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Abstract

Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in 

adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate 

underlying molecular activities and predict response to therapy. To this end, we sought to identify 

subtypes of GBM, differentiated solely by quantitative MR imaging features, that could be used 

for better management of GBM patients. Quantitative image features capturing the shape, texture, 

and edge sharpness of each lesion were extracted from MR images of 121 patients with de novo, 

solitary, unilateral GBM. Three distinct phenotypic “clusters” emerged in the development cohort 

using consensus clustering with 10,000 iterations on these image features. These three clusters—
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pre-multifocal, spherical, and rim-enhancing, names reflecting their image features—were 

validated in an independent cohort consisting of 144 multi-institution patients with similar tumor 

characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of 

molecular signaling pathways using pathway activity estimates derived from analysis of TCGA 

tumor copy number and gene expression data with the PARADIGM algorithm. Distinct pathways, 

such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities 

as determined by image features. Each cluster also demonstrated differential probabilities of 

survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to 

stratify GBM patients and also provides unique sets of molecular signatures to inform targeted 

therapy and personalized treatment of GBM.

Introduction

Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor in 

adults. Upon patient presentation with subacute and progressive neurologic signs and 

symptoms, gadolinium-enhanced cranial magnetic resonance imaging (MRI) is used as the 

main diagnostic modality for brain abnormalities (1). Characteristic hypointensity on T1-

weighted images and heterogeneous enhancement following contrast infusion strongly 

suggest GBM. MR images demonstrate the extent and location of tumor involvement, which 

can determine the feasibility of, and approach used in surgical intervention. Although recent 

clinical trials are evaluating advanced MRI techniques to improve assessment of treatment 

response in GBM (2) or to evaluate changes in tumor blood flow following treatment (3) in 

known GBM cases, MR images are not currently being used to sub-classify GBM risk 

groups. Moreover, regardless of imaging findings, a tissue diagnosis is ultimately required 

for definitive histopathologic confirmation and to distinguish from other primary and 

metastatic brain tumors. Factors currently known to be associated with survival include age 

and Karnofsky performance status (KPS) (4), as well as O6-methylguanine–DNA 

methyltransferase (MGMT) promoter hypermethylation (5) and mutations in isocitrate 

dehydrogenase 1 (IDH1) or IDH2 (6, 7). Furthermore, gene expression-based molecular 

classification of GBM (8), epidermal growth factor receptor (EGFR) amplification (9) and 

CpG island methylator phenotype (CIMP) status (10) have emerged as potential, additional 

predictors of treatment response and outcome. While such genomic characterization that 

encompasses descriptions of gene expression profiles, underlying genomic abnormalities, 

and epigenetic modification has improved the clinical assessment of GBM (8, 10–12), there 

remains an unmet clinical need for easily accessible, surrogate biomarkers able to delineate 

accurately underlying molecular activities and predict response to therapy.

Tumor molecular heterogeneity poses a challenge to the accurate understanding of the 

underlying molecular activities in GBM (13, 14). Substantial intratumoral heterogeneity 

requires analysis of multiple regions of a tumor to capture its full clonal history. Recent 

advances in imaging analysis permit 3D quantitative characterization of the imaging 

phenotype of GBM tumors (15–18) that includes this heterogeneity. The emerging field of 

imaging genomics involves mapping image features to molecular data. In pioneering work, 

investigators have linked quantitative CT image features to gene expression data of non-

small cell lung cancer to predict survival (19, 20). Similarly, a handful of groups have 
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discovered associations between imaging and gene expression modules in GBM (15), and 

built models predicting survival by correlating qualitative imaging phenotypes with gene 

expression data alone (9) or with the addition of microRNA data (21).

In this study, we sought to establish image-based biomarkers of GBM subtypes, ultimately 

enabling imaging to substitute for intensive molecular analysis. Such an image-based 

approach would avoid the risks of biopsy and more comprehensively assess intratumoral 

heterogeneity. Here, we identify three GBM subtypes differentiated solely by quantitative 

MR imaging features and show that these subtypes have prognostic relevance and reflect 

distinct molecular pathways.

