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Systems Immunology Characterization of the Interaction of Immunological Set Points and

Disease Outcomes

Elizabeth McCarthy

Abstract

Systems immunology characterizes how immune cell types interact within different
contexts to lead to immunological outcomes. Several of the tools of systems immunology are
drawn from the single-cell -omics world, fittingly since the first single-cell technology, flow
cytometry, was and is primarily used in immunology to phenotype diverse immune cell types.
Here, we present the use of single-cell transcriptomics and proteomics to take a systems
immunology approach to study how immune set points, created by genetic and environmental
exposures, affect individual immune responses in three major classes of disease, autoimmune
(rheumatoid arthritis), infection (Zika virus), and cancer (metastatic prostate cancer).

How pathogenic CD4 T cells develop to cause autoimmunity remains unknown. In the
SKG autoimmune arthritis mouse model, we profiled arthritogenic naive CD4 T cells by bulk
and single cell RNA and T cell antigen receptor (TCR) sequencing prior to arthritis onset. Our
analyses reveal that despite impaired proximal TCR signaling, a subset of SKG naive CD4 T
cells that have most recently encountered antigen more highly express gene programs associated
with positive regulation of T cell activation and cytokine signaling compared to wild type cells.

These cells also induce genes associated with negative regulation of T cell activation but for a
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subset of tolerogenic markers (e.g., lzumolr, Tnfrsf9, Bach2, Eomes, Tigit, Tox, Tox2) do so at
lesser amounts than wild type cells. Furthermore, their TCR sequences exhibit a previously
unrecognized bias towards Vbs that recognize superantigen from endogenous retrovirus (ERV)
mouse mammary tumor virus (MMTV). In arthritic joints, these biased Vbs are further expanded
and ERVs are readily detected. Inhibition of viral reverse transcription significantly reduced
SKG arthritis development. Together, our results suggest that endogenous viral products promote
autoreactive naive CD4 T cells which recognize endogenous viral superantigens to break
tolerance via changes to their transcriptome and activation state.

Although generating high neutralizing antibody levels is a key component of protective
immunity after acute viral infection or vaccination, little is known about why some individuals
generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional
single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune
response to Zika virus (ZIKV) infection in viremic human blood donors in Puerto Rico. During
acute ZIKV infection, we identify widely coordinated responses across innate and adaptive
immune cell lineages. High frequencies of multiple activated cell types during acute infection are
associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable
immune features suggesting a cytotoxic-skewed immune set point are associated with low titers.
Our study offers insight into the coordination of immune responses and identifies candidate
cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing
high levels of antiviral neutralizing antibodies.

Cancer immunotherapy has been a revolutionary anti-tumor treatment, but in prostate
cancers, and other solid tumors, the response has been limited. Sipuleucel-T, an autologous

antigen-presenting cell vaccine involving ex vivo peptide stimulation, is the only approved
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immunotherapy for advanced prostate cancer. Understanding the immunogenic and tolerogenic
myeloid cell states in prostate cancer could improve the limited immunotherapy response. We
used a genetic multiplexing strategy to simultaneously profile gene and protein expression on
single cells from ~400,000 peripheral blood mononuclear cells (PBMCs) from longitudinal
sampling of a metastatic castration-resistant prostate cancer (mCRPC) human cohort receiving
combined immunotherapy (sipuleucel-T and ipilimumab). We identified co-expressed chronic
interferon and complement gene signatures in the peripheral CD14+ myeloid compartment
which predicted immunotherapy resistance. In contrast, the responders had higher frequency of
progenitor exhausted CD8+ T cells (T ) suggesting a permissive myeloid environment requires
a productive T cell response for anti-tumor activity. Future trials could use low co-expression of
the CD14+ myeloid chronic interferon and complement gene signatures as a biomarker to select
participants who are more likely to respond to therapy and could specifically target this myeloid

state to potentially improve response to immunotherapy.
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Chapter 1: Introduction

Systems immunology utilizes a variety of technologies to generate large-scale datasets to gain
insights about the cellular states and interactions within the immune system using a combination
of bioinformatics tools and immunological expertise (1). While the cells that make up the
immune system have complex individual phenotypes and functions, the cell-cell interactions and
distribution of the total immune cell milieu across individual states, which can be captured by a
systems immunology approach, are critical to understanding immune system function and
dysfunction. Single-cell -omics are part of the bedrock of systems immunology tools.

Many of the datasets generated by single-cell -omics technologies use a similar analytical
pipeline. Here we focus on technologies used to generate single cell proteomics (mass cytometry
by time-of-flight (CyTOF) (2)), single-cell transcriptomics (single-cell RNA sequencing
(scRNA-seq) (3) and single-cell T cell receptor sequencing (scTCR-seq) (4)), and their
combination (cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)) (5).
Each experimental technology requires data quality control, normalization, and other
pre-processing steps (6,7). These single-cell data can be visualized with numerous
dimensionality reduction algorithms (8,9), and clustering algorithms (10,11) are commonly
applied to partition cells that share similar multidimensional expression profiles. Statistical
methods for differential abundances (12,13) are commonly applied to identify biological
differences across experimental conditions or groups of samples, as are methods to identify
differential expression (14) of the quantified cellular feature (e.g., protein, RNA, etc.) within
clusters of interest. Trajectory inference algorithms (15) can reconstruct differentiation or
activation processes, leveraging the single-cell nature of these data. For scTCR-seq, analytical

techniques (16) which can capture unequal distribution of clonotypes across cells such as Gini



coefficient or Shannon entropy are used to measure clonal restriction across cells within a
sample.

A fundamental question in immunology is what features and interactions within the
immune system determine a successful or unsuccessful response to an immunological
perturbation (e.g., infection, malignancy, etc.). In many contexts, immune set points have
emerged as key factors that can determine immunological responses before a perturbation.
Immune set points are determined by the interaction of intrinsic host factors (e.g., microbiome,
genetics, etc.) and the extrinsic environmental factors (e.g., previous infections, carcinogen
exposure, etc.). For example, the level of regulatory T cells was shown to be a tunable immune
set point that could be used to decrease the risk of the development of autoimmune disease in
mouse models (17). Additionally, the neonatal microbiome composition has been shown to alter
the risk of developing childhood asthma (18). Immune set points can also affect the response to
immune-mediated treatments. Indeed, a higher risk for Th17-mediated skin autoimmune disease
is associated with response to checkpoint receptor inhibitors in bladder cancer (19).
Characterizing how immune set points can affect the development of disease and the response to
treatment can reveal important biomarkers to predict disease risk or to guide treatment selection
and can also suggest potential mechanisms for disease pathogenesis.

In chapter 2, we investigate how genetic factors, namely a hypomorphic mutation in
Zap70 which impairs proximal TCR signaling in the SKG mouse, create an arthritogenic
immune set point. We used bulk RNA sequencing and single-cell RNA and TCR sequencing to
investigate the naive CD4 T cell compartment before arthritis induction. We found a defect in the
induction of peripheral tolerance and a TCR Beta Variable chain (TRBV) bias towards an

autoreactive TCR repertoire in the SKG mice compared to wild-type (WT) mice.



In chapters 3 and 4, we shift focus from mouse models to human immunology. In chapter
3, we explored how immune set points affect the maintained levels of long-term neutralizing
antibodies after a viral infection. We profiled peripheral blood mononuclear cells (PBMCs) with
CyTOF that were longitudinally sampled from participants who were infected with Zika virus
(ZIKV). A cytotoxic-skewed immune set point expressed during acute infection and after the
resolution of infection that predicted lower levels of ZIKV neutralizing antibodies 6 months
post-infection.

In chapter 4, we asked if an immune set point could predict resistance to immunotherapy
in metastatic castration-resistant prostate cancer (mCRPC). We used multiplexed CITE-seq to
profile longitudinal samples from clinical trial participants receiving combined immunotherapy
of sipuleucel-T, an antigen presenting vaccine, and ipilimumab, a checkpoint receptor inhibitor,
for mCRPC. We found a co-expressed chronic interferon and complement signature in the
peripheral CD14+ myeloid compartment which predicted resistance to immunotherapy which
could potentially inhibit the progenitor exhausted (T,.,)-like CD8+ T cell population which was

enriched in responders.
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Introduction

Activation of conventional CD4 T cells that recognize specific self-antigen(s) is thought to be
necessary for rheumatoid arthritis (RA) onset (1). A paradoxical observation from patients with
RA is that CD4 T cells can differentiate into pathogenic effector cells despite impaired TCR
signaling (2-8). Yet, how these T cells subvert tolerance to cause disease remains incompletely
understood. T cell-intrinsic mechanisms that operate during thymic development (negative
selection of self-reactive cells) and in peripheral T cells (functional unresponsiveness or
‘anergy’) are essential to maintain tolerance to self.

The SKG mouse model derived from the BALB/c genetic background is a powerful tool
to define how defects in tolerance contribute to arthritis. Due to a hypomorphic mutation in
ZAP70, a cytoplasmic tyrosine kinase critical for proximal TCR signaling, SKG mice exhibit
impaired thymocyte negative selection resulting in a break in central tolerance and escape of
self-reactive CD4 T cells into the periphery (9-12). In response to an innate immune stimulus,
arthritogenic CD4 T cells that are otherwise dormant become activated resulting in erosive
inflammatory arthritis that resembles RA (9, 13). SKG CD4 T cells are sufficient and necessary
to cause arthritis (9), and we have shown that adoptive transfer of even naive SKG CD4 T cells
(into immunodeficient hosts) are sufficient to trigger disease (10). While the SKG mice have a
known defect in central tolerance, it is unclear how SKG T cells subvert peripheral tolerance to
differentiate into pathogenic effector cells that cause frank disease in the setting of severely
impaired TCR signaling.

To address this question, we previously developed the SKGNur mouse which combines
the SKG model with a reporter of TCR signaling, Nur77/Nr4al-eGFP, that tethers GFP

expression to the regulatory region of Nr4al (encoding the orphan nuclear hormone receptor



Nur77). Because NR4AL1 is rapidly and selectively upregulated in response to antigen but not
inflammatory stimuli (14, 15), the SKGNur mouse allows us to identify antigen-activated T cells
before and during disease. We previously demonstrated that high Nur77-eGFP expression in
SKGNur mice identifies self-reactive naive CD4 T cells before disease onset with greater
potential to cause arthritis, in part, because of abnormally heightened responses to interleukin 6
(IL-6) (10) (Supplementary Fig. 2.1A). We proposed that chronic antigen stimulation of
peripheral SKG CD4 T cells results in lower levels of suppressor of cytokine signaling 3
(SOCS3)—a key negative regulator of IL-6 signaling, and showed that this mechanism may
operate in patients with RA (10). This led us to hypothesize that SKG CD4 T cells might exhibit
dysregulated expression of a broader gene program of negative immune regulators rendering
them more susceptible to stimuli that could lead to a breach in peripheral tolerance.

To test this hypothesis, we studied the TCR repertoire and transcriptome of arthritogenic
naive CD4 T cells in SKG mice by performing both bulk and single cell RNA sequencing. We
capitalized on the SKGNur model in order to capture arthritogenic (SKGNur GFP") cells before
disease onset (akin to the pre-RA phase of disease (16)). We reasoned this could reveal early
events in pathogenesis and identify novel targets to preserve tolerance and prevent disease.
Within arthritogenic naive CD4 T cells, we found a cluster of cells marked by high Nr4al
expression that upregulate gene programs associated with TCR signaling in response to
antigen-encounter. Though Nr4al high expressing SKG CD4 T cells also upregulate tolerogenic
programs, we identified a defect in the extent to which they do so relative to WT CD4 T cells.
Furthermore, TCR sequencing of the arthritogenic CD4 T cells revealed an enrichment of
variable beta (Vb) chains that recognize superantigen (Sag) from mouse mammary tumor virus

(MMTYV), an endogenous retrovirus (ERV), in BALB/c mice. We had previously shown that



these Vbs escape negative selection in SKG mice (12). Here we find peripheral T cells bearing
these Vbs are strongly associated with an activated TCR signaling program. We confirmed
enrichment of these TRBV’s in arthritogenic SKG naive CD4 T cells by TCR Vb protein
expression. Moreover, the frequency of CD4 T cells bearing Vbs that recognize MMTYV Sag are
expanded in the arthritic joints of SKG mice and may contribute to development and/or severity
of arthritis. Indeed, we find that antiretrovirals shown to suppress ERV reverse transcriptase and
MMTYV viral load (17, 18) significantly ameliorate and delay SKG arthritis onset. Our results
reveal that self-reactive SKG T cells which escape negative selection harbor an independent
defect in peripheral tolerance which, together with chronic antigen stimulation, sets the stage for
disease. Moreover, we propose a novel role for endogenous MMTYV Sag in promoting
arthritogenic T cell responses.

Results

Arthritogenic SKG Naive CD4 T Cells Display a Signature of TCR Activation

We recently demonstrated that in the SKGNur model, it is possible to identify arthritogenic naive
CDA4 T cells prior to disease onset on the basis of Nur77-eGFP expression (10). To characterize
the transcriptional program of the arthritogenic CD4 T cells (the SKGNur GFP" population)
prior to disease onset, we performed bulk RNA-sequencing on naive (CD62L"CD44°CD25")
CD4 T cells with the highest (GFP™) or lowest GFP expression (GFP") from SKG and wild-type
(SKGNur and WTNur) mice (Fig. 2.1A, Supplementary Fig. 2.1B). Principal component (PC)
analysis revealed all four subgroups are transcriptionally distinct with the component that
explains the largest amount (57%) of variance separating samples by GFP expression followed
by the second component, which explains 22% of variance, separating samples by genotype (Fig.

2.1B). Hierarchical clustering of the 991 differentially expressed genes (DEGs) between
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subgroups identified six gene modules (Fig. 2.1C). Gene ontology analysis (19) revealed
functional heterogeneity between, and in some cases within, these modules (Fig. 2.1D). To
further dissect the transcriptomic differences between WTNur GFP" and SKGNur GFP" cells,
we focused on the 260 DEGs between these two subgroups (Supplemental Fig. 2.1C-D). Cell
cycle genes (e.g., Cdca3, Cdk2nc, Mki67, primarily represented in module 1) were more highly
expressed in the SKGNur GFP" cells. SKGNur GFP" cells were also found to have increased
expression of genes (e.g., Socs 1, Tnfsfi4, 112ra, H2-Aa, H2-Ab1 represented in module 6) and
pathways associated with cytokine signaling and antigen processing compared to WTNur GFP"
cells (Fig. 2.1C-E). This signature appears to be independent of GFP expression in SKG cells
(Fig. 2.1C).

Despite their hypomorphic Zap70 allele and impaired proximal TCR signaling (9, 10,
12), SKGNur GFP" cells upregulate TCR signaling response genes, both positive (Egrl, Id3,
Icos, Irf4, Tnfrsf9, Tnfrsf4, Myb) and negative regulators (Nr4al, Nr4a3, CdS5, Folr4/Izumolr,
Tigit, Tox, Pdcdl, Lag3, Ctla4, Birc5, Nrpl) of TCR signaling (found in modules 1 and 2, Fig.
2.1C-D) compared to GFP" cells. Paradoxically, SKGNur GFP" CD4 T cells have higher
expression of pathways associated with T cell activation and signaling compared to WTNur
GFP" cells (Fig. 2.1E). Additionally, we found that genes associated with tolerogenic programs,
and induced by TCR signaling, are broadly upregulated in SKGNur and WTNur GFP" cells,
though a subset of tolerogenic genes are not as highly expressed in SKGNur GFP" T cells
compared to WT (e.g., Folr4/IzumoIr, Tigit, Tox, Lag3). The lower expression of Folr4—which
is also known as Izumo Ir and encodes Folate Receptor 4 (FR4), a specific marker of anergic
cells—suggests that perhaps SKGNur GFP" CD4 T cells may sub optimally induce anergy

and/or other tolerogenic programs. (Fig. 2.1C). Our results indicate SKGNur GFP" CD4 T cells

11



upregulate TCR activation and cytokine signaling signatures likely in response to chronic antigen
encounter but may inefficiently induce tolerogenic programs to restrain these responses.

An Enhanced TCR Signaling Program Defines a Subset of SKG GFP" Naive CD4 T Cells
The long half-life of eGFP (20) compared to the more dynamic turnover of NUR77/Nr4al
protein and transcript (21-23) (Supplementary Fig. 2.2A-C) means GFP" cells likely consist of
mixed populations of more and less recently stimulated cells. To overcome this limitation and to
understand whether the TCR signaling and effector cytokine gene modules we identified were
uniformly or heterogeneously activated in GFP" cells, we performed paired single-cell RNA and
TCR sequencing (scRNA- and scTCR-seq) on GFP" and GFP"® naive CD4 T cells from SKGNur
and WTNur mice (Fig. 2.2A). In our scRNA-seq dataset, we identify eight distinct clusters (Fig.
2.2B-C) which recapitulate and further refine our bulk RNA-seq gene signatures (Fig. 2.1) and
demonstrate pronounced heterogeneity within the GFP" population (Fig. 2.2D). While GFP"
CDA4 T cells from both SKGNur and WTNur mice were present across all eight clusters, there
was clear enrichment in the T.N4,,,,,; cluster compared to GFP" CD4 T cells by a mean of >
4-fold (Supplementary Fig. 2.2E-F). Cluster T.4N,,.,; had the highest expression of Nr4al and
eGfp (Fig. 2.2C, Supplementary Fig. 2.2F). GFP" T cells were also enriched in the

T.N4,,.01- 12> and, albeit to a lesser extent, the Cytoy,,; clusters (Fig. 2.2D, Supplementary Fig.
2.2D-F).

Given the specificity of NR4A1 (NUR77) as a reporter of TCR signaling (24), the high
expression of Nr4al in the T.N4,,,,; cluster signifies that these cells most recently encountered
endogenous antigen(s) (25, 26). Indeed, T.N4,,.,,; cells overwhelmingly up-regulate genes
associated with TCR signal transduction (e.g., Nr4al, Nr4a3, Egri-3, Tnfrsf9, Tnfrsf4, Ifr4,

Cd69, Fig. 2.2E) which most closely mirror TCR signaling genes found in module 2 of our bulk
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RNA-seq analysis (Supplementary Fig. 2.2G). In fact, several of the TCR response genes
highly expressed in cluster T.N4,,.,,; have been identified as targets of the LAT-PLCg-HDAC7
pathway (e.g., Nr4al, Egri-3, Irf4) and correlate with strength of tonic signaling (25, 26). These
TCR signaling signatures are more highly expressed in SKGNur GFP" CD4 T cells in the
T.N4,,.,.; cluster compared to those of WT (Fig. 2.2F-G), as observed in our bulk RNA-seq
dataset. This suggests the signaling impaired SKGNur GFP" cells in cluster T.N4,,,,; have,
nonetheless, responded more strongly to encountered antigen than WTNur GFP" cells.
Antigen-activated T cells Upregulate a Tolerogenic Transcriptional Program
We next investigated additional T cell transcriptomic signatures that could further illuminate how
SKGNur GFP" CD4 T cells in the setting of chronic antigen encounter may be more able to
escape tolerance and differentiate into pathogenic effector cells. Therefore, we examined the
expression of candidate genes associated with tolerance programs (27-32) within cells that have
most recently encountered antigen. We found GFP" CD4 T cells in cluster T.N4,,,,;, and to a
lesser extent in the overall dataset, upregulated genes associated with tolerogenic programs in
both WTNur and SKGNur GFP" subgroups (including Egr2, Izumolr, Pdcdllg2, Pdcdl, Lag3,
Tigit, Tox) (Fig. 2.2H, Supplementary Fig. 2.2H). This likely reflects the triggering of a
negative regulatory program in naive CD4 T cells in response to tonic TCR signaling (10, 33, 34)
driven in part by NR4A family members that have been shown to play negative regulatory roles
in peripheral T cells (22, 32, 35, 36).

However, several of these TCR negative regulators are less efficiently induced in
SKGNur GFP" cells compared to WTNur GFP" cells (e.g., Tigit, Izumolr, Eomes, Tox, Tnfisf9,
Tox2, Bach?2) (Fig. 2.2H). Therefore, in addition to a known loss in central tolerance, SKG mice

likely have an independent defect in mechanisms maintaining peripheral tolerance. This defect is
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likely derived from their impaired proximal TCR signaling capacity and may explain the reduced
frequency of anergic peripheral CD4 T cells we previously observed in SKGNur mice (10).
SKG’s Hyperresponsiveness to IL-6 is Pre-programmed Transcriptionally

IL-6 production in SKG mice is indispensable for SKG arthritis development (37, 38).
Recognition of major histocompatibility complex/self-peptide complexes, stimulate
antigen-presenting cells (APCs) to secrete IL-6 (38). We previously found that SKGNur GFP" T
cells were more responsive to IL-6 and more readily produced IL-17 in the most autoreactive T
cells, in part due to lower levels of SOCS3 (suppressor of cytokine signaling 3) — a critical
negative regulator of IL-6 (10) (Supplementary Fig. 2.1A). In our current study, we found that
genes associated with IL-6 signaling machinery and the Th17 pathway were uniquely enriched in
SKGNur GFP" T cells (39) in the T.N4,,,,; cluster (Supplementary Fig. 2.2I).

