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Systems Immunology Characterization of the Interaction of Immunological Set Points and

Disease Outcomes

Elizabeth McCarthy

Abstract

Systems immunology characterizes how immune cell types interact within different

contexts to lead to immunological outcomes. Several of the tools of systems immunology are

drawn from the single-cell -omics world, fittingly since the first single-cell technology, flow

cytometry, was and is primarily used in immunology to phenotype diverse immune cell types.

Here, we present the use of single-cell transcriptomics and proteomics to take a systems

immunology approach to study how immune set points, created by genetic and environmental

exposures, affect individual immune responses in three major classes of disease, autoimmune

(rheumatoid arthritis), infection (Zika virus), and cancer (metastatic prostate cancer).

How pathogenic CD4 T cells develop to cause autoimmunity remains unknown. In the

SKG autoimmune arthritis mouse model, we profiled arthritogenic naïve CD4 T cells by bulk

and single cell RNA and T cell antigen receptor (TCR) sequencing prior to arthritis onset. Our

analyses reveal that despite impaired proximal TCR signaling, a subset of SKG naïve CD4 T

cells that have most recently encountered antigen more highly express gene programs associated

with positive regulation of T cell activation and cytokine signaling compared to wild type cells.

These cells also induce genes associated with negative regulation of T cell activation but for a
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subset of tolerogenic markers (e.g., Izumo1r, Tnfrsf9, Bach2, Eomes, Tigit, Tox, Tox2) do so at

lesser amounts than wild type cells. Furthermore, their TCR sequences exhibit a previously

unrecognized bias towards Vbs that recognize superantigen from endogenous retrovirus (ERV)

mouse mammary tumor virus (MMTV). In arthritic joints, these biased Vbs are further expanded

and ERVs are readily detected. Inhibition of viral reverse transcription significantly reduced

SKG arthritis development. Together, our results suggest that endogenous viral products promote

autoreactive naïve CD4 T cells which recognize endogenous viral superantigens to break

tolerance via changes to their transcriptome and activation state.

Although generating high neutralizing antibody levels is a key component of protective

immunity after acute viral infection or vaccination, little is known about why some individuals

generate high versus low neutralizing antibody titers. Here, we leverage the high-dimensional

single-cell profiling capacity of mass cytometry to characterize the longitudinal cellular immune

response to Zika virus (ZIKV) infection in viremic human blood donors in Puerto Rico. During

acute ZIKV infection, we identify widely coordinated responses across innate and adaptive

immune cell lineages. High frequencies of multiple activated cell types during acute infection are

associated with high titers of ZIKV neutralizing antibodies 6 months post-infection, while stable

immune features suggesting a cytotoxic-skewed immune set point are associated with low titers.

Our study offers insight into the coordination of immune responses and identifies candidate

cellular biomarkers that may offer predictive value in vaccine efficacy trials aimed at inducing

high levels of antiviral neutralizing antibodies.

Cancer immunotherapy has been a revolutionary anti-tumor treatment, but in prostate

cancers, and other solid tumors, the response has been limited. Sipuleucel-T, an autologous

antigen-presenting cell vaccine involving ex vivo peptide stimulation, is the only approved
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immunotherapy for advanced prostate cancer. Understanding the immunogenic and tolerogenic

myeloid cell states in prostate cancer could improve the limited immunotherapy response. We

used a genetic multiplexing strategy to simultaneously profile gene and protein expression on

single cells from ~400,000 peripheral blood mononuclear cells (PBMCs) from longitudinal

sampling of a metastatic castration-resistant prostate cancer (mCRPC) human cohort receiving

combined immunotherapy (sipuleucel-T and ipilimumab). We identified co-expressed chronic

interferon and complement gene signatures in the peripheral CD14+ myeloid compartment

which predicted immunotherapy resistance. In contrast, the responders had higher frequency of

progenitor exhausted CD8+ T cells (Tpex) suggesting a permissive myeloid environment requires

a productive T cell response for anti-tumor activity. Future trials could use low co-expression of

the CD14+ myeloid chronic interferon and complement gene signatures as a biomarker to select

participants who are more likely to respond to therapy and could specifically target this myeloid

state to potentially improve response to immunotherapy.
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Chapter 1: Introduction

Systems immunology utilizes a variety of technologies to generate large-scale datasets to gain

insights about the cellular states and interactions within the immune system using a combination

of bioinformatics tools and immunological expertise (1). While the cells that make up the

immune system have complex individual phenotypes and functions, the cell-cell interactions and

distribution of the total immune cell milieu across individual states, which can be captured by a

systems immunology approach, are critical to understanding immune system function and

dysfunction. Single-cell -omics are part of the bedrock of systems immunology tools.

Many of the datasets generated by single-cell -omics technologies use a similar analytical

pipeline. Here we focus on technologies used to generate single cell proteomics (mass cytometry

by time-of-flight (CyTOF) (2)), single-cell transcriptomics (single-cell RNA sequencing

(scRNA-seq) (3) and single-cell T cell receptor sequencing (scTCR-seq) (4)), and their

combination (cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq)) (5).

Each experimental technology requires data quality control, normalization, and other

pre-processing steps (6,7). These single-cell data can be visualized with numerous

dimensionality reduction algorithms (8,9), and clustering algorithms (10,11) are commonly

applied to partition cells that share similar multidimensional expression profiles. Statistical

methods for differential abundances (12,13) are commonly applied to identify biological

differences across experimental conditions or groups of samples, as are methods to identify

differential expression (14) of the quantified cellular feature (e.g., protein, RNA, etc.) within

clusters of interest. Trajectory inference algorithms (15) can reconstruct differentiation or

activation processes, leveraging the single-cell nature of these data. For scTCR-seq, analytical

techniques (16) which can capture unequal distribution of clonotypes across cells such as Gini
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coefficient or Shannon entropy are used to measure clonal restriction across cells within a

sample.

A fundamental question in immunology is what features and interactions within the

immune system determine a successful or unsuccessful response to an immunological

perturbation (e.g., infection, malignancy, etc.). In many contexts, immune set points have

emerged as key factors that can determine immunological responses before a perturbation.

Immune set points are determined by the interaction of intrinsic host factors (e.g., microbiome,

genetics, etc.) and the extrinsic environmental factors (e.g., previous infections, carcinogen

exposure, etc.). For example, the level of regulatory T cells was shown to be a tunable immune

set point that could be used to decrease the risk of the development of autoimmune disease in

mouse models (17). Additionally, the neonatal microbiome composition has been shown to alter

the risk of developing childhood asthma (18). Immune set points can also affect the response to

immune-mediated treatments. Indeed, a higher risk for Th17-mediated skin autoimmune disease

is associated with response to checkpoint receptor inhibitors in bladder cancer (19).

Characterizing how immune set points can affect the development of disease and the response to

treatment can reveal important biomarkers to predict disease risk or to guide treatment selection

and can also suggest potential mechanisms for disease pathogenesis.

