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Predicting Peptide Structures in Native Proteins from
Physical Simulations of Fragments
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Abstract

It has long been proposed that much of the information encoding how a protein folds is contained locally in the peptide
chain. Here we present a large-scale simulation study designed to examine the extent to which conformations of peptide
fragments in water predict native conformations in proteins. We perform replica exchange molecular dynamics (REMD)
simulations of 872 8-mer, 12-mer, and 16-mer peptide fragments from 13 proteins using the AMBER 96 force field and the
OBC implicit solvent model. To analyze the simulations, we compute various contact-based metrics, such as contact
probability, and then apply Bayesian classifier methods to infer which metastable contacts are likely to be native vs. non-
native. We find that a simple measure, the observed contact probability, is largely more predictive of a peptide’s native
structure in the protein than combinations of metrics or multi-body components. Our best classification model is a logistic
regression model that can achieve up to 63% correct classifications for 8-mers, 71% for 12-mers, and 76% for 16-mers. We
validate these results on fragments of a protein outside our training set. We conclude that local structure provides
information to solve some but not all of the conformational search problem. These results help improve our understanding
of folding mechanisms, and have implications for improving physics-based conformational sampling and structure
prediction using all-atom molecular simulations.
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Introduction

It has long been proposed that much of the information

encoding how a protein folds is contained locally in the peptide

chain. Indeed, the success of fragment insertion methods for ab

initio folding algorithms often relies on the predicted structures of

small peptide pieces of the target protein [1,2]. To what extent do

the conformations of peptide fragments in water predict native

conformations in proteins? We are interested in this question for at

least two reasons. First, accurate local structure predictions from

all-atom simulations of small peptide fragments of proteins in

water may be useful for physics-based ‘‘divide and conquer’’

strategies for protein structure prediction, such as in the ‘‘zipping

and assembly’’ method [3–5]. Physics-based methods for predic-

tion offer several potential advantages over database-driven

methods, such as the ability to simulate dynamics and predict

folding pathways, using transferrable forcefield models which can

be applied to a wide range of other problems. Second, this work

informs an ongoing discussion about how much of the native

structure of a protein is encoded within local sequence information

alone [6,7]. In the ‘‘framework mechanism’’ [8], for example, local

information is sufficient to reduce the conformational searching

enormously. On the other hand, protein folding is highly

cooperative, so models such as the ‘‘nucleation-condensation

model’’ indicate that secondary and tertiary structure may form

concurrently [9]. Elucidating the role of local structure can help

improve our understanding of protein folding mechanisms in

general.

The question we raise here is not about the success rates of

secondary structure predictions. Secondary structure prediction

methods such as PSIPRED use knowledge bases of known native

structures and can achieve prediction success rates near 80% (as

judged by Q3 scores) [10]. Here we ask a question of physics. If

you knew the physical structure of a peptide in water, rather than

in a database of native protein structures, would it predict the

conformation of the same peptide in the protein’s native structure?

As an approximation to the physics, we rely on all-atom force field

simulations here. Much work has shown that simulations using

current all-atom forcefields can sufficiently and accurately reflect

the underlying physics [11–13].

There are previous studies using molecular dynamics simula-

tions of peptide fragments for structure prediction. Bystroff and

Garde performed 10-ns explicit-water simulations using the

AMBER ff94 forcefield for 64 8-residue fragments to show that

observed helicity correlates well with I-sites predictions [14]. Ho

and Dill performed REMD simulations using the AMBER ff96

forcefield with the GB model of Tsui and Case for 133 8-residue

fragments from six different proteins to identify regions of local

native-like structure that could serve as folding nuclei [15]. Here,

we perform much more extensive tests, over a larger data set and

with multiple metrics, made possible by using a high-efficiency

search method, called ZAM (Zipping and Assembly Method), that
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samples the important parts of conformational space. We perform

872 independent simulations of 8-mer, 12-mer, and 16-mer

fragments from 13 test proteins, for a total of 8.7 CPU-years of

simulation time, which is, as far as we know, the largest set of

fragment simulations performed to date. We use the AMBER ff96

forcefield [16] with the GB implicit solvent model mode of

Onufriev, Bashford and Case [17], which we have found to predict

the structures of a set small peptides with better accuracy than

other combinations of AMBER forcefields with GB solvation

models [13]. This forcefield has been used with the ZAM

conformational search algorithm to predict protein structures in

the CASP7 competition [4].

Results

The Fragment Simulations Sample Around Native-Like
Structures

To what extent did our simulations of peptide fragments sample

native-like structures? From the native structures of our target

sequences, we determined alpha helical and tight turn types across

each target sequence using the secondary structure classification

algorithm STRIDE [18]. The turn types were further divided into

two groups, one for turns in beta-hairpins, and one for everything

else. We filtered the dataset for fragments that were known to have

at least 7, 12, and 16 native contacts respectively for 8-, 12- and

16-mers. This selects a subset of fragments with known native

secondary structures to which we could compare our simulation

data.