SOCS3 is downregulated in naive CD4 T cells in response to antigen (40) and in patients
with RA (10, 41). Its expression has a strong inverse correlation with murine arthritis severity
(42-44). Therefore, we examined the expression of SOCS family members in our single cell
dataset. Of these family members, Socs3 was specifically downregulated in SKGNur GFP" cells
within the T.N4,,,,; cluster (Supplementary Fig. 2.2I). Moreover, we found a striking inverse
correlation between the expression of Nr4al and Socs3 (Fig. 2.21), corresponding to a published
report (40). The inverse correlation between Nr4al and Socs3 expression in SKGNur GFP" T
cells within the T.N4,,.,,, cluster provides orthogonal validation of our previous results. It
highlights the interdependence between signaling via the TCR and heightened sensitivity to

cytokines such as IL-6 (10).
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T.N4y,,,; Cells Segregate into Two Distinct TCR Signaling Modules

To explore heterogeneity within cluster T.N4,,,,;, we performed co-expression analysis with the
highly variable genes (HVGs) and Nr4al. We identified three distinct modules of HVGs that
positively correlated with Nr4al (Fig. 2.3A). Genes from two of these modules, Egr family
members (immediate early gene transcription factors) and 7nfrsf9 (4-1BB — the TCR inducible
co-stimulatory receptor), uniquely identified distinct subsets of cells within the T.N4,,.,,; cluster
(Fig. 2.3B, Supplementary Fig. 2.3A). The Egr module contained additional immediate early
genes or markers of early T cell activation (e.g., Egrl, Egr2, Cd69, ler2, Egr3, Nfkbid, Junb,
Fos, Myc, Cd40lg), whereas the Tnfrsf9 module correlated with markers that upregulate in
response to prolonged TCR signaling (e.g., Pou2f2, Myb, Tnfrsf4, Lag3) (Fig. 2.3C,
Supplementary Fig. 2.3B).

Cells that expressed Egr2 had increased expression of genes enriched in pathways
induced early after TCR stimulation (0.5h and 1h), whereas Tnfrsf9 expressing cells had
increased expression of genes enriched in pathways upregulated after prolonged TCR stimulation
(24h and 72h, Fig. 2.3D). Our findings suggest the T.N4,,.,,; cluster contains subclusters driven
by their TCR signaling kinetics (early vs prolonged stimulation). Interestingly, the tolerogenic
genes that are inefficiently induced in SKGNur GFP" T cells within the T.N4,,,,; cluster
compared to those of WT are also lower in the subset of the Tnfisf9 high SKGNur GFP" T cells,
which seem to have undergone prolonged stimulation, compared to the corresponding WT subset
(Fig. 2.3E). This further suggested a defect in the upregulation of tolerogenic gene programs in
SKGNur GFP" CD4 T cells in response to prolonged TCR stimulation rather than simply a

compositional shift of SKGNur GFP" T cells away from the prolonged TCR stimulation state.
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To examine other covariates which could lead to segregation of early versus prolonged
antigen-activated T cells, we performed cell-cycle analysis on our dataset. Though cell-cycle
appeared to contribute somewhat to the heterogeneity among the T.N4,,.,,; cluster, as Tnfrsf9
expressing cells were more likely to be in S phase (Supplementary Fig. 2.3C), it did not fully
account for the division between Egr family member and Tnfrsf9 expression.

Cell States and Trajectories of T.4Ny,,.,; Cells have a Distinct Distribution in SKGNur GFP"
Subset

We next asked if the early versus prolonged TCR signaling states in the T.N4,,,; cluster
represented endpoints of a trajectory. We discovered a continuum of cell states in the T.N4,...;
cluster using latent time based on RNA velocity (45) (Fig. 2.4A). The expression of the Egr
family peaks in earlier latent time cells, while the expression of Tnfrsf9 and associated genes
peak in later latent time cells (Fig. 2.4B-C).

We separated the cells into four cell states labeled “Stage 1™ to “Stage 4” from earlier to
later latent time (Fig. 2.4D, Supplementary Fig. 2.3D-E). The RNA velocity vector field
(Supplementary Fig. 2.3F) and trajectory inference analysis (46) supported a trajectory from
Stage 1 to Stage 4 (Fig. 2.4E). The expression of Egr2 and Nr4al peak within cells from Stage 1
while the expression of Tnfrsf9 peaks within cells from Stage 4 (Fig. 2.4F), and the genes
overexpressed in Stage 1 and Stage 4 cells are enriched for early or prolonged TCR stimulation
pathways, respectively (Supplementary Fig. 2.3G). Thus, these cell states seem to be the
endpoints of a trajectory of cell states from early to prolonged TCR stimulation.

Cells from SKGNur GFP" and WTNur GFP" groups had significantly different distributions
across latent time with a higher density at earlier latent time for the SKGNur GFP" cells, which

also had an increased odds of being in Stage 1 versus Stage 4 compared to WTNur GFP" cells
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(OR = 1.25, p = 0.02). No significant difference was observed between the GFP® subgroups
(Fig. 2.4G-H).

We hypothesized this imbalance may result from slower progression of SKG cells
through the stages or higher input into, due to higher proliferation, Stage 1 in the SKG pool. The
cells from SKGNur GFP" and WTNur GFP" within stage 1 did not have a significant difference
in their distribution across cell cycle (p = 0.24) suggesting the SKGNur GFP" cells in stage 1 do
not have higher proliferation. While this result favors our slower progression hypothesis, the two
hypotheses are not mutually exclusive. Slower progression of the SKGNur GFP" cells would
suggest that SKG CD4 T cells have a defect in peripheral tolerance induction—a program which
is upregulated as the cells progress through the stages—and could explain the reduced frequency
of anergic cells observed in SKG mice (10).

Naive SKGNur GFP" CD4 T Cells Demonstrate a Biased TCR Beta Variable Gene (TRBV)
Repertoire

We have previously shown that the SKGNur GFP" cells have increased self-reactivity and ability
to proliferate in response to an undefined endogenous antigen(s) (10). Thus, we asked how their
TCR repertoire might contribute to their activation in the periphery. We examined the TCR
repertoire using scTCR-seq (Fig. 2.2A) and detected paired TCR o (TRA) and TCR B (TRB)
genes in 86% of cells (Supplementary Fig. 2.4A). Using Gini coefficient analysis, we did not
find oligoclonal expansion in the naive T cells in any of the samples, including all the SKGNur
samples. Instead, we found that SKGNur GFP" cells T cells demonstrate a biased TCR variable
B gene (TRBV) usage, but not TCR variable a gene (TRAV) usage (Fig. 2.5A-C, Supplementary
Fig. 2.4B). In SKGNur GFP" CD4 T cells compared to the paired SKGNur GFP" samples, we

found significantly higher (FDR < 0.1) usage of TRBV26 (corresponding to TCR variable beta 3,
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Vb3, protein), TRBV12-1 (VbS), TRBV15 (Vbl12), TRBV16 (Vbll), TRBV3, and TRBV29 (Vb7).
Each of these TRBV genes also had a higher mean frequency in SKGNur GFP" cells compared to
WTNur GFP" cells (Fig. 2.5A,C-D).

Polyclonal Vb expansion occurs in the presence of superantigen (Sag) in both humans
and mice (47, 48). The TRBYV genes enriched in SKGNur GFP" T cells mark Vbs that recognize
endogenous retroviral (ERV) Sag from mouse mammary tumor virus (MMTYV) (Fig. 2.5E)
(49-51). We confirmed that our SKG colony harbors all three endogenous MMTYV proviruses
(Mtv-6, Mtv-8, Mtv-9) known to be present in BALB/c mice (49, 50, 52, 53) (Supplementary
Fig. 2.4C). Exogenous MMTYV infection can stimulate cell proliferation and facilitate infection
by increasing the number of cell targets, but Sag expression from endogenous Mtv leads to
clonal T-cell deletion in the thymus and resistance to infection owing to the absence of Vb targets
(54). However, due to impairment in SKG TCR signaling, thymic clonal T-cell deletion in
response to endogenous Mtv Sag is incomplete (12) allowing for partial escape of these Vb
targets into the periphery. In contrast to the TRBV genes uniquely enriched in SKGNur GFP"
cells, TRBV genes for Vbs that are not MMTYV Sag targets in BALB/c (e.g., TRBV19/Vb6,
TRBV13-2/Vb8, TRBV31/Vbl14) are not enriched in SKGNur GFP" T cells (Fig. 2.5C,
Supplemental Fig. 2.4D). These results reinforce not only that negative selection is defective in
SKG mice, but also that encounter with endogenous MMTYV Sag in the periphery further biases
the TRBV repertoire in SKGNur GFP" CD4 T cells since the SKGNur GFP" cells did not show a
bias of the MMTYV Sag reactive TRBV repertoire.

SKGNur GFP" cells in the T.N4,,,,, cluster also demonstrate enrichment of several of the
MMTYV Sag Vb targets (e.g., TRBV15 (Vbl2), TRBV16 (Vbll) Supplementary Fig. 2.5A-D).

Interestingly, MMTYV Sag in the periphery fails to induce the peripheral deletion observed with
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MMTYV reactive cells that are not deleted in the thymus (55). Instead, the peripheral encounter
with MMTYV Sag likely drives Nr4al expression and the paradoxically activated transcriptional
states for the cells with Vbs that recognize MMTYV Sag within the T.N4,,.,,; cluster
(Supplementary Fig. 2.5A-D).

SKGNur GFP" CD4 T Cells are Enriched for Vbs Driven by MMTV Sag(s)

To validate our scTCR-seq results, we examined the distribution of TCR Vb protein levels in
SKGNur and WTNur peripheral CD4 T cells prior to arthritis initiation using commercially
available antibodies against a subset of candidate Vbs (gating strategy Supplementary Fig.
2.6A). We found that the Vb protein abundances paralleled the transcript abundances observed in
our scTCR-seq dataset. T cells expressing Vb3, Vb5, Vbl (corresponding to TRBV26, -12,-16
respectively) are significantly enriched in SKGNur GFP" peripheral naive CD4 T cells from
lymph node (LN) (Fig. 2.5F-G) and spleen, whereas Vbs that are not MMTYV Sag targets (e.g.,
Vb6, Vb8, Vbl4 corresponding to TRBV'19, -13, -31 respectively) are not enriched in SKGNur
GFP" cells (Supplementary Fig. 2.6B-C).

Vb enrichment in SKGNur GFP" T cells subset may be driven by Sag encounter in the
periphery and even the joints. Indeed, we found that BALB/c specific Mtv proviruses are
detectable in SKG joints (Supplemental Fig. 2.7A). Therefore, it is feasible that intra-articular
MMTYV Sag expression could engage and enrich for SKG T cells uniquely expressing these
MMTYV target Vbs (Vb3, Vb5, and Vbl11) during arthritis. To investigate this hypothesis, we
induced moderate to severe inflammatory arthritis in SKG mice (Supplementary Fig. 2.7B) and
examined Vb usage in CD4 T cells harvested from regional joint draining LN (dLN) and arthritic
joints. We found an increased frequency of MMTYV Sag targets Vb3, Vb5, and Vbl1 in the

arthritic joints compared to the periphery (Fig. 2.6A-B), but not of the Vbs unresponsive to
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BALB/c MMTYV Sag (Supplementary Fig. 2.7C). The CD4 T cells bearing Vbs known to
respond to MMTYV Sag had significantly higher NUR77-eGFP mean fluorescence intensity
(MFI) compared to CD4 T cells with Vbs that do not respond to MMTYV Sag (p = 0.002, Fig.
2.6C). Furthermore, we found a significantly higher frequency of Vb3, Vb5, and Vbll1 in
SKGNur GFP" T cells infiltrating the arthritic joints compared to GFP" cells in the joint and to
GFP" cells from the dLN (Fig. 2.6D-E, Supplemental Fig. 2.7D). This further enrichment
suggests SKG CD4 T cells with these particular Vbs encounter intra-articular antigen (10). This
enrichment in the joint was not observed in SKGNur GFP" T cells expressing Vb6, Vb8, and
Vb14 (Supplementary Fig. 2.7C, E-F).

Antiretroviral therapy ameliorates SKG arthritis: We next assessed whether cDNA synthesis of
endogenous MMTYV retroelements impact SKG arthritis development. Mice were treated with a
combination of antiretrovirals, emtricitabine and tenofovir (Truvada), which are nucleotide and
nucleoside reverse transcriptase inhibitors, respectively, or vehicle control prior to and during
arthritis development (Fig. 2.6F). MMTYV reverse transcriptase is sensitive to these commercially
available compounds which prematurely terminate nascent cDNA synthesis during reverse
transcription (17, 18) and may result in decreased viral protein expression. Antiretroviral
treatment significantly reduces arthritis severity (p = 0.0037) and delays disease onset (p =
0.0016) in SKG mice treated with zymosan (Fig. 2.6G-I). These data support the idea that
MMTYV Sag expression contributes to arthritis disease activity in the SKG mouse model.
Discussion

In this study, we directly probed the gene expression and TCR repertoire in enriched naive
arthritogenic SKG CD4 T (i.e., SKGNur GFP" T cells) cells before arthritis onset. We identified

a subset of these cells (T.4Ny,,,;) that upregulate TCR signaling gene programs compared to WT
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cells despite their hypomorphic Zap70 allele and impaired proximal TCR signaling. This TCR
signaling gene signature is likely driven by chronic endogenous antigen encounter marked by
upregulation of LAT-PLCg-HDACT7 pathway targets (e.g., Nr4al, Egri-3, Irf4) (25, 26). How
these SKG cells then break tolerance and produce a focused autoimmune phenotype has been a
long-standing puzzle. Results presented in this study address this fundamental question.

Our findings provide multiple lines of evidence that arthritogenic SKG CD4 T cells
harbor a defect in peripheral tolerance, independent from their break in central tolerance.
Induction of negative regulators by TCR activation fine-tunes and restrains T cell responses in
normal T cells, enforcing peripheral tolerance, and limiting immunopathology (56-59). However,
we found that arthritogenic SKGNur GFP" CD4 T cells that have severely defective TCR
signaling, despite evidence of chronic endogenous antigen encounter, inefficiently and/or
incompletely upregulate genes within the tolerogenic program in response to TCR signaling
compared to WT cells (e.g., Eomes, Tnfrsf9, [zumolr, Bach2, Tigit, Tox, Tox2). This aberrant
transcriptional program may permit their activation and differentiation into pathogenic effector
cells.

Second, using RNA velocity analysis to create a latent time axis for cells that have most
recently encountered antigen (T.4Ny,,,;), we found arthritogenic SKG CD4 T cells are
overrepresented in cells expressing early TCR gene signatures (Stage 1) and may not efficiently
transition along the trajectory of cell states to express genes associated with prolonged, and
perhaps more robust, TCR signaling (Stage 4). Cells in the latter stage appear to more efficiently
upregulate genes associated with tolerogenic programs (e.g., lzumolr, Bach2, Tigit, Tox, Tox2).

Third, endogenous MMTYV Sag Vb targets in SKG not only escape negative selection in

the thymus (central tolerance), but also avoid expected peripheral deletion by endogenous
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MMTYV Sag expression (55). Previous examinations of the peripheral TCR Vb repertoire in SKG
mice had not identified oligoclonal expansion of a particular Vb before or after arthritis
development (60). Here we describe a previously unknown TCR Vb bias in the peripheral naive
SKG repertoire. The Vbs enriched in SKGNur GFP" T cells suggest their repertoire is further
influenced in the periphery by Sag encounter and are further expanded in arthritic SKG joints.
The Sag target Vbs that infiltrate arthritic joints significantly upregulate Nur77-eGFP compared
to CD4 T cells bearing Vbs that do not recognize MMTYV Sag. The expansion of Sag target Vbs
in the SKG arthritic joint and their upregulation of Nur77-eGFP are both likely driven by
intra-articular MMTYV Sag encounter. This begs the question whether MMTYV Sag contributes to
arthritis development in SKG mice. We found that inhibition of ERV reverse transcriptase (with
Truvada) in arthritic SKG mice significantly ameliorates and delays onset of SKG arthritis.
Together our data suggests a previously unrecognized role for endogenous Sag in SKG arthritis
development.

We propose a model drawn from these and previous results (9, 10, 12, 60) in which
inefficient negative selection results in the escape of a portion of the self-reactive biased
repertoire (marked by Vbs responsive to MMTV Sags) that is further enriched in the periphery
through chronic (super)antigen encounter. Although naive SKG CD4 T cells can upregulate
negative regulators of TCR signaling in response to endogenous antigen encounter, due to weak
proximal TCR signaling they are unable to efficiently and fully upregulate these programs
resulting in an independent defect in peripheral tolerance and reduced numbers of anergic cells
(10). Furthermore, Treg peripheral tolerance mechanisms are also severely impaired due to their
attenuated TCR signaling and their altered Treg repertoire (11), releasing another checkpoint on

arthritogenic T cells. We propose that costimulatory molecules such as IL-6, and perhaps other
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cytokines, promote T cell survival and lower the TCR signaling threshold required for peripheral
activation and differentiation, thereby allowing the activation of naive SKG T cells that failed to
upregulate TCR signaling-induced tolerogenic programs (61-63). Therefore, the biased
self-reactive TCR Vb repertoire unique to SKGNur GFP" CD4 T cells, together with their
activated transcriptional state, allow for an innate immune stimulus to trigger these cells to
become potential initiators, or amplifiers, of disease. Future studies will determine whether these
Vbs are sufficient, and/or necessary, to initiate or exacerbate SKG arthritis and the extent of the
role of endogenous MMTYV Sags in SKG arthritis development. These findings have relevant
implications in human autoimmune disease, where endogenous or foreign antigens can also
prime ‘dormant’ autoreactive T cells and trigger disease, and may provide new insights in human
RA (64-66), and other autoimmune arthritides (67-69), where T cells bearing particular Vbs have

been reported to be expanded and retained in the synovial microenvironment.
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Figure 2.1 Pre-arthritic naive SKG T cells demonstrate enhanced T cell activation

(A) Experimental scheme of bulk RNA-seq analysis. (B) Principal component analysis (PCA)
based on transcriptomic data from bulk RNA-seq data shows distribution of SKGNur and
WTNur GFP® and GFP" CD4 naive T cell subsets as shown in (A) (n=3 per subgroup). (C)
Heatmap showing expression of 991 significantly differentially expressed genes (DEGs, absolute
value(log2(fold-change)) > 1, adjusted P value < 0.05) from pairwise comparisons for all
samples grouped by subgroup. Hierarchical clustering was used to group DEGs into 6 modules
(indicated by dendrogram and row annotation color bar on left). (D) Dot plot of select pathways
from gene ontology analysis for each gene module from (C) with dot color indicating adjusted P
value and dot size proportional to number of genes in overlap between pathway genes and
module genes. (E) Enrichment plots of TCR signaling and cytokine pathways from GSEA
analysis of all GO:BP pathways for ranked genes from SKGNur GFP" and WTNur GFP"
differential expression analysis. FDR, false discovery rate. NES, normalized enrichment score.
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Figure 2.2 Single-cell RNA sequencing unveils heterogeneity among naive CD4 T cells with
a subset marked by genes associated with TCR signaling

(A) Experimental scheme of paired scRNA- and TCR-seq of sorted GFP" and GFP" naive
(CD62L"CD44"°CD25-) CD4 T cells. (B) Uniform manifold approximation and projection
(UMAP) of 99,074 naive T cells derived from 8 samples (2 replicates each for GFP" and GFP"
subsets from WTNur and SKGNur). Cells are colored and annotated by merged leiden clusters
assignment. (C) Stacked violin plot with a kernel bandwidth of 0.5 of log normalized expression
of marker genes for each annotated cluster. Vertical axis scale is from 0 to 5 for each cluster.
Black box highlights T.4N,.,; cluster and red box highlights genes uniquely expressed in
T.4Ny,,.; cluster. (D) UMAP of cells separated by subgroup (GFP" and GFP" subgroups from
WTNur and SKGNur). (E) Volcano plot of DEGs from cells in T.4N,.,; cluster versus other
cells. Dots are colored by significant overexpression (absolute value(log2(fold-change)) > 1,
adjusted P value < 0.05) in T.4N,.,; cluster (red), other cells (dark gray), or no significant
difference (light gray). Labeled genes are colored by their role in regulation of TCR signaling
either positive (red) or negative (blue). (F) Volcano plot of DEGs from SKGNur GFP" versus
WTNur GFP" in T.4N,,,,; cluster. Dots are colored as significantly overexpressed (absolute
value(log2(fold-change)) > 0.2, adjusted P value < 0.05) in WTNur GFP" (orange), SKGNur
GFP" (blue), or not significantly different between groups (gray). Labeled genes involved in
TCR signaling are colored as indicated in (E). Heatmap shows average expression of the labeled
genes by subgroup normalized by standard scale (subtract minimum and divide by maximum)
for each gene. (G) Enrichment plots of TCR activation and signaling pathways from GSEA
analysis of all GO:BP pathways for ranked genes from differential gene expression analysis of
SKGNur GFP" versus WTNur GFP" cells from T.4Ny,,,; cluster. FDR, false discovery rate.
NES, normalized enrichment score. (H) Stacked violin plot of expression of candidate anergy
and exhaustion associated genes in WTNur and SKGNur GFP" and GFP" CD4 naive cells from
T.4Ny,..; cluster normalized by standard scale for each gene. Color bar indicates annotation
[anergy (blue), anergy/exhaustion (purple), exhaustion (red)] for each gene. Heatmap shows
average expression of the same genes by subgroup also normalized by standard scale for each
gene. (I) UMAP of all cells colored by expression of the indicated genes. Scale is for the
log-normalized gene expression.
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Figure 3
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Figure 2.3 T.N4,,,,, cells segregate into two distinct TCR signaling modules that segregate
acute from chronic antigen-activated T cells

(A) Correlation matrix shows hierarchical clustering of Spearman’s correlation of top 25 highly
variable genes (HVG) that positively and negatively correlate with Nr4al expression across all
cells. Diagonal gray boxes represent correlation of 1. Dark gray boxes mark distinct gene
modules from genes that positively correlate with Nr4al expression. (B) UMAP plots show the
expression levels of indicated marker genes positively correlating with Nr4al as identified in
(A). Scale represents the log-transformed normalized counts of genes. (C) Volcano plot shows
DEGs for cells in T.4N,,,; cluster that expressed (log normalized expression > 1) Egr2 or
Tnfrsf9 with dots colored by significant overexpression (absolute value(log2(fold-change)) > 0.5,
adjusted P value < 0.05) in Egr2 (tan) or Tnfrsf9 (teal) expressing cells. (D) Enrichment plots
from GSEA analysis of study GSE17974 pathways of time course in vitro activation of CD4+ T
cells with aCD3 + CD28 for ranked genes from differential gene expression analysis of cells in
T.4Ny,..; cluster that express Egr2 versus Tnfrsf9. FDR, false discovery rate. NES, normalized
enrichment score. (E) Heatmap of average expression of exhaustion and anergy genes from
WTNur and SKGNur GFP" cells expressing Egr2 or Tnfrsf9 in T.4N,,,,; cluster normalized by
standard scale for each gene. Color bar indicates annotation [anergy (blue), anergy/exhaustion
(purple), exhaustion (red)] for each gene.
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Figure 4
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Figure 2.4 Trajectory analysis of T.4Ny,4,, cells orthogonally uncovers acute versus chronic
antigen-activated T cell states with a distinct distribution in the SKGNur GFP" subset