In chapter 2, we investigate how genetic factors, namely a hypomorphic mutation in

Zap70 which impairs proximal TCR signaling in the SKG mouse, create an arthritogenic

immune set point. We used bulk RNA sequencing and single-cell RNA and TCR sequencing to

investigate the naïve CD4 T cell compartment before arthritis induction. We found a defect in the

induction of peripheral tolerance and a TCR Beta Variable chain (TRBV) bias towards an

autoreactive TCR repertoire in the SKG mice compared to wild-type (WT) mice.
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In chapters 3 and 4, we shift focus from mouse models to human immunology. In chapter

3, we explored how immune set points affect the maintained levels of long-term neutralizing

antibodies after a viral infection. We profiled peripheral blood mononuclear cells (PBMCs) with

CyTOF that were longitudinally sampled from participants who were infected with Zika virus

(ZIKV). A cytotoxic-skewed immune set point expressed during acute infection and after the

resolution of infection that predicted lower levels of ZIKV neutralizing antibodies 6 months

post-infection.

In chapter 4, we asked if an immune set point could predict resistance to immunotherapy

in metastatic castration-resistant prostate cancer (mCRPC). We used multiplexed CITE-seq to

profile longitudinal samples from clinical trial participants receiving combined immunotherapy

of sipuleucel-T, an antigen presenting vaccine, and ipilimumab, a checkpoint receptor inhibitor,

for mCRPC. We found a co-expressed chronic interferon and complement signature in the

peripheral CD14+ myeloid compartment which predicted resistance to immunotherapy which

could potentially inhibit the progenitor exhausted (Tpex)-like CD8+ T cell population which was

enriched in responders.
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Introduction

Activation of conventional CD4 T cells that recognize specific self-antigen(s) is thought to be

necessary for rheumatoid arthritis (RA) onset (1). A paradoxical observation from patients with

RA is that CD4 T cells can differentiate into pathogenic effector cells despite impaired TCR

signaling (2-8). Yet, how these T cells subvert tolerance to cause disease remains incompletely

understood. T cell-intrinsic mechanisms that operate during thymic development (negative

selection of self-reactive cells) and in peripheral T cells (functional unresponsiveness or

‘anergy’) are essential to maintain tolerance to self.

The SKG mouse model derived from the BALB/c genetic background is a powerful tool

to define how defects in tolerance contribute to arthritis. Due to a hypomorphic mutation in

ZAP70, a cytoplasmic tyrosine kinase critical for proximal TCR signaling, SKG mice exhibit

impaired thymocyte negative selection resulting in a break in central tolerance and escape of

self-reactive CD4 T cells into the periphery (9-12). In response to an innate immune stimulus,

arthritogenic CD4 T cells that are otherwise dormant become activated resulting in erosive

inflammatory arthritis that resembles RA (9, 13). SKG CD4 T cells are sufficient and necessary

to cause arthritis (9), and we have shown that adoptive transfer of even naïve SKG CD4 T cells

(into immunodeficient hosts) are sufficient to trigger disease (10). While the SKG mice have a

known defect in central tolerance, it is unclear how SKG T cells subvert peripheral tolerance to

differentiate into pathogenic effector cells that cause frank disease in the setting of severely

impaired TCR signaling.

To address this question, we previously developed the SKGNur mouse which combines

the SKG model with a reporter of TCR signaling, Nur77/Nr4a1-eGFP, that tethers GFP

expression to the regulatory region of Nr4a1 (encoding the orphan nuclear hormone receptor
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Nur77). Because NR4A1 is rapidly and selectively upregulated in response to antigen but not

inflammatory stimuli (14, 15), the SKGNur mouse allows us to identify antigen-activated T cells

before and during disease. We previously demonstrated that high Nur77-eGFP expression in

SKGNur mice identifies self-reactive naïve CD4 T cells before disease onset with greater

potential to cause arthritis, in part, because of abnormally heightened responses to interleukin 6

(IL-6) (10) (Supplementary Fig. 2.1A). We proposed that chronic antigen stimulation of

peripheral SKG CD4 T cells results in lower levels of suppressor of cytokine signaling 3

(SOCS3)—a key negative regulator of IL-6 signaling, and showed that this mechanism may

operate in patients with RA (10). This led us to hypothesize that SKG CD4 T cells might exhibit

dysregulated expression of a broader gene program of negative immune regulators rendering

them more susceptible to stimuli that could lead to a breach in peripheral tolerance.

To test this hypothesis, we studied the TCR repertoire and transcriptome of arthritogenic

naïve CD4 T cells in SKG mice by performing both bulk and single cell RNA sequencing. We

capitalized on the SKGNur model in order to capture arthritogenic (SKGNur GFPhi) cells before

disease onset (akin to the pre-RA phase of disease (16)). We reasoned this could reveal early

events in pathogenesis and identify novel targets to preserve tolerance and prevent disease.

Within arthritogenic naïve CD4 T cells, we found a cluster of cells marked by high Nr4a1

expression that upregulate gene programs associated with TCR signaling in response to

antigen-encounter. Though Nr4a1 high expressing SKG CD4 T cells also upregulate tolerogenic

programs, we identified a defect in the extent to which they do so relative to WT CD4 T cells.

Furthermore, TCR sequencing of the arthritogenic CD4 T cells revealed an enrichment of

variable beta (Vb) chains that recognize superantigen (Sag) from mouse mammary tumor virus

(MMTV), an endogenous retrovirus (ERV), in BALB/c mice. We had previously shown that
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these Vbs escape negative selection in SKG mice (12). Here we find peripheral T cells bearing

these Vbs are strongly associated with an activated TCR signaling program. We confirmed

enrichment of these TRBVs in arthritogenic SKG naïve CD4 T cells by TCR Vb protein

expression. Moreover, the frequency of CD4 T cells bearing Vbs that recognize MMTV Sag are

expanded in the arthritic joints of SKG mice and may contribute to development and/or severity

of arthritis. Indeed, we find that antiretrovirals shown to suppress ERV reverse transcriptase and

MMTV viral load (17, 18) significantly ameliorate and delay SKG arthritis onset. Our results

reveal that self-reactive SKG T cells which escape negative selection harbor an independent

defect in peripheral tolerance which, together with chronic antigen stimulation, sets the stage for

disease. Moreover, we propose a novel role for endogenous MMTV Sag in promoting

arthritogenic T cell responses.

Results

Arthritogenic SKG Naïve CD4 T Cells Display a Signature of TCR Activation

We recently demonstrated that in the SKGNur model, it is possible to identify arthritogenic naïve

CD4 T cells prior to disease onset on the basis of Nur77-eGFP expression (10). To characterize

the transcriptional program of the arthritogenic CD4 T cells (the SKGNur GFPhi population)

prior to disease onset, we performed bulk RNA-sequencing on naïve (CD62LhiCD44loCD25-)

CD4 T cells with the highest (GFPhi) or lowest GFP expression (GFPlo) from SKG and wild-type

(SKGNur and WTNur) mice (Fig. 2.1A, Supplementary Fig. 2.1B). Principal component (PC)

analysis revealed all four subgroups are transcriptionally distinct with the component that

explains the largest amount (57%) of variance separating samples by GFP expression followed

by the second component, which explains 22% of variance, separating samples by genotype (Fig.

2.1B). Hierarchical clustering of the 991 differentially expressed genes (DEGs) between
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subgroups identified six gene modules (Fig. 2.1C). Gene ontology analysis (19) revealed

functional heterogeneity between, and in some cases within, these modules (Fig. 2.1D). To

further dissect the transcriptomic differences between WTNur GFPhi and SKGNur GFPhi cells,

we focused on the 260 DEGs between these two subgroups (Supplemental Fig. 2.1C-D). Cell

cycle genes (e.g., Cdca3, Cdk2nc, Mki67, primarily represented in module 1) were more highly

expressed in the SKGNur GFPhi cells. SKGNur GFPhi cells were also found to have increased

expression of genes (e.g., Socs1, Tnfsf14, Il2ra, H2-Aa, H2-Ab1 represented in module 6) and

pathways associated with cytokine signaling and antigen processing compared to WTNur GFPhi

cells (Fig. 2.1C-E). This signature appears to be independent of GFP expression in SKG cells

(Fig. 2.1C).