We find that the fragment simulations sample diverse structures.

Conformational clustering (see Methods) produces about 10

representative cluster conformations for each fragment simulation.

Figure 1A shows, for each target sequence and fragment length,

the C-alpha RMSD-to-native values for all representative cluster

conformations along the target sequence.

These fragments typically sample native-like conformations.

Figure 1B plots the fraction of cluster conformations that sample

within a given RMSD of the native conformation. It is not clear

that native-like sampling would necessarily be expected; it depends

on the relative importance of the tertiary context [7,19].

Nevertheless, we find that about 65% of 8-mer alpha helical

conformations are within 2.0Å RMSD of the native state, and

about 40% of 12-mers and 16-mers are within this range. For

comparison, a random distribution of C-alpha RMSD calculated

from native protein structures contains only about 10% of 8-mers,

5% of 12-mers, and 2% of 16-mer conformations with RMSD

within 2.0Å RMSD (see Methods). About 40% of 8-mer and 12-

mer beta hairpin turns were within 2.0Å of the native structure,

and 40% of 16-mer hairpins were within 3.0Å of the native

structure (only about 5% of random native 16-mer conformations

are within 3.0Å RMSD). These results suggest that beta hairpins

are more context-dependent, while helices are more generally

defined locally. Also, we observe that beta hairpins show more

structural variation in general than helices, due to the nonlocal

contact topology.

Does running longer simulations lead to more native-like

structures? We found this not to be the case. On seven different

hairpin fragments, we performed 20 REMD simulations (with and

without various contact constraints) for a total of 100 ns (Text S1).

In these tests, we simulated both hairpins that corresponded to

native structures, and ‘‘decoy’’ hairpins that were predicted by our

simulations, but did not correspond to native structures. We

conclude that longer simulation does not produce more native-like

structures in our simulations. This could be for several reasons: (1)

simulations longer than 100 ns would be needed, or (2) the

physical model we used is not perfect [13,20]), or (3) because

tertiary context is needed to drive them into their native states.

While this work does not attempt to fully resolve these issues, it

does establish a lower bound on the extent to which simulations of

peptide fragments predict native-like structures, which we find

here to be considerable.

Optimal Classification Models and Contact Metrics
Our data provides an opportunity to draw inferences about

what physical properties of intrachain contacts are predictive of

whether a peptide conformation is native or not. To do this, we

train probabilistic classifier models on several contact metrics, and

interrogate the results. For each set of simulated fragments (8-

mers, 12-mers, and 16-mers), we explored two kinds of per-contact

classification models: a naive Bayes model and a logistic regression

model (see Methods). To find the most predictive classifier, each

model was trained on all possible combinations of per-contact

metrics (defined in Methods) calculated from the simulations.

Which classification model best predicts native or non-native

contacts from short fragment simulations? In all cases, the logistic

regression model gave better classifications than the corresponding

naive Bayes model, thus we present only the results from the

logistic regression models. Also in all cases, contacts defined by a

7Å distance cutoff performed significantly worse than an 8Å cutoff,

thus we only present results from the latter case. The best logistic

regression coefficients for 8-mers, 12-mers, and 16-mers are shown

in Table 1.

What metrics are the best predictors of whether a simulated

fragment has formed native contacts? We examined several

metrics (see Methods), each calculated on a per-contact basis from

the simulation data (Figure 2): (1) contact probability (CPROB),

the equilibrium probability of a given contact, (2) a distance profile

score (DPROF) quantifying interresidue probabilities as a function

of distance, (3) a mutual stability score (MSTAB) quantifying the

joint probability of a contact when making pairs with other

contacts, (4) a mutual cooperativity score (MCOOP) quantifying

cooperative interactions made with other contacts, and (5) a

mesoentropy score (MESO), which is a measure of the backbone

conformational entropy. Since the numerical values of the five

contact metrics can differ by orders of magnitude, we obtain a

better sense of the relative importance of the different contact

metrics by computing the model relevance Rð Þ, which we define as

R~bmsm, where bm is the logistic regression coefficient for

Author Summary

Proteins must fold to unique native structures in order to
perform their functions. To do this, proteins must solve a
complicated conformational search problem, the details of
which remain difficult to study experimentally. Predicting
folding pathways and the mechanisms by which proteins
fold is thus central to understanding how proteins work.
One longstanding question is the extent to which proteins
solve the search problem locally, by folding into sub-
structures that are dictated primarily by local sequence.
Here, we address this question by conducting a large-scale
molecular dynamics simulation study of protein fragments
in water. The simulation data was then used to optimize a
statistical model that predicted native and non-native
contacts. The performance of the resulting model suggests
that local structuring provides some but not all of the
information to solve the folding problem, and that
molecular dynamics simulation of fragments can be useful
for protein structure prediction and design.