(A) UMAP of cells from T.4N ., cluster colored by latent time assigned by the scvelo
dynamical modeling algorithm. (B-C) Smoothed gene expression from cells in T.4Nyy4,; cluster
of selected genes with highest expression earlier (B) or later (C) along latent time axis. (D)
Probability densities of latent time distribution of cells from T.4N,,,,; cluster assigned to 4
distinct clusters (labeled “Stage 17 — “Stage 4”) by a Gaussian mixture model. (E) Predicted
transitions from PAGA algorithm between cells from stages indicated in (D). (F) Heatmap of
single cell standard scale normalized expression of genes ordered top to bottom by peak
expression at earlier to later latent time. Chosen genes are the top 300 highest confidence genes
used in modeling of latent time. Column annotation bar indicates stage assignment of the cell in
each column. (G-H) Probability densities of latent time distribution for GFP" (G) and GFP" (H)
cells from WTNur and SKGNur mice (P = 0.002 and P = 0.11, respectively,
Kolmogorov-Smirnov test).
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Figure 5
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Figure 2.5 SKG CD4 T cells harbor a biased TCR variable beta gene repertoire

(A-B) Scatter plot of mean frequency of cells expressing each TRBV (A) or TRAV (B) gene for
the SKGNur GFP" samples versus the WTNur GFP" samples. Dots for each TRBV and TRAV
genes are sized according to the FDR from a one-sided paired t-test comparing frequency in
SKGNur GFP" versus SKGNur GFP". Dots are colored as either significantly enriched (FDR <
0.1) in SKGNur GFP" (dark blue), significantly enriched in SKGNur GFP" (light blue), or not
significantly enriched in either subgroup (black). Dots for significant TRBV genes are labeled
with the TRBV gene name. Labels for TRBV genes that were significantly enriched in SKGNur
GFP" and were also more highly expressed in SKGNur GFP" samples versus WTNur GFP"
samples are bolded. (C) Bar plot of mean value of cells expressing each TRBV gene as a
percentage of all cells in each sample with an assigned TRBV. Bars are colored according to
subgroup and ordered with the TRBV genes enriched in SKGNur GFP" from (A) followed by
the other TRBV genes ordered by increasing overall frequency. (D) Bar plots of frequency of
cells expressing the indicated TRBV genes significantly enriched in SKGNur GFP" for the two
replicate mice in each subgroup. (E) Table depicting H-2 haplotype, expected Mtv pro-virus, its
Vb specificity and base pair (bp) size on gel for Balb/c and C57BL/6 mice. (F-G) Representative
FACS plots (F) of naive peripheral CD4 T cells with indicated TCR Vb protein usage
determined by flow cytometry in GFP" and GFP" T cells from LN of WTNur and SKGNur mice
prior to arthritis induction and quantified in (G) where bar graphs depict mean frequency (+
SEM), n = 3-4 mice per group, experiment repeated at least 3 times. Significance indicated by
asterisk for FDR (paired t-test) or P value (exact permutation test) < 0.05 (*), <0.1 (**).
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Figure 6
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Figure 2.6 Arthritogenic CD4 T cells are enriched for TCR Vbs likely driven by
endogenous superantigen(s)

(A-B) Representative FACS plots (A) of peripheral naive or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in CD4 T cells from draining LN
or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan (as seen in
Supplementary Fig. 2.7B) and quantified in (B) where bar graphs depict mean frequency (+
SEM). (C) Bar graphs of GFP mean fluorescence intensity (MFI) of CD4 T cells bearing
indicated Vbs from arthritic joints of SKG mice, n = 7 mice pooled from 2 experiments. (D-E)
Representative FACS plots (D) of peripheral naive or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in GFP" (light blue) and GFP"
(dark blue) T cells from LN or joints of SKGNur mice 2.5 weeks after arthritis induction with
zymosan and quantified in (E) where bar graphs depict mean frequency (= SEM), n = 7 mice per
group pooled from 2 experiments. (F) Experimental set-up: SKG mice were treated with Truvada
(n = 12) or vehicle control (n = 8) at day -16 prior to arthritis induction with i.p. zymosan on day
0. (G) Arthritis score in SKG mice from experimental set-up in (F). (H) Bar graph depicting area
under the curve (AUC) of arthritis scores from (G). (I) Arthritis free survival plotted as Kaplan
Meier Curve from experimental set-up in (F). Significance indicated by asterisk [< 0.05 (*), <
0.1 (**), or <0.001 (***)] for FDR (paired t-test) or P value from exact permutation test (B and
E), linear mixed effect model (C), unpaired t-test with Welch’s correction (H), or log-rank
Mantel-Cox test (I).
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Supplemental Figure 1
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Supplementary Figure 2.1 SKGNur GFP" CD4 T cells readily differentiate into pathogenic
effector cells

(A) 2 x 2 matrix demonstrates how impaired TCR signaling observed in SKG mice (left y-axis,
due to the hypomorphic Zap70 allele), in addition to chronic antigen stimulation (x-axis,
resulting in higher levels of Nur77eGFP demarcated by GFP™) confer heightened sensitivity to
IL-6 cytokine signaling, in part due to decreased levels of SOCS3. This contributes to the
increased arthritogenicity observed in the autoreactive T cell clones that more readily
differentiate into IL-17 producing CD4 T cells in SKG mice. (B) Gating for bulk RNAseq
sorting of WTNur and SKGNur lymphocytes. (C) Bar plot of number of DEGs from WTNur
GFP" and SKGNur GFP" cells contained in each gene module from Fig. 2.1C. (D) Volcano plot
of DEGs for SKGNur GFP" versus WTNur GFP". DEGs are colored by module membership
from gene modules in Fig. 2.1C.
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Supplemental Figure 2
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Supplementary Figure 2.2 NUR77/Nr4al identifies naive CD4 T cells that have recently
encountered endogenous antigen resulting in a unique transcriptional program

(A-C) CD4 T cells were stimulated + plate bound aCD3e + CD28 at indicated times. Levels of
NUR?77 and eGFP are depicted in representative histogram from 2 experiments (A) and MFI fold
change (FC) quantified in (B) from 3 biological replicates. (C) Real-time RT-PCR measuring
Nr4al and eGfp mRNA levels in stimulated CD4 T cells from 3 biological replicates, from 2
independent experiments. (D) UMAP colored by density of cells for each of the four subgroups
(each subgroup contains samples from 2 mice). (E) Bar plot of mean frequency for each
subgroup of cells within each cluster. Black bars indicate the difference between mouse 1 and
mouse 2 for each subgroup. (F) Expression of labeled genes for each cluster is shown by
percentage of cells with expression greater than zero (dot size) and mean expression for cells
with nonzero expression (color). (G) Heatmap normalized by standard scale (subtract minimum
and divide by maximum) by column of average single cell gene set scores for each cluster
(excluding cluster 8 — Cytoyy,;) for the gene sets defined by the modules from Fig. 2.1C. (H-J)
Stacked violin plot demonstrates standard scale normalized expression of candidate anergy and
exhaustion associated genes (H), Th-17 and IL-6 associated genes (I), and Socs family members
(J) in WTNur and SKGNur GFP* and GFP" CD4 naive T cells in all cells (H) or in T.4N,, .,
cells (I-J). Heatmaps on the right for each panel show mean expression of the indicated genes
across subgroup normalized by standard scale for each gene.
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Supplemental Figure 3
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Supplementary Figure 2.3 Highly variable genes that positively and negatively correlate
with Nr4al in T.4N,,,,; cluster and trajectory analysis of their underlying states

(A) Hierarchical clustering of correlation matrix of top 25 HVGs that positively and negatively
correlate with Nr4al expression in T.4Ny,.,,; cells using Spearman’s correlation. Diagonal gray
colored boxes represent correlation of 1. Dark gray boxes mark modules of HVGs that highly
correlate with Nr4al expression. (B) Correlation matrix of HVGs that positively correlate with
Egr2 and Tnfrsf9 expression in T.4Ny,,,, cells using Spearman’s correlation. Diagonal gray boxes
represent correlation of 1. (C) UMAP of cells from the T.4N,,,; cluster colored by cell cycle
phase assignment. Bar plot of % of cells in each cell cycle stage for cells expressing Egr2 or
Tnfrsf9 (log-normalized expression > 1). (D) Probability density of latent time distribution of all
cells in T.4Ny,,; cluster. (E) Line plots for the Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC) for the Gaussian mixture model deconvolution versus number of
underlying distributions or clusters. (F) UMAP colored by cell stage as defined in Fig. 2.4D with
an overlay of RNA velocity vectors for cell transitions as determined by the scvelo dynamical
model. (G) Enrichment plots from GSEA analysis of study GSE17974 pathways of time course
in vitro activation of CD4+ T cells with CD3 + CD28 for ranked genes from differential gene
expression analysis of T.4Ny,,,; cluster cells in Stage 1 versus Stage 4. FDR, false discovery rate.
NES, normalized enrichment score

41



Supplemental Figure 4
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Supplementary Figure 2.4 SKGNur mice express superantigens involved in

selection of TCR variable beta repertoire

(A) Bar plot with percent of cells with paired TRA and TRB detection by cluster. (B) Bar plot of
mean frequency of cells expressing each TRAV gene as a percentage of all cells in each sample
with an assigned TRAV. Bars are colored according to subgroup and ordered by increasing
overall frequency. (C) BALB/c and SKG tail DNA used in PCR reactions containing primers
specific for the indicated Mtv pro-viruses. (D) Bar plots of frequency of cells expressing the
indicated TRBV control genes not uniquely enriched in SKGNur GFP" cells for the two replicate
mice in each subgroup.
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Supplemental Figure 5
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Supplementary Figure 2.5 Further enrichment of biased TRBV in SKGNur GFP" T.4N,,,.;
cells

(A) Scatter plot of mean frequency of cells expressing each TRBV (left) or TRAV (right) gene
for the SKGNur GFP" versus the WTNur GFP" T.4N,,,,, cells. Dots for each TRV gene are sized
according to the false discovery rate (FDR) from a paired one-sided t-test comparing frequency
in SKGNur GFP" versus SKGNur GFP". Dots are colored as either significantly enriched (FDR
<0.1) in SKGNur GFP" (dark blue), significantly enriched in SKGNur GFP" (light blue), or not
significantly enriched in either subgroup (black). TRBV genes that were significantly enriched in
SKGNur GFP" and were also more highly expressed in SKGNur GFP" versus WTNur GFP"
T.4Ny,,,; cells are bolded. (B) Bar plot of mean value of T.4N,,,,; cells expressing each TRBV
gene as a percentage of all T.4Ny,,,; cells in each sample with an assigned TRBV. Bars are
colored according to subgroup and are ordered with the TRBV genes enriched in SKGNur GFP"
T.4Ny,..q; cells (see A) followed by the other TRBV genes ordered by increasing overall
frequency. (C) Bar plot of mean value of T.4N,,,,; cells expressing each TRAV gene as a
percentage of all T.4Ny,,,; cells in each sample with an assigned TRAV. Bars are colored
according to subgroup and are ordered by increasing overall frequency. (D) Bar plot of frequency
of cells expressing indicated TRBV genes significantly enriched in SKGNur GFP" T.4N,,,,; cells
(see A) for the two replicate mice in each subgroup.
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Supplemental Figure 6
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Supplementary Figure 2.6 TCR Vbs unresponsive to BALB/c MMTYV superantigen do not
expand in peripheral T cells marked by TCR signaling reporter

(A) Flow cytometry gating used to identify GFP" and GFP" populations in naive
(CD62LMCD441°) and memory (CD44"CD62L°) CD4+CD25- T cells for Vb identification in
WTNur and SKGNur lymphocytes. (B-C) Representative FACS plots (B) of naive peripheral
CD4 T cells with indicated TCR Vb protein usage determined by flow cytometry in GFP" and
GFP" T cells from LN of WTNur and SKGNur mice prior to arthritis induction and quantified in
(C) where bar graphs depict mean frequency (= SEM), n = 3-4 mice per group, experiment
repeated at least 3 times. Significance indicated by asterisk for FDR (paired t-test) or P value
(exact permutation test) < 0.05 (*), < 0.1 (**), or <0.001 (**%*).
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Supplemental Figure 7
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Supplementary Figure 2.7 TCR Vbs unresponsive to BALB/c MMTYV superantigen do not
expand in SKG CD4 T cells after arthritis induction

(A) DNA was used from SKG joints + arthritis in PCR reactions containing primers specific for
the indicated Mtv pro-viruses. Lanes 26 show PCR mixtures lacking template DNA. C57BL/6
tail DNA was used as a positive control for Mtv-8, -9, -17 and a negative control for M#v-6.
Molecular size markers are shown in lane 1. Each gel is representative of at least 3-4 biological
replicates per condition and genotype. (B) Arthritis score in SKGNur mice =+ i.p. zymosan (red)
or PBS (gray), n=4 mice in each group, representative of at least 3 experiments. (C) Bar graph
depicts mean frequency (= SEM) of peripheral naive or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in CD4 T cells from draining LN
or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan (as seen in B). (D-F)
Representative FACS plots of peripheral naive or memory, or joint CD4 T cells with indicated
TCR Vb protein usage determined by flow cytometry in GFP" (light blue) and GFP" (dark blue)
T cells from LN or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan and
quantified in Fig. 2.6E or (F), respectively, where bar graphs depict mean frequency (+ SEM), n
=7 mice per group pooled from 2 experiments. (C, F) Significance indicated by asterisk for P
value (exact permutation test) or FDR (paired t-test) < 0.05 (*), < 0.1 (**), or <0.001 (**%*),
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Materials and Methods

Antibodies and Reagents. Ghost Dye Violet 510 (Tonbo Biosciences: 13-0870-T100) was used
for live/dead staining. The following antibodies were used for staining as indicated:
CD3e-BUV395 (BD Bioscience: 563565, clone: 145-2C11), CD4-APCeFluor 780 (eBioscience:
47-0042-82, clone: RM4-5), CD25-PerCPCy5.5 (Tonbo 65-0251-U100, clone: PC61.5),
CD44-PE-Cy7 (BioLegend: 103030, clone: IM7), CD62L-BV711 (BioLegend: 104445, clone:
MEL-14), TCR VB3-PE (BD Bioscience: 553209, clone: KJ25), TCR VB5.1/5.2-PE (BD
Bioscience: 562088, clone: MR9-4), TCR VB6-BV421 (BD Bioscience: 744590, clone: RR4-7),
TCR VB8-BV421 (BD Bioscience: 742376, clone: F23), TCR VB11-PE (BD Bioscience:
553198, clone: RR3-15), TCR VB14-Biotin (BD Bioscience: 553257, clone: 14-2),
Streptavidin-BV421 (BioLegend: 405226), FOXP3-eFluor 660 (eBioscience: 50-5773-82, clone:
FIK-16s).

Mice. BALB/c and C57BL/6J mice were purchased from Jackson laboratory, and
BALB/cNur77-eGFP and SKGNur77-eGFP mice were bred in our facility (University of
California, San Francisco) as previously described (10). All mice were housed and bred in
specific pathogen-free conditions in the Animal Barrier Facility at UCSF according to the
University Animal Care Committee and NIH guidelines. All animal experiments were approved
by the UCSF Institutional Animal Care and Use Committee.

Flow Cytometry and Cell Sorting. Cells were stained with antibodies of the indicated
specificities and analyzed on a BD LSR Fortessa flow cytometer. Flow cytometry plots and
analyses were performed using FlowJo v.10.8.0 (Tree Star). Cells were sorted to >95% purity

using a MoFlo XDP (Beckman Coulter).
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Murine Synovial Tissue Preparation. Synovial tissues from ankle joints were digested with 1
mg/mL Collagenase IV (Worthington: LS004188) and DNase I (Sigma: 4536282001) in RPMI
1640 medium for 2 h at 37 °C on a rotator then quenched with 10% fetal bovine serum in RPMI
1640 medium; digested cells were filtered through a 70 um nylon mesh to prepare single cell
suspensions.

Surface and Intracellular Staining. After live/dead staining with Ghost Dye Violet 510 as per
manufacturer’s instructions, cells were stained for surface markers, washed, and then fixed for 10
min with 4% (vol/vol) fresh paraformaldehyde at room temperature protected from light. Cells
were then permeabilized using the Mouse Regulatory T-Cell Staining kit 1 (eBioscience:
00-5521-00) per manufacturer's instruction and then stained with FoxP3 e660.

In vivo Treatments. Arthritis: Zymosan A (Sigma-Aldrich) suspended in saline at 10 mg/mL
was kept in boiling water for 10 min. Zymosan A solution (2 mg) or saline was intraperitoneally
injected into 8—12-week-old mice. Antiretroviral therapy: 5—7-week-old SKG mice were
administered Truvada combination therapy with emtricitabine (Sigma-Aldrich) and tenofovir
disoproxil fumarate (Acros organics) in a 1:1 ratio (0.5 mg/mL in diH20O for each drug) or
vehicle control. Solution was added to the drinking water supply and changed once per week.
Mice were also given an intraperitoneal bolus injection x1 of Truvada (~160 mg/kg) or vehicle
control in 200 ul PBS at start of treatment. Drinking water dosage with Truvada or diH20
continued throughout the arthritis course.

Statistics. Flow cytometry data were analyzed by comparison of means using paired or unpaired
2-tailed Student’s #-tests using Prism v.9.2.0 or v.9.3.1 for Mac (GraphPad Software). Unpaired
t-test with Welch’s correction was used to calculate differences in arthritis scores and log-rank

Mantel-Cox test used to calculate differences in Kaplan Meier Survival. Data in all figures
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represent mean £ SEM unless otherwise indicated. Differences were considered significant at P
<0.05: *P<0.05, **P <0.01, ***P <0.001, and ****P < (.0001.

PCR and RT-PCR. BALB/cJ, C57BL/6J, and SKG tail DNA was typed for Mtv-6, -8, -9, and
-17. Standard PCR protocols were used for preparing PCR mixtures. Primer pairs for the
detection of MMTYV proviruses were previously described (55). GAPDH primers used: (5'
CATGTTTGTGATGGGTGTGAACCA 3" and (5' GTTGCTGTAGCCGTATTCATTGTC 3).
PCR mixtures for Mtv-6, -8, and -9 were incubated at 94°C for 5 min, then denatured for 44
cycles at 94°C for 1 min, annealed at 46°C for 1 min, polymerized at 72°C for 1 min, and then
incubated at 72°C for 5 min. PCRs for M¢#v-17 were conducted similarly except for an annealing
temperature of 50°C. Samples were run on 2% agarose gel.

RT-PCR with Joints. Single cell suspensions of synovial tissues from SKG ankle joints were
spun down at 1500 RPM at 4C. Cell pellets were flash frozen using dry ice in ethyl alcohol.
Frozen cell pellets were used with the RNeasy Mini Kit (Qiagen: 74106) for RNA purification.
The gScript cDNA Synthesis Kit (Quantabio: 95047-100) was used for cDNA library synthesis
from purified total RNA. RT-PCR was conducted as described previously for PCR.

Bulk RNA Sequencing. Negatively selected CD4 T cells from the lymph node were sorted for
CD62L"CD44"°CD25 and the 10% highest (GFP™) or lowest (GFP") expressing T cells. Cells
were washed, pelleted and immediately flash frozen using dry ice in ethyl alcohol. Samples were
processed for bulk RNA-sequencing by Q2 solutions using the TruSeq Stranded mRNA kit
(ITlumina: RS-122-2103) for library preparation. The resulting libraries pool into three batches
and sequenced on a Illumina HiSeq 2500 sequencer over three lanes.

Alignment and Initial Processing of Bulk RNA Sequencing Data. The raw fastq files were

clipped and filtered using fastq-mcf v.1.04.636 to remove low quality reads and bases,
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homopolymers, and adapter sequences. The filtered reads were aligned using the STAR v.2.4
(70) with the default settings to the mm10 transcriptome and the resulting bam files were
converted to count matrices for each sample with RSEM v.1.2.14. Genes with less than 10 counts
across all the samples were filtered out. Raw counts were normalized and transformed by the
variance stabilizing transformation (VST) function from DESeq2 v.1.22.2 (71).

Principal Component Analysis. The VST normalized features were used for principal
component analysis with the function plotPCA from DESeq?2.

Bulk RNA Sequencing Differential Expression. Differential gene expression for the bulk RNA
sequencing samples was performed with the raw counts from the filtered gene list for the
indicated samples as the inputs. The analysis was run using a negative binomial model with
multiple testing correction with Benjamini-Hochberg implemented via the DESeq function
which includes an internal normalization from DESeq2. For differential gene expression between
samples within the same genotype, mouse identity was included as a covariate.