Despite their hypomorphic Zap70 allele and impaired proximal TCR signaling (9, 10,

12), SKGNur GFPhi cells upregulate TCR signaling response genes, both positive (Egr1, Id3,

Icos, Irf4, Tnfrsf9, Tnfrsf4, Myb) and negative regulators (Nr4a1, Nr4a3, Cd5, Folr4/Izumo1r,

Tigit, Tox, Pdcd1, Lag3, Ctla4, Birc5, Nrp1) of TCR signaling (found in modules 1 and 2, Fig.

2.1C-D) compared to GFPlo cells. Paradoxically, SKGNur GFPhi CD4 T cells have higher

expression of pathways associated with T cell activation and signaling compared to WTNur

GFPhi cells (Fig. 2.1E). Additionally, we found that genes associated with tolerogenic programs,

and induced by TCR signaling, are broadly upregulated in SKGNur and WTNur GFPhi cells,

though a subset of tolerogenic genes are not as highly expressed in SKGNur GFPhi T cells

compared to WT (e.g., Folr4/Izumo1r, Tigit, Tox, Lag3). The lower expression of Folr4—which

is also known as Izumo1r and encodes Folate Receptor 4 (FR4), a specific marker of anergic

cells—suggests that perhaps SKGNur GFPhi CD4 T cells may sub optimally induce anergy

and/or other tolerogenic programs. (Fig. 2.1C). Our results indicate SKGNur GFPhi CD4 T cells
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upregulate TCR activation and cytokine signaling signatures likely in response to chronic antigen

encounter but may inefficiently induce tolerogenic programs to restrain these responses.

An Enhanced TCR Signaling Program Defines a Subset of SKG GFPhi Naïve CD4 T Cells

The long half-life of eGFP (20) compared to the more dynamic turnover of NUR77/Nr4a1

protein and transcript (21-23) (Supplementary Fig. 2.2A-C) means GFPhi cells likely consist of

mixed populations of more and less recently stimulated cells. To overcome this limitation and to

understand whether the TCR signaling and effector cytokine gene modules we identified were

uniformly or heterogeneously activated in GFPhi cells, we performed paired single-cell RNA and

TCR sequencing (scRNA- and scTCR-seq) on GFPhi and GFPlo naïve CD4 T cells from SKGNur

and WTNur mice (Fig. 2.2A). In our scRNA-seq dataset, we identify eight distinct clusters (Fig.

2.2B-C) which recapitulate and further refine our bulk RNA-seq gene signatures (Fig. 2.1) and

demonstrate pronounced heterogeneity within the GFPhi population (Fig. 2.2D). While GFPhi

CD4 T cells from both SKGNur and WTNur mice were present across all eight clusters, there

was clear enrichment in the T.N4Nr4a1 cluster compared to GFPlo CD4 T cells by a mean of >

4-fold (Supplementary Fig. 2.2E-F). Cluster T.4NNr4a1 had the highest expression of Nr4a1 and

eGfp (Fig. 2.2C, Supplementary Fig. 2.2F). GFPhi T cells were also enriched in the

T.N4Izumo1r_Id2 and, albeit to a lesser extent, the CytoNkg7 clusters (Fig. 2.2D, Supplementary Fig.

2.2D-F).

Given the specificity of NR4A1 (NUR77) as a reporter of TCR signaling (24), the high

expression of Nr4a1 in the T.N4Nr4a1 cluster signifies that these cells most recently encountered

endogenous antigen(s) (25, 26). Indeed, T.N4Nr4a1 cells overwhelmingly up-regulate genes

associated with TCR signal transduction (e.g., Nr4a1, Nr4a3, Egr1-3, Tnfrsf9, Tnfrsf4, Ifr4,

Cd69, Fig. 2.2E) which most closely mirror TCR signaling genes found in module 2 of our bulk
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RNA-seq analysis (Supplementary Fig. 2.2G). In fact, several of the TCR response genes

highly expressed in cluster T.N4Nr4a1 have been identified as targets of the LAT-PLCg-HDAC7

pathway (e.g., Nr4a1, Egr1-3, Irf4) and correlate with strength of tonic signaling (25, 26). These

TCR signaling signatures are more highly expressed in SKGNur GFPhi CD4 T cells in the

T.N4Nr4a1 cluster compared to those of WT (Fig. 2.2F-G), as observed in our bulk RNA-seq

dataset. This suggests the signaling impaired SKGNur GFPhi cells in cluster T.N4Nr4a1 have,

nonetheless, responded more strongly to encountered antigen than WTNur GFPhi cells.

Antigen-activated T cells Upregulate a Tolerogenic Transcriptional Program

We next investigated additional T cell transcriptomic signatures that could further illuminate how

SKGNur GFPhi CD4 T cells in the setting of chronic antigen encounter may be more able to

escape tolerance and differentiate into pathogenic effector cells. Therefore, we examined the

expression of candidate genes associated with tolerance programs (27-32) within cells that have

most recently encountered antigen. We found GFPhi CD4 T cells in cluster T.N4Nr4a1, and to a

lesser extent in the overall dataset, upregulated genes associated with tolerogenic programs in

both WTNur and SKGNur GFPhi subgroups (including Egr2, Izumo1r, Pdcd1lg2, Pdcd1, Lag3,

Tigit, Tox)  (Fig. 2.2H, Supplementary Fig. 2.2H). This likely reflects the triggering of a

negative regulatory program in naïve CD4 T cells in response to tonic TCR signaling (10, 33, 34)

driven in part by NR4A family members that have been shown to play negative regulatory roles

in peripheral T cells (22, 32, 35, 36).

However, several of these TCR negative regulators are less efficiently induced in

SKGNur GFPhi cells compared to WTNur GFPhi cells (e.g., Tigit, Izumo1r, Eomes, Tox, Tnfrsf9,

Tox2, Bach2) (Fig. 2.2H). Therefore, in addition to a known loss in central tolerance, SKG mice

likely have an independent defect in mechanisms maintaining peripheral tolerance. This defect is
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likely derived from their impaired proximal TCR signaling capacity and may explain the reduced

frequency of anergic peripheral CD4 T cells we previously observed in SKGNur mice (10).

SKG’s Hyperresponsiveness to IL-6 is Pre-programmed Transcriptionally

IL-6 production in SKG mice is indispensable for SKG arthritis development (37, 38).

Recognition of major histocompatibility complex/self-peptide complexes, stimulate

antigen-presenting cells (APCs) to secrete IL-6 (38). We previously found that SKGNur GFPhi T

cells were more responsive to IL-6 and more readily produced IL-17 in the most autoreactive T

cells, in part due to lower levels of SOCS3 (suppressor of cytokine signaling 3) – a critical

negative regulator of IL-6 (10) (Supplementary Fig. 2.1A). In our current study, we found that

genes associated with IL-6 signaling machinery and the Th17 pathway were uniquely enriched in

SKGNur GFPhi T cells (39) in the T.N4Nr4a1 cluster (Supplementary Fig. 2.2I).

