - P}, (3.9
-B108 = 3 2n ‘/. Zm AL, Ry) . (3.9)
- . -

where B is the inverse temperature.
For particular models where the z's, c¢'s, and b's
take on certain values, the determinant in (3.7) can be evaluated by

usiﬁgcomputers. One can then obtain the free energy by using (3.9).

Other physically interesting quantities such as the energy per éite and

the specific heat can be obtained by taking derivatives with respecttof

IV: THE 128 + 8 PSEUDO-FREE VERTEX MODEL

Closely related to the pseudo-free 128 vertex model is
the 128 + 8 pseudo-free vertex model. Append ﬁo the lattice of
figure 1 the points where inclined and diagonal bonds cross, that is,
sites with half-integer cartesian coordinates. Figufe 8a shows the
original sites (the round ones) and the new_half-integer_sites
(the square ones). The terms, round and squa;ej or, integer and
half-integer, will be used to distinguiéh the two types of sites.
Por round sites, bonds are drawn to the four nearest neighbor
round sites and tﬁe nearest neighbor square sites, but, for square
sites, bonds are drawn onl& to the four nearest neighbor rqund sites
(figure 8b). What is the most general e;sily solvable closed polygon
partition function which can be drawn of the lattice of figure 8b?

The answer is the 128 + 8 pseudo-free vertex model. This CPPF is

‘14

required to have propéerties similar to the 128 vertex model: any
number of polygons are allowed; fhey must be drawn on the lattice of
figure 8b, sides can intersect but cannot overlap; and the corners
and sides aie weighted by various factors. This CPPF ‘is generated

by using an anticommuting variable integral over an action,

A128+8'
The action agéin consists of thrée pieces: one that draws the walls,
28+8 ' + '
Al ; one that forms corner, Al28 8 ; and one that fills unfilled
wall . corner T
128+8

anticommuting variable sites, A .
monomer

al28+8 _ 2:. nala e at d
wall — Za'laB lasups " 2a Naekpeylo+1p+1
oB ’

: , -t ¥
. 1 i i . h' h
¥ 23041 Narnpey T 23 Taangallar1g * ZnagNgerp * 441

+
vV
zvnaBnaB+1J :

The zy and z, wall operators are shown in figure 4, while the

- -

zi, 2], z;,zé‘ wall operators are shown in figure 9. The weights -
of the two different kinds of diagonal bonds have been chosen
independently; hence the two parameters z; and zé' .  The same

goes for inclined-bonds.

. . . 128 . .
The corner actlon_con51st$ of a piece, A identical

corner,

to (2.2), and a piece that forms corners at square sites:
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. al28+8 _ 128 ;28
corner corner corner '
8 S t
Al - B 2.4 it
comer © L [ ”a+ae+a”a+5s+s “TorspiTamgy | (4:2)
o
T -
+ c3nd

. ni o, Aa i !
By oy T C "a+58+%n_a+58+%J :

The round corner operators are shown in figure 5, while the square
corner ones are shown in figure 10.
N . . ‘s 128
Finally, the monomer action consists of a piéce, A ,
monomer
which fills round anticommuting variable sites, and a piece which fills
square sites:

128+8  _ A128 8

monomer - monomer monomer, -

8 a1 it a at 1
Pnonomer T £ [‘“i“a+5s+5”a+as+5 * gy orngey | 0 (403
aB ) .

where A128

is given in (2.3).
monomer

At round sites there are four kinds of anticommuting variables:
inclined, horizontal, diagonal, and vertical, whereas at square sites
there are only two kinds: inclined and diagonal.

The result is a vertex model with two kinds of verticés: square
and round. The weights of the round‘vertices are the same as for the
pseudo-free 128 vertex model and are given in téblé'1~ The Qeights
of the square vertices afe the same as the pseudo-free eight vertex

model (i.e. free-fermion model) and are given in table 2. All wall

16

weiéhfs'have been exfracted, so that the total weight is the vertex

1 2 3
weights times the wall wgights_ If m, = md =1 ;nd c =¢ =¢ =

c.4 = 0, the pseudo-free 128 vertex model is obtaiﬁed along with the
minus sign factor of figure 7.