Functional Enrichment Analysis. The collection of 991 significantly differentially expressed
genes (log2FC > 1 and adjusted p value < 0.05) from the four comparisons [SKGNur GFP"
versus SKGNur GFP® , WTNur GFP" versus WTNur GFP, SKGNur GFP" versus WTNur
GFP", SKGNur GFP" versus WTNur GFP"] were hierarchically clustered using the Ward
linkage (“ward.D2”) with the R package pheatmap v.1.0.12. The resulting dendrogram was used
to partition the differentially expressed gene list into six gene modules. The gene lists for each
gene module were analyzed using the functional profiling g:GOSt tool from g:Profiler (version
el02 egd9 pl5 e7ff1c9) with g:SCS multiple testing correction method applying significance
threshold of 0.05. Select significantly enriched pathways from the GO:BP or KEGG collections

were reported.
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Gene Set Enrichment Analysis. For the bulk RNA differential expression, the differential gene
list was filtered to remove genes with NA for the adjusted p value or log fold change. For the
single-cell RNA differential expression, the differential gene list was filtered to only include
genes which were expressed in at least 1% of cells in the T.4N,,,; cluster. These filtered gene list
were used to create ranked gene lists with the sign(log fold change) times the -log10(raw p
value) as the ranking metric. The ranked list was used as input to look for gene set enrichment in
the indicated collection of pathways in the ‘classic’ mode with the GSEAPreranked tool from
GSEA v.4.1.0 with the default settings. For pathway collections of human genes, the

‘Mouse Gene Symbol Remapping Human Orthologs MSigDB’ chip file was used to map
mouse genes from the ranked gene list to the human orthologs. Mouse gene symbols that mapped
to the same human symbol were collapsed based on the max rank.

Single-cell RNA and TCR Sequencing. Negatively selected CD4 T cells from the lymph node
and spleen were sorted for CD62L"CD44"°CD25" and the 10% highest (GFP™) or lowest (GFP")
expressing T cells. Droplet-based paired single-cell RNA and TCR sequencing was performed
using the 10x single-cell 5°’+V(D)J v.1 kit per manufacturer's instructions. The resulting cDNA
libraries were sequenced on four lanes of an Illumina Novaseq 6000 sequencer to yield gene
expression (GEX) and T cell receptor (TCR) fastgs.

Alignment and Initial Processing of Single-cell Sequencing Data. The raw fastq files were
aligned using CellRanger v3.0.1 and 3.0.2 software with the default settings to the mm10
transcriptome with the addition of the sequence for the eGFP transcript and the vdj GRCm38 v
3.1.0 reference for the GEX and TCR fastgs, respectively.

eGFP Transcript Sequence.

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG
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GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGC
CACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCC
CTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCC
CGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA
GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGA
AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAG
GAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGT
CTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA
CAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA
TCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCC
TGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACC
GCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA

Cell Type Classification and Clustering. We filtered out 721 cells with less than 100 or more
than 3000 genes detected and filtered out 14,388 genes detected in less than 3 cells. We also
filtered out 1,066 cells with more than 10% of total counts (UMIs) mapping to mitochondrial
genes and 1008 cells determined to be contaminating B cells based on CD19 expression. The raw
counts were normalized to 10,000 counts per cell and log(count + 1) transformed. For technical
and batch correction, we regressed out total UMI counts and % counts mapping to mitochondrial
genes and used combat for batch correction with each sample as a batch. We identified 1119
highly variable genes (excluding all Trav and Trbv genes to avoid clustering cells based on
expression of those genes) which were scaled and used with the default settings in scanpy v.1.4.3

(72) for PCA analysis followed by leiden clustering after nearest neighbor detection and UMAP
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projection. This analysis identified 13 clusters which we collapsed into 9 cell subtypes based on
differential gene analysis.

Single-cell Differential Expression Analysis. Single-cell differential expression was performed
using the log-normalized gene counts with the rank genes groups function from scanpy with the
Wilcoxon rank-sum method and multiple testing correction with Benjamini-Hochberg.
Additionally, the adjusted p values that were equal to 0 were updated to the minimum
representable positive normalized float (2.2250738585072014¢-308).

Cell Cycle Phase Assignment and Module Scoring. To assign cells to the cell cycle phases, the
log-normalized scaled gene counts were used with the score_genes_cell cycle function from the
scanpy v.1.5.1 package with the Mus musculus G1/S DNA Damage Checkpoints and G2/M
Checkpoints gene lists from the REACTOME database being used for the genes associated to the
S phase and genes associated to the G2M phase (73, 74), respectively. For the single cell scoring
of the bulk RNA sequencing gene modules, the log-normalized scaled gene counts were used
with the score_genes function from scanpy.

RNA Velocity Analysis. For each 10x well, we used velocyto v.0.17.17 (75) to create a loom file
with the spliced, unspliced, and ambiguous counts with the Dec. 2011 GRCm38/mm10 repeat
masking gtf file from the UCSC genome browser (76, 77). The loom files across all wells were
merged and then subsetted to all cells in the T.4Ny,.,,; cluster. The resulting object was used to
determine the RNA velocity and to predict the latent time for each cell using the 1119 HVGs
with the dynamical model from scvelo v.0.2.1.

We used we used a Gaussian mixture model with the GaussianMixture tool from sklearn v.0.23.1
(78) to deconvolute the underlying individual Gaussian distributions from the latent time

distribution for cells from the T.4N,,.,,; cluster. This separated the cells into an optimal number of
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4 distributions or clusters as determined by the elbow of the Bayesian Information Criterion
(BIC) and Akaike Information Criterion (AIC) plots.

The smoothed gene expression versus latent time was modeled using a linear generalized
additive model using default settings with the LinearGAM function from pygam v.0.8.0 (79).
For trajectory inference between the four clusters (“Stage 17 — “Stage 4”), we used the
graph-based tool PAGA within scvelo to predict velocity-inferred transitions among the clusters.
The latent time distributions from different subgroups were compared using the
Kolmogorov-Smirnov test. The cell cycle distributions between subgroups within stage 1 were
compared using Pearson’s chi-squared test.

TCR Analysis. Cells with <=2 TRA chains and <=1 TRB chains were used in the TCR
clonotype analyses (47). Cells with two TRA chains were removed for the TRBV and TRAV
analyses since the highest frequency for any dual TRA was 0.09% in any one sample (~1 cell).
This removed 10,598 cells or 13.6% of all cells which is consistent with the expected dual TRA
frequency. TRBV and TRAV genes which were not present in at least two mice from the same
subgroup (i.e., SKGNur GFP" WTNur GFP" SKGNur GFP*, and WTNur GFP") were
removed from the downstream TRBV and TRAV analyses.

Significant differences in the TRBV frequencies between subgroups was determined by exact
permutation test for unpaired samples and exact permutation test (N > 5 paired samples) (80) or
paired t-test (N <= 5 paired samples) using scipy v.1.4.1 followed by Benjamini-Hochberg
correction with statsmodels v.0.11.1 for paired samples.

Significant difference in GFP mean fluorescence intensity (MFI) for cells assigned TRBVs in the

enriched or not-enriched groups was determined with a linear mixed effect model GFP MFI ~
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TRBV group (enriched or not-enriched) + mouse id with a random intercept for each TRBV

protein.
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Introduction

Infection of pregnant individuals with Zika virus (ZIKV), a flavivirus primarily transmitted to
humans via the bite of an infected mosquito, can lead to persistent viral replication in the
placenta and fetal brain that is associated with devastating fetal neurologic outcomes (1-4). In
contrast, for the majority of non-pregnant immunocompetent adults, ZIKV virus is rapidly
cleared from the plasma (5-9), and infection is accompanied by mild symptoms such as fever,
rash, and joint pain or can be asymptomatic (10,11). Since the recent 2015-2016 epidemic in the
Americas, there has been a considerable effort towards the development of a ZIKV vaccine,
particularly for the prevention of mother-to-child transmission of infection (12—14). The majority
of ZIKV vaccine candidates aim to induce durable, high-titer neutralizing antibody responses,
which confer protection in animal models (15,16).

Natural infection with ZIKV in humans generates robust ZIK'V-specific antibody
responses (11,17); however, there is wide inter-individual variation in the levels of ZIKV-specific
antibodies that persist in the serum (11,18). Immunity to subsequent infection with ZIKV is
likely to be influenced by the magnitude and durability of the ZIKV neutralizing antibody
response (17,19,20), but little is known about the factors that contribute to inter-individual
variation in antibody responses. There is substantial cross-reactivity between virus-specific
antibodies (18,21,22) and T cell responses (23-25) generated after infection with ZIKV and
those from the closely-related and often co-circulating dengue virus (DENV). However, prior
DENYV exposure alone does not appear to explain the wide range of ZIKV antibody titers
observed after natural infection (18).

For other pathogens, baseline immune characteristics and/or signatures of early immune

responses acutely after infection or vaccination have been shown to correlate with the magnitude
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of pathogen-specific antibody titers (26—33). Some aspects of the innate cytokine and cellular
immune responses to ZIKV infection have been described in humans (34—40). However, the
relationship between the acute-phase immune response and the generation of ZIK'V-specific
antibodies has not been characterized. This is in part due to the inherent challenges in identifying
and establishing longitudinal cohorts of individuals identified during the earliest days of the
acute phase of a natural infection.

Here, we used high-dimensional single-cell profiling with mass cytometry (CyTOF) to
deeply characterize the cellular innate and adaptive immune response during acute and
convalescent ZIKV infection. We evaluated longitudinal peripheral blood samples collected from
25 individuals in a natural history cohort of healthy, non-pregnant adults from Puerto Rico who
were found to be viremic with ZIKV at the time of blood donation during the recent ZIKV
epidemic of 2015-2016 (9,41,42). We found broadly coordinated cellular responses across
immune cell lineages during acute ZIKV infection and identified distinct cellular immune
signatures during acute ZIKV infection that were associated with the development and
persistence of low versus high neutralizing antibody titers. In addition, we identified stable
immune features that comprise a cytotoxic immune set point associated with low neutralizing
antibody titers. Future vaccine efficacy trials for ZIKV and other acute viral infections may
benefit from the inclusion of these candidate cellular biomarkers to aid in the prediction of
neutralizing antibody titers, and additional strategies may be required to elicit stronger antibody

responses in individuals with cytotoxic-skewed baseline immune set points.
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Results

Identifying Immune Cell Populations that Respond to Acute ZIKV Infection

To characterize the cellular immune response to acute ZIKV infection, we designed two CyTOF
antibody panels to phenotype innate immune and B cell features (panel 1) and T cell features
(panel 2; see Table 3.1). We used these panels to analyze peripheral blood mononuclear cells
(PBMC:s) collected longitudinally at up to three timepoints during acute, early, and late
convalescent phases of infection from 25 otherwise healthy blood donors in Puerto Rico who
were found to be viremic for ZIKV at the time of blood donation (“index visit”; study
participants are part of a larger REDS-III cohort; Fig. 3.1A, Table 3.2). 28% (7 of 25) of the
participants were female, and the median age was 45 years (range 21-71). All participants
mounted a detectable ZIKV IgM, IgG, and neutralizing antibody response (reported as the 80%
neutralization titers: NTy; Fig. 3.1B). Although all participants were viremic at the index visit,
68% (17 of 25) had not yet formed ZIKV-specific IgM responses. Of the participants with a
collection visit at the first (“acute””) PBMC collection timepoint (median 8 days after index),
100% had formed IgM antibodies and 22% (5 of 23) had residual detectable plasma viremia.
There was substantial variation in both peak neutralizing antibody titers (ZIKV NTg, titers:
84-37,872) and follow-up titers 6 months after the index visit (0-6,286).

We first characterized how acute ZIKV infection perturbs the frequency and activation of
different immune cell types in peripheral blood. We manually gated major landmark immune cell
populations defined by standard lineage markers (e.g., classical [CD14+] monocytes,
non-classical [CD14-CD16+] monocytes, plasmacytoid dendritic cells [pDCs], classical DCs
[cDCs], CD56™¢"dim NK cells, CD4+ T cells, CD8+ T cells, B cells, etc.) and classically-defined

adaptive immune cell subsets (see Supplementary Fig. 3.1 for gating strategy and Table 3.1 for
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mass cytometry antibodies). We first evaluated the relative abundance of 40 cell types (landmark
populations and adaptive immune subsets). We then evaluated the Boolean expression of 30
different phenotypic surface and intracellular proteins on these parent cell types, which yielded a
total of 286 unique phenotypic features (see Table 3.3 for phenotypic features).

To broadly determine how the immune state is perturbed in the context of ZIKV
infection, we performed principal component analysis (PCA) on the manually-gated CyTOF
features (adjusted for age and sex). We mapped the trajectories across the three timepoints in
PCA space for each individual ZIK V-infected participant (Fig. 3.1C) as well as 8 control
ZIKV-uninfected blood donors (black triangles). While there was variation between individuals,
most participants followed a similar general trajectory from right-to-left along PC1 as they
progressed from acute to convalescent ZIKV infection (not observed across longitudinal
sampling of 6 separate ZIKV-uninfected individuals; Supplementary Fig. 3.1D). The number of
days between the index and the acute timepoint negatively correlated with the total distance
traveled in PCA space across the top five PCs as well as the value of PC1 at the acute timepoint
(Fig. 3.1D). These correlations suggest that both the PC1 coordinate and the distance traveled
correspond to movement in virtual infection space as participants resolve their ZIKV infection.
To understand which cellular features contributed to this coordinated movement over time, we
used linear mixed effect modelling on the age- and sex-adjusted feature abundances. While the
frequency of most major immune cell types did not change significantly across the three sampled
timepoints (Supplementary Fig. 3.2A-B), 128 of the 286 phenotypic features did change
significantly across the three sampled timepoints (p_adj<0.05; Fig. 3.1E). The vast majority
(95%) of these changing features were elevated at the acute timepoint and decreased in

abundance by the late convalescent timepoint. A subset of these features initially remained
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elevated at the early convalescent timepoint, while others decreased sharply between the acute
and early convalescence stage (e.g., most populations expressing Ki-67 and CD71).

To leverage the richness of our high dimensional single cell dataset, we performed
unsupervised clustering using the SCAFFoLD algorithm that we have described previously,
which associates cell clusters with user-defined landmark populations (43,44). We observed high
concordance in the frequency of the pre-defined landmark immune cell populations between our
manual gating and SCAFFoLD approaches (Supplementary Fig. 3.2C-D). Linear mixed effect
modeling demonstrated that 15 of 34 clusters assigned to innate immune cell types and 23 of 56
clusters assigned to adaptive immune cell types (innate immune and B cell clusters from CyTOF
Panel 1, T cell clusters from Panel 2) changed significantly in abundance as a percent of their
parent landmark population over time (Fig. 3.1F-G). We again observed diversity in the
direction and speed with which clusters changed in abundance over the three timepoints.

Innate Immune Cell Activation in Acute ZIKV Infection

Little is known about the innate immune response to acute ZIKV infection in humans.
Intermediate (CD14+CD16+) monocytes have been shown to increase in the peripheral blood of
children with acute infection and are themselves a major target for ZIKV infection (37,45). In
adults, we also observed a transiently elevated level of intermediate monocytes during acute
ZIKYV infection (Fig. 3.2A; see Supplementary Fig. 3.1 for gating). Intermediate monocytes in
acute infection expressed higher levels of activation markers (Fig. 3.2A). Manual gating and
unsupervised clustering analyses revealed that acute infection was also associated with activation
in the broader classical (CD14+) monocyte population (which includes CD14+CD16+
intermediate monocytes; Fig. 3.2B) as well as non-classical (CD14-CD16+) monocytes

(Supplementary Fig. 3.3A).
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To understand how the expression of activation markers was coordinated on monocyte
populations transiently increased in acute infection, we used our clustering analysis to investigate
co-expression on individual cells contained within the classical CD14+ monocyte cluster (cluster
49) with the greatest median relative change in frequency (-75%) from the acute to late
convalescent timepoints (Fig. 3.2C). This revealed three modules of markers with coordinated
expression patterns: (1) a proliferative module (Ki-67, CD71, and CD38), (2) an early activation
module (HLA-DR, CD86, PD-1, and CD69), and (3) a monocyte maturation/differentiation
module (CD16, CD11c, CD40, and CD4; Fig. 3.2C). Thus, with unsupervised analysis we
identified distinct modules, representing activation/differentiation states, of transiently expanded
monocytes.

The proportion of activated cDCs and pDCs was also increased in acute infection, and
several activation markers were co-expressed on the cDC cluster with the greatest relative
decrease in abundance as infection resolved (Supplementary Fig. 3.3B). Amongst NK cells,
acute infection was associated with increased proliferation and activation in both CD56€" and
the more cytotoxic CD56%™ NK cells which resolved during convalescence (Supplementary
Fig. 3.3C). Collectively, these data demonstrate that acute ZIKV infection is characterized by the
activation and differentiation of diverse innate immune cells.

Accumulation of Activated T and B Cells in Acute ZIKV Infection

The population of HLA-DR+CD38+ CD8+ T cells has been found to be enriched for
antigen-specific CD8+ T cells in other acute infections (46—48). Acute ZIKV infection was
accompanied by a profound accumulation of cycling, activated non-naive CD8+ T cells
co-expressing HLA-DR and CD38 (Fig. 3.2D-E). Indeed, our clustering analysis revealed that

the expression of multiple activation markers on CD8+ T cells in acute ZIKV infection was
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tightly co-regulated on small sub-populations. The majority of HLA-DR+CD38+ CD8+ T cells
were contained within three clusters of CD8+ T cells that expressed the highest levels of other
activation markers (e.g., Ki-67, ICOS, CTLA-4, TIGIT, CD25) and were only transiently
increased in acute infection (summed median frequency of ¢75, 66, 34 across time: 7.1% =>
3.1% => 1.6%; Fig. 3.2F). Acute ZIKV infection was also associated with a transient increase in
the abundance of small sub-populations of cycling and activated non-naive CD4+ T cell subsets
and cytotoxic-skewed v T cells (Supplementary Fig. 3.4).

Using two established and correlated (Supplementary Fig. 3.5A) methods for
identifying B cell populations that are actively secreting antibodies (CD38hiCD20neg
plasmablasts and CD71hiCD20neg “Antibody Secreting Cells” [ASCs] ((49)), we noted a
significant decrease in the frequency of these cells between acute infection and early/late
convalescence (Fig. 3.2G-H). Phenotypically, a larger proportion of ASCs and other B cell
subsets expressed the transcription factor T-bet, which has been associated with B cell responses
to viral infections (50), during acute infection compared to early and late convalescence
(p_adj=0.02; Fig. 3.2H, Supplementary Fig. 3.5C).

An increased frequency of CD20hiCD71hi “Activated B Cells” (ABCs) has also been
described in other acute infections in humans (49,51). We observed a significant decrease over
time in the proportion of ABCs expressing Ki-67, FCRLS, and CD40 (Fig. 3.2H). Overall,
multiple subsets of B cells transiently expressed several activation markers in acute ZIKV
infection (Supplementary Fig. 3.5B-C). Finally, the expression of CD21 was lower on the two
IgD- memory B cell populations during acute ZIKV infection (Supplementary Fig. 3.5C),

which may identify cells recently exited from a germinal center (52).
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Coordinated Activation of Innate and Adaptive Immune Cells in Acute ZIKV Infection

We next asked how these immune parameters during acute infection were coordinated to
understand the intercellular dynamics that mediate the observed active immune response. We
focused on the acute timepoint from 17 individuals without detectable anti-ZIKV IgM at their
index visit to limit the variation in the data collected from participants, who may have been
sampled at a different number of days following infection. We first interrogated features enriched
for antigen-specific cells and found the frequencies of ASC B cells and CD38+HLA-DR+
non-naive CD8+ T cells were positively correlated (Spearman’s r=0.61, p=0.01; Fig. 3.3A).

We broadly characterized the relationships of the acute-phase cellular features by
computing correlations between all cellular features at the acute timepoint, revealing 279 feature
pairs that were positively correlated and 66 that were negatively correlated during acute ZIKV
infection (p_adj<0.05). To focus on the correlations that were exclusive to acute ZIKV infection,
we separated the feature pairs that were uniquely correlated during acute ZIKV infection,
designated as “unique” (n=169), from the remainder — labeled as “shared” — which were
correlated both during acute infection as well as in the uninfected samples (n=176; Fig. 3.3B).
Compared to the shared correlations, the unique correlations during acute ZIKV infection were
more likely to be between features from different major landmark populations (odds of
correlations being between features belonging to different/the same landmark populations
amongst unique [105/64] versus shared [68/108] correlations; odds ratio [OR] 2.60 [95% CI:
1.65-4.12]; Fig. 3.3C). The unique correlations were also more likely to be between (rather than
within) adaptive and innate immune features (OR 2.77 [1.54-5.10]). Thus, during acute ZIKV
infection, there was more coordination across arms of the immune system (e.g., significant

unique correlation between CD38+ pDCs and CD38+ Thl CD4+ T cells (r=0.79, p_adj=0.03;
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Fig. 3.3D). We also found that within the positive correlations, the unique correlations were
more likely to be between different markers (OR 2.27 [1.31-3.98]) (e.g., CD40+ ¢DCs and
Ki-67+ double negative (DN; CD27-IgD-) B cells (r=0.78, p_adj=0.03; Fig. 3.3D)). Together
these findings suggest that during acute ZIKV infection, there is broad coordination of the
expression of a diversity of activation markers across adaptive and innate immune cell types.

Individuals Exhibit Inversely Correlated Cellular Immune Signatures During Acute ZIKV
Infection

We next asked if there were inter-individual differences between study participants that may help
to explain the variable outcomes of acute infection, such as the large differences in neutralizing
antibody titers. Indeed, the feature pairs uniquely correlated during acute infection were more
likely to be negatively correlated across study participants compared to those shared with the
uninfected state (OR 3.80 [2.03-7.42]; Fig. 3.3B-C). For example, uniquely in acute ZIKV
infection, we observed negative correlations between the frequency of activated B cells and
CD4+ Tregs (r=-0.86, p_adj=0.002) and between CD69+ CD56%™ NK cells and Helios+ V§2- v8
T cells (r=-0.77, p_adj=0.03; Fig. 3.3E). We hypothesized that these negatively correlated
features unique to acute infection reflected inter-individual variability in the acute-phase immune
response. To investigate, we performed hierarchical clustering of the acute infection feature
correlation matrix (Fig. 3.4A), which revealed the presence of two modules (module 3 and
module 5) that contained sets of features which were inversely correlated with one another
(average correlation: r = -0.79). While the module 5 immune signature was enriched for features
that represent activated innate and adaptive immune cell types, 54% of which were transiently
elevated in acute infection, the module 3 signature was enriched for features that reflect more

cytotoxic-differentiated cell types, 91% of which were “stable,” meaning they did not change in
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abundance in the context of acute ZIKV infection. During acute infection, some individuals had
a higher module 5 score, reflecting dynamic immune activation during acute ZIKV infection,
while others had a higher module 3 score, suggesting a more cytotoxic-differentiated immune
state (Fig. 3.4B). To determine the clinical significance of these acute-phase signatures, we next
asked if these distinct acute-phase cellular immune signatures could predict the magnitude of
ZIKV neutralizing antibody responses after infection.