Results

Three MR imaging GBM subtypes exist

MR imaging data were obtained in 265 GBM patients, split into two different cohorts: the 

development cohort for subtype identification and a validation cohort. The development 

cohort consisted of 121 patients with solitary unilateral tumors evident on MRIs. The 

validation cohort, which was used to validate findings from the development cohort, was 

comprised of 144 subjects with solitary, unilateral brain lesions subjects from The Cancer 

Imaging Archive (TCIA). Table 1 summarizes the baseline characteristics of the two 

cohorts. The selection process did not materially alter the clinical characteristics (age, sex, 

KPS) of each cohort from those of the original cohorts (tables S1 and S2). For each subject 

in each cohort we applied a quantitative imaging pipeline, extracting gray-value histogram 

statistics, textures, sharpness of lesion boundaries, and metrics of compactness and 

roughness as described in Methods, and generated 388 image features representing both 2D 

and multi-slice 2D (aggregated 2D slices) characteristics of each lesion (table S3).

Based on consensus clustering of patients’ quantitative imaging features, we chose the 

solution with k=3 as optimal, using maximal consensus matrices, the consensus cumulative 

distribution function (CDF) curve, and the CDF progression graph when the Stanford and 

TCGA cohorts were used as development and validation cohorts, respectively (Fig. 1A–C), 

and vice versa (Fig. 1D–F). The three-cluster solution induced the largest k that induced the 

smallest incremental change in the AUC (Fig. 1, C and F) while still maximizing the 

consensus within clusters (Fig. 1, A and D) and minimizing the rate of ambiguity in cluster 

assignments across 10,000 iterations (Fig. 1, B and E). This resulted in 36 development 

cohort patients in Cluster 1 (30%), 51 patients in Cluster 2 (42%), and 34 patients in Cluster 

3 (28%). When the development and validation cohorts were swapped, consensus clustering 

for k=3 yielded 25 patients in Cluster 1 (18%), 107 patients in Cluster 2 (74%), and 12 

patients in Cluster 3 (8%).

Next, we used Significance Analysis of Microarrays (SAM) (22) to identify the quantitative 

image features significantly associated with each subtype. In SAM, each feature represented 

a statistical descriptor of tumor pixel intensities and characteristics, and together they 

defined the multivariate image phenotypes (Fig. 2A, table S4). The top 24 two-dimensional 

(2D) and multi-slice 2D imaging features are in fig. S1. Cluster 1 was characterized by 

quantitative features that described the high irregularity of tumor shapes and many 
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concavities along the tumor outlines. In addition, we observed that the excluded cases from 

the development cohort with multifocal lesions (n = 76) appeared to resemble features that 

defined Cluster 1. Therefore, we defined the phenotype of Cluster 1 as the “Pre-Multifocal 

GBM Cluster” (Fig. 2A). Cluster 2 was characterized by spherical tumors with regular edges 

that were well circumscribed. We defined the phenotype of Cluster 2 as the “Spherical GBM 

Cluster” (Fig. 2A). Cluster 3 was distinguished by prominence of central hypointensity 

encompassed by a hyperintense rim. We defined the phenotype of Cluster 3 as the “Rim-

Enhancing GBM Cluster” (Fig. 2A). The aggregated multi-slice 2D renditions of the three 

clusters are shown in Fig. 2B.

In a separate analysis, we evaluated Fluid-Attenuated Inversion Recovery (FLAIR) data that 

we previously analyzed on 30 subjects (15). We determined that one quantitative FLAIR 

feature (“histogram-kurtosis”), which characterizes image homogeneity, was statistically 

significantly different among the three clusters (Kruskal-Wallis P = 0.01575).

GBM imaging subtypes confirmed in the heterogeneous validation cohort

We used the In-Group Proportions (IGP) statistic (23) to validate Clusters 1 to 3 in an 

independent, heterogeneous cohort. The IGP is a measure of cluster homogeneity and 

prediction accuracy and indicates whether a cluster in one dataset is similar to a cluster in 

another dataset; if the clusters are similar, the IGP approaches 100%. In IGP, the Pearson’s 

centered correlation coefficient between each datum and each centroid is calculated. The 

datum is then classified to the group whose centroid has the highest correlation with the 

datum. The IGP is defined to be the proportion of data in a group whose nearest neighbors 

(Pearson’s centered correlation) are also classified to the same group. All three clusters were 

statistically significant (P <0.001, <0.001, and <0.01 for Clusters 1, 2, and 3, respectively), 

denoting low probabilities that these clusters originated from a null distribution. The 

corresponding IGP values for Clusters 1 to 3 were 91%, 80%, and 80%, respectively. Only 

eight out of 144 subjects (six in Cluster 1 and two in Cluster 2) were assigned to a cluster in 

the validation cohort based on nearest neighbor assignment probabilities of less than 0.70.