Predicting Peptide Structures
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Figure 1. Cluster conformations from fragment simulations sample native-like states. (A) For each target sequence and fragment length,
the C-alpha RMSD-to-native values (in Å) for all representative cluster conformations along the target sequence are shown. Each line on the plot
corresponds to a cluster conformation, color-coded by native secondary structure: alpha-helix (yellow), beta-hairpin (cyan), or other turn types
(magenta). The relative shading of the lines are proportional to the population fraction. The horizontal axis is the sequence position along the protein
chain. (B) The fraction of cluster conformations that sample within a particular RMSD-to-native, across all fragment simulations of a given chain
length. For comparison, the black line shows the results for a random distribution of C-alpha RMSD values calculated from native protein structures
(see Methods).
doi:10.1371/journal.pcbi.1000281.g001

Predicting Peptide Structures
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contact metric m, and sm is the standard deviation of the metric.

The R values calculated for each regression coefficient show that

the most predictive metric is the contact probability (Figure 3).

This is interesting because it might be expected that including

multi-body terms would be more predictive than just the pairwise

contact formation probability, since protein stability is likely to

involve non-additivities that could only be captured in complex

terms. Instead, we find that simple pairwise terms are the most

predictive, with the multi-body terms producing small negative

regression coefficients. The negative coefficients can be interpreted

as providing a slight correction to the over-counting due to

correlation between pairwise contact probability terms.

Figure 4 shows the results of increasing the number of prediction

coefficients. These curves make essentially three points. First, the best

first approximation, i.e., the most predictive single term, as noted

above, is CPROB, the contact probability. Second, the figure shows

that the predictive power of the model increases by adding up to two

additional terms. However, the added value in predictive power is

Table 1. The coefficients for the best logistic regression models.

Length Distance Method b0 Prior b1 CPROB b2 DPROF b3 MSTAB b4 MCOOP b5 MESO

8 Ca 22.438860.1004 2.640160.2354 — 20.052460.019 — —

12 Cb 22.31160.057 2.59460.157 — 20.036360.0074 20.032760.0085 —

16 Ca 22.16660.033 2.19460.113 0.09360.0064 20.02560.0037 0.007960.0041 —

doi:10.1371/journal.pcbi.1000281.t001

Figure 2. A summary of the contact metrics examined in this study. Each metric is calculated on a per-contact basis from the simulation data.
Further details are in Methods.
doi:10.1371/journal.pcbi.1000281.g002

Figure 3. The model relevances Rð Þ for each contact metric in the best 8-mer, 12-mer, and 16-mer linear regression models. The R
values show that contact probability (CPROB) is the most important metric in predicting whether a contact observed in the computer simulations is
likely to be in the native structure of the protein. The model relevance Rð Þ of a contact metric m is defined as R~bmsm , where bm is the logistic
regression coefficient for the metric, and sm is the standard deviation of the metric.
doi:10.1371/journal.pcbi.1000281.g003

Predicting Peptide Structures
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quite small. And, third, it shows that adding further terms to the

model, beyond three, worsens the predictive power.

We also tested whether we could obtain better classification

models by training on local contacts (or nonlocal contacts) alone.

We found that, overall, the classification success for the local-only

or nonlocal-only data was comparable, but never as high as the

classification success using the combined data (see Text S1).

Predicting Native Contacts and Conformations from
Fragment Simulations

Now, given the parameters obtained from the logistic-regression

models described above, we can compute the probability that a

given simulated peptide conformation has native contacts. Figure 5

shows the contact prediction success for all protein targets in the

test set. The average percentage of correctly classified contacts

(across each protein target) using the 8-mer data is 63.2% (72.3%

for native contacts and 60.7% for non-native contacts). The

average percentage of correctly classified 12-mer contacts

increases to 71.3% (57.3% for native contacts and 74.3% for

non-native contacts), and for 16-mer contacts the average

classification success is 76.9% (56.3% for native contacts and

80.9% for non-native contacts).

In the case where the data contains many more non-native

contacts than native contacts, a high classification accuracy may

not reflect a significant improvement over a random null

distribution, per se. To test this possibility for our selected models,

we built a null distribution of contact metrics to test the random-

case performance of our models (see Methods). Several statistical

tests, including Matthews correlation coefficient (MCC) values and

receiver-operator characteristic curves [21] show that our best

classification models perform better than random (for a full

discussion, see Text S1).

Figure 6 compares the predictions to the true native structures.

It shows the ‘logit’ values (see Methods) given by the best 16-mer

logistic regression model for an example target. This quantity has

the flavor of an informational equivalent of a free energy

difference of native minus denatured. The darker black on the

figure indicates the strongest prediction of native-like structure.