Transient Expansion of Activated Cell Types in Acute Infection Predicts High Neutralizing
Antibody Titers after ZIKV Infection

We observed a large range in the titers of ZIKV neutralizing antibodies (NTj,) that persisted
several months after the resolution of acute infection (Fig. 3.1B). In order to identify the cellular
immune features during acute ZIKV infection that associated with the development of a high
versus low ZIKV NTy, titer 6 months after infection, we again focused our analysis on
individuals sampled as early as possible in the course of infection (i.e., who were ZIKV IgM- at
the index visit). Since prior exposure to DENV is associated with significantly higher long-term
ZIKV NTyg, antibody titers ((11) and Supplementary Fig. 3.5D), we also only examined
individuals with serologic evidence of prior DENV infection (final n=14). These individuals
were separated into “high” or “low” 6-month ZIKV NTy, titer groupings based on the tertiles of
the 6-month ZIKV NTy, titers from the whole DENV-exposed REDS-III cohort (low: n=6, <230,
mid: n=3, 230-1240 or high: n=5, >1240), which were measured a median of 181 days after
index visit [range 160-196 days]; Fig. 3.5A). Of note, there was no significant difference in the
age (p=0.31) or sex distribution (p=0.53) between the tertiles.

Using a receiver operating characteristic (ROC) analysis, we found that a module

5-skewed score during acute infection was predictive of a high 6-month ZIKV NTg, titer, while a
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module 3-skewed score during acute infection was predictive of a low 6-month titer (area under
the curve [AUC] = 0.800; Fig. 3.5B). To investigate which individual features were predictive of
high versus low 6-month titers, we returned to an unbiased analysis with the full set of
phenotypic features, examining features with significantly different frequencies at the acute
timepoint between the high and low titer individuals. While we did not observe an association
between the frequencies of antigen specific populations (e.g., ASCs or HLA-DR+CD38+ CD8+
T cells) at the acute timepoint and the level of ZIKV NTjg, at 6 months post-infection
(Supplementary Fig. 3.5E-F), we did find unique sets of features associated with high versus
low levels of ZIKV titers.

We found that high levels of ZIKV neutralizing antibody titers 6 months post-infection
were associated with a significantly higher frequency of 11 cellular features during acute
infection (e.g., CD86+ CD14-CD16+ monocytes and pDCs, CD40+ CD14+ monocytes and
cDCs, CD69+ NK cells, CD38+ Thl and Tth CD4+ T cells, and CD86+ as well as Ki-67+ DN B
cells; Fig. 3.5C-D). These included multiple activated cell types, eight of which were contained
within module 5. Six of the 11 features associated with the high titer group were specifically
expanded in acute infection (indicated as “Changing”). These features also tended to be low in
frequency in uninfected individuals (see lighter green colors in “Uninfected [UI] Mean”
column). Together, these data suggest that high 6-month ZIKV NTjg, titers are associated with
robust but transient expansion of specific, diverse activated cellular features during the acute
phase of infection.

A Cytotoxic Immune Set Point Predicts Low Neutralizing Antibody Titers after ZIKV Infection

In contrast, individuals with low titers of neutralizing ZIKV antibodies 6 months after infection

had an acute infection immune signature defined by higher frequencies of cytotoxic T cell
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features. These included higher Granzyme B expression in Tctl CD4+ T cells, a larger TEMRA
population in CD8+ T cells, higher Eomesodermin expression in non-naive CD8+ T cells, a
higher overall frequency of non-naive V62- yd T cells, and a higher frequency of non-naive V62-
vo T cells that express Granzyme B, T-bet and Helios (Fig. 3.5C,E). Most (8 of 9) of the low
titer-associated features were contained within the stable, cytotoxic-skewed module 3. Unlike the
cellular features associated with high 6-month NTj, titers, most of the features associated with
low 6-month NTj, titers were present at high baseline abundance in uninfected individuals (see
darker green/blue colors in the “Uninfected Mean” column), and most (8 of 9) were not
dynamically regulated over the course of ZIKV infection. This supported the notion that the
cytotoxic-skewed immune signature associated with the development of low neutralizing
antibody titers represents a distinct and stable immunologic set point. A higher frequency of
cytotoxic-differentiated T cells can relate to a history of infection with other viruses, in particular
cytomegalovirus (CMV), and a positive CMV serostatus can be associated with impaired
response to vaccination (53-55). However, CMV seropositivity was not significantly associated
with the development of low ZIKV NTjg, titers in our cohort (p=0.29).

To determine the predictive power of the high and low titer-associated features, we again
performed an ROC analysis and found that all of the acute infection cellular immune features
associated with high or low antibody titers also reliably predicted these two outcomes in this
cohort (minimum AUC=0.833; Fig. 3.5F). Interestingly, several of the low titer-associated
features at the late convalescent timepoint, after the resolution of infection, remained associated
with and were predictive of low 6-month ZIKV NTy, titers (Fig. 3.5C, black in “Late
Convalescence” column, and Fig. 3.5G). Collectively, our data suggest that high 6-month ZIKV

NTy, titers are predicted by an immune state of transiently expanded, highly activated immune
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cell features during acute infection. In contrast, low 6-month ZIKV NTyg, titers are instead
predicted by a distinct “immune set point” characterized by a stable, high frequency of
cytotoxic-differentiated T cell populations that are not dynamically regulated during acute ZIKV
infection (Fig. 3.6).

Discussion

We present here a deep characterization by mass cytometry of dynamic cellular immune
responses to acute ZIKV infection in human adults. Leveraging a well-characterized longitudinal
cohort of individuals with viremic ZIKV infection, we found that acute ZIKV infection did not
impact the frequency of most major cellular immune populations. However, small populations of
highly activated innate and adaptive immune cells were coordinately and transiently expanded
during acute infection, and distinct acute-phase immune signatures predicted the persistence of
high versus low ZIKV neutralizing antibody titers six months after the resolution of infection.
Our findings build upon a small but growing literature describing cellular immune responses in
acute viral infection in humans (31,46,47,49,56—66), and they suggest immunologic states to
target in order to enhance the efficacy of antiviral vaccines.

Our analysis of cellular activation states enabled us to precisely delineate and
characterize the coordination between innate and adaptive immune cell populations that respond
to acute ZIKV infection. In prior studies, acute ZIKV infection has been associated with
activation of some innate immune cell types (38) and, in children, an increase in the frequency of
monocyte populations that are also a target for viral infection in vivo (37,45). In our study in
adults, we observed not only a similar expansion of intermediate CD14+CD16+ monocytes
during acute infection, but also a transient increase in a suite of activation markers on this cell

type in the acute phase. Additionally, we identified a cluster of CD14+ monocytes that were
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present at a higher frequency during acute infection (c49) with distinct co-regulated markers
denoting proliferation, activation or differentiation states. Amongst adaptive immune cells,
HLA-DR+CD38+ non-naive CD8+ T cells were expanded at the acute time point, consistent
with other acute viral infections (31,46,47). We found that these cells were contained in three
distinct clusters of cells that co-express different combinations of activation markers. Acute
ZIKV infection was also associated with activation of Th1 and Tctl T cell CD4+ T cell subsets.
Finally, using gating strategies to identify populations of B cells enriched for antigen-specific
cells in other infections (49,67), we identified an expansion of Tbet+ ASCs during acute ZIKV
infection.

Our study describes the diverse and coordinated activation of cellular immune responses
during acute ZIKV infection in human adults. Compared to the baseline correlations that exist in
the uninfected state, we found that acute ZIKV infection drove new coordination between
different immune cell types and across the innate and adaptive immune system. The correlations
unique to acute ZIKV infection (e.g., positive correlations in the proportion of CD38+ pDCs and
CD38+ Thl CD4+ T cells, or between CD40+ ¢DCs and Ki-67+ DN B cells) may reflect
interactions that are essential to mount a productive antiviral immune response. Further
exploration of the correlated features in acute infection revealed two distinct modules that were
inversely correlated: one (module 5) contained features reflecting transiently elevated activated
cell populations while the second (module 3) contained features reflecting stable/unchanging
cytotoxic cell populations. Remarkably, these two acute infection immune signatures, which we
identified using an unbiased analysis approach, appear to truly reflect distinct immune states that
differentially impact and predict the development and maintenance of high neutralizing antibody

responses.
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High titers of ZIKV neutralizing antibodies are likely critical for protective immunity in
humans, and they are a key target for ZIKV vaccines (68). Six months following infection,
participants across our cohort had a greater than 100-fold difference in ZIKV neutralizing
antibody titers. Other than a positive association with prior DENV serostatus observed here and
in other studies (11), little is known about what parameters predispose some individuals to
maintain higher versus lower ZIKV neutralizing antibody titers. Interestingly, as has been
observed in SARS-CoV-2 infection (31), the frequency of antibody secreting cells during acute
ZIKV infection did not correlate with antibody levels in convalescence. We did, however, find
several other acute-phase cellular features that were associated with and predictive of high versus
low neutralizing antibody titers, many of which have plausible roles in augmenting a productive
B cell response. For example, CD86 expression on pDCs and monocytes and CD40 expression
on ¢cDCs and monocytes can mediate enhanced antigen presentation to and priming of helper
CDA4+ T cells, IFNy produced by activated Th1 cells or NK cells can promote B cell activation,
and activated Tth CD4+ T cells can provide direct help to differentiating B cells. Further
investigation could elucidate whether robust induction of these same activated cell populations
also predicts the long-term immunogenicity of vaccines for ZIKV and other viral infections.

In contrast to the dynamically regulated acute-phase cellular immune features associated
with high ZIKV neutralizing antibody titers, a higher frequency of T cells with cytotoxic
differentiation features were associated with low 6-month ZIKV neutralizing antibody titers and
predictive of levels of 6-month ZIKV neutralizing antibody titers. Most of these features did not
dynamically change over the course of infection and were themselves inversely correlated with
the cellular immune features associated with high 6-month ZIKV neutralizing antibody titers

(similar to the inverse correlation between modules 3 and 5 in the correlation matrix). Several of
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the low titer-associated cytotoxic features were also present at higher levels in the low titer
individuals 3-6 months after resolution of the infection, suggesting that they may represent a
stable biological state that is likely reflective of their history of prior antigen encounters. This
state is distinct from the small populations of virus-specific (e.g., HLA-DR+CD38+) T cells that
are transiently expanded in acute infection (31,46,47). The stability of these features suggests
that a cytotoxic immune “set point” may identify individuals predisposed to have a blunted
activation response to acute infection that then leads to impaired neutralizing antibody responses.
In general, a more cytotoxic-skewed T cell compartment can be a sign of immune senescence,
which can in turn be associated with a reduced capacity to generate functional antigen-specific
responses after vaccination (53,55). Thus, in addition to identifying candidate biomarkers of a
“responsive” immune signature that may be useful for predicting the formation of a robust
neutralizing antibody response to other infections or vaccination, our study also provides insight
into potential markers of an immune state that impairs the formation of protective immunity after
acute viral infection. Future studies should explore the generalizability of our findings to other
infections and vaccination and the underlying causes of these distinct immune signatures.

Our study provides a first in-depth characterization of the cellular immune response to
acute ZIKV infection in human adults and relates distinct acute-phase cellular immune signatures
to the development of high- or low-titers of durable neutralizing antibodies. Our approach offers
a powerful tool to test whether these features also predict immunogenicity of vaccines for ZIKV
and other viral infections, such as SARS-CoV-2, for which neutralizing antibodies play a major
role in protection. Our findings suggest that targeted therapeutic approaches in individuals

predicted to have poor neutralizing antibody responses to vaccination (e.g., different adjuvants or
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a higher dose of vaccine) might increase acute-phase immune activation and subsequently
promote enhanced long-term protective antiviral immunity.

Our study has some important limitations. Although we have made an effort to control
for the variance introduced by sampling time, it was not possible to align participants according
to the exact date they were infected. Our study included only otherwise healthy individuals who
presented for volunteer blood donation and does not include pregnant individuals or infants, who
are key populations affected by this infection. Finally, while it is likely that neutralizing
antibodies play a key role in immunologic protection from ZIKV (69), a titer that correlates with
protection in humans has not yet been identified (14) and other antibody functions (70) and/or

other types of immune responses (17,19,71), may also be critical for robust protection.
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Figure 3.1 Acute infection with ZIKYV elicits profound phenotypic changes across
peripheral blood cellular immune populations

(A) 25 adults viremic with acute ZIKV infection at the time of blood donation (“index visit”) had
peripheral blood sampling at up to three timepoints: acute phase of infection, early and/or late
convalescence (see Table 3.2 for clinical characteristics). (B) Plasma ZIKV viral load (VL),
neutralizing antibody titers (NTjg,), and total IgG and IgM levels of study cohort participants. Red
line connects median values at each sampling timepoint (+/- 95% Confidence Interval, CI). (C)
Directed line plots for each participant in PCA space from early to later timepoints. Black
triangles denote 8 uninfected control samples. (D) Scatterplots of days since index visit at the
acute timepoint and the value of PC1 at the acute timepoint or the total distance traveled in PCA
space between the acute and late convalescent timepoints (Spearman’s correlation with
regression line). (E) Heatmap showing the z-score normalized frequency of the log-adjusted
feature abundances for the manually gated phenotypic features that change significantly over
time (see Table 3.3 for list of features assessed). (F) SCAFFoLLD maps showing clusters of cells
associated with landmark cell population nodes (black dots). Clusters that significantly change in
abundance between the acute and late convalescent timepoints are labeled: increase (red),
decrease (blue), or increase and then decrease (green). (G) Heatmap showing the normalized
abundance of the clusters (z-score based on % of parent cell type population) that change
significantly. Significance in (E-G) based on linear mixed effects (LME) model fit with
p_adj<0.05. See also Supplementary Figure 3.1 and Table 3.2-3.3.
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Figure 3.2 Transient accumulation of activated immune cells during acute ZIKYV infection
(A) Frequency (as a % of total live cells) and phenotype (z-scored proportion of cells that
express each marker) of CD14+CD16+ monocytes across the course of acute and resolving
ZIKYV infection. (B) Heatmap showing z-score normalized median expression of indicated
markers (rows) for each monocyte-associated cell cluster (columns). Column annotation
indicates clusters that significantly decrease (blue), increase (red), increase and then decrease
(green), or remain unchanged (gray) in abundance (as a % of CD14+ monocytes; p_adj<0.05).
(C) Change in abundance of CD14+ monocyte cluster 49 (as a % of CD14+ monocytes;
p_adj=0.0002; left) and Spearman’s correlation matrix of marker expression on single cells in
CD14+ monocyte cluster 49 from acute visit samples (right). (D) Gating scheme for non-naive
CD8+ T cells that co-express HLA-DR and CD38. Percentages shown are % of parent
populations in plotted sample. (E) Frequency (as a % of non-naive CD8+ T cells) and phenotype
(z-scored proportion of cells that express each marker) of HLA-DR+CD38+ non-naive CD8+ T
cells across the course of acute and resolving ZIKV infection. (F) Phenotype (z-scored median
expression of each marker) of CD8+ T cell clusters that significantly decrease (blue), increase
(red), increase and then decrease (green), or remain unchanged (gray) in abundance. (G) Gating
scheme for B cell subsets, including activated and antibody secreting B cells (ABC and ASC,
respectively). Percentages shown are % of parent populations in the plotted sample. (H)
Frequency (as a % of non-naive B cells) and phenotype of activated B cells (ABCs) and
antibody-secreting cells (ASCs) across the course of acute and resolving ZIKV infection.
p_adj<0.05). *p_adj<0.05, **p_adj<0.01, ***p adj<0.001. A, C, E, H: Red line connects
median values at each sampling timepoint (+/- 95% CI). Ul=uninfected. N=25 participants. See
also Supplementary Figure 3.3-3.5.
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Figure 3
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Figure 3.3 Coordinated activation across different cell types in acute ZIKYV infection

(A) Scatterplot of the frequency of ASC B cells and CD38+HLA-DR+ CD8+ T cells in acute
ZIKYV infection with regression line. (B) Number of significant (p_adj<0.05) positive and
negative correlations between cellular immune features that are present in acute ZIKV infection,
grouped by those that are “unique” to ZIKV versus those “shared” with the uninfected (UI)
cohort. (C) Odds ratio (+/- 95% CI) that cellular immune feature correlations unique to ZIKV
infection are more likely to be associated with different correlation attributes (compared to the
correlations shared with the UI cohort). Correlation plots of select features uniquely correlated in
acute ZIKV infection (Spearman’s r with correlation line): (D) adaptive-to-innate immune
features, (E) negatively correlated features. N=17 participants (anti-ZIKV IgM- at index visit).
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Figure 3.4 Correlated immune cell features during acute ZIKYV infection

(A) Correlation heatmap depicting Spearman’s correlation values (no significance cut-off) of all
manually gated features from acute ZIKV infection, representing the 17 participants who were
ZIKV IgM- ("pre-IgM") at the index visit. Hierarchical clustering was used to group cellular
features into five modules. Negatively correlated modules 3 and 5 are indicated with bold
outline. (B) Distribution of (module 5 score - module 3 score) values at the acute visit amongst
the pre-IgM study participants. N=17 participants (anti-ZIKV IgM- at index visit). See also
Supplementary Figure 3.5.
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Figure 3.5 Distinct cellular immune signatures are associated with the development of high
versus low ZIKV neutralizing antibody titers 6 months after infection

(A) ZIKV neutralizing antibody titers (NTyg,) measured approximately 6 months post-index visit
in the overall REDS-III study participants (gray dots) and the sub-cohort studied here (black
dots). Participants were divided into tertiles based on these values. (B) Receiver operating
characteristic (ROC) curve for predicting high- versus low-titer individuals using the difference
between the acute-phase module 5 and module 3 signature scores. (C) Heatmap showing z-score
normalized abundance at the acute visit for cellular features that were significantly (p_adj<0.05)
increased in high versus low 6-month NTj, titer participants at the acute timepoint. Row
annotations for each feature indicate: Mean values in a cross-sectional uninfected (UI) control
cohort, whether or not the abundance of the feature significantly changed across time between
acute to convalescent infection, and whether or not the abundance of the feature was also present
at a significantly higher frequency (p_adj<0.05) in the same group (high- versus low-titer
participants) at the late convalescent timepoint. Abundance (log-adjusted) of features during
acute ZIKV infection associated with high (D) versus low (E) 6-month neutralizing antibody
titers. (F) ROC curves for predicting high- versus low-titer individuals using the acute ZIKV
cellular features from (C) that are associated with high (left) versus low (right) 6-month ZIKV
NTjy, titer. (G) ROC curves for predicting high -versus low- titer individuals using the late
convalescent features associated with low 6-month ZIKV neutralizing antibody titers. For (B, F,
G): The area under the curve (AUC) value and 95% CI for the features corresponding to each
curve are colored by AUC value for each plot. N=14 participants with 6-month ZIKV NTj, titer
data available (anti-ZIKV IgM- at index visit).