Next, we used Prediction Analysis for Microarrays (PAM) (24) to define an image classifier 

on the three development cohort clusters and assign each sample in the validation cohort to 

one of the clusters. This assigned 41 validation subjects to the Pre-Multifocal Cluster 1 

(21%), 63 to the Spherical Cluster 2 (64%) and 40 to the Rim-Enhancing Cluster 3 (15%). 

Repeating these procedures for k=3 by interchanging the development and validation 

cohorts led to poor consensus within clusters (Fig. 1D) and high rates of ambiguity of cluster 

assignments across the 10,000 iterations (Fig. 1D–E). Only Cluster 1 could be validated 

using IGP (P < 0.001, IGP 81%).

Secondary analysis including midline-crossing lesions does not change clusters

To address the impact of having excluded midline-crossing lesions, we performed a 

secondary analysis that included these lesions. The addition of midline-crossing lesions 

(n=19) did not alter the distribution of clusters. Cluster assignment remained grossly 

unchanged in 116 (97%) of the original 121 subjects in the development cohort (Table S5). 

Of the additional 19 subjects, three (16%) were assigned to Cluster 1, eight (42%) to Cluster 
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2, and eight (42%) to Cluster 3. The additional samples increased the total number of 

members in Cluster 1 to 39 (28% of 140), Cluster 2 to 59 (41%), and Cluster 3 to 43 (31%) 

from 30%, 42%, and 29%, respectively. Thus, midline-crossing lesions do not form their 

own cluster, but are subsumed under the existing three clusters.

GBM imaging subtypes are prognostic of survival, independent of established or putative 
clinical and molecular markers

We correlated the imaging-based GBM subtypes with overall survival of patients in the 

validation cohort treated on the Stupp protocol (25), which is standard first-line therapy 

consisting of concomitant radiotherapy with temozolomide, followed by adjuvant 

temozolomide alone. We observed significant differences in survival probabilities for the 

three subgroups in the TGCA cohort (Fig. 2C P = 0.004, Log rank test). Pre-Multifocal 

Cluster 1 had the poorest survival rate; Spherical Cluster 2 had an intermediate rate; and 

Rim-Enhancing Cluster 3 had the best survival rate.

We further examined the correlation of these image-based clusters with established or 

putative clinical and molecular risk factors of survival in the development cohort (Table 

2A). There were no significant differences among the three clusters for age, sex, KPS, 

MGMT hypermethylation, or EGFR amplification. However, tumor volume was 

significantly different among the clusters; the smallest tumors were found in the Spherical 

Cluster 2, whereas the largest tumors were in the Rim-Enhancing Cluster 3 (P < 0.001, 

Kruskal-Wallis test) (Fig. 3). In spite of this association, tumor volume was not a sufficient 

independent predictor of the three clusters. The correlation coefficient between image-based 

subtypes and tumor volumes was 0.317 (95% CI 0.146–0.469). Moreover, in regression 

models, tumor volume was not a statistically significant predictor of image-based subtypes 

(p=0.923, p=0.0777, p=0.234 for Clusters 1, 2, and 3, respectively). Using tumor volume 

alone to predict image-based subtypes led to accuracy of 43.8%. We also found a 

nonsignificant correlation with tumor location (basal ganglia, frontal, occipital, parietal, or 

temporal) (P = 0.052, Fisher’s exact test).

We conducted a similar analysis for the validation cohort using molecular data from the 

TCGA (Table 2B). We observed no significant differences among the three clusters for age, 

sex, KPS, or other known or putative molecular factors that have been associated with 

survival, including MGMT hypermethylation, EGFR amplification, IDH mutation status, 

and CIMP.