SOCS3 is downregulated in naïve CD4 T cells in response to antigen (40) and in patients

with RA (10, 41). Its expression has a strong inverse correlation with murine arthritis severity

(42-44). Therefore, we examined the expression of SOCS family members in our single cell

dataset. Of these family members, Socs3 was specifically downregulated in SKGNur GFPhi cells

within the T.N4Nr4a1 cluster (Supplementary Fig. 2.2I). Moreover, we found a striking inverse

correlation between the expression of Nr4a1 and Socs3 (Fig. 2.2I), corresponding to a published

report (40). The inverse correlation between Nr4a1 and Socs3 expression in SKGNur GFPhi T

cells within the T.N4Nr4a1 cluster provides orthogonal validation of our previous results. It

highlights the interdependence between signaling via the TCR and heightened sensitivity to

cytokines such as IL-6 (10).
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T.N4Nr4a1 Cells Segregate into Two Distinct TCR Signaling Modules

To explore heterogeneity within cluster T.N4Nr4a1, we performed co-expression analysis with the

highly variable genes (HVGs) and Nr4a1. We identified three distinct modules of HVGs that

positively correlated with Nr4a1 (Fig. 2.3A). Genes from two of these modules, Egr family

members (immediate early gene transcription factors) and Tnfrsf9 (4-1BB – the TCR inducible

co-stimulatory receptor), uniquely identified distinct subsets of cells within the T.N4Nr4a1 cluster

(Fig. 2.3B, Supplementary Fig. 2.3A). The Egr module contained additional immediate early

genes or markers of early T cell activation (e.g., Egr1, Egr2, Cd69, Ier2, Egr3, Nfkbid, Junb,

Fos, Myc, Cd40lg), whereas the Tnfrsf9 module correlated with markers that upregulate in

response to prolonged TCR signaling (e.g., Pou2f2, Myb, Tnfrsf4, Lag3) (Fig. 2.3C,

Supplementary Fig. 2.3B).

Cells that expressed Egr2 had increased expression of genes enriched in pathways

induced early after TCR stimulation (0.5h and 1h), whereasTnfrsf9 expressing cells had

increased expression of genes enriched in pathways upregulated after prolonged TCR stimulation

(24h and 72h, Fig. 2.3D). Our findings suggest the T.N4Nr4a1 cluster contains subclusters driven

by their TCR signaling kinetics (early vs prolonged stimulation). Interestingly, the tolerogenic

genes that are inefficiently induced in SKGNur GFPhi T cells within the T.N4Nr4a1 cluster

compared to those of WT are also lower in the subset of the Tnfrsf9 high SKGNur GFPhi T cells,

which seem to have undergone prolonged stimulation, compared to the corresponding WT subset

(Fig. 2.3E). This further suggested a defect in the upregulation of tolerogenic gene programs in

SKGNur GFPhi CD4 T cells in response to prolonged TCR stimulation rather than simply a

compositional shift of SKGNur GFPhi T cells away from the prolonged TCR stimulation state.
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To examine other covariates which could lead to segregation of early versus prolonged

antigen-activated T cells, we performed cell-cycle analysis on our dataset. Though cell-cycle

appeared to contribute somewhat to the heterogeneity among the T.N4Nr4a1 cluster, as Tnfrsf9

expressing cells were more likely to be in S phase (Supplementary Fig. 2.3C), it did not fully

account for the division between Egr family member and Tnfrsf9 expression.

Cell States and Trajectories of T.4NNr4a1 Cells have a Distinct Distribution in SKGNur GFPhi

Subset

We next asked if the early versus prolonged TCR signaling states in the T.N4Nr4a1 cluster

represented endpoints of a trajectory. We discovered a continuum of cell states in the T.N4Nr4a1

cluster using latent time based on RNA velocity (45) (Fig. 2.4A). The expression of the Egr

family peaks in earlier latent time cells, while the expression of Tnfrsf9 and associated genes

peak in later latent time cells (Fig. 2.4B-C).

We separated the cells into four cell states labeled “Stage 1” to “Stage 4” from earlier to

later latent time (Fig. 2.4D, Supplementary Fig. 2.3D-E). The RNA velocity vector field

(Supplementary Fig. 2.3F) and trajectory inference analysis (46) supported a trajectory from

Stage 1 to Stage 4 (Fig. 2.4E). The expression of Egr2 and Nr4a1 peak within cells from Stage 1

while the expression of Tnfrsf9 peaks within cells from Stage 4 (Fig. 2.4F), and the genes

overexpressed in Stage 1 and Stage 4 cells are enriched for early or prolonged TCR stimulation

pathways, respectively (Supplementary Fig. 2.3G). Thus, these cell states seem to be the

endpoints of a trajectory of cell states from early to prolonged TCR stimulation.

Cells from SKGNur GFPhi and WTNur GFPhi groups had significantly different distributions

across latent time with a higher density at earlier latent time for the SKGNur GFPhi cells, which

also had an increased odds of being in Stage 1 versus Stage 4 compared to WTNur GFPhi cells
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(OR = 1.25, p = 0.02). No significant difference was observed between the GFPlo subgroups

(Fig. 2.4G-H).

We hypothesized this imbalance may result from slower progression of SKG cells

through the stages or higher input into, due to higher proliferation, Stage 1 in the SKG pool. The

cells from SKGNur GFPhi and WTNur GFPhi within stage 1 did not have a significant difference

in their distribution across cell cycle (p = 0.24) suggesting the SKGNur GFPhi cells in stage 1 do

not have higher proliferation. While this result favors our slower progression hypothesis, the two

hypotheses are not mutually exclusive. Slower progression of the SKGNur GFPhi cells would

suggest that SKG CD4 T cells have a defect in peripheral tolerance induction—a program which

is upregulated as the cells progress through the stages—and could explain the reduced frequency

of anergic cells observed in SKG mice (10).

Naïve SKGNur GFPhi CD4 T Cells Demonstrate a Biased TCR Beta Variable Gene (TRBV)

Repertoire

We have previously shown that the SKGNur GFPhi cells have increased self-reactivity and ability

to proliferate in response to an undefined endogenous antigen(s) (10). Thus, we asked how their

TCR repertoire might contribute to their activation in the periphery. We examined the TCR

repertoire using scTCR-seq (Fig. 2.2A) and detected paired TCR α (TRA) and TCR β (TRB)

genes in 86% of cells (Supplementary Fig. 2.4A). Using Gini coefficient analysis, we did not

find oligoclonal expansion in the naïve T cells in any of the samples, including all the SKGNur

samples. Instead, we found that SKGNur GFPhi cells T cells demonstrate a biased TCR variable

β gene (TRBV) usage, but not TCR variable α gene (TRAV) usage (Fig. 2.5A-C, Supplementary

Fig. 2.4B). In SKGNur GFPhi CD4 T cells compared to the paired SKGNur GFPlo samples, we

found significantly higher (FDR < 0.1) usage of TRBV26 (corresponding to TCR variable beta 3,
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Vb3, protein), TRBV12-1 (Vb5), TRBV15 (Vb12), TRBV16 (Vb11), TRBV3, and TRBV29 (Vb7).

Each of these TRBV genes also had a higher mean frequency in SKGNur GFPhi cells compared to

WTNur GFPhi cells (Fig. 2.5A,C-D).