93



Figure 6
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Figure 3.6 Graphical abstract summarizing distinct cellular immune signatures associated
with the development of high versus low ZIKYV neutralizing antibody titers 6 months after

infection
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Supplementary Figure 3.1 CyTOF gating strategy and Principal Component Analysis
(PCA) of uninfected participants

Gating strategy for (A) landmark populations, (B) innate immune cells, and (C) T cells. (D) PCA
representation of all manually gated parameters measured on PBMCs from ZIK V-uninfected
control participants (N=6) at longitudinal timepoints.
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Supplementary Figure 2
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Supplementary Figure 3.2 Landmark and sub-landmark population abundance in acute
and convalescent ZIKYV infection

Line plots of frequency of indicated (A) landmark cell type and (B) adaptive immune subset for
each participant versus time since index visit. Red line connects median values at each sampling
timepoint with error bars for +/- 95% CI. Scatter plot for feature abundance from cross sectional
uninfected (UI) cohort shown on the far right. Features with p_adj< 0.05 have blue colored titles.
p_adj values obtained by LME model fit with Benjamini-Hochberg FDR correction. High
concordance in landmark cell population frequencies as measured by manual gating versus
SCAFFoLD clustering analysis in Panel 1 (C) and Panel 2 (D). N=25 ZIKV+ and N=8 ZIK V-
participants.
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Supplementary Figure 3
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Supplementary Figure 3.3 Innate immune cell features impacted by acute ZIKYV infection
(A-C, left): Line plots showing frequency of phenotypic features (% of cells that express each
marker) versus time since index visit (N=25). Red line connects median values at each sampling
timepoint with error bars for +/- 95% CI. Feature abundance from cross-sectional uninfected (UTI)
cohort (N=8) shown on the far right. *p _adj<0.05, **p_adj<0.01, ***p adj<0.001 (p_adj values
obtained by LME model fit with Benjamini-Hochberg FDR correction). (A-C, right): Heatmaps
showing z-score normalized median expression of indicated markers (rows) for each landmark
cell population-associated cell cluster (column). Column annotation indicates clusters that
significantly decrease (blue), increase (red), increase and then decrease (green), or remain
unchanged (gray) in abundance (as a % of the parent population; p_adj<0.05). N=25 ZIKV+ and
N=8 ZIK V- participants.
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Supplementary Figure 4
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Supplementary Figure 3.4 T cell features impacted by acute ZIKYV infection

Significantly changing features (shown as % of parent cells that express each marker) for (A)
non-naive CD8+ T cells, (B) non-Treg non-naive CD4+ T cells, (C) CD4+ Tregs, and (D) yo T
cells for each participant versus time since index visit. Red line connects median values at each
sampling timepoint with error bars for +/- 95% CI. Scatterplot for feature abundance from
cross-sectional uninfected (UI) cohort shown on the far right. *p_adj<0.05, **p_adj<0.01,
*#*p adj<0.001 (p_adj values obtained by LME model fit with Benjamini-Hochberg FDR
correction). (E) Phenotype (z-scored median expression of each marker) of non-Treg non-naive
CD4+ T cell clusters that significantly decrease (blue), increase (red), increase and then decrease
(green) or remain unchanged in abundance (p_adj<0.05). N=25 ZIKV+ and N=8 ZIK V-
participants.
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Supplementary Figure 5
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Supplementary Figure 3.5 B cell dynamics in ZIKYV infection and characteristics associated
with ZIKYV neutralizing antibody titers 6 months after infection

(A) Correlation plot between the frequency of plasmablast and ASC B cell populations (as a %
of non-naive B cells; Spearman’s r with regression line). (B) Phenotype (z-scored median
expression of each marker) of B cell clusters that significantly decrease (blue), increase (red),
increase and then decrease (green), or remain unchanged (gray) in abundance (as a % of the total
B cell population; p_adj<0.05). (C) Relative change in the frequency [(late convalescent -
acute)/acute] of the expression of individual activation markers on B cell subsets (median
shown). Colors indicate markers with a significant (p_adj<0.05) change in the percent of the
parent population that expresses the marker are noted (increase=pink, decrease=green). (D)
Difference in 6-month ZIKV NTy, between individuals with or without evidence of prior DENV
infection at index visit (Wilcoxon Rank Sum test). Individuals from our sub-cohort are colored
black and individuals from the larger REDSIII cohort are colored gray. Scatterplots showing
6-month ZIKV NTg, titers versus the frequency of (E) ASC B cells or (F) non-naive CD8+ T
cells co-expressing HLA-DR and CD38 at the acute timepoint (Spearman’s correlation). (A-C):
N=25 participants; E-F: N=14 participants.
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Tables

Table 3.1 Key resources table

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Mass cytometry antibodies:

Self-conjugated

metal-antigen (clone) unless from

Fluidigm
Y89-CD45 (clone HI30) Fluidigm Cat#3089003B; RRID:AB_2661851
In113-CD14 (clone M5E2) BioLegend Cat#301802; RRID:AB_314184
In115-CD123 (clone 6H6) BioLegend Cat#306002; RRID:AB_2661822
La139-CD33 (clone WM53) BioLegend Cat#303402; RRID:AB_314346
Ce140-CD38 (clone HIT2) BioLegend Cat#303502; RRID:AB_314354
Pr141-CD3 (clone UCHT1) BioLegend Cat#300402; RRID:AB_2661835
Nd142-CD19 (clone H1B19) BioLegend Cat#302202; RRID:AB_2661817
Nd143-CXCR3 (clone G025H7) BioLegend Cat#353702; RRID:AB_10983073
Nd144-CD11b (clone ICRF44) BioLegend Cat#301302; RRID:AB_314154
Nd145-CD4 (clone RPA-T4) BioLegend Cat#300502; RRID:AB_314069
Nd146-CD8 (clone RPA-T8) BioLegend Cat#301002; RRID:AB_2661818
Sm147-CD11c (clone Bu15) BioLegend Cat#337202; RRID:AB_1236381
Nd148-CD16 (clone 3G8) BioLegend Cat#302001; RRID:AB_314201
Sm149-CD138 (clone DL-101) BioLegend Cat#352302; RRID:AB_10915555
Eu151-CD21 (clone Bu32) BioLegend Cat#313502; RRID:AB_416326
Sm152-gdTCR (clone 11F2) Fluidigm Cat#3152008B; RRID:AB_2687643
Eu153-CD45RA (clone HI100) BioLegend Cat#304102; RRID:AB_314406
Sm154-CD40 (clone 5C3) BioLegend Cat#334302; RRID:AB_1236384
Gd156-PDL1 (clone 29E.2A3) BioLegend Cat#329702; RRID:AB_940372
Gd157-CD69 (clone FN50) BioLegend Cat#310902; RRID:AB_314837
Gd158-CD27 (clone 0O323) BioLegend Cat#302802; RRID:AB_2661825
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gd160-Tbet (clone 4B10) BioLegend Cat#644802; RRID:AB_1595503
Dy161-CTLA4 (clone 14D3) Fluidigm Cat#3161004B; RRID:AB_2687649
Dy162-CD80 (clone 2D10.4) Fluidigm Cat#3162010B; RRID:AB_2811101
Dy163-CD86 (clone 1T2.2) BioLegend Cat#305401; RRID:AB_314521
Ho165-CD24 (clone MI5) BioLegend Cat#311102; RRID:AB_314851
Er166-NKG2D (clone ON72) Fluidigm Cat#3166016B; RRID:AB_2892110
Er167-FCRL5 (clone 509f6) BioLegend Cat#340302; RRID:AB_2104586
Er168-Ki67 (clone B56) Fluidigm Cat#3168007B; RRID:AB_2800467
Tm169-CD71 (clone CY1G4) BioLegend Cat#334102; RRID:AB_1134247
Er170-IgD (clone 1A6-2) BioLegend Cat#348202; RRID:RRID:AB_10550095
Yb171-CD20 (clone 2H7) BioLegend Cat#302302; RRID:AB_314250
Yb172-BDCA1 (clone L161) BioLegend Cat#331502; RRID:AB_2661820
Yb173-IgM (clone MHM-88) BioLegend Cat#314502; RRID:AB_493003
Yb174-HLA-DR (clone L243) BioLegend Cat#307602; RRID:AB_314680
Lu175-PD-1 (clone EH12.2H7) BioLegend Cat#329902; RRID:AB_940488
Yb176-CD56 (clone HCD56) Fluidigm Cat#3176008B; RRID:AB_2661813
Sm149-CCR4 (clone 205410) R&D Cat#MAB1567; RRID:AB_2074395
Nd150-0X40 (clone AO19D5) BioLegend Cat#351302; RRID:AB_10718513
Eu151-ICOS (clone C398.4A) BioLegend Cat#313539; RRID:AB_2810475
Sm154-CX3CR1 (clone 2A9-1) BioLegend Cat#341602; RRID:AB_1595422
Gd155-CCR® (clone GO34E3) BioLegend Cat#353402; RRID:AB_10918625
Tb159-Vd2 (clone B6) BioLegend Cat#331402; RRID:AB_1089226
Dy162-FOXP3 (clone PCH101) BioLegend Cat#3162011a; RRID:AB_2687650

Dy164-EOMES (clone WD1928)

ThermoFisher

Cat#14-4877-82; RRID:AB_2572882

Ho165-CD127 (clone A019D5)

BioLegend

Cat#351302; RRID:AB_10718513

Er166-TIGIT (clone A15153G)

BioLegend

Cat#372702; RRID:AB_2632714
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REAGENT or RESOURCE SOURCE IDENTIFIER

Er167-CCR7 (clone G043H7) BioLegend Cat#353202; RRID:AB_10945157
Tm169-CD25 (clone 2A3) Fluidigm Cat#3169003B; RRID:AB_2661806
Yb171-CXCR5 (clone RF8B2) Fluidigm Cat#3171014B; RRID:AB_2858239
Yb172-Helios (clone 22F6) BioLegend Cat#137202; RRID:AB_10900638
Yb173-Granzyme B (clone GB11) | BioRad Cat#MCA2120; RRID:AB_2114582
Biological samples

Cryopreserved human PBMCs REDS-III study Demographic Data available in Table 3.2
and plasma participants

Chemicals, peptides, and recombinant proteins

Cisplatin

Sigma-Aldrich

Cat #P4394

eBioscience FoxP3/Transcription

Thermo Fisher

Cat #00-5523-00

Factor Staining Buffer Set Scientific
Maxpar Barcode Perm Buffer Fulidigm Cat #201057
Paraformaldehyde Electron Cat #15710
Microscopy
Sciences
Intercalator Fluidigm Cat #201103A
Deposited data
Mass cytometry data This paper http://dx.doi.org/10.17632/5cn6cy97b7.1
Software and algorithms
CellEngine CellCarta https://cellcarta.com/cellenginesoftware/
R 3.6.1 The R Foundation | https://www.r-project.org/
premessa 0.1.8 R package https://github.com/ParkerlCl/premessa
flowCore 1.50.0 (80) RRID:SCR_002205
ggplot2 3.2.1 (82) RRID:SCR_014601
nime 3.1-140 (81) RRID:SCR_015655
factoextra 1.0.5 (88) RRID:SCR_016692
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REAGENT or RESOURCE SOURCE IDENTIFIER

FactoMineR 1.42 (83) RRID:SCR_014602

seriation 1.2.8 (85) https://cran.r-project.org/package=seriation
ComplexHeatmap 2.1.1 (84) RRID:SCR_017270

SCAFFolLD (43) I;ttps://github.com/SpitzerLab/statisticaIScaffoI
igraph 1.2.4.1 (86) RRID:SCR_019225

pROC 1.17.0.1 (87) https://CRAN.R-project.org/package=pROC
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Table 3.2 Study participant clinical characteristics

ZIKV-infected
. . Pre-IgM at DENV >=3 symptoms | Maximum ZIKV | 6émo ZIKV
Participant # Age Sex index visit | exposed | at acute visit NT80 titer NT80 titer
1 52 Male Y Y TRUE 355.1 54.3
2 24 Male N N FALSE 84.4 0
3 22 Male N Y TRUE 9719.1 2894.4
4 62 Male Y Y FALSE 1069.7 217.1
5 43 Male Y N FALSE NA NA
6 54 Male N Y FALSE 13952.6 419.9
7 51 Male Y Y FALSE 2782.7 221.7
8 46 Male Y Y TRUE 688 21.6
9 49 Male N N FALSE 1474.1 71.8
10 37 Male Y Y FALSE 37872.3 6285.7
11 46 Male Y Y TRUE 3086.1 100.2
12 36 Female N Y TRUE 4543 202.9
13 43 Male Y Y TRUE 3405.1 1483.7
14 42 Male Y Y TRUE 2238.7 134.8
15 43 Female N N Unknown 1153 77.1
16 28 Female N N Unknown NA NA
17 27 Female Y N TRUE NA NA
18 53 Male N N FALSE 1198.7 NA
19 25 Female Y Y FALSE NA NA
20 71 Male Y Y FALSE 2091.4 440.9
21 67 Male Y Y FALSE 3752.8 237.6
22 24 Male Y Y FALSE 2206.1 2660.2
23 56 Female Y Y TRUE 9412.2 1278.7
24 44 Male Y Y FALSE 23236.4 2828.5
25 21 Female Y Y TRUE 1490.7 779.1
ZIKV-uninfected
Participant # Age Sex
26 49 Male
27 32 Female
28 51 Female
29 60 Male
30 53 Male
31 58 Male
32 42 Female
33 22 Male
34 32 Female
35 20 Male
36 40 Male
37 54 Male
38 44 Male
39 20 Male
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Table 3.3 Summary of phenotypic markers assessed on each cell type for manual gating

analysis
Cell type Ki-67 | HLA-DR | CD38 | CD69 |CD71|CD86| CD16 | CD40 ICOS |CTLA-4| TIGIT | PD-1 |PD-L1 y Thet 'min | Helios
CD14+ monocytes X X X X X X X X X
CD14-CD16+ monocytes| x X X X X X X
cDCs X X X X X X X X
pDCs X X X X X
CD56dim NK cells X X X X X X X X X X
CD56bright NK cells X X X X X X X X X X X
Basophill X X
CD8: non-naive X X X X X X X X X X X X X X
CDA4: Tregs X X X X X X X X X
CD4: non-naive X
CD4 non-naive: Thl X X X X X X X X X
CD4 non-naive: Th2 X X X X X X X X
CD4 non-naive: Tfh X X X X X
CD4 non-naive: Th17 X X X X X
CD4 non-naive: Tctl X X X X X X X X X
Vd2+ gd T cells X X X X X X X X X X
Vd2- gd T cells X X X X X X X X X X
Total B cells
B cells: transitional X X X X X X X X
B cells: naive X X X X X X X X
B cells: CD27-1gD- X X X X X X X X
B cells: pl bl X X X X X X X X
B cells: mem IgD+IigM+ | x X X X X X X X
B cells: mem IgD-lgM+ X X X X X X X X
B cells: mem IgD-IgM- X X X X X X X X
Cell type CD25| FCRL5 |CD21|CD127 | CCR4 | CCR6 | CXCR5 | CX3CR1|BDCA1| CD4 |CD11b|CD27| CCR7 CD24 total
CD14+ monocytes X X X X 13
CD14-CD16+ monocytes X X X X 11
cDCs X X 10
pDCs 5
CD56dim NK cells X X X 14
CD56bright NK cells X X X 15
Basophils 2
CD8: non-naive X X X X X X X X 23
CD4: Tregs X X X X X 14
CD4: non-naive X 2
CD4 non-naive: Thl X X X X X 14
CD4 non-naive: Th2 X X X X 12
CD4 non-naive: Tfh X X X X 9
CD4 non-naive: Th17 X X X X 9
CD4 non-naive: Tctl X X X X X 14
Vd2+ gd T cells X X X X X X X 18
Vd2- gd T cells X X X X X X X 18
Total B cells X 1
B cells: transitional X X X 11
B cells: naive X X X X 12
B cells: CD27-1gD- X X X X 12
B cells: plasmablast X X X 11
B cells: mem IgD+igM+ X X X X 12
B cells: mem IgD-IgM+ X X X X 12
B cells: mem IgD-IgM- X X X X 12
SUM: 286
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Materials and Methods

Viral Load and Antibody Measurements. ZIKV viral load, antibody levels, and ZIKV and
DENV neutralizing antibody measurements were performed as described previously (9,41). In
brief, ZIKV viral load was measured by quantitative PCR. Anti-Zika virus IgM and IgG were
measured by antibody-capture ELISA using recombinant ZIKV antigen kindly provided by the
US Centers for Disease Control and Prevention (CDC) and as previously described (72,73).
ZIKV neutralizing titers were measured using a ZIK'V reporter viral particle neutralization
titration assay (Integral Molecular, Philadelphia, PA) (74), and index donations were tested for
pre-existing DENV IgG with the Detect IgG ELISA (InBios; Seattle, WA).

PBMC Preparation and Mass Cytometry Staining. Whole peripheral blood was collected at
the clinical sites, shipped overnight at ambient temperature to Vitalant, San Francisco, CA, USA,
where they were processed and cryopreserved within 24 h of collection and then stored in liquid
nitrogen as previously described (42). Mass cytometry experiments were performed over the
course of five separate experiments, with normalization between experiments performed as
outlined below. PBMCs were thawed, and only samples with >70% viability were used for
analysis (most were >90% viable after thawing by the Muse Cell Analyzer [Millipore Sigma,
Burlington, MA, USA]) (75,76). We stained 2-4 million cells per panel in two mass cytometry
panels, following a previously published protocol (44) with the following modifications. Briefly,
we marked dead cells by incubating the samples for one minute with 25mM Cisplatin
(Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffered saline (PBS) plus EDTA, performed
surface staining with metal-tagged antibodies in PBS with 0.5% bovine serum albumin (BSA)
for 30 minutes at room temperature, fixed and permeabilized cells following manufacturer’s

instructions for the eBioscience Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher
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Scientific, Waltham, MA, USA), barcoded samples using mass-tag cellular barcoding reagents
diluted in Maxpar Barcode Perm Buffer (Fluidigm, South San Francisco, CA, USA) as described
previously (44), combined up to twenty barcoded samples into a single tube, performed
intracellular staining with antibodies diluted in eBioscience Foxp3/Transcription Factor kit perm
wash (Thermo Fisher Scientific), fixed cells in freshly prepared 2% paraformaldehyde (Electron
Microscopy Sciences, Hatfield, PA, USA) in the presence of a DNA intercalator (77), and then
washed and ran cells on the Fluidigm CyTOF 2 mass Cytometer within one week of staining.
Mass Cytometry Data Processing.

Data Quality Control. Following data acquisition, the FCS files were normalized across
experiments using bead standards and the data normalization algorithm using the R package
‘premessa.’ The live cell events were debarcoded using a single-cell debarcoding algorithm (78)
and we analyzed >25,000 (mostly >50,000) cells per sample. From the individual sample files,
normalization beads were excluded based on Cel140 and Eul53 signals, single cell events were
identified based on Ir191 DNA signal measured against event length, and CD45- or Pt195+ dead
cells were excluded. Potential batch effects were minimized by including samples from the same
individual in the same experiment. Spillover between the Yb173 and Yb174 channels was
compensated based on the CyTOF metal purity matrix (79) using flowcore (80). Gating was
performed using CellEngine (CellCarta, Montreal, Canada).

Manual Gating. Traditional hierarchical gating was applied to identify 12 “landmark™ immune
populations: CD14+ “classical” monocytes, CD14-CD16+ “non-classical” monocytes, classical
and plasmacytoid dendritic cells [cDC and pDC, respectively], basophils, CD56™€" and CD56™
natural killer cells, regulatory CD4+ T cells, non-regulatory CD4+ T cells, CD8+ T cells, gd T

cells as stained by either a pan-yo T cell receptor (TCR) antibody or an antibody that only
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recognizes gd T cells with the V32 chain (see Supplementary Fig. 3.1 for gating strategy) as
well as well-defined adaptive immune subsets (see Supplementary Fig. 3.2 for the identity of
these populations). Within each of the “parent” cell types, we manually gated positive and
negative populations of biologically relevant phenotypic markers from the two mass cytometry
panels (see Table 3.3 for markers assessed on each “parent” population). For each of the parent
cell types, we only included phenotypic markers for which we could clearly gate a positive
population above background antibody staining levels.

Clustering by Statistical SCAFFoLD. We generated SCAFFoLD maps using the Scaffold R
package. As described previously (43,44), using all of the live CD45+ leukocytes collected
across participants and timepoints for each staining panel, we applied an unsupervised clustering
algorithm based on the CLARA clustering algorithm to partition cells into a user-defined number
of clusters (100 clusters per staining panel). We excluded Ki-67 and Granzyme B to avoid having
functional markers cluster cells across cell types together. Landmark populations were gated as
outlined in Supplementary Fig. 3.1 (for cluster analysis, NK cells were treated as one
population). We next generated force-directed graphs (SCAFFoLD maps) to visualize the
association of each cluster with its likely parent landmark population. We excluded from our
downstream analysis clusters that contained <20 cells in >80% of samples (12 clusters in Panel
1, 2 clusters in Panel 2) as well as clusters that contained cells that did not have the expected
expression of classical landmark population (e.g., we excluded a cluster of cells that clustered
with the CD8+ T cells but appeared to co-express the B cell marker, CD19 and may potentially
represent doublets [median 0.09% of total CD8+ T cells at the acute timepoint]; all together,
these 9 clusters in Panel 1 and 7 clusters in Panel 2 comprised 0.08% and 0.13% of the total live

population at the acute timepoint). Cell clusters were thus determined to be “reliably” assigned to
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landmark cell populations if they were not excluded based on these criteria and if they were
identified in Panel 1 for innate immune cells (total 17 classical and 3 non-classical monocyte, 9
NK cell, 4 ¢cDC, 1 pDC clusters) and B cells (total 14 clusters) and Panel 2 for T cell phenotypes
(total 6 CD4+ Treg, 20 non-Treg CD4+, 14 CD8+, and 2 yo T cell clusters). In the SCAFFoLLD
maps depicted, a representative map from one participant at timepoint 1 is shown.
Quantification and Statistical Analysis

Change in Manually Gated Population and Cell Cluster Frequencies over Time. To measure
the change in abundance of manually gated cell features (e.g., landmark and sub-landmark
populations and populations expressing individual phenotypic markers) and cell clusters, the
frequency of each feature (expressed as a % of the parent population) was log transformed with a
constant factor of 1/10E6 or 1/10E3, respectively. Log-transformed values were adjusted for
participant age and sex using a linear regression and the residuals (log-adjusted abundance) were
used in downstream analyses. For age and sex, the median (+ standard deviation) contribution of
each of these factors to the variance for individual features was 1.63 (+5.83)% and 1.17
(£3.16)%, respectively. The change over time for the log-adjusted feature abundance between the
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“acute,” “early convalescent” and “late convalescent” visits was assessed using a linear mixed
effect (LME) model with the nlme R package (81) with log-transformed days since index visit as
a fixed effect and participant ID as a random effect. The p values for each group of features were
adjusted for multiple testing correction by Benjamini Hochberg with an FDR cutoff of 5% for a
significant effect of time since index visit on feature abundance. For 95% confidence interval

graphs, line graphs were generated in R using the package ggplot2 (82). The 95% confidence

intervals for the median values were calculated by bootstrapping with 1000 iterations.
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PCA Analysis. The log-adjusted manually gated features that were present across all ZIKV
infected and cross-sectional uninfected samples (281 of 324 total features in the dataset) were
used for principal component analysis with the function PCA (parameters: "scale.unit = TRUE",
ncp = 5) from the R package FactoMineR (83). The samples were visualized in PCA space with
PC1 and PC2 values as the coordinates using factoextra and ggplot2 in R.

Heatmaps. Heatmaps were made in R using the package ComplexHeatmap (84). For the
manually gated features and cluster features summary heatmaps, the row/column orders,
respectively, were determined using the R package seriation (85) with the traveling salesperson
problem (TSP) method.