In Appendix A, it is proven that non self-intersecting
polygons have no overéll ninus signs due to reorderings of anti-
commuting variables. For intersecting polygons, a (-1) results for
each interséction. These minus sign factors have been absorbed into
the weights of tables 1 and 2.

The 128+8 pseudo-free model has 40 parameters. The anti-

commuting-variable integrals over square sites can be performed since

‘they do not couple to each other. The result is

] PP d+ d + 272° ,nlf ni
: TT E+mizeZy nae o+1+1 M3%i%i "aB+1 'a+lB
af
1.4t a4 2 .atst L3 afs

+2z.cz., N
i

" (4.4)
*zi0 24 a8+1na+18+1 tz c 23 naBnaB+1 4 ‘

aBna+lB

.4 .. d i 'z,z,,z, ol 'if o '
+ 282 Ny paiarig t a%a aB o+18+1 aB+1 0418 |
which can be written as
v f<y ala s
£ exp 1_( 2qNop a+1841 " ZiMap+1"o+18
aB :
2 FURAL 3 ats 4 a

+ k

Lt nt (4.5)
+ kiaapor18 * naB”ocBﬂ * Kg3Mog o188 Failag aB- 1) ’

s
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where T 1is the total number of (square) sites and

3 2 4
fZmm,~-cc ~-~ccec ,
id
23 T 2324 mi/f y
zl =z zi md/f B
1 - . ..1
kid = zlzdc /f .,
22~ . L2
: kdi = zdzic /£,

3 - _, .-3
kdi = zdzi c‘/f ’

4 _ ... 4
kdi'— g %1 ¢ /f.

Kas = Kag o

ki& = kgi ’
kAidE - k%di '

An £ = - Bf228+é .

(4.6)

4.7

18

The kig(l =1,2,3,0r4; £, g=4iord terms in (4.5 have
the pictorial representation given in figure 11. The resulting
anticommuting variable action is the same as for the pseudo-free

128 vertex model except for the four kz

£g terms, and the fact that

Zq and z, are related to square site parameters via equation (4.6).
1

2
Let D(px, Py)’ c, C, and C4 be the same matrices as in

equations (3.2), (3.3), (3.4), and (3.5). Define

/ o 1 .
; 0 0 kidexp( 1px)' . 0
i
0 0 0 0
. (4.8)
1
K (px) =
kdiexp(—lpx)'o 0 0
i
A
i
\ 0 0 0 0 /
"0 0 k2 _exp (ip. ) 0
‘ 1a®*¥P 1Py} _
i 0 0 0 0
2, !
K - ; : . 4.9
(py) i _ _ . (4.9)
: P2 .
§kdiexp(—1py) ¢} , 0 0
:
! 0 0 0 0
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: . .
/ 0 0 -i
‘/ ° kidexp( 1py) ‘ 0
/
j 0 0 0 0
4 ) i '
K = H
(py) %- (4.10)
4 i ' -
R kdiexp(lpy) 0 [0} . : 0
\ .
\
\
Yoo 0 0 0
- /
i
Let [K (p )] ‘ denote the hermitian conJugate of K (p Y, i.e,
.
1 .
K (px)] [K (-p, ) v Let
/oy 1 r
[ _iett, Aot ict+ ke )}
K !
‘. (Px) J L Uy
M(p Py ) = D{p, P, ) +
LoBeY (4.11)
|c2 + &Koy [cl + el
L v ] { Y
L(p /Py ) = Det M(p ,p ) . (4.12)

128+8Y 128%8 Y

T ; 3 ) . s
hen, the free energy per unit site, f128+8' (that is, per round

and square site pair) is

dp
'Bf o + _;-_ X f 2

128+8 ~ Bf128+8 2T { 2m
=T /'n

n L128+8(px,py),

(4.13)

20

where f1é8+8 is given ig 4.7
V CONCLUSION
Two ney statistical mecﬁanics models have been solved. They
are solvable via the Pfaffian method althought this.paper solves them
using the anticommuting variables.
The nex£ step-is to determine the physics of these models, in
particulér, the crigical phenoﬁénpn. Bécause of the 8:x8.

determinants in equations (3.7) and (4.12), this will be quite tedious.