Polyclonal Vb expansion occurs in the presence of superantigen (Sag) in both humans

and mice (47, 48). The TRBV genes enriched in SKGNur GFPhi T cells mark Vbs that recognize

endogenous retroviral (ERV) Sag from mouse mammary tumor virus (MMTV) (Fig. 2.5E)

(49-51). We confirmed that our SKG colony harbors all three endogenous MMTV proviruses

(Mtv-6, Mtv-8, Mtv-9) known to be present in BALB/c mice (49, 50, 52, 53) (Supplementary

Fig. 2.4C). Exogenous MMTV infection can stimulate cell proliferation and facilitate infection

by increasing the number of cell targets, but Sag expression from endogenous Mtv leads to

clonal T-cell deletion in the thymus and resistance to infection owing to the absence of Vb targets

(54). However, due to impairment in SKG TCR signaling, thymic clonal T-cell deletion in

response to endogenous Mtv Sag is incomplete (12) allowing for partial escape of these Vb

targets into the periphery. In contrast to the TRBV genes uniquely enriched in SKGNur GFPhi

cells, TRBV genes for Vbs that are not MMTV Sag targets in BALB/c (e.g., TRBV19/Vb6,

TRBV13-2/Vb8, TRBV31/Vb14) are not enriched in SKGNur GFPhi T cells (Fig. 2.5C,

Supplemental Fig. 2.4D). These results reinforce not only that negative selection is defective in

SKG mice, but also that encounter with endogenous MMTV Sag in the periphery further biases

the TRBV repertoire in SKGNur GFPhi CD4 T cells since the SKGNur GFPlo cells did not show a

bias of the MMTV Sag reactive TRBV repertoire.

SKGNur GFPhi cells in the T.N4Nr4a1 cluster also demonstrate enrichment of several of the

MMTV Sag Vb targets (e.g., TRBV15 (Vb12), TRBV16 (Vb11) Supplementary Fig. 2.5A-D).

Interestingly, MMTV Sag in the periphery fails to induce the peripheral deletion observed with
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MMTV reactive cells that are not deleted in the thymus (55). Instead, the peripheral encounter

with MMTV Sag likely drives Nr4a1 expression and the paradoxically activated transcriptional

states for the cells with Vbs that recognize MMTV Sag within the T.N4Nr4a1 cluster

(Supplementary Fig. 2.5A-D).

SKGNur GFPhi CD4 T Cells are Enriched for Vbs Driven by MMTV Sag(s)

To validate our scTCR-seq results, we examined the distribution of TCR Vb protein levels in

SKGNur and WTNur peripheral CD4 T cells prior to arthritis initiation using commercially

available antibodies against a subset of candidate Vbs (gating strategy Supplementary Fig.

2.6A). We found that the Vb protein abundances paralleled the transcript abundances observed in

our scTCR-seq dataset. T cells expressing Vb3, Vb5, Vb11 (corresponding to TRBV26, -12, -16

respectively) are significantly enriched in SKGNur GFPhi peripheral naïve CD4 T cells from

lymph node (LN) (Fig. 2.5F-G) and spleen, whereas Vbs that are not MMTV Sag targets (e.g.,

Vb6, Vb8, Vb14 corresponding to TRBV19, -13, -31 respectively) are not enriched in SKGNur

GFPhi cells (Supplementary Fig. 2.6B-C).

Vb enrichment in SKGNur GFPhi T cells subset may be driven by Sag encounter in the

periphery and even the joints. Indeed, we found that BALB/c specific Mtv proviruses are

detectable in SKG joints (Supplemental Fig. 2.7A). Therefore, it is feasible that intra-articular

MMTV Sag expression could engage and enrich for SKG T cells uniquely expressing these

MMTV target Vbs (Vb3, Vb5, and Vb11) during arthritis. To investigate this hypothesis, we

induced moderate to severe inflammatory arthritis in SKG mice (Supplementary Fig. 2.7B) and

examined Vb usage in CD4 T cells harvested from regional joint draining LN (dLN) and arthritic

joints. We found an increased frequency of MMTV Sag targets Vb3, Vb5, and Vb11 in the

arthritic joints compared to the periphery (Fig. 2.6A-B), but not of the Vbs unresponsive to
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BALB/c MMTV Sag (Supplementary Fig. 2.7C). The CD4 T cells bearing Vbs known to

respond to MMTV Sag had significantly higher NUR77-eGFP mean fluorescence intensity

(MFI) compared to CD4 T cells with Vbs that do not respond to MMTV Sag (p = 0.002, Fig.

2.6C). Furthermore, we found a significantly higher frequency of Vb3, Vb5, and Vb11 in

SKGNur GFPhi T cells infiltrating the arthritic joints compared to GFPlo cells in the joint and to

GFPhi cells from the dLN (Fig. 2.6D-E, Supplemental Fig. 2.7D). This further enrichment

suggests SKG CD4 T cells with these particular Vbs encounter intra-articular antigen (10). This

enrichment in the joint was not observed in SKGNur GFPhi T cells expressing Vb6, Vb8, and

Vb14 (Supplementary Fig. 2.7C, E-F).

Antiretroviral therapy ameliorates SKG arthritis: We next assessed whether cDNA synthesis of

endogenous MMTV retroelements impact SKG arthritis development. Mice were treated with a

combination of antiretrovirals, emtricitabine and tenofovir (Truvada), which are nucleotide and

nucleoside reverse transcriptase inhibitors, respectively, or vehicle control prior to and during

arthritis development (Fig. 2.6F). MMTV reverse transcriptase is sensitive to these commercially

available compounds which prematurely terminate nascent cDNA synthesis during reverse

transcription (17, 18) and may result in decreased viral protein expression. Antiretroviral

treatment significantly reduces arthritis severity (p = 0.0037) and delays disease onset (p =

0.0016) in SKG mice treated with zymosan (Fig. 2.6G-I). These data support the idea that

MMTV Sag expression contributes to arthritis disease activity in the SKG mouse model.

Discussion

In this study, we directly probed the gene expression and TCR repertoire in enriched naïve

arthritogenic SKG CD4 T (i.e., SKGNur GFPhi T cells) cells before arthritis onset. We identified

a subset of these cells (T.4NNr4a1) that upregulate TCR signaling gene programs compared to WT
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cells despite their hypomorphic Zap70 allele and impaired proximal TCR signaling. This TCR

signaling gene signature is likely driven by chronic endogenous antigen encounter marked by

upregulation of LAT-PLCg-HDAC7 pathway targets (e.g., Nr4a1, Egr1-3, Irf4) (25, 26). How

these SKG cells then break tolerance and produce a focused autoimmune phenotype has been a

long-standing puzzle. Results presented in this study address this fundamental question.

Our findings provide multiple lines of evidence that arthritogenic SKG CD4 T cells

harbor a defect in peripheral tolerance, independent from their break in central tolerance.

Induction of negative regulators by TCR activation fine-tunes and restrains T cell responses in

normal T cells, enforcing peripheral tolerance, and limiting immunopathology (56-59). However,

we found that arthritogenic SKGNur GFPhi CD4 T cells that have severely defective TCR

signaling, despite evidence of chronic endogenous antigen encounter, inefficiently and/or

incompletely upregulate genes within the tolerogenic program in response to TCR signaling

compared to WT cells (e.g., Eomes, Tnfrsf9, Izumo1r, Bach2, Tigit, Tox, Tox2). This aberrant

transcriptional program may permit their activation and differentiation into pathogenic effector

cells.