Network Correlation Analysis. Pairwise Spearman correlations were calculated on the
log-adjusted feature abundances from samples at the acute visit for participants (n=17) who were
previously exposed to Dengue and in an early stage of infection (pre-IgM at the time of Index
visit). The p values were adjusted with the Benjamini-Hochberg method. The correlation matrix
was hierarchically clustered using complete linkage based on Euclidean distance to create
correlation modules. For the relationship between modules, the average value was calculated
across all significant correlations (p_adj<0.05) between features within each module. For the
module 5 - module 3 score, each module score is the sum of the z-score scaled log-adjusted
cellular features within the module. The 95% confidence intervals for the correlation in the
infected samples for each pairwise feature comparison was calculated using bootstrapping with
1000 iterations. For each significant correlation (p adjusted<0.05), the correlation was
categorized as “shared” with the uninfected cohort if the correlation value in the uninfected
cohort fell within the 95% confidence interval from the infected samples or had the same sign as

the infected correlation and a magnitude greater than the 95% confidence interval magnitude

114



maximum. Otherwise, the correlation was categorized as “unique.” Fisher’s exact test was used
to determine odds ratio for correlations being unique to ZIKV as the exposure (versus being
“shared” with the uninfected) and the indicated correlation attribute as the outcome. The circular
network graph was visualized using ggplot2 and the marker network graph was visualized with
igraph (86).

Antibody Associations. The NTg, titers at the 6-month timepoint of the DENV-exposed, ZIKV+
individuals from the larger REDS III cohort were classified into antibody tertiles. The
association between age and sex and the 6-month NTg, titer groupings was assessed on the entire
REDS-III cohort using one-way ANOVA and a Chi-square test of independence, respectively. To
test the association between cellular immune phenotypes and ZIKV neutralizing antibody titers,
we used acute or late-convalescent visit samples from participants who had not yet formed IgM
at the index visit, were DENV-exposed, and who had 6-month NTg, titers available (n=14). Exact
permutation tests were used to test for significant differences in the log-adjusted cellular features
(age- and sex-adjusted) between samples from participants in the high versus low tertiles (n=5 in
high group and n=6 in low group). The association between CMV IgG seropositivity and
6-month NTg, titers was assessed using the Wilcoxon Rank Sum test based on a larger subset of
REDS-IIT study participants for whom CMYV serostatus were available (n=10 CMV+, n=23
CMV-).

Antibody Associations Predictive Modeling. We used pROC (87) to plot ROC curves with
log-adjusted feature abundance at the acute or late convalescent visit as the predictor and
6-month NTg, antibody titer category (e.g., “High” or “Low”) as the response for each

participant. The 95% CI for the AUC values were computed with the default “DeLong” method.
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Introduction

Immune checkpoint receptor inhibitors (ICIs), including those targeting cytotoxic T lymphocyte
antigen 4 (CTLA-4), programmed cell death 1 (PD-1), or PD-1 ligand 1 (PD-L1), have been
approved based on improved overall survival in multiple malignancies, particularly those with
high mutational burden due to microsatellite instability (MSI)/mismatch repair deficiency
(MMRD) (1-5). However, in most solid tumors, ICIs as monotherapies are efficacious in only
~20% of patients (6). In the tumor microenvironment, several biomarkers including the
expression of checkpoint receptors, amount of T cell infiltration, and mutational landscape (7-9)
are predictive of response to ICIs. Recently, many features of the circulating immune landscape
have also been shown to be biomarkers predictive of response to immunotherapy (10) and even
to reveal mechanisms of immune response to the tumor through recapitulating features of tumor
infiltrating immune cells (11) and secondary lymphoid organs (12). Defining the molecular
features of circulating immune cells that are predictive of response to immunotherapy has
enormous potential for clinical biomarker profiling due to the easily accessible repeated
sampling to study the changes in response to treatment (13).

In men, prostate cancer is the most common cancer and the second most common cause
of cancer deaths in the United States with significant disparities in clinical outcomes between
ethnicities (14). While the survival rate for patients with localized disease is nearly 100%, the
survival rate for those with distant metastatic prostate cancer is only 30%. Currently, no ICIs are
approved for prostate cancer patients except for tumors with high mutational burden due to
MSI/MMRD. Two large trials of ipilimumab, an anti-CTLA-4 checkpoint receptor inhibitor, in
metastatic castration-resistant prostate cancer (mCRPC) failed to reach the primary endpoint of

an increase in overall survival (15,16). The low level of immune cell infiltration into prostate
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tumors (17) and the immunosuppressive features of the prostate tumor microenvironment (18)
contributed to the failure of ICIs as monotherapies in prostate cancer (19). However, the
improved progression-free survival and prostate-specific antigen (PSA) response in the treatment
arm in the ipilimumab monotherapy trials suggest that ICIs may have unrealized potential as
treatments for advanced prostate cancer.

Currently, sipuleucel-T, an antigen presenting cell vaccine, is the only immunotherapy
approved for the treatment of mCRPC (20). Standard sipuleucel-T treatment consists of three
cycles spaced two weeks apart. In each cycle, the patient undergoes leukapheresis and the
resulting cell product is co-cultured with a fusion protein made of prostatic acid phosphatase
(PAP), a prostate cancer antigen, and granulocyte macrophage colony-stimulating factor
(GM-CSF) for three days before re-infusion into the patient. Paradoxically, while sipuleucel-T
showed an improvement in overall survival that led to its approval, it failed to improve time to
disease progression. Although sipuleucel-T can invoke tumor shrinkage in some patients, it may
even elicit a tolerogenic T cell response and increase tumor burden in others (21). This presents
an opportunity for examining the immune signatures and cell-cell interactions that predict either
type of response in prostate cancer with potential broader significance in other cancers.

The recent success of using two ICIs together in prostate cancer in early clinical trials
(22) highlights the utility of combination immunotherapy. Combination immunotherapy that
targets the myeloid and lymphoid compartment is a rational and compelling strategy. The ex vivo
activation of antigen presenting cells (APCs), which are primarily CD14+, that occurs with
sipuleucel-T leads to the in vivo activation of B and T cell response that predicts increased

overall survival (23).
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Immunosuppressive myeloid cells play an important role in the pathogenesis of prostate
cancer both as suppressive tumor associated macrophages (24) and peripherally as circulating
myeloid derived suppressor cells (MDSCs). MDSCs are a heterogeneous group of cells that are
classified as monocytic or granulocytic origin and are characterized by their ability to inhibit T
cell proliferation and cytokine release (25). Circulating MDSC levels increase with increased
prostate cancer stage and grade (26-28).

Interferon (IFN) signaling has a complex role within the MDSC compartment. Acute IFN
signaling can elicit potent anti-tumor activity in part through suppression of MDSCs, but chronic
IFN signaling in tumor cells and many immune cell types, including MDSCs, has been shown to
be pro-tumor (29-32). Chronic IFN signaling genes are a subset of interferon signaling genes
(ISGs) which maintain high expression for several days after an acute high dose of type I IFN in
response to viral infection (33). Chronic IFN signaling genes are also upregulated during chronic
low level type I IFN signaling both in both a normal setting, i.e., tonic IFN signaling (34), or a
malignant setting, i.e., pro-tumor interferon-related DNA damage response (IRDS) genes
(35,36). The exact set of ISGs which are turned on during chronic IFN signaling vary both with
cell type and the underlying cellular environment. While chronic IFN signaling in tumor cells
has been shown to contribute to immunotherapy resistance (32) the effect of chronic IFN
signaling in myeloid cells, in particular the heterogeneous MDSC subset, on resistance to
immunotherapy has not been well characterized.

Genetic multiplexing (37) can increase the throughput and decrease the batch effects of
single cell experiments. Cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) (38) is used to simultaneously obtain gene and protein expression from the same cell.

By using the novel combination of these methods (multiplexed CITE-seq), we simultaneously
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profiled protein and transcriptome expression from the same cell in ~400,000 peripheral blood
mononuclear cells (PBMCs) from longitudinal peripheral blood samples from the prostate cancer
immunotherapy (PCI) cohort, which contains participants with mCRPC receiving
immunotherapy treatment with sipuleucel-T and ipilimumab.

We used this single cell profiling dataset for unbiased discovery of immunosuppressive
transcriptional signatures within the myeloid compartment. We determined that the composition
across these myeloid states associates with clinical response as measured by percent change in
prostate-specific antigen (PSA), a serum marker used as a proxy for prostate tumor response to
therapy. In particular, we identified a co-expressed chronic IFN and complement signature within
the CD14+ myeloid compartment as a stable immune set point that predicts PSA response.

Within the non-naive CD8+ T cells, we found a T ..-like CD8+ T cell cluster that was enriched

pex

in responders to immunotherapy. Our results present a CD14+ myeloid signature as a potential
biomarker to identify participants with resistance to immunotherapy and suggest that T ,,-like
cells are important mediators of response to ipilimumab in mCRPC.

Results

Inflammatory-Related Pathways are Upregulated in the Myeloid Compartment in

Pre-Treatment mCRPC Samples Compared to Healthy Controls

We profiled PBMCs from 31 male clinical trial participants (21 white, 3 Hispanic, 3 black, and 5
unknown ethnicity; mean age is 65.8 years) with a median of 4 time points per participant. These
PBMCs were collected during a clinical trial investigating the efficacy of serially combining
sipuleucel-T with ipilimumab either immediately (13 participants) or with a three week cycle
delay (18 participants). Each cohort received 4 doses of ipilimumab (10 mg/kg) spaced three

weeks apart (Fig. 4.1A (left)).
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The samples were processed using a genetic pooling strategy to enable multiplexed
CITE-seq, simultaneous single-cell profiling of 99 cell-surface protein markers and
transcriptomes (Fig. 4.1A (right)). We used a combination of the protein expression for canonical
immune cell markers (e.g., CD3, CD19, CD14, and CD16) and differentially expressed genes
between clusters resulted in identifying 14 cell types from 20 leiden clusters (Fig. 4.1B).

When we compared the healthy controls and pre-treatment mCRPC samples, we
identified a monocyte/cDC cluster, composed of several canonical myeloid cell types (CD14+
classical monocytes, cDCs, etc.), that was almost entirely composed of healthy control samples
compared to a CD14+ MHC Class 11" cluster that was enriched in the mCRPC samples (Fig.
4.1C). The differentially expressed genes (e.g., SLC7A411, NFE2L2, NQO1, ANXAS) in the
CDI14+MHC Class II" cluster compared to the monocyte/cDC cluster reflect several genes
previously shown to be upregulated in MDSCs (39—41). We used gene set enrichment analysis
(GSEA) to find inflammation related pathways, namely response to interleukin-1 (IL-1) and in
vitro generation of macrophages from monocytes in culture, that were enriched in the genes
upregulated in the CD14+MHC Class 11" cluster (Fig. 4.1D). The Monocyte/cDC cluster had
higher expression many cDC associated (CLECI10A4, FCERIA, CDI1D, and CD74) and monocyte
associated (FCGR3A4, LYZ, CD4) genes.

CD 14+ Myeloid Cells from mCRPC have Lower MHC Class Il Expression and Occupy

Distinct Cell States Compared Compared to Healthy Controls

In order to improve the separation of the myeloid subsets, we subsetted and re-clustered the
myeloid cells (Fig. 4.1E). We used marker genes to identify the canonical myeloid cell types
(Fig. 4.11). Importantly, canonical myeloid subtypes (e.g., cDC, pDC, and CD16+ monocyte)

from mCRPC and healthy controls were clustered together. This allowed us to refine the myeloid
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cell states that were enriched in the mCRPC versus healthy control samples. The majority of
clusters with significant differential abundance from an exact permutation test were CD14+
clusters that were enriched in the pre-treatment mCRPC samples (cluster 0, 2, 3, 9, and 13) or
healthy control samples (cluster 4 and 5) (Fig. 4.1F-G). The cells in the CD14+ clusters from
mCRPC samples had significantly (p = 3.4E-21) lower expression of MHC Class II versus those
from healthy controls (Fig. 4.1H).

mCRPC Samples Cellular Distribution across Myeloid Clusters Associated with Response to

Immunotherapy

We next explored if the myeloid states we identified in our refined myeloid clustering also
captured heterogeneity within our longitudinal mCRPC samples. Thus we quantified the counts
of each mCRPC and healthy control sample across each of the myeloid clusters. This categorical
data was visualized with correspondence analysis, a dimensionality reduction technique similar
to principal component analysis (PCA) but which appropriately accounts for the compositional
nature of the underlying data (42). The sample level visualization captured the separation of the
healthy control samples (triangles) and pre-treatment (crosses) and post-treatment (dots) mCRPC
samples we had already shown and also heterogeneity within the mCRPC samples (Fig. 4.2A
(top)). We used k-means clustering to cluster the samples based on their coordinates in this
reduced space and found three groupings (Group A, C, and D) of mCRPC samples.

We used the maximal percent change observed from longitudinal serum PSA values to
classify the mCRPC samples into participants with any or no response in accordance with the
most recent Prostate Cancer Clinical Trials Working Group (PCWG3) guidelines (43).
Participants with a negative percent change in PSA at any point were classified as “Any

response” versus participants who only had positive percent change in PSA who were classified
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as “No response”. We found a significant association (Pearson's chi-squared test, X* (2, N = 77)
=30.0, p=0.000028.) between mCRPC group label and PSA response category with samples
from Group D more likely than those from Group C to be from participants with “Any response”
(Fig. 4.2B). The samples within group D also had a lower sample level percent change in PSA
compared to those in Group C (Fig. 4.2C).

The visualization of the myeloid cluster coordinates within the correspondence analysis
space suggested that the Group C samples had increased abundance in cluster 3 while Group D
samples had increased abundance in clusters 0, 2, 9, and 13 (designated the “group D clusters”)
(Fig. 4.2A (bottom)).This qualitative observation was confirmed by a quantitative analysis of the
cluster abundances which showed the Group C samples had higher abundance for cluster 3 and
lower abundance for the summed group D cluster abundances and vice versa for the group D
samples (Fig. 4.2D).

mCRPC Participants with Resistance to Immunotherapy Upregulate Chronic Interferon

Signature in CD14+ Myeloid Compartment

We used differential expression analysis to identify the significantly differentially expressed
genes between cells from group C samples within the group C cluster (cluster 3) and cells from
Group D samples from the group D clusters. The cells from the Group C cluster upregulated
many ISGs. (Fig. 4.2E). Many of these ISGs overlapped with those in chronic IFN signatures
described in viral (U-ISGF3 signature (44)), normal (Tonic IFN (34)), and malignant
(IRDS/interferon-driven inhibitory ligands (IDILs) (32,35)) settings. Additionally, the single-cell
score for the gene set significantly upregulated (log fold change > 1.5 and adjusted p value <
0.05) genes in the group C cluster (i.e., Cluster 3 sig.) were more highly correlated with the

chronic IFN signatures compared to an acute IFN gene set (ISGF3 signature (44)) that contains
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ISGs that are upregulated by acute IFN signaling and not by chronic interferon signaling (Fig.
4.2F). Thus, the ISGs upregulated in cluster 3 (Group C cluster) seem to represent genes
upregulated by chronic rather than acute IFN signaling.

The cluster 3 abundance significantly positively correlates with higher percent change in
PSA, representing increased tumor burden, across the mCRPC samples (Fig. 4.2G). We wanted
to investigate if the chronic IFN signature in cluster 3 was driving this association. Thus, we
gated out the cells in cluster 3 which did not express the chronic IFN signature captured by the
U-ISGF3 gene set (which had the highest correlation with the cluster 3 signature). Surprisingly,
the cluster 3 abundance of cells which did not overexpress the chronic IFN signature was also
significantly positively correlated with higher percent change in PSA (Fig. 4.2H). Thus, we
hypothesized that other signatures in cluster 3 were contributing to the association with
resistance to immunotherapy.

Tensor Decomposition Reveals Chronic Interferon Signature and Complement Signature

within the CD14+ Myeloid Cell Type

We used single-cell interpretable tensor decomposition (scITD) (45) as an orthogonal unbiased
method to discover gene signatures within the mCRPC samples. We used pseudobulked counts
across the myeloid cell types (Fig. 4.1E), B, T, and NK cell types from samples from each
mCRPC participant as the input tensor (Fig. 4.3A). We used only one sample from each
participant in order to power the discovery of gene programs that captured inter-individual rather
than intra-individual variance. The tensor decomposition uncovered four multi-cellular gene
programs (i.e., factors) with contributions from genes across each input cell type whose

expression (i.e., factor sample scores) captured variance across the input samples. We projected
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those factors onto the tensor from all the mCRPC samples to get scores for each factor across all
the samples.

We show the scores from Factor 2 and the genes with significant loadings in Factor 2 as
an illustrative example. Samples with higher expression of the genes with positive Factor 2
loadings have a positive Factor 2 score while samples with lower expression of the genes with
positive loadings (and higher expression of the genes with negative loadings, if applicable) have
a negative Factor 2 score (Fig. 4.3B (left)). Many of the annotated genes with significant positive
loadings across cell types are ISGs which overlap with the chronic IFN genes we previously
identified as upregulated in cluster 3 (Fig. 4.3B (right)). The Factor 2 sample scores are also
significantly positively correlated with the cluster 3 signature (Fig. 4.3C (left)). Thus Factor 2
seems to capture a chronic IFN signature across cell types that is correlated with the chronic IFN
signature within the CD14+ myeloid compartment that is enriched in cluster 3.

The Factor 3 scores were also significantly positively correlated with the cluster 3
signature while the other two factors were not (Fig. 4.3C (right)). Factor 3 had the highest
number of significant positive gene loadings in the CD14+ cell type. Many of the significant
positive loading genes for Factor 3 in the CD14+ cells are part of the complement system (CA2,
FDXI1, LGALS3, FCNI1, PRCP, C3A4RI).

Co-expression of Chronic Interferon Signature and Complement Signature within CD14+

Mpyeloid Cells Predicts Resistance to Imnmunotherapy

We wanted to investigate whether the CD14+ cell gene signatures captured by Factor 2 (chronic
IFN signature) and Factor 3 (complement signature) could independently predict immunotherapy
response. Thus, we scored the expression of each factor signature, including genes with

significant positive loadings for the CD14+ cell type for each factor, across the CD14+ cells and
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gated cells as expressing Factor 2 only (Factor 2 sig. > 0 and Factor 3 sig. <0) or Factor 3 only
(Factor 2 sig. < 0 and Factor 3 sig. > 0). We used six-fold cross validation to train a support
vector model with a linear kernel as a classifier with the abundance of CD14+ cells expressing
either Factor 2 or Factor 3 as the input variable and immunotherapy response category as the
binary output variable. We used the Receiver Operating Characteristic (ROC) metric to evaluate
the model performance and found that neither factor was predictive of immunotherapy response
status compared to a random classifier (Factor 2 Area under the curve (AUC) = 0.53 and Factor 3
AUC = 0.41) (Fig. 4.3D).

Within cluster 3, in addition to cells that expressed only the Factor 2 or Factor 3
signature, there was a fraction of cells (31%) which co-expressed both signatures (Fig. 4.3E). We
also found an enrichment in the percent of CD14+ cells co-expressing Factor 2 and Factor 3
signatures in samples from participants with resistance to immunotherapy (Fig. 4.3F). Thus, we
hypothesized that the co-expression of Factor 2 and Factor 3 could be a predictor for
immunotherapy response. The abundance of CD14+ cells co-expressing Factor 2 and Factor 3
signatures reliably predicted immunotherapy resistance (AUC = 0.79) (Fig. 4.3G). The ability to
predict immunotherapy response from pre-treatment and on-treatment samples suggests this
CD14+ state which co-expresses the Factor 2 and Factor 3 signatures is a stable immune set
point present at baseline in mCRPC participants who are resistant to therapy which persists
during immunotherapy treatment.

T,

vex-like Cells Enriched in mCRPC Immunotherapy Responders

While the tensor decomposition captured two factors whose co-expression in CD14+ cells was
increased in immunotherapy resistant mCRPC, it did not identify signatures that were enriched in

the responders. The gene signature in the Group D clusters enriched in responders (Fig. 4.2E)
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contained inflammatory chemokines (CXCL3) and cytokines (/LB and IL1A) which have been
previously shown to be pro-tumor (46,47). Thus, we hypothesized that since the CD14+ cells in
the responders did not have an immunostimulatory signature, they represented a permissive
myeloid compartment where the lack of presumably immunosuppressive chronic
IFN/complement CD 14+ signature could allow for anti-tumor activity by other cell types. Thus,
we focused on other immune compartments that could have immunostimulatory/anti-tumor
signatures.

Cytotoxic CD8+ T cells are crucial targets of the response to checkpoint receptor
inhibitors, including ipilimumab. Thus, we focused on the non-naive CD8+ T cells by subsetting
and clustering them (Fig. 4.4A). Of the 13 clusters, only cluster 6 was significantly enriched
(adjusted p value = 0.03, linear mixed effect model) in participants with any response compared
to participants with no response to immunotherapy (Fig. 4.4B). Interestingly, cluster 6 had the
highest expression of 7CF'7 across all the non-naive CD8+ T cell clusters (Fig. 4.4C). Recently,
TCF1+ (encoded by the TCF7 gene) CD8+ T cells which also express some exhaustion markers
(e.g., PD1) have emerged as “stem-like” or progenitor exhausted cells (termed T,.) which are
enriched in the tumor draining lymph node and can travel to the tumor to mediate the response to
immunotherapy (48,49). To explore if cluster 6 represented a T ,,-like cell state, we scored gene
signatures from a meta-analysis of tumor-infiltrating T cells (50) for terminally exhausted CD8+
T cells (Terminal T,,) and TCF7+ T cells also expressing exhaustion markers (7CF7+ T,,) (Fig.
4.4D-E). The majority of cells (70%) in cluster 6 only expressed the TCF7+ T, signature and
did not express the Terminal T,, signature (TCF7+ T,, > 0 and Terminal T, < 0) (Fig. 4.4F).