The use of computers to evaluate these determinants will probably be

neéessary. One can say, howeQer, that there will be multiple phase

transitions with Ising-like légarithmicaliy divergent specific heat.

‘This is because one submodel, the pseudo-free 32 vertex model, is.

known to have such multiple phase tranéitions (Saéco and Wu 1975)
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APPENDIX A. Overall Minus Signs: The Non-Seélf Intersecting Polygons

This Appendix will piove that there are no overall minuses
created by reorderings of anticommuting variables for a non-self

intersecting polygon drawn on the 128+8 lattice of figure 8b, This

also proves the result for the pseudo-free 32 vertex and pseudo-free

128 vertex models since any polygon drawn on their lattice can be
drawn on the 128+8 lattice and the same kinds of bilinear operators
are used.

The proof is similar to that for the free-fermion model, which

- was given in Appendix B of I and to which the reader is referred.

Extensive use will be made of the sign rules (a), (b), and (c) of

w



21 ‘.
figure 8 of reference I. fhe proof proceeds via induction on:the area
of a polygon. Any polygon can be bgilt from the four elementary
v'triénglesrof figure.lz (see figure 13)."These are the polygons of
minimum area. Figure 14 starts the induction process by proving that
these have'anvoverail plué sign;

As required by the sign rules, the polygon is given an orien-
tation. Choose the starting poiﬁt to be on "x". Move around the
polygon and count the number of minus signs due to rules (a) and (b).
When moving in the positiveAdirections‘of figureJZ) no minus signs
occur because "x"'s are aftgr "o"'s and arrows point in the correct
directions.. When moving in the negative directions, there is a minus
sigﬁ factor because "x"'s occur~be£ore "o"'s, but, in addition, there is
a minus sign factor because arrows point'in the wrong direction. ‘Moving
in straight lines causes no minuses. Next consider corners. There are
56 differept corners; the 28 types of figures 5 and 10 are multiplied by
two orientations. Figure 15 summarizes the results. The corners of

- figure 15 create a minus sign and.all others 46 not. The easy way to
find the overall minus sign is to count. the number of figure_lS’ccrners
in an oriented polygon. If the number is odd, then the extra ﬁinus due

‘ to rule (é)'mékes'the overall Sign pésitive. .

The eleméﬁtary triangles can be attached to polygons in

24 different ways: each of the four elementary triangles can attach

one side or two sides in three ways. All twenty-four are

illustrated in figure 16. Each of these results in several cases

depending on the neighboring structure where the triangle is joined.

In t&tal, there are 480 different cases to consider. These are all

shown in figure 16. It is found that the addition of an elementary
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poiygon cieates zero or‘two mi§p§vf§ctof§ or removes two minus factors.
This impliés that thé.oye;a;l mings_sign factor due to corners is the
same ;é éér thé-elemenﬁgry triangles, namely ﬁinus. The number of
corner_minuses_is"odd. When combined with the rule (c) minus, the claim -
i; proved: ;vnon self intersecting polygon has no minus signs due to
reorderings of anticommuting Variables.
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Figure 1. The Square Lattiée.

Figure 2. The Four Directions:

Figure 3. Allbwéd and qubidden Configurations. The sides of
polygonsvmay interseét as in figure (a) but cannot overlap
as in fiqure (b).

Figure 4. The Wall Operators.

Fiéure 5. The-Twenfy—Four Corner Operators.

Figure 6. Overall Minﬁs Ssigns. The confiéurations in boxes 1,4, 30,

angd ‘128 of table 1 are'reproducedbhere. They have been.

rédrawn so that the intersections can be seen. If the

number of intersections is even thé overall sign is posipigg

while an odd nﬁmbér of intersecti§ns'yields a negative sign.

_Boxes 1, 4, 30, and 128 have respectively.one,-three, zero,

and six intersections; hence boxes 1 and 4 have an overall



Figure 7.

Figure 8.

Figure

Figure

Figure

Figure

Figure

9.

10.

11.

12.

13.
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. Figure 14.
minus sign, while boxes 30 and 128 do. ndt.