Mapping canonical pathways to GBM subtypes

To estimate various signaling pathway activities as they pertain to the three Clusters, we 

used the Pathway Recognition Algorithm Using Data Integration on Genomic Models 

(PARADIGM) (26) to integrate gene expression and copy number variation (CNV) data of 

patients in the TCGA validation cohort. All three clusters were significantly associated with 

one or more regulatory pathways (Fig. 2D, Table 3, table S6, all false discovery rate (FDR) 

<5%). Notably, the Pre-Multifocal Cluster 1 was marked by only one association: 

upregulation of the c-Kit stem cell factor receptor pathway. The Spherical Cluster 2 was 

characterized by downregulation of 21 pathways, including c-Kit, VEGFR signaling, 
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PDGFR-α signaling, FOXA transcriptional networks, and angiopoietin (Ang)/Tie2. Lastly, 

the Rim-Enhancing Cluster 3 was differentiated by upregulation of 31 pathways, including 

canonical WNT and PDGFR-β signaling and many of the pathways downregulated in 

Cluster 2, such as VEGFR signaling, FOXA, and Ang/Tie2 (Table 3, table S6).

Discussion

We have identified three distinct clusters of unilateral, solitary GBM defined by quantitative 

MR image features. The clusters of GBM subtypes were discovered in one cohort and 

validated in a second cohort. In addition to distinguishing imaging phenotypes, or “clusters”

—which we named Pre-Multifocal, Spherical, and Rim-Enhancing—the three clusters 

demonstrated significant differences in survival probabilities and in associations with 

canonical signaling pathways. Imaging-based markers of disease phenotype may therefore 

offer actionable knowledge for clinical decision-making and therapeutic targeting.

The current clinical standard for disease relapse surveillance is tracking changes clinically 

and with MR imaging (27–29). Initial treatment for newly diagnosed GBM is maximal 

surgical resection while preserving neurologic function. However, a major challenge in the 

management of GBM is the limited number of non-surgical therapeutic options, including 

targeted therapies against molecular derangements. Our results show the potential of 

imaging features to infer upregulated molecular activities for which targeted therapies exist. 

If the effectiveness of such therapies can be demonstrated, there may be a role of such 

agents as adjuvant therapy in the post-operative setting, primary treatment in surgically 

unresectable cases, and neo-adjuvant treatment for preoperative reduction of tumor volumes.

Based on these associations with canonical signaling pathways, the imaging subtypes have 

the potential to direct targeted therapy. Specifically, the Pre-Multifocal Cluster 1 was 

associated with upregulation of the c-Kit pathway, whereas the Rim-Enhancing Cluster 3 

was characterized by upregulation of several pathways, including canonical Wnt, VEGFR, 

PDGFR, and angiopoietin/Tie2. This suggests the potential utility for patients in Cluster 1 of 

targeting c-Kit with tyrosine kinase inhibitors, such as imatinib and dasatinib. Similarly, 

while it has long been described that GBM overexpresses VEGF-A and are thus amenable to 

treatment with a VEGF inhibitor (30–37), there is strong rationale for the use of 

bevacizumab – a VEGF inhibitor – or anti-angiogenic multi-kinase inhibitors that target 

both VEGFR and PDGFR, such as sorafenib and sunitinib, in patients in Cluster 3. Clinical 

trials are currently investigating inhibitors of the Ang/Tie2 pathway, potentially expanding 

therapeutic options for members of Cluster 3 (38). These results provide intriguing data for 

retrospective validation and eventually for designing prospective clinical trials to confirm 

these hypotheses.

Conversely, absence of correlation suggests that the tumors in the cluster lack the potential 

therapeutic targets of the pathway. For instance, treatment options described for Clusters 1 

and 3 will likely be ineffective in Cluster 2. Such knowledge makes clinical trials more 

efficient and spares patients the time and risk of undergoing trials of limited likelihood of 

success. Recently Chinot et al. reported the findings of a randomized, placebo-controlled, 

double-blind, phase 3 trial of bevacizumab as first-line therapy for patients with newly 
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diagnosed glioblastoma in concert with standard chemoradiotherapy (39) and identified no 

overall survival difference in response to bevacizumab (40). As many new therapeutic 

approaches are often applied to all patients in a diagnostic category without 

individualization, or with suboptimal individualization, potential beneficial effects may be 

masked. We hypothesize that the Rim-Enhancing Cluster (Cluster 3), which upregulates the 

VEGFR signaling pathway, would be more likely to respond to bevacizumab.