Second, using RNA velocity analysis to create a latent time axis for cells that have most

recently encountered antigen (T.4NNr4a1), we found arthritogenic SKG CD4 T cells are

overrepresented in cells expressing early TCR gene signatures (Stage 1) and may not efficiently

transition along the trajectory of cell states to express genes associated with prolonged, and

perhaps more robust, TCR signaling (Stage 4). Cells in the latter stage appear to more efficiently

upregulate genes associated with tolerogenic programs (e.g., Izumo1r, Bach2, Tigit, Tox, Tox2).

Third, endogenous MMTV Sag Vb targets in SKG not only escape negative selection in

the thymus (central tolerance), but also avoid expected peripheral deletion by endogenous
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MMTV Sag expression (55). Previous examinations of the peripheral TCR Vb repertoire in SKG

mice had not identified oligoclonal expansion of a particular Vb before or after arthritis

development (60). Here we describe a previously unknown TCR Vb bias in the peripheral naïve

SKG repertoire. The Vbs enriched in SKGNur GFPhi T cells suggest their repertoire is further

influenced in the periphery by Sag encounter and are further expanded in arthritic SKG joints.

The Sag target Vbs that infiltrate arthritic joints significantly upregulate Nur77-eGFP compared

to CD4 T cells bearing Vbs that do not recognize MMTV Sag. The expansion of Sag target Vbs

in the SKG arthritic joint and their upregulation of Nur77-eGFP are both likely driven by

intra-articular MMTV Sag encounter. This begs the question whether MMTV Sag contributes to

arthritis development in SKG mice. We found that inhibition of ERV reverse transcriptase (with

Truvada) in arthritic SKG mice significantly ameliorates and delays onset of SKG arthritis.

Together our data suggests a previously unrecognized role for endogenous Sag in SKG arthritis

development.

We propose a model drawn from these and previous results (9, 10, 12, 60) in which

inefficient negative selection results in the escape of a portion of the self-reactive biased

repertoire (marked by Vbs responsive to MMTV Sags) that is further enriched in the periphery

through chronic (super)antigen encounter. Although naïve SKG CD4 T cells can upregulate

negative regulators of TCR signaling in response to endogenous antigen encounter, due to weak

proximal TCR signaling they are unable to efficiently and fully upregulate these programs

resulting in an independent defect in peripheral tolerance and reduced numbers of anergic cells

(10). Furthermore, Treg peripheral tolerance mechanisms are also severely impaired due to their

attenuated TCR signaling and their altered Treg repertoire (11), releasing another checkpoint on

arthritogenic T cells. We propose that costimulatory molecules such as IL-6, and perhaps other
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cytokines, promote T cell survival and lower the TCR signaling threshold required for peripheral

activation and differentiation, thereby allowing the activation of naïve SKG T cells that failed to

upregulate TCR signaling-induced tolerogenic programs (61-63). Therefore, the biased

self-reactive TCR Vb repertoire unique to SKGNur GFPhi CD4 T cells, together with their

activated transcriptional state, allow for an innate immune stimulus to trigger these cells to

become potential initiators, or amplifiers, of disease. Future studies will determine whether these

Vbs are sufficient, and/or necessary, to initiate or exacerbate SKG arthritis and the extent of the

role of endogenous MMTV Sags in SKG arthritis development. These findings have relevant

implications in human autoimmune disease, where endogenous or foreign antigens can also

prime ‘dormant’ autoreactive T cells and trigger disease, and may provide new insights in human

RA (64-66), and other autoimmune arthritides (67-69), where T cells bearing particular Vbs have

been reported to be expanded and retained in the synovial microenvironment.
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Figure 2.1 Pre-arthritic naïve SKG T cells demonstrate enhanced T cell activation
(A) Experimental scheme of bulk RNA-seq analysis. (B) Principal component analysis (PCA)
based on transcriptomic data from bulk RNA-seq data shows distribution of SKGNur and
WTNur GFPlo and GFPhi CD4 naïve T cell subsets as shown in (A) (n=3 per subgroup). (C)
Heatmap showing expression of 991 significantly differentially expressed genes (DEGs, absolute
value(log2(fold-change)) > 1, adjusted P value < 0.05) from pairwise comparisons for all
samples grouped by subgroup. Hierarchical clustering was used to group DEGs into 6 modules
(indicated by dendrogram and row annotation color bar on left). (D) Dot plot of select pathways
from gene ontology analysis for each gene module from (C) with dot color indicating adjusted P
value and dot size proportional to number of genes in overlap between pathway genes and
module genes. (E) Enrichment plots of TCR signaling and cytokine pathways from GSEA
analysis of all GO:BP pathways for ranked genes from SKGNur GFPhi and WTNur GFPhi

differential expression analysis. FDR, false discovery rate. NES, normalized enrichment score.
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Figure 2.2 Single-cell RNA sequencing unveils heterogeneity among naïve CD4 T cells with
a subset marked by genes associated with TCR signaling
(A) Experimental scheme of paired scRNA- and TCR-seq of sorted GFPhi and GFPlo naïve
(CD62LhiCD44loCD25-) CD4 T cells.  (B) Uniform manifold approximation and projection
(UMAP) of 99,074 naïve T cells derived from 8 samples (2 replicates each for GFPlo and GFPhi