Overall, our data suggests that resistance to immunotherapy in mCRPC is mediated by an

immunosuppressive CD14+ myeloid cell state marked by the co-expression of a chronic
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interferon signature and complement signature. In contrast, in responders, an inflammatory
CD14+ myeloid state represents a permissive myeloid signature which allows for anti-tumor
T,ex-like CD8+ T cells to mediate a response to immunotherapy (Fig. 4.4G).

Discussion

Here we present single-cell profiling of PBMCs from an mCRPC cohort receiving a combined
immunotherapy regime of sipuleucel-T and ipilimumab. We found an inflammatory CD14+
myeloid signature that was enriched in the pre-treatment mCRPC samples compared to the
healthy controls. Human MDSCs are generally classified into three subtypes: early-stage MDSC
(Lin-HLA-DR-CD33+), polymorphonuclear-MDSC (CD14-CD11b+CD15+), and
monocytic-MDSC (M-MDSC) (CD11b+CD14+HLA-DR"¥-CD15-) (25). The CD14+ myeloid
cells from the mCRPC samples had low expression of MHC Class II suggesting they overlap
with the M-MDSC cell type. Thus, our dataset adds to the small set of studies providing
single-cell profiling of MDSC/MDSC-like cells (51,52).

We performed a myeloid focused sub clustering to define subtypes within the
heterogeneous CD 14+ myeloid compartment. We found a co-expressed chronic interferon and
complement signature in the CD14+ myeloid cells which predicted resistance to immunotherapy.
Previously, Keenan et al. described a circulating CD14+ myeloid population with an
inflammatory signature which was associated with resistance to anti-PD-1 therapy in biliary
cancer (53). The CD14+ myeloid compartment in our mCRPC cells had a similar expression of
inflammatory markers but only a subset expressed the predictive chronic interferon and
complement signature. Thus our results may present a refinement of this previously described
peripheral immunosuppressive CD14+ myeloid population. The complement signature is an

intriguing therapeutic target since C34R/ is associated with macrophage infiltration in prostate
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adenocarcinoma (54) and has been proposed as a potential immune checkpoint receptor target
(55). Recently, Boukhaled et al. showed that epigenetically programmed high interferon response
capacity in CD4 effector T cells predicted resistance to anti-PD1 therapy (56). The chronic
interferon signature we profiled in the CD14+ myeloid compartment was part of a multicellular
pattern that was expressed across all the cell types (including T cells) in our tensor
decomposition analysis. Future studies should focus on the contributions of chronic interferon
signaling in different cell types to immunotherapy resistance.

In the responders, we found an increased level of T ,.-like CD8+ T cells compared to
participants with no PSA response. T, cells in the periphery have emerged as important drivers
of response to ICIs. Interestingly, in the context of murine chronic viral infection, TCF1 has been
shown to promote T cell stemness through opposing type I IFN signaling (57). Thus chronic
interferon signaling could be a pre-established immune set-point driven by past infections, tumor
factors, or commensal microbes (58) which favors the development of T cell exhaustion over the
maintenance of T cell stemness.

Our study adds to a growing collection of blood biomarker signatures that predict or
associate with response to immunotherapy (10,12,59-62). The predictive chronic
interferon/complement signature we described could be used as a biomarker to select mCRPC
cohorts who do not have a pre-programmed resistance to immunotherapy. Cohort selection will
be a powerful tool for realizing the potential of current ICIs within prostate cancer and other
solid tumors (63). However even within the mCRPC participants with any response to
immunotherapy, there were only a small number of complete responders (N=3 with a percent
change in PSA less than -50%). Thus, for most responders, the decline in PSA represented a

short-lived response to immunotherapy. Our findings suggest that distinct new targeted
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therapeutic approaches may be needed for individuals who are predicted to have resistance
versus those who are partial responders to current immunotherapy therapies to ultimately

improve response to immunotherapy in prostate cancer and other solid tumors.
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Figure 4.1 Inflammatory myeloid signature is a hallmark of metastatic prostate cancer in
the peripheral immune compartment

(A) Combined immunotherapy regime with sipuleucel-T and ipilimumab and blood sampling
timeline for participants with metastatic castration-resistant prostate cancer (mCRPC) in the PCI
cohort (left). Pooling strategy for analysis of mCRPC and healthy control (HC) samples with
multiplexed CITE-seq (right). (B) UMAP of all cells colored and labeled with cell type. (C) Box
plot of abundance of each indicated cell type in the 10 pre-treatment mCRPC samples versus the
9 HC samples. (D) Heatmap showing standard scale normalized expression for the indicated
genes (row labels) for pre-treatment mCRPC and HC samples. Row annotations identify
enriched pathways that the genes are included in. (E) UMAP of myeloid cells colored by leiden
cluster and labeled with annotated cell type. (F) Box plot of abundance of each indicated myeloid
leiden cluster in the 10 pre-treatment mCRPC samples (blue) versus the 9 HC samples (gray).
Significance indicated by asterisk for p value (exact permutation test) < 0.05 (*), < 0.1 (**), <
0.001 (***). (G) UMAP of myeloid cells colored by disease status (mCRPC — Disease [red] or
Healthy Control — Healthy [gray]). (H) Violin plot of single cell scores for MHC Class II gene
set for mCRPC (Disease) or Healthy Control (HC) cells from CD14+ myeloid clusters from
(E/G). Effect size (B) and p value are from a linear mixed-effects model. (I) Dot plot showing
expression of labeled genes for each cluster from (E) is shown by percentage of cells with
expression greater than zero (dot size) and mean expression for cells with nonzero expression
(color).
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Figure 2
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Figure 4.2 Chronic interferon signature in CD14+ myeloid compartment captures mCRPC
sample heterogeneity

(A) Correspondence analysis plot based on compositional data for each sample across the
myeloid clusters in Fig. 1E showing coordinates for each sample (top) and for each cluster
(bottom). Dots for each sample are colored according to group (Group A - D) assigned by
k-means clustering on plot coordinates, and the dot shape indicates sample identity as
pre-treatment (+) and during treatment () mCRPC samples or HC (A). (B) Barplot of the
number of samples from participants with no response (orange) or any response (green) within
each myeloid group from A. The p value is from Pearson's chi-squared test. (C) Boxplot of
percent change in PSA for samples in each group from (A). Dots for each sample are colored
according to the response for the participant of origin [no response (orange) or any response
(green)]. (D) Scatter plot showing cluster 3 abundance (Group C enriched cluster) versus the sum
of abundances in cluster 0, 2, 9, and 13 (Group D enriched clusters) for samples in Group C (dots
colored purple) and Group D (dots colored blue). UMAPs highlighting each set of clusters are
shown along each axis. (E) Volcano plot of differentially expressed genes from pseudobulked
counts for cluster 3 from group C samples versus counts for group D clusters (cluster 0, 2, 9, and
13) from group D samples. Dots are colored as significantly overexpressed (adjusted p value <
0.05 and log, fold change > 1) in Group C cluster (purple), Group D clusters (blue), or not
significantly different between the groups (gray). Labeled genes which are significantly
overexpressed in Group C are colored according to the interferon gene sets they belong to as
indicated in the legend. (F) Hierarchical clustering of Pearson’s correlation values between
single-cell scores in all myeloid cells for the three gene sets used to define chronic interferon
(IFN) signaling, the acute IFN only gene set, and the cluster 3/group C signature from E. Scatter
plot of percent change in PSA versus cluster 3 abundance (G) and cluster 3 abundance for cells
not expressing the U-ISGF3 chronic interferon signature (H) for each mCRPC sample. Dashed
line is the best fit line and Pearson's correlation coefficient r and p value are given in overlaid
text.
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Figure 3
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Figure 4.3 CD14+ myeloid cells co-expressing chronic interferon signature and complement
signature are predictive of immunotherapy response resistance

(A) Schematic of tensor decomposition for the pseudobulked counts across 13 cell types across
all cells. (B) Heatmaps showing Factor 2 sample scores (left) and Factor 2 gene loading values
(right). (C) Scatter plot of cluster 3/group C signature from E versus Factor 2 (left) or Factor 3
(right) samples scores. Dashed line is the best fit line and Pearson's correlation coefficient r and p
value are given in overlaid text. (D) ROC curves for predicting no versus any response
individuals using the percentage of cells in CD14+ clusters expressing only Factor 2 CD14+ cell
type signature (left) or only Factor 3 CD14+ cell type signature (right). Legend shows AUC
values for each six-fold cross validation. (E) Density plot for Factor 2 CD14+ cell type signature
versus Factor 3 CD14+ cell type signature in cells from cluster 3. (F) Boxplot of percentage of
cells in CD 14+ clusters expressing Factor 2 CD14+ cell type signature and Factor 3 CD14+ cell
type signature in samples from no (orange) or any (green) response individuals. (G) ROC curves
for predicting no versus any response individuals using the percentage of cells in CD14+ clusters
expressing Factor 2 CD14+ cell type signature and Factor 3 CD14+ cell type signature. Legend
shows AUC values for each six-fold cross validation.
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Figure 4
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Figure 4.4 T ,-like non-naive CD8+ T cell cluster associated with response to
immunotherapy

(A) UMAP of non-naive CD8+ T cells colored by leiden cluster. (B) Boxplot of percentage of
non-naive CD8+ T cells in each cluster in A for responders versus non-responders. Significance
indicated by asterisk for p value (linear mixed effect model) < 0.05 (*). (C) Heatmap showing
standard scale expression of marker genes for clusters in A. UMAP of non-naive CD8+ T cells
colored by single-cell score of 7C7+ T., (D) and Terminal T, (E) CD8+ T cell signatures (F)
Density plot for 7C7+ T, and Terminal T, single-cell scores in cells from cluster 6. (G)
Graphical abstract summarizing distinct cellular immune signatures associated with the
resistance or response to immunotherapy in mCRPC.
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Materials and Methods

Single-cell RNA and ADT Library Preparation and Sequencing. The 99x antibody pool was
prepared by combining 2 mL of each antibody from the 99x Abseq panel (BD Cat. no. 564220)
and dialyzing into 100 mL of staining buffer using an Amicon Ultra-0.5 device. Antibody pool
was kept at 4 °C during cell thawing.

Frozen PBMCs from participants in each of the 8 multiplexed pools (~16 participants/pool; 13
genetically distinct samples from the PCI cohort and 3 healthy age and gender-matched healthy
controls) were each thawed into 10 mL of CHM media (500 ml RPMI plus 25 mL filtered human
serum, 2.5 mL L-Glutamine, 5 mL Pen-Strep, 5 mL Sodium Pyruvate, and 5 mL Non-essential
Amino Acids) then centrifuged and resuspended in 10 mL of CHM media with DNAsel (15 U /
mL; Roche Cat. no. 04536282001). The cells were incubated in the DNAsel media for 30
minutes at 37 °C before being resuspended in CHM media for cell counting using a Cellometer
Auto T4. Equal number of cells from each sample were combined to create a pool of 1,000,000
cells. The pooled cells were stained at room temperature for 10 minutes with the Human
TruStain FcX blocking reagent (5 mL reagent; BD / 95 mL staining buffer (2% BSA/0.02%
Tween in 1X PBS)) before staining for 45 minutes with the antibody pool at 4 °C. Stained cells
were washed three times with 2 mL of staining buffer for each wash. The resulting cell pool was
resuspended in CHM media and filtered through a Flowmi strainer (Sigma Cat. no.
BAH136800040) to remove cell clumps. The single cell suspension was diluted to yield a 3,906
cell / mL solution of which 20 mL was used to load 78,125 cells/well over 4 wells per pool onto
the 10x Genomics controller for a target capture rate of 30-40% of loaded cells/well for a yield of

~4,000 cells/sample.
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Droplet-based paired single-cell gene expression (GEX) library prep was performed using the
10x Genomics Chromium Single Cell 3' v.3 kit per manufacturer’s instructions from 10x
Genomics with the addition of a 0.5 mL of a 4 mM of an additive primer (5’-
CAGACGTGTGCTCTTCCGATCT) at the cDNA amplification step for the generation of the
antibody derived tag (ADT) cDNA from the BD Abseq panel. The supernatant from the post
cDNA amplification reaction cleanup was used to prep the ADT cDNA libraries per
manufacturer’s instructions from BD as detailed in Neely et al. (64). The resulting GEX and
ADT libraries were sequenced on an Illumina Novaseq 6000 sequencer with paired-end (PE)
reads with a target of ~25,000 PE reads per cell for both the GEX and ADT libraries from each
well.

Bulk RNA Sequencing for Genotyping. RNA extraction from at least 40,000 cells was
performed with the Qiagen Rneasy Mini Kit per manufacturer’s instructions. cDNA was
prepared and amplified using the previously published SMARTSeq2 protocol using the [llumina
Nextera XT DNA Library Preparation Kit. The resulting libraries were sequenced on an Illumina
HiSeq 4000 sequencer with paired-end (PE) reads with a target of 25,000,000 reads per sample.
Genotypes for each participant were extracted from the resulting fastgs as described in (65).
Briefly, quality control for the raw fastq reads was completed with FastQC v.0.11.8 (66) and low
quality reads were trimmed with Trim Galore v.0.4.4 dev as a wrapper for Cutadapt v.1.18 (67).
The filtered reads were aligned using the STAR v.2.4.2a modified (68) with the default settings
to the GRCh38 transcriptome. GATK v.4.0.6.0 (69) was used to call SNPs to yield genotypes for
each individual.

Alignment of Single-cell Sequencing Data. The GEX and ADT fastq files were aligned using

CellRanger v.3.0.1 with the default settings to the GRCh38 transcriptome or a customized
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reference file from BD for the Abseq antibodies, respectively, resulting in 873,755 cells (based
on the CellRanger cell calling algorithm from the GEX libraries) with counts for 33,538 genes
and 99 proteins.

Demultiplexing. The aligned GEX sequencing reads were demultiplexed with freemuxlet (70),
as previously described (71), to identify cells from each participant based on host genetics and to
exclude doublets from the data. The genotypes estimated from bulk RNA-seq were compared to
those estimated by freemuxlet to match the sample ids with the freemuxlet ids. By repeating this
protocol over 8 pools, 98% of cells from a total of 117 samples were successfully demultiplexed.
Cell and Gene Filtering. The GEX and ADT count matrices from all pools were combined and
filtered (72). Low quality cells (17% of total cells) were filtered out based on having number of
genes detected or total counts of unique molecular identifiers (UMIs) less than 3 median absolute
deviations (MAD) below the median and with percent of total UMIs mapping to mitochondrial
genes greater than 3 MAD above the median for each 10x well. Genetic doublets (24% of high
quality cells) were removed by only keeping cells which were called as singlets for the same
participant from the consensus of freemuxlet and souporcell v.2.0 (73). To detect non-genetic
doublets, we ran the scrublet well on cells from each individual well and used a Gaussian
mixture model to cluster the simulated doublet scores into two distributions. The minimum
doublet score of the distribution with the higher peak doublet score was used as the threshold to
mark “neotypic” doublets based on the doublet score for each cell assigned by scrublet v.0.2.3.
These neotypic doublets (1.1% of high quality cells) were also removed. We filtered out 7,031
genes that were detected in less than 3 cells.

To avoid overly stringent filtering based on low counts of HBB, we filtered out red blood cells

(RBCs) (1.0% of high quality singlets) based on clustering cells in each well into RBC and
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non-RBC distributions based on raw HBB counts using a Gaussian mixture model implemented
with sklearn v.0.24.1 (74). Platelets (raw PF4 count > 0) (2.6% of high quality singlets) were
also filtered out. Finally, cells from healthy control samples that were genetically female (5.2%
of high quality singlets) and cells from samples (N=7) with less than 1000 cells (0.5% of filtered
singlets) were also removed to leave a matrix of 408,783 cells and 26,867 genes.

Processing for ADT Counts. The ADT counts were CLR normalized by cell.

Normalization, Batch Correction, and Visualization. The raw counts were normalized to
10,000 counts and loglp transformed. For downstream analyses, we excluded all RBC related
genes (HBAI, HBA2, HBB, HBG1, HBG2, HBQI1, HBD, HBM, HBZ) and XIST, to avoid
clustering cells based on detection of these genes. We identified 1,850 highly variable genes
which were used with the default settings in scanpy v.1.7.1 for principal component (PC)
analysis. These PC coordinates were used as the input to Harmony v.0.0.5 (75) for batch
correction with each pool as a batch. The top 20 batch corrected PCs were used for nearest
neighbor detection with scanpy.pp.neighbors. The neighborhood graph was used for clustering
with the leiden algorithm (76) and dimensionality reduction with uniform manifold
approximation and projection (UMAP) (77). This resulted in 20 clusters which were collapsed
into 14 cell types. We used the expression of marker genes and proteins for the B cell, myeloid,
and NK cell type annotations. For the T cells, we automatically gated positive and negative cells
using a Gaussian mixture model implemented with sklearn v.0.24.1 to gate CD4+ T cells
(CD3+CD4+CDS8-), CD8+ T cells (CD3+CD4-CD8+), DP T cells (CD3+CD4+CD8+), and DN
T cells (CD3+CD4-CD8-).

Sub-clustering of Myeloid Cells. We first subsetted 80,280 myeloid cells. We assigned cell

cycle phase to each cell using the scanpy function sc.tl.score genes cell cycle with the gene list
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from (78). We regressed out percent of counts mapped to mitochondrial genes, percent of counts
mapped to ribosomal genes. We identified 1,551 highly variable genes which were used with the
default settings in scanpy v.1.7.1 for principal component (PC) analysis. These PC coordinates
were used as the input to Harmony v.0.0.5 for batch correction with cell cycle phase, disease
status, and pool as a batch, iteratively. The top 20 batch corrected PCs were used for nearest
neighbor detection with scanpy.pp.neighbors, clustering with the leiden algorithm, and
visualization with UMAP. This resulted in 15 clusters which were collapsed into 6 cell types.
Sub-clustering of Non-naive CD8+ T Cells. We first subsetted 45,780 non-naive CD8+ T cells.
Naive CD8 T cells were removed by gating CD45RA+CCR7+ cells from the CD8+ T cells with
a Gaussian mixture model implemented with sklearn v.0.24.1. We assigned cell cycle phase to
each cell using the scanpy function sc.tl.score genes cell cycle with the gene list from (78). We
identified 1,603 highly variable genes which were used with the default settings in scanpy v.1.7.1
for principal component (PC) analysis. These PC coordinates were used as the input to Harmony
v.0.0.5 for batch correction with cell cycle phase, disease status, and pool as a batch, iteratively.
The top 20 batch corrected PCs were used for nearest neighbor detection with
scanpy.pp.neighbors, clustering with the leiden algorithm, and visualization with UMAP to
identify and graph 13 clusters.

Differential Gene Expression. Pseudobulked samples were normalized with the variance
stabilizing transformation (VST) function from DESeq2 v.1.22.2 (79). Differential gene
expression was done with a negative binomial model with multiple testing correction with
Benjamini-Hochberg implemented via DESeq?2.

Gene Set Enrichment Analysis. The differential gene list was filtered to remove genes with NA

for the adjusted p value or log fold change. The filtered gene list was used to create ranked gene
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lists with the sign(log fold change) times the -log10(raw p value) as the ranking metric. The
ranked list was used as input to look for gene set enrichment in pathways from the BP: subset of
GO gene sets of the C5: ontology gene sets and the ImmuneSigDB subset of the C7:
immunologic signature gene sets from the Human Molecular Signatures Database (MSigDB)
(80) in the ‘classic’ mode with the GSEAPreranked tool from GSEA v.4.1.0

(http://www.broad.mit.edu/gsea/) with the default settings.

Differential MHC Class II Expression. MHC Class II expression single cell scores were
assigned using the log-normalized scaled gene counts and the gene list (HLA-DRA, HLA-DRBS,
HLA-DRBI1, HLA-DQAI, HLA-DQBI1, HLA-DQA2, HLA-DQB2, HLA-DOB, HLA-DMB,
HLA-DMA, HLA-DOA, HLA-DPAI, HLA-DPB1, CD74) as inputs to the score genes function
from scanpy. Significant difference in MHC Class II expression for cells from CD 4+ clusters
from mCRPC or healthy control (HC) samples was determined with a linear mixed effect model
MHC Class II score ~ disease category (mCRPC or HC) + leiden cluster with a random
intercept for each sample implemented with statsmodels v.0.13.2 (81).

Correspondence Analysis. We implemented the correspondence analysis (CA) from prince
v.0.7.1 (82). We performed k-means clustering with sklearn v.0.23.1 on the standard scaled CA
coordinates. We determined the number of clusters using the cluster number from 1 to 10 clusters
with the minimum silhouette score and minimum sum of square error.

PSA Analysis. We calculated percent change in PSA from the baseline PSA value closest to
after the completion of sipuleucel-T (Day 0) [range of baseline PSA: -16 days to 19 days; median
days = -3.5. Participants with any negative percent change in PSA were assigned as “Any

response” and participants with only positive percent change in PSA were assigned as “No
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response”. For the association between PSA response status and CA plot myeloid group, we used
a chi-square test from scipy v.1.8.1 (83).

Gene Set Scoring. For single-cell scoring of gene signatures, we used the indicated gene list to
create single-cell scores from the log-normalized scaled gene counts with the score _genes
function from scanpy v.1.9.1.

Tensor Decomposition. We used pool distributed samples (one from each participant) for the
initial tensor decomposition with scITD v.1.0.2. Only samples with at least 10 cells in every cell
type were included in the initial tensor decomposition and for the projection of the factors.
Predictive Modeling. We created a support vector classifier model with sklearn v. 1.1.1. For the
training/test splits, we partitioned all the samples from a particular participant into either the
training or test set to avoid inflated performance due to overfitting in the training set on samples
from a participant and then testing on samples from the same participant in the test set.

Other. We used scipy v.1.8.1 for Pearson correlation coefficient calculation, NumPy v.1.22.4
(84) for the best fit line analysis, pandas v.1.4.3 (85) for data frame manipulation, and matplotlib
v.3.5.2 (86) and seaborn v.0.11.2 (87) for the visualizations. Figure 4.1A and 4.4G were created

with BioRender.com.
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