The proposed imaging-based subtypes stratified survival in GBM patients treated on the 

Stupp protocol, which entails concurrent chemoradiotherapy, followed by adjuvant 

chemotherapy. Moreover, the imaging subtypes conferred survival differences, independent 

of established risk factors, thus offering additional independent prognostic information, 

similar to identifying significant factors while controlling for established risk factors. The 

quantitative MR image features used to define the three clusters thus constitute potential 

biomarkers for survival in GBM.

Our image-based clusters have the potential to be used for non-invasive treatment follow-up. 

The cluster phenotypes could be used as surrogate markers of underlying molecular 

activities for disease monitoring. In addition, the multivariate pathway activity profile can 

potentially be linked to a drug response profile. The association of distinct molecular 

activities with specific image-based GBM clusters suggests that image features alone may 

be used to track changes in disease activity, including providing insight into the natural 

progression of disease. The main technical challenge is integrating our multivariate image 

profile into the clinical workflow to assign patients to the three subtypes. Ideally, our 

methodology and image profile would be incorporated into the radiologists’ toolbox. This 

would require manual image segmentation, which is currently labor intensive.

Our study extended the earlier efforts in imaging genomics analysis of cancers. Previous 

studies have linked CT image features to gene expression data of lung cancer (19, 20) and 

MR image features with genomic data in GBM (15, 17, 21). Whereas previous work focused 

on genomic analysis before linking with an image phenotype, our study inverted this design 

by beginning with a characterization of imaging phenotypes of GBM tumors, followed by 

linking to signaling pathways. We believe that subtypes defined in this manner are more 

stable and less susceptible to sampling error resulting from assessing a limited portion of a 

molecularly heterogeneous tumor. Thus, our approach attempted to minimize the bias 

inherent in molecular sampling and maximize information captured from the entire 3D 

imaging phenotype of each tumor.

In this study we meticulously selected homogeneous study populations. We selected only 

those subjects with solitary, unilateral lesions and excluded patients with multifocal or 

midline-crossing lesions. We focused on this subset of patients with the greatest clinical 

need for imaging biomarkers that could differentiate prognostic groups and for whom 

personalization of treatment might be most beneficial. Moreover, the homogeneity of study 

subjects was designed to maximize signal detection.

However, we measured the impact of having excluded midline-crossing lesions by 

performing a secondary analysis that included these lesions. Subject cluster assignments 
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remained largely unchanged, with a 97% retention of the original assignment (table S5), 

suggesting that quantitative image features for midline-crossing lesions do not differ 

materially enough to generate their own separate cluster. Conversely, the inclusion of 

multifocal lesions remains infeasible given that their analysis would necessitate biopsies at 

each tumor focus to overcome intertumoral molecular heterogeneity, and multifocal biopsies 

and molecular features are not routinely acquired.

Next, we used a heterogeneous validation cohort from TCGA that were acquired on multiple 

scanner models from three different manufacturers at four different institutions and 

successfully validated the imaging subtypes in a real-world setting. Swapping the 

development and validation cohorts did not result in the identification of robust cluster 

generation (Fig. S1), indicating that a homogeneous cohort is necessary for learning 

subtypes, but not for assigning subjects to imaging subtypes. Nevertheless, the successful 

validation in a more heterogeneous environment highlights the robustness of the model.

We also focused only on T1 MR imaging, the most widely used MR modality in patients 

diagnosed with GBM, to allow for broader applicability and use of the model in the clinical 

setting. We identified one quantitative FLAIR feature that characterizes image homogeneity 

as statistically significantly different among the three clusters. Larger studies will become 

possible as more FLAIR data become available in the future. Future work should include 

other MRI modalities to investigate if additional subtypes exist in the presence of 

multimodal imaging data.

In summary, the three GBM subtypes discovered here were distinguished by different 

expressions of molecular pathways and survival probabilities, which open possibilities for 

target identification and therapeutic development unique to each subtype. Quantitative 

imaging features may therefore serve as potential biomarkers for defining subtypes of GBM 

and potentially other cancers.