The 8-mer, 12-mer and 16-mer results for all targets is shown in

Text S1. Not surprisingly, to the extent that these peptide

fragment simulations predict native-like structures, helices are

better predicted than hairpins.

Next, we tested our model on a protein outside our test set. We

tested 1whz (PDB ID: 1whz), a 70-residue CASP6 target with an

azb structure taken from Thermus thermophilus (Figure 7). REMD

simulations of 8-mer, 12-mer, and 16-mer fragments were

performed (62, 39, and 74 independent fragment simulations,

respectively) using the ZAM procedure, and contact predictions

were made using our previously-paramterized 8-mer, 12-mer,

and 16-mer logistic regression classification models. Figure 8

shows contact prediction success rates for 1whz, and the logit

values for each contact estimated from the 8-mer, 12-mer, and

16-mer data. As the fragment length grows, a consensus

Figure 4. Testing and training curves for the logistic regression
models. Results are shown for models built from the (A) 8-mer
simulation data, (B) 12-mer data, and (C) 16-mer data. For each contact
definition we tested (Ca, Cb, and sidechain-centroid), shown is the
model quality (Q) for a series of models, calculated from the training
data (dotted) and the testing data (solid) (see Methods for details). The
larger the Q value, the more predictive the model. From left to right,
the model quality (Q) for the best 1-, 2-, 3-, 4-, and 5-metric regression
models are plotted, labeled with the sequence of additional metrics
that increasingly improve the model quality.
doi:10.1371/journal.pcbi.1000281.g004

Predicting Peptide Structures
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resemblance to the native contact map begins to emerge,

although incorrect in some places. The logit values are very

similar to the logit values given by 8-mer, 12-mer, and 16-mer

regression models trained only on contact probability, showing

that the contact probability observed in our simulations contains

most of the predictive information.

Extrapolating Inferences from Single Contacts to Larger
Structures

These models make per-contact predictions. But, we are

interested in predictions for whole peptide conformations. To

turn our contact-based scores into conformation-based scores, we

compute a score, C, for a given molecular conformation as follows:

C~
X

i

X
j

log
P n smf gji

���
� �

P n smf gji

���
� �

Here, i runs over all contacts in the conformation, and j runs over

all fragment simulations which contain contact i.
We computed conformation scores for all the cluster confor-

mations extracted from 8-mer, 12-mer, and 16-mer 1whz

fragment simulations. For 8-mers and 12-mers, we observe a

correlation (albeit noisy) between a high value of C and a near-

native (low-RMSD) structure (see Text S1). For 16-mers, the

conformation score predicts four likely secondary structures

Figure 5. Contact prediction success for all proteins in the test set. Predictions were made using the best logistic regression models built
from the 8-mer, 12-mer, and 16-mer simulations.
doi:10.1371/journal.pcbi.1000281.g005

Predicting Peptide Structures
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consisting of helices and hairpins along the sequence of the protein

(Figure 9). Two of these secondary structures correspond to

correctly predicted native structures (the N-terminal helix and C-

terminal hairpin), while two of the secondary structures are non-

native ‘‘decoys.’’ Even for the decoys, near-native conformations

are sampled substantially. Interestingly, the helical decoy seen in

the sequence of residues from 12–39 is also predicted by the I-

Sites/HMMSTR/Rosetta structure prediction server [22,23]

when templates from multiple sequence alignments are turned

off (see Text S1), indicating structural ambivalence.

Discussion

We have performed computer simulations of short peptides—8-

mers, 12-mers and 16-mers—using the AMBER 96 force field and

the OBC implicit solvation model. Our aim was to see whether the

metastable structures of these fragments bear any resemblance to

the conformations those fragments adopt in the native states of the

proteins in which they appear. We find that the peptide contact

probabilities in a logistic regression model lead to a 76% success

rate in 16-mers in correctly classifying contacts as either native or

Figure 6. A contact map showing the results of the best 16-mer
regression model for an example target, T0363. Above the
diagonal, the grayscale values at each contact position correspond to
‘logit’ values log P n smf gjð Þ=P n smf gjð Þð Þ given by the best logistic
regression model trained on all the 16-mer simulation data. The
background gray value corresponds to contacts not sampled by the
fragment simulations, and is colored according to the logit value
threshold x�~{1:307 used for the classification criterion; logit values
x§x� are classified as native and appear darker, while logit values
xvx� are classified as non-native and appear lighter. On the lower
diagonal are shown the native contacts in the range sampled by the
fragment simulations. (8-mer, 12-mer, and 16-mer predictions for all
targets are shown in Text S1.)
doi:10.1371/journal.pcbi.1000281.g006

Figure 7. A target from CASP6 (1whz) used to test the
classification model. Ribbon diagram of the X-ray crystal structure
was made with pymol.
doi:10.1371/journal.pcbi.1000281.g007