Extra Minus Sign. An extra minué $ign f;ctor results
when any two sides intersect between 1attiqe sites. This
figure is an example in which this happens. The weight
of.this polygon is the product of Bloch wall Boltzmann
factors, the product of table 1 vertex factors, tiﬁes

i%1%q%n%n) %

(box 117) (box 126)] x [—l} .

an extra minus one: [(box 105) (box 112)

Figure 15.
(a)

The 128 + 8 Vertex Model Lattice. (b) The Bonds
in the 128 + 8 Vertéx Model. Thg sites in figure 1la
are the round ones here.' In &dditioh, sites have been
added at the points with half integer cartesian corrdinates
Figure 16.
(the square sites).
The Diagonal and Inclined Wall Opérators. A square site
has bonds connecting‘to the four nearest neighbor‘round
sites. This figure shows the four wall operators which
produce these bonds. Each of the four have been assigned
a seperate weight. ‘

The Four Corner Opeiatbrs at a Square Site.

The -kl

£g Operators.

After square site integrals have
been preformed; the 128 + é vertex model bécomes the
128 vértex model with the addition of these four terms.
The Four Elementary Triangles of the Lattice of figure 8b.

Building Up a Polygon From Elementary Triangles. The

L 3
polygon of figure (b) is obtained from the polygon of
figure (a) by attaching the elementary triangle of figure

12b.
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The Overall Sign of the Elementary Triangles. The sign is
determined by the sign rules of figure 8 of reference I.

Begin at the X near the point, A, and proceed counterclock-
wise around the triangle. The minuses due to rules (a) and
(b) are shown here. 1In each figure there are an odd number
of them. In addition there is a minus due to rule (c).

Thus the overall sign of each of the four elementary

triahgles is plus.

The Oriented Corners. Which Create a Minus Sign. Figures
Za) through (1) . (respectively, figﬁres (m) and (n)) show
the round (square) vertex corners which create a minus sign
because of anticommutiné variable reordering.

The 480 Cases. Here are the 4B0 cases which musﬁ.be”ﬂh?
considered in the induction stép. Each of the 12 b;xgé_h'
shows two of the 24 ways of appending an elementary n

triangie- In the left half of a box one side is joined,

while in the right half two sides are joined. The joining
triangle.is the one formed by the solid and dotted edges.
Only the neighboring structure.of the polygon, to which the
elementary triangle is béing attached, is shown. When
this triangle is attached to a configuration on the left,

a configuration on the right results .(see figure 17a,

which is an example for box 1), and when this triangle is
atta;hed to a configufation on the right a configuration

on the left results (see figure 17b, which is an exawple

for box 1 and figure 13 which is an example for bq§:7):
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An arrow on a line indicates that when the orientation _?able 2. The Weights of the Square Vertices in the 128 + 8

is in that direction then one of the figure 15 corners Pseudo-Free Vertex Model.

is involved and a minus factor is présent. Box 1 shows
that the corner minus sign structure is unchanged in the
joining érocess.v Sometimes the process creates (or
removes) a figure 15 corner, however another one is

alwéys created or removed at one of thé two other verticeé
(see figure 17c, which is a subcase of box 6). By
inspecting these boxes, corner minus sign factors are
seen to be created or removed in pairs so that the overéll
minus s;gn factor is unchanged.

Figure 17. Exaﬁples of the Figure 16 Induction Step. Figure (a)
is an example of going from a boi 1 left cdnfiquratioh
to a box 1 right configuration. Figure (b) shows a
box lrightcoﬁfiguration going to a box 1 left con-
figquration. The arrows deﬁote the ldcation of a figure
15 corner when tranversing the polygons in a counter-
clockwise airection. In figures (a) and (b). no new
figure 15 corners are created. Figure (c) ic an example
of a box 6 transformation where two extra figure 15
corners are created, when the poiygon is oriented in the
clockyise directign.

Table 1. The Weights 6f the Vertex Configurations of The Pseudo-
Free 128 Vertex Model. The Bloch wall Boltzmann‘factérs
haye been extracted. The weights are expressed directly . » -
in terms of the parameters of -the actioﬁ [equations (2.1)-

(2.3)} or via the functions in equations (2.8)-(2.21). _
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