Materials and Methods

Study Design

We sought to identify novel subtypes of GBM, differentiated solely by quantitative MR 

imaging features, and discover signature canonical signaling pathways that are molecularly 

associated with each subtype. To do this, we separately analyzed two cohorts of subjects 

with GBM (Table 1). This study analyzed data that had already been collected and did not 

involve new patients randomized to different interventions or treatments. Thus there was no 

blinding. Also, we analyzed as many subjects as possible, applying stringent inclusion and 

exclusion criteria to homogenize our study cohorts as was most scientifically reasonable. 

Since this was not a prospective study, there were no a priori power calculations performed.

In selected patient images, quantitative image features capturing the shape, texture, and edge 

sharpness of each lesion for each subject were extracted from T1 post-contrast MRI. We 

used Consensus Clustering to discover subtypes in the development cohort and performed 

10,000 iterations to achieve high robustness and to minimize cluster-selection bias resulting 

from few iterations. Regions-of-interest (ROIs) on the MR imaging study that were too 
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small (<10 pixels) to interpret were excluded. PAM and the IGP statistic were used to 

validate the reproducibility and robustness of our subtype classification in a second cohort of 

subjects (validation cohort). To map imaging subtypes to particular molecular signaling 

pathways, we performed SAM on pathway activity estimates derived from analysis of 

TCGA tumor CNV and gene expression data with the PARADIGM algorithm. We used 

SAM to correct for multiple-hypothesis testing. As described, we mitigated against biases in 

our analyses by the performance of numerous iterations of consensus clustering to ensure 

cluster stability, the use of an external validation cohort to validate our cluster findings, and 

correction for multiple hypothesis testing in SAM. Imaging subtypes were then correlated 

with survival and molecular characteristics, as well as traditional risk factors of GBM. For 

survival analysis we focused on TCGA cohort patients treated according to the Stupp 

protocol. Unlike the TCGA cohort, the Stanford cohort does not have a well characterized 

subgroup of patients who have undergone a homogeneous treatment plan (Stupp protocol), 

making the comparison of survival curves less interpretable. Because the Stanford cohort 

has undergone heterogeneous treatments due to diagnosis over a long period (2001–2010), 

meaningful survival curves could not be depicted.

Patient selection

The study was approved by Stanford’s Institutional Review Board. For the first cohort, we 

identified 364 single-institution subjects diagnosed with and treated for de novo GBM at the 

Stanford Medical Center between 2001 and 2010 and selected 121 that met the inclusion 

criteria below; this was defined as the development cohort. The second was a multi-

institutional cohort from The Cancer Genome Atlas (TCGA) project, a federally funded 

cancer-specific repository of clinical, molecular, and imaging data, in which we selected 144 

subjects out of 575 that met the inclusion criteria; this was defined as the validation cohort. 

Selection criteria for both cohorts included: i) diagnosis of de novo GBM, ii) minimum age 

of 18 years, iii) availability of preoperative MRI data, and iv) presence of solitary, unilateral 

tumors. For the development cohort alone, we further selected patients on the basis of 

similarity of their MR images with respect to machine model and slice thickness.

Quantitative imaging pipeline

MR images for the development cohort were obtained from the Stanford University Medical 

Center, whereas images for the validation cohort were obtained from TCIA, TCGA’s 

companion repository of imaging data for cases donated to the TCGA 

(www.cancerimagingarchive.net). Images from both cohorts underwent the same 

preprocessing procedures. Two blinded, board-certified neuroradiologists reached consensus 

regarding a three-dimensional tumor volume by delineating ROIs around areas of 

enhancement in each T1 post-contrast MR slice. We computed a set of quantitative image 

features, as previously reported in lung cancer and glioblastoma (15, 19), and applied the 

imaging feature extraction pipeline to the development and validation cohorts. Briefly, 

following linear normalization of image pixel intensities, our quantitative image feature 

pipeline extracted several features, including morphological characteristics, such as tumor 

shape, edge sharpness, and pixel intensity statistics on areas of enhancement from these 

ROIs. Two-dimensional and multi-slice 2D feature representation is described in 

Supplementary methods.
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Subtype discovery

We used k-means consensus clustering for unsupervised class discovery on the development 

cohort to define imaging subtypes (41, 42). We performed 10,000 bootstraps with 80% item 

resampling on the quantitative image features and used the k-means clustering algorithm 

with the Euclidean distance metric to examine all resulting clusters from 2 to 10. We 

selected the number of clusters that yielded the most stable consensus matrices and the most 

unambiguous cluster assignments across permuted clustering runs. This established the 

optimal number of intrinsic unsupervised classes as defined by image features in the 

development cohort. We analyzed the discovered clusters using SAM, where its application 

on each discovered cluster identified specific image features defining each subtype. 