subsets from WTNur and SKGNur). Cells are colored and annotated by merged leiden clusters
assignment. (C) Stacked violin plot with a kernel bandwidth of 0.5 of log normalized expression
of marker genes for each annotated cluster. Vertical axis scale is from 0 to 5 for each cluster.
Black box highlights T.4NNr4a1 cluster and red box highlights genes uniquely expressed in
T.4NNr4a1 cluster.  (D) UMAP of cells separated by subgroup (GFPlo and GFPhi subgroups from
WTNur and SKGNur). (E) Volcano plot of DEGs from cells in T.4NNr4a1 cluster versus other
cells. Dots are colored by significant overexpression (absolute value(log2(fold-change)) > 1,
adjusted P value < 0.05) in T.4NNr4a1 cluster (red), other cells (dark gray), or no significant
difference (light gray).  Labeled genes are colored by their role in regulation of TCR signaling
either positive (red) or negative (blue).  (F) Volcano plot of DEGs from SKGNur GFPhi versus
WTNur GFPhi in T.4NNr4a1 cluster. Dots are colored as significantly overexpressed (absolute
value(log2(fold-change)) > 0.2, adjusted P value < 0.05) in WTNur GFPhi (orange), SKGNur
GFPhi (blue), or not significantly different between groups (gray). Labeled genes involved in
TCR signaling are colored as indicated in (E). Heatmap shows average expression of the labeled
genes by subgroup normalized by standard scale (subtract minimum and divide by maximum)
for each gene. (G) Enrichment plots of TCR activation and signaling pathways from GSEA
analysis of all GO:BP pathways for ranked genes from differential gene expression analysis of
SKGNur GFPhi versus WTNur GFPhi cells from T.4NNr4a1 cluster. FDR, false discovery rate.
NES, normalized enrichment score. (H) Stacked violin plot of expression of candidate anergy
and exhaustion associated genes in WTNur and SKGNur GFPlo and GFPhi CD4 naïve cells from
T.4NNr4a1 cluster normalized by standard scale for each gene. Color bar indicates annotation
[anergy (blue), anergy/exhaustion (purple), exhaustion (red)] for each gene. Heatmap shows
average expression of the same genes by subgroup also normalized by standard scale for each
gene. (I) UMAP of all cells colored by expression of the indicated genes. Scale is for the
log-normalized gene expression.
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Figure 2.3 T.N4Nr4a1 cells segregate into two distinct TCR signaling modules that segregate
acute from chronic antigen-activated T cells
(A) Correlation matrix shows hierarchical clustering of Spearman’s correlation of top 25 highly
variable genes (HVG) that positively and negatively correlate with Nr4a1 expression across all
cells. Diagonal gray boxes represent correlation of 1. Dark gray boxes mark distinct gene
modules from genes that positively correlate with Nr4a1 expression.  (B) UMAP plots show the
expression levels of indicated marker genes positively correlating with Nr4a1 as identified in
(A). Scale represents the log-transformed normalized counts of genes.  (C) Volcano plot shows
DEGs for cells in T.4NNr4a1 cluster that expressed (log normalized expression > 1) Egr2 or
Tnfrsf9 with dots colored by significant overexpression (absolute value(log2(fold-change)) > 0.5,
adjusted P value < 0.05) in Egr2 (tan) or Tnfrsf9 (teal) expressing cells. (D) Enrichment plots
from GSEA analysis of study GSE17974 pathways of time course in vitro activation of CD4+ T
cells with aCD3 + CD28 for ranked genes from differential gene expression analysis of cells in
T.4NNr4a1 cluster that express Egr2 versus Tnfrsf9. FDR, false discovery rate. NES, normalized
enrichment score. (E) Heatmap of average expression of exhaustion and anergy genes from
WTNur and SKGNur GFPhi cells expressing Egr2 or Tnfrsf9 in T.4NNr4a1 cluster normalized by
standard scale for each gene. Color bar indicates annotation [anergy (blue), anergy/exhaustion
(purple), exhaustion (red)] for each gene.
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Figure 2.4 Trajectory analysis of T.4NNr4a1 cells orthogonally uncovers acute versus chronic
antigen-activated T cell states with a distinct distribution in the SKGNur GFPhi subset
(A) UMAP of cells from T.4NNr4a1 cluster colored by latent time assigned by the scvelo
dynamical modeling algorithm. (B-C) Smoothed gene expression from cells in T.4NNr4a1 cluster
of selected genes with highest expression earlier (B) or later (C) along latent time axis. (D)
Probability densities of latent time distribution of cells from T.4NNr4a1 cluster assigned to 4
distinct clusters (labeled “Stage 1” – “Stage 4”) by a Gaussian mixture model. (E) Predicted
transitions from PAGA algorithm between cells from stages indicated in (D). (F) Heatmap of
single cell standard scale normalized expression of genes ordered top to bottom by peak
expression at earlier to later latent time. Chosen genes are the top 300 highest confidence genes
used in modeling of latent time. Column annotation bar indicates stage assignment of the cell in
each column. (G-H) Probability densities of latent time distribution for GFPhi (G) and GFPlo (H)
cells from WTNur and SKGNur mice (P = 0.002 and P = 0.11, respectively,
Kolmogorov-Smirnov test).
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Figure 2.5 SKG CD4 T cells harbor a biased TCR variable beta gene repertoire
(A-B) Scatter plot of mean frequency of cells expressing each TRBV (A) or TRAV (B) gene for
the SKGNur GFPhi samples versus the WTNur GFPhi samples. Dots for each TRBV and TRAV
genes are sized according to the FDR from a one-sided paired t-test comparing frequency in
SKGNur GFPhi versus SKGNur GFPlo. Dots are colored as either significantly enriched (FDR <
0.1) in SKGNur GFPhi (dark blue), significantly enriched in SKGNur GFPlo (light blue), or not
significantly enriched in either subgroup (black). Dots for significant TRBV genes are labeled
with the TRBV gene name. Labels for TRBV genes that were significantly enriched in SKGNur
GFPhi and were also more highly expressed in SKGNur GFPhi samples versus WTNur GFPhi

samples are bolded. (C) Bar plot of mean value of cells expressing each TRBV gene as a
percentage of all cells in each sample with an assigned TRBV. Bars are colored according to
subgroup and ordered with the TRBV genes enriched in SKGNur GFPhi from (A) followed by
the other TRBV genes ordered by increasing overall frequency. (D) Bar plots of frequency of
cells expressing the indicated TRBV genes significantly enriched in SKGNur GFPhi for the two
replicate mice in each subgroup. (E) Table depicting H-2 haplotype, expected Mtv pro-virus, its
Vb specificity and base pair (bp) size on gel for Balb/c and C57BL/6 mice. (F-G) Representative
FACS plots (F) of naïve peripheral CD4 T cells with indicated TCR Vb protein usage
determined by flow cytometry in GFPlo and GFPhi T cells from LN of WTNur and SKGNur mice
prior to arthritis induction and quantified in (G) where bar graphs depict mean frequency (±
SEM), n = 3-4 mice per group, experiment repeated at least 3 times. Significance indicated by
asterisk for FDR (paired t-test) or P value (exact permutation test) < 0.05 (*), < 0.1 (**).
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Figure 2.6 Arthritogenic CD4 T cells are enriched for TCR Vbs likely driven by
endogenous superantigen(s)
(A-B) Representative FACS plots (A) of peripheral naïve or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in CD4 T cells from draining LN
or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan (as seen in
Supplementary Fig. 2.7B) and quantified in (B) where bar graphs depict mean frequency (±
SEM). (C) Bar graphs of GFP mean fluorescence intensity (MFI) of CD4 T cells bearing
indicated Vbs from arthritic joints of SKG mice, n = 7 mice pooled from 2 experiments. (D-E)
Representative FACS plots (D) of peripheral naïve or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in GFPlo (light blue) and GFPhi