Figure 8. Logit values and prediction successes given by the best classification models for fragment simulations of 1whz. The upper
diagonal shows the logit scores log P n smf gjð Þ=P n smf gjð Þð Þ with prediction success rates. The lower diagonal shows native contacts in the range
sampled by the fragment simulations. As the fragment simulations increase in length, clear signals of predicted secondary structures begin to
emerge. For comparison (bottom row) are shown the logit values and prediction scores given by the best regression model trained only on contact
probability. The similarity of the two models shows that most of the predictive power comes directly from the frequency of contacts observed in the
simulation data.
doi:10.1371/journal.pcbi.1000281.g008

Predicting Peptide Structures
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nonnative. Across the chain lengths studied, the false negative rates

(native contacts classified as non-native) of our best logistic

regression models range from about 30–45%. The false positive

rates (non-native contacts classified as native) vary from about 20–

40%. These results show these predicted peptide conformations in

water are significantly more native-like than would be expected

from random conformers. Previously, Bystrof and Garde also

showed a 75% success rate at predicting native helicity across 64 8-

mer fragments simulated using AMBER ff94 and explicit TIP3P

water [14]. This compares with our 72% success rate at classifying

native contact for 8-mers. While there remain issues of the

accuracy of the forcefield+solvation model [20], and our limited

simulation times (5–15 ns), nevertheless, these results indicate that,

by using REMD for all-atom sampling and ZAM for conforma-

tional searching, small peptide fragments in proteins adopt

conformations in solution that significantly resemble the confor-

mations they ultimately adopt in their native proteins. Past

experiments have reached similar conclusions, for specific peptide

fragments [24].

These results may have useful application in physics-based

methods, like ZAM [3,4] that aim to predict protein structures

from all-atom simulations in the absence of knowledge-based

secondary structure prediction methods. This work also has

implications for understanding how proteins can physically fold

up so rapidly to reach their native structures. It suggests that

proteins can fold into globally optimal conformations by starting

with locally optimal conformations first. While this idea has long

been a mainstay of models of protein folding kinetics, this is, as

far as we know, the first extensive demonstration in a purely

physical model. However, these local propensities alone are not

sufficient, at least in our simulations, to predict the native states

of proteins.

While our fragment simulations show that some peptide

fragments sample native-like states, the sampling still produces

Figure 9. RMSD-to-native of cluster conformations plotted versus cluster conformation scores for all cluster conformations
extracted from 16-mer fragment simulations of 1whz. Each dot represents a cluster conformation, color-coded according to its region along
the protein sequence: residues 1–20 (cyan), residues 12–39 (magenta), residues 28–53 (yellow), and residues 42–70 (cyan). On the left (residues 1–20
and 28–53) are examples of high conformational cluster scores predicting native structures, while on the right (residues 12–39 and 42–70) are
examples of high-scoring decoy structures.
doi:10.1371/journal.pcbi.1000281.g009

Predicting Peptide Structures
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many false positives and false negatives. This is consistent with the

information-theoretic studies of Crooks and Brenner [25] which

examined neural net models trained on local sequence alone, and

found that ‘‘one fourth of the total information needed to

determine secondary structure is available from local inter-

sequence correlations.’’ Similarly, our results also support the

idea that cooperative, long-range tertiary contacts are crucial in

determining native structure. But while local structuring alone

may be insufficient to fold proteins, such information can help to

narrow the conformational search. Fleming et al. has shown that

while restricting a protein chain to preferred secondary structures

per se generates random coil-like behavior, some simple additional

logic about tertiary cooperativity and hydrogen bonding can

predict native-like protein topologies and structures [26]. More-

over, bioinformatics-based protein structure prediction methods

have benefitted greatly from fragment assembly methods whereby

locally compatible structures dramatically reduce the conforma-

tional search problem [22,27–29]. Our results suggest local

structural information from physical simulations can improve

our understanding of protein folding pathways, and may be useful

in physics-based structure prediction.

Methods

A Database of Short Protein Fragment Simulations
Our dataset of peptides was 8-mer, 12-mer, and 16-mer

fragments of 8 CASP7 target sequences and 5 other protein

sequences with known structures taken from the PDB (see Table 2).

The 8-mer, 12-mer, and 16-mer fragments cover 100%, 88.7%,

and 76.7% of the entire sequence space of the 13 proteins

considered, respectively (see also Text S1). We performed

computer simulations for 10 ns for each peptide, totaling about

8.7 CPU years in simulation time.

Simulation details. We used the AMBER ff96 force field

[16] with the solvation model of Onufriev, Bashford, and Case

[30] in replica exchange molecular dynamics (REMD) simulations

[31]. Each simulation was 5 ns in length, with 15 or 20 replicas

(depending on the number needed to achieve a 50% acceptance

ratio) ranging from temperatures 270–700 K. Replica swaps

between neighboring temperatures were attempted every 20 ps for

8-mers, every 10 ps for 12-mers, and every 5 ps for 16-mers. A set

of 10 or less representative conformations, clustered to ,2Å

RMSD by a modified K-means algorithm, is extracted from the

data and used for the starting configurations of each next round of

simulation.

We simulated the fragments using the ZAM (Zipping and

Assembly Method) protocol described in [3,4]. In the early

‘‘growth’’ stage of ZAM, short molecular dynamics sampling of 8-

mer peptide fragments are simulated. The final structures of these

simulations are then grown to 12-mers, and further simulated.

This continues to the 16-mer stage, at which point several

alternative topologies for the cluster conformations extracted from

the 12-mer simulations are explored by adding harmonic contact

restraints. These restraint energies are later subtracted out when

calculating observables from the simulation data using the

weighted-histogram analysis method (WHAM) [32]. Contact

metrics (see below) were calculated using WHAM at the lowest

replica temperature (270 K) from the last nanosecond of the five

lowest-temperature replicas (1 ps snapshots).

Contact Metrics
Classification models were trained on five different contact-

based metrics, calculated on a per-contact basis from the

simulation data: 1) contact probability (CPROB), 2) a distance

profile score (DPROF), 3) a mutual stability score (MSTAB), 4)

a mutual cooperativity score (MCOOP) and 5) mesoentropy

Table 2. The 13 test proteins that were used to create a database of simulation fragments (8 CASP7 targets and 5 protein
structures from the PDB).

PDB id CASP target Name Residues Residues in PDB 8-mers 12-mers 16-mers

2hh6 Yes T0283 112 112 Fragment simulations 36 4 12

2gzv Yes T0288 93 93 30 — —

2h4o Yes T0309 76 63 24 7 23

2ict Yes T0311 94 94 31 9 32

2hep Yes T0335 85 42 13 5 11

2he4 Yes T0340 90 90 29 16 23

2hjj Yes T0358 87 75 28 13 24

2hj1 Yes T0363 97 87 31 13 23

2reb No RecA 60 60 19 6 8

1e68 No Bacteriocin 70 70 22 21 33

1gb1 No Protein G 56 56 49 45 21

1ail No NS1 70 70 63 37 17

1srl No src SH3 56 56 49 45 —

Total number of contacts 4236 9865 19360

Simulation replicas 15 15 20

Total number of simulations 424 221 227

Simulation time nsð Þ 31800 16575 22700

Total simulation time msð Þ 71.1

CPU years (10 ns/day) 8.7

doi:10.1371/journal.pcbi.1000281.t002
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score (MESO) (Figure 2). These metrics are described in detail

below.
Contact probability (CPROB) and distance profile score

(DPROF). Contact probability is calculated as the fraction of

sampled states that have inter-residue distances less than 8Å (we also

tested 7Å, and three different distance definitions; see Training and

Testing). The distance profile score (DPROF) was developed to

obtain more information about the interaction of two residues as a

function of distance, by extracting the potential of mean force

PMF rð Þ along the contact distance coordinate r. PMF rð Þ is

calculated as {kBT ln p rð Þ where p rð Þ is the observed distribution

of contact distances, using the WHAM method. The distance profile

score is defined as DPROF~CPROBza R2{R1ð Þzb, where

R1~min PMF rð Þ, rv9Å, R2~min PMF rð Þ,r§9Å, a~0:0714,
and b~0:757. This was a simple heuristic we found by finding the

best coefficients a and b that separated native and non-native

contacts in our preliminary tests.
Mutual stability score (MSTAB) and mutual cooperatvity

score (MCOOP). These metrics are designed to characterize,

for any given contact, the average extent of cooperative (two

contact pairs) interactions with the given contact which may

indicate (thermodynamic) folding cooperativity.

The mutual stability and cooperativity scores can best be

described by considering pairwise distributions of contact

probabilities p ci,cj

� �
, where ci and cj are indicator variables: 0 if

the contact is not made, and 1 if the contact is made. We define

the pairwise stability as p 1,1ð Þ, the probability that contacts ci and cj

are present simultaneously. The pairwise cooperativity is a measure of

how interdependent the distributions of p cið Þ and p cj

� �
are,

defined as the mutual information between variables ci and cj :

MI ci,cj

� �
~
X

ci

X
cj

p ci,cj

� �
log2

p ci,cj

� �

p cið Þp cj

� �

When measured in bits, the pairwise cooperativity is a value

between 0 and 1, and provides complementary information to

pairwise stability, which also is a value between 0 and 1 (Figure 10).

For a given contact i, MSTAB is calculated as the number of

contact pairs i,jð Þ with pairwise stabilities greater than 0.5.

Similarly, MCOOP is calculated as the number of contact pairs

i,jð Þ with pairwise cooperativties greater than 0.3 bits.

Mesoentropy score (MESO). The mesoentropy score is

related to the backbone entropy. It measures the distribution of

backbone dihedral mesostates, defined by Ho and Dill [15] asP
i {pi log pi, where each pi is the probability of a particular

mesostate (for example: aabbaballbbb for alpha (a), strand (b) and

loop (l) states along a 12-mer fragment). This provides a measure

of the conformational diversity of the thermodynamic ensemble at

equilibrium. The MESO score is assigned per-contact, but since

the mesoentropy is a function of the entire conformational

ensemble of a fragment, all contacts in a given fragment

simulation receive the same MESO score.

Bayesian Classification Models
Given the various metrics above, of the peptide conformations

observed from the simulations in solution, we now ask if there is a

way to combine those metrics to make the best possible predictions

of what the peptide’s structure is in the native state of the protein.

For each contact observed in our database of simulated frag-

ments, we have a set of M measured contact metrics

smf g: s1,s2, . . . sMf g, and the known native structure of the

fragment, which tells us if the contact is native or non-native.

Using this data, we want to train a probabilistic model to estimate

the probability of a contact being native versus non-native, given

only the contact metrics observed in a peptide simulation. This is a

binary pattern classification problem, where we have an unknown

parameter h which can be either be native h~nð Þ or non-native

h~nð Þ, and we wish to calculate P h smf gjð Þ. Bayes’ formula can be

used to restate this posterior probability as

P h smf gjð Þ~ P smf g hjð ÞP hð ÞP
h P smf g hjð ÞP hð Þ ð1Þ

Here, P hð Þ represents our prior knowledge of the probability of

observing a native or non-native contact, given no other

information about that contact. P smf g hjð Þ represents the condi-

tional probability of observing a set of metrics smf g for a contact,

given that we know whether that contact is native or non-native.

The ‘naive Bayesian’ approach would be to assume that, for any

contact, our set of calculated metrics smf g are all mutually

independent and uncorrelated. In this case,

P smf g hjð Þ~P
m

P sm hjð ÞP hð Þ ð2Þ

Using Equations 1 and 2, and taking the logarithm of the ratio

of P h~n smf gjð Þ and P h~n smf gjð Þ, we get

log
P n smf gjð Þ
P n smf gjð Þ~log

P nð Þ
P nð Þz

X
m

log
P sm njð Þ
P sm njð Þ ð3Þ

Since P n smf gjð Þ~1{P n smf gjð Þ, it follows that the log-ratio

can be expressed as a linear sum of ‘logit’ terms of the form

log p= 1{pð Þð Þ. The first term on the right side of Equation 3 is a

‘logit’ for our prior, and the remaining terms are conditional

‘logits’ for our metrics of interests. Both kinds of information are

empirically compiled from our database of fragment simulations,

from which we extract histogram counts of each metric N sm hjð Þ
for native and non-native contacts.

Substituting 1{P n smf gjð Þ for P n smf gjð Þ, we solve Equation 3

to obtain

Figure 10. Examples of pairwise stability and pairwise
cooperativity used in calculating mutual stability and coop-
erativity scores. For a particular pair of contacts i and j, ci and cj are
indicator variables: 1 if the contact is made, and 0 if the contact is not
made. The pairwise distribution p ci,cj

� �
represents the joint probability

of contacts i and j being made or not. Pairwise stability is at a maximum
when both contacts i and j are made with a probability of 1. Pairwise
cooperativity is maximized when i and j are formed in an all-or-nothing
way, so as to maximize the mutual information between ci and cj .
doi:10.1371/journal.pcbi.1000281.g010
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log
P n smf gjð Þ

1{P n smf gjð Þ~log
P nð Þ
P nð Þz

X
m

log
P sm njð Þ
P sm njð Þ~Q ð4Þ

P n smf gjð Þ~ exp Qð Þ
1zexp Qð Þ ð5Þ

A potential improvement to the ‘naive Bayes’ model is the logistic

regression method [33], which seeks to find the best linear

coefficients b
!

~b0, . . . ,bM for the following model:

log
P n smf gjð Þ

1{P n smf gjð Þ~b0z
XM

m~1

bmsm ð6Þ

Solving for P n smf gjð Þ yields

P n smf gjð Þ~
exp b0z

PM
m~1 bmsm

� �

1zexp b0z
PM

m~1 bmsm

� � ð7Þ

In practice, these coefficients (and their error estimates) are

found with a maximum-likelihood optimization using Newton-

Raphson gradient minimization. The optimization is equivalent to

least-squared linear regression in the nonlinear ‘logit’ variables

log P smf g njð Þ=P smf g njð Þð Þ. This nonlinearity sometimes makes it

possible to obtain better classifications than the naive Bayesian

approach.