Significant associations were corrected for multiple testing using a FDR threshold of ≤15%.

Validation of clusters

To validate the reproducibility of the clusters derived from consensus clustering in the 

development cohort, we used the IGP analysis to demonstrate the existence of these clusters 

in the validation cohort, as described in Supplementary methods.

Mapping canonical pathways to imaging subtypes

We used the matched molecular data in the TCGA validation cohort to assign canonical 

signaling pathways to the discovered imaging subtypes, as described in Supplementary 

methods.

Evaluating imaging subtypes for traditional risk factors

We examined the subtypes for statistically significant differences in historically associated 

risk factors, as described in Supplementary methods.

Statistical analysis

In order to ensure cluster stability in our unsupervised analysis, we performed consensus 

clustering with 10,000 iterations and used CDF and CDF progression graphs to select the 

optimal number of clusters. Statistical analysis for determining the validity and 

reproducibility of the three clusters identified in the development cohort employed the IGP 

statistic in the validation cohort. When comparing across-cluster clinical and molecular 

feature differences in each cohort, we performed the Kruskal-Wallis test for continuous 

variables and the Fisher’s exact test for categorical variables (Tables 1 and 2). Parametric 

assumptions were not made for continuous variables. (The overall sample size and counts as 

low as 0 in some cells necessitated the use of the Fisher’s exact test rather than the Pearson 

chi-square test (43, 44)). For evaluation of statistically significant imaging and signaling 

pathway features associated with each cluster, we used SAM, which adjusts for multiple 

comparisons (tables S4 and S6). We reported results for FDR <15% for imaging features 

and FDR < 5% for signaling pathways. The Kaplan-Meier survival curves were compared 

using the logrank test.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Consensus matrix, cumulative distribution function curve, and delta curve for all 
clusters
(A to C) The Stanford cohort as the development cohort and the TCGA cohort as the 

validation cohort. (D to F) The TCGA cohort as the development cohort and the Stanford 

cohort as the validation cohort. (A and D) Consensus matrices represented as heat maps for 

k=3 (Clusters 1, 2, and 3). Subjects are both rows and columns and consensus values range 

from 0 (never clustered together, white) to 1 (always clustered together, dark blue). The 

matrices are ordered by consensus-clustered groups, depicted as a dendrogram above the 

heatmap. (B and E) Cumulative distribution function (CDF) curve was one diagnostic tool 

used to select the optimal number of clusters in consensus clustering. The bottom left of the 

graph represents sample pairs rarely clustered together, whereas the upper right contains 

those almost always paired together. The middle segment represents sample pairs with 

ambiguous assignments across different clustering runs. The goal was to identify the lowest 

rate of ambiguous assignments (flat middle segment). (C and F) The delta curve depicts the 

CDF progression graph, plotting the relative change in area under the CDF curve, comparing 

k with k+1. The goal was to select the largest k that induced the smallest incremental change 

in the AUC. Data for the TCGA cohort as development, Stanford as validation, are in fig. 

S2.
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Figure 2. GBM subtypes cluster by phenotypic MRI characteristics, correlate with survival, and 
associate with molecular pathways
Three distinct image-based subtypes were derived from a development cohort (Stanford 

cohort) and validated in an independent validation cohort (TCGA cohort). (A) Imaging 

phenotypes are illustrated as simplified, representative pictograms for each cluster, although 

the multivariate combination of quantitative images features that characterize each cluster 

(table S4) cannot be fully visually exemplified. (B) Aggregate multi-slice 2D renditions of 

the three imaging subtypes (clusters). (C) Kaplan-Meier survival curves (solid lines) with 

95% confidence intervals (dotted lines) derived from TCGA survival data are shown for 

each cluster in the TCGA cohort. Survival differences across the clusters: P = 0.004, 