(dark blue) T cells from LN or joints of SKGNur mice 2.5 weeks after arthritis induction with
zymosan and quantified in (E) where bar graphs depict mean frequency (± SEM), n = 7 mice per
group pooled from 2 experiments. (F) Experimental set-up: SKG mice were treated with Truvada
(n = 12) or vehicle control (n = 8) at day -16 prior to arthritis induction with i.p. zymosan on day
0. (G) Arthritis score in SKG mice from experimental set-up in (F). (H) Bar graph depicting area
under the curve (AUC) of arthritis scores from (G). (I) Arthritis free survival plotted as Kaplan
Meier Curve from experimental set-up in (F). Significance indicated by asterisk [< 0.05 (*), <
0.1 (**), or < 0.001 (***)] for FDR (paired t-test) or P value from exact permutation test (B and
E), linear mixed effect model (C), unpaired t-test with Welch’s correction (H), or log-rank
Mantel-Cox test (I).
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Supplementary Figure 2.1 SKGNur GFPhi CD4 T cells readily differentiate into pathogenic
effector cells
(A) 2 x 2 matrix demonstrates how impaired TCR signaling observed in SKG mice (left y-axis,
due to the hypomorphic Zap70 allele), in addition to chronic antigen stimulation (x-axis,
resulting in higher levels of Nur77eGFP demarcated by GFPhi) confer heightened sensitivity to
IL-6 cytokine signaling, in part due to decreased levels of SOCS3. This contributes to the
increased arthritogenicity observed in the autoreactive T cell clones that more readily
differentiate into IL-17 producing CD4 T cells in SKG mice. (B) Gating for bulk RNAseq
sorting of WTNur and SKGNur lymphocytes. (C) Bar plot of number of DEGs from WTNur
GFPhi and SKGNur GFPhi cells contained in each gene module from Fig. 2.1C. (D) Volcano plot
of DEGs for SKGNur GFPhi versus WTNur GFPhi. DEGs are colored by module membership
from gene modules in Fig. 2.1C.
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Supplementary Figure 2.2 NUR77/Nr4a1 identifies naïve CD4 T cells that have recently
encountered endogenous antigen resulting in a unique transcriptional program
(A-C) CD4 T cells were stimulated ± plate bound aCD3e + CD28 at indicated times. Levels of
NUR77 and eGFP are depicted in representative histogram from 2 experiments (A) and MFI fold
change (FC) quantified in (B) from 3 biological replicates. (C) Real-time RT-PCR measuring
Nr4a1 and eGfp mRNA levels in stimulated CD4 T cells from 3 biological replicates, from 2
independent experiments. (D) UMAP colored by density of cells for each of the four subgroups
(each subgroup contains samples from 2 mice). (E) Bar plot of mean frequency for each
subgroup of cells within each cluster. Black bars indicate the difference between mouse 1 and
mouse 2 for each subgroup. (F) Expression of labeled genes for each cluster is shown by
percentage of cells with expression greater than zero (dot size) and mean expression for cells
with nonzero expression (color). (G) Heatmap normalized by standard scale (subtract minimum
and divide by maximum) by column of average single cell gene set scores for each cluster
(excluding cluster 8 – CytoNkg7) for the gene sets defined by the modules from Fig. 2.1C. (H-J)
Stacked violin plot demonstrates standard scale normalized expression of candidate anergy and
exhaustion associated genes (H), Th-17 and IL-6 associated genes (I), and Socs family members
(J) in WTNur and SKGNur GFPlo and GFPhi CD4 naïve T cells in all cells (H) or in T.4NNr4a1
cells (I-J). Heatmaps on the right for each panel show mean expression of the indicated genes
across subgroup normalized by standard scale for each gene.
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Supplementary Figure 2.3 Highly variable genes that positively and negatively correlate
with Nr4a1 in T.4NNr4a1 cluster and trajectory analysis of their underlying states
(A) Hierarchical clustering of correlation matrix of top 25 HVGs that positively and negatively
correlate with Nr4a1 expression in T.4NNr4a1 cells using Spearman’s correlation. Diagonal gray
colored boxes represent correlation of 1. Dark gray boxes mark modules of HVGs that highly
correlate with Nr4a1 expression. (B) Correlation matrix of HVGs that positively correlate with
Egr2 and Tnfrsf9 expression in T.4NNr4a1 cells using Spearman’s correlation. Diagonal gray boxes
represent correlation of 1. (C) UMAP of cells from the T.4NNr4a1 cluster colored by cell cycle
phase assignment. Bar plot of % of cells in each cell cycle stage for cells expressing Egr2 or
Tnfrsf9 (log-normalized expression > 1). (D) Probability density of latent time distribution of all
cells in T.4NNr4a1 cluster. (E) Line plots for the Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC) for the Gaussian mixture model deconvolution versus number of
underlying distributions or clusters. (F) UMAP colored by cell stage as defined in Fig. 2.4D with
an overlay of RNA velocity vectors for cell transitions as determined by the scvelo dynamical
model. (G) Enrichment plots from GSEA analysis of study GSE17974 pathways of time course
in vitro activation of CD4+ T cells with CD3 + CD28 for ranked genes from differential gene
expression analysis of T.4NNr4a1 cluster cells in Stage 1 versus Stage 4. FDR, false discovery rate.
NES, normalized enrichment score
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Supplementary Figure 2.4 SKGNur mice express superantigens involved in
selection of TCR variable beta repertoire
(A) Bar plot with percent of cells with paired TRA and TRB detection by cluster. (B) Bar plot of
mean frequency of cells expressing each TRAV gene as a percentage of all cells in each sample
with an assigned TRAV. Bars are colored according to subgroup and ordered by increasing
overall frequency. (C) BALB/c and SKG tail DNA used in PCR reactions containing primers
specific for the indicated Mtv pro-viruses. (D) Bar plots of frequency of cells expressing the
indicated TRBV control genes not uniquely enriched in SKGNur GFPhi cells for the two replicate
mice in each subgroup.
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Supplementary Figure 2.5 Further enrichment of biased TRBV in SKGNur GFPhi T.4NNr4a1
cells
(A) Scatter plot of mean frequency of cells expressing each TRBV (left) or TRAV (right) gene
for the SKGNur GFPhi versus the WTNur GFPhi T.4NNr4a1 cells. Dots for each TRV gene are sized
according to the false discovery rate (FDR) from a paired one-sided t-test comparing frequency
in SKGNur GFPhi versus SKGNur GFPlo. Dots are colored as either significantly enriched (FDR
< 0.1) in SKGNur GFPhi (dark blue), significantly enriched in SKGNur GFPlo (light blue), or not
significantly enriched in either subgroup (black). TRBV genes that were significantly enriched in
SKGNur GFPhi and were also more highly expressed in SKGNur GFPhi versus WTNur GFPhi

T.4NNr4a1 cells are bolded. (B) Bar plot of mean value of T.4NNr4a1 cells expressing each TRBV
gene as a percentage of all T.4NNr4a1 cells in each sample with an assigned TRBV. Bars are
colored according to subgroup and are ordered with the TRBV genes enriched in SKGNur GFPhi

T.4NNr4a1 cells (see A) followed by the other TRBV genes ordered by increasing overall
frequency. (C) Bar plot of mean value of T.4NNr4a1 cells expressing each TRAV gene as a
percentage of all T.4NNr4a1 cells in each sample with an assigned TRAV. Bars are colored
according to subgroup and are ordered by increasing overall frequency. (D) Bar plot of frequency
of cells expressing indicated TRBV genes significantly enriched in SKGNur GFPhi T.4NNr4a1 cells
(see A) for the two replicate mice in each subgroup.
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Supplementary Figure 2.6 TCR Vbs unresponsive to BALB/c MMTV superantigen do not
expand in peripheral T cells marked by TCR signaling reporter
(A) Flow cytometry gating used to identify GFPhi and GFPlo populations in naïve
(CD62LhiCD44lo) and memory (CD44hiCD62Llo) CD4+CD25- T cells for Vb identification in
WTNur and SKGNur lymphocytes. (B-C) Representative FACS plots (B) of naïve peripheral
CD4 T cells with indicated TCR Vb protein usage determined by flow cytometry in GFPlo and
GFPhi T cells from LN of WTNur and SKGNur mice prior to arthritis induction and quantified in
(C) where bar graphs depict mean frequency (± SEM), n = 3-4 mice per group, experiment
repeated at least 3 times. Significance indicated by asterisk for FDR (paired t-test) or P value
(exact permutation test) < 0.05 (*), < 0.1 (**), or < 0.001 (***).
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Supplementary Figure 2.7 TCR Vbs unresponsive to BALB/c MMTV superantigen do not
expand in SKG CD4 T cells after arthritis induction
(A) DNA was used from SKG joints ± arthritis in PCR reactions containing primers specific for
the indicated Mtv pro-viruses. Lanes 26 show PCR mixtures lacking template DNA. C57BL/6
tail DNA was used as a positive control for Mtv-8, -9, -17 and a negative control for Mtv-6.
Molecular size markers are shown in lane 1. Each gel