Note the similarity of the logistic regression model (Equation 6)

to the naive Bayesian approach (Equation 4), with b0 acting as a

‘prior,’ and with the magnitudes of the values of b1,b2, . . . ,bM

indicating the significance of each contact metric.

Training and Testing
We built both naive Bayes and logistic regression models for 8-

mer, 12-mer, and 16-mer fragments separately. For the naive

Bayes models, this involved empirically computing histograms in

sm for log P sm njð Þ=P sm njð Þð Þ. For the logistic regression models,

estimates of the best coefficients bm were computed directly from

the data, using a freely available Python package [34].

For each of kind of model, in order to determine the best

combinations of metrics on which to train the model, we built

separate models for all (2521) = 31 combinations of the five

contact metrics (CPROB, DPROF, MSTAB, MCOOP and

MESO). In addition, for each of the models, we tested three

different inter-residue distance definitions (Ca,Cb, and residue side

chain centroid), and two different distance cutoffs to define a

contact (7.0Å and 8.0Å), giving a total of 186 combinations to test.

To avoid over-fitting, the training data used to construct each

model was divided randomly into five groups so that independent

models could be built for each group. Additionally, 1/5 of the data

in each group was set aside for testing the model, and the other 4/

5 of the data was used to train the model. This means that for each

model, there were 25 independent testing and training rounds: 5

independent model-building rounds, each with 5 leave-one-out

trials of testing and training.

Model Selection
To assess which model was the best, we used a statistical

hypothesis testing scheme to find a model that most successfully

classifies native contacts as well as non-native contacts. Consider a

test where we use the statistic X~log P n smf gjð Þ=P n smf gjð Þð Þ to

decide between two hypotheses. The hypothesis Hn is that the

contact is non-native, while the hypothesis Hn is that the contact is

native. If X is less than some threshold value x�, then we accept

Hn and reject Hn, and if X§x�, we accept Hn and reject Hn. To

find the best value for x�, we choose the value that maximizes

1{a{bð Þ, where a is the fraction of non-native contacts

incorrectly classified as native, and b is the fraction of native

contacts incorrectly classified as non-native. Even though there are

many more non-native contacts than native contacts, this

procedure equally weights native and non-native contacts,

achieving a balance of specificity and statistical power. We define

the model quality (Q) as the maximal value of 1{a{bð Þ, and use

the Q value to rate the relative predictive power of different

models. Errors in Q were estimated by examining the sample

variance across the five independent trials of the complete model-

building procedure.

For the naive Bayes models built for each fragment length, the

model that yielded the highest model quality (Q) when applied to

testing data was chosen as the best model. For the logistic

regression models, the 25 rounds of testing and training produced

a series of models across which bm values may correlated. Thus,

instead of choosing the average S b
!

T~Sb0T, . . . ,SbMT for the

best logistic regression model, we chose the model whose

coefficients were closest to the centroid of b
!

values across the

25 testing and training rounds.

Contact Prediction Success
For each simulation, the probability of a contact being native

can be estimated by Equation 7. However, in the case where there

are multiple simulations of the same contact (in overlapping

fragment simulations), we can use all of the simulation data to

estimate this probability. Assuming that each of J simulations is

statistically independent, the probability of a particular contact

being native is estimated by:

log
P n smf gjð Þ
P n smf gjð Þ&

1

J

XJ

j~1

log
P n smf gj

���
� �

P n smf gj

���
� �

We use these combined estimates of log P n smf gjð Þ=P n smf gjð Þð Þ
with the original hypothesis testing cutoffs x� to classify contacts as

native or non-native. The percentage of contacts correctly

classified this way is what we report as our contact prediction

success rate.

Calculation of Null Distributions
A null distribution in C-alpha RMSD values for 8-mers, 12-

mers and 16-mers was calculated by taking 10000 random

pairwise samples of 8-mer, 12-mer and 16-mer fragments from

a set of 3465 protein structures taken from the SCOP database

[35] (1 structure, or 2 if existing, from each unique SCOP

class).

Because there are correlations between contact metrics due to

chain connectivity, considerable care was taken to construct null

distributions for contact metrics that preserved these correlations.

We did this by constructing the null distribution on a fragment-by-

fragment basis. For each fragment, the values of the contact

metrics were retained, while the assignment of native and non-

native contacts was randomized according to a per-fragment

bootstrapping procedure. For each fragment, a random contact

map was drawn (with replacement) from the full data set. This

reassignment procedure, across the entire set of fragments, was
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repeated 1000 times to construct a distribution of random-case

realizations.

Supporting Information

Text S1 Supplemental Data and Results

Found at: doi:10.1371/journal.pcbi.1000281.s001 (8.84 MB PDF)
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