Logrank test (n = 37 subjects across the clusters who underwent the same Stupp protocol 

treatment regimen). Cluster 1 was characterized by the least favorable survival (n=6), 

whereas Cluster 3 was marked by the most favorable survival (n=9); Cluster 2 was 

intermediate (n=22). (D) Molecular changes associated with each cluster. Arrows indicate 
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up- or downregulation of sample pathways identified using PARADIGM. Table S6 provides 

a comprehensive list of significant regulatory pathways associated with each cluster at FDR 

< 5%.
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Figure 3. Tumor volumes demonstrated by cluster for the development cohort (Stanford cohort)
The largest tumors were in Cluster 3, and the smallest in Cluster 2 (P < 0.001, Kruskal-

Wallis test). An overlap in tumor volume is observed between Clusters 1 and 2.
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Table 1
Clinical and molecular characteristics of the development (Stanford) and validation 
(TCGA) cohorts

Clinical data for the validation cohort were available on 114 subjects, and molecular data on 107 subjects 

(missing data are noted).

Characteristic Stanford
Development Cohort

(n=121)

TCGA
Validation Cohort

(n=144)

Age, mean (SD) 64.6 (14.1) 58.5 (15.1)

Sex, n male (%) 69 (57) 73 (64)

KPS, n (%)

>70% 65 (54) 78 (68)

50–70% 44 (37) 19 (17)

<50% 11 (9) 1 (1)

Missing 1 16

Mean ± SD 71.7 ± 17 78.6 ± 12.3

Location, n (%)

Frontal 42 (35)

Parietal 23 (19)

Basal Ganglia 3 (3)

Temporal 49 (41)

Occipital 4 (3)

EGFR amplification, n (%) 21 (17) 100 (69)

  Missing 74 26

IDH1 mutation, n (%) 4 (4)

  Missing 22

MGMT hypermethylation, n (%) 27 (22) 25 (23)

  Missing 73 60

Molecular subgroups, n (%)

Proneural 32 (30)

Neural 18 (17)

Mesenchymal 31 (29)

Classical 25 (23)

Missing 1

Standard deviation is denoted as SD. Karnofsky Performance Status (KPS) is shown as three categories and a mean value. Tumor location, 

epidermal growth factor receptor (EGFR) amplification, isocitrate dehydrogenase 1 (IDH1) mutation, and O6-methylguanine–DNA 
methyltransferase (MGMT) promoter hypermethylation are tabulated as number (n) and percentage.
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Table 3
Selected pathways associated with each image-based cluster

From the complete set of pathways significantly associated with each image-based cluster (table S6) are 

selected pathways that are either specifically differentially expressed among the three clusters or among the 

top ten for the cluster by fold change.

Signaling pathway Fold
change

q-value
(%)

Cluster 1

Signaling events mediated by stem cell factor receptor (c-Kit) 1.033 0

Cluster 2

Signaling events mediated by c-Kit 0.976 0

Signaling events mediated by prolactin (PRL) 0.997 4.5

Platelet-derived growth factor receptor-alpha (PDGFR-α) signaling pathway 0.997 0

Forkhead box protein A2 (FOXA2) and FOXA3 transcription factor networks 0.991 0

Vascular endothelial growth factor receptor 1 (VEGFR1)–specific signals 0.996 4.5

Angiopoietin receptor Tie2-mediated signaling 0.988 0

Regulation of nuclear mothers against decapentaplegic homolog 2/3 (SMAD2/3) signaling 0.995 4.5

Signaling events mediated by protein-tyrosine phosphatase 1B (PTP1B) 0.995 4.5

Osteopontin-mediated events 0.995 4.5

Signaling events activated by hepatocyte growth factor receptor (c-Met) 0.994 4.5

Cluster 3

FOXA2 and FOXA3 transcription factor networks 1.013 0

PDGFR-β signaling pathway 1.013 0

Canonical Wnt signaling pathway 1.003 3.6197

VEGFR1–specific signals 1.004 0

Angiopoietin receptor Tie2-mediated signaling 1.009 3.6197

Syndecan-1–mediated signaling events 1.011 0

IL6–mediated signaling events 1.010 3.6197

Osteopontin-mediated events 1.010 0

Fc-ε receptor I signaling in mast cells 1.009 0

Alpha-M beta-2 (αMβ2) Integrin signaling 1.009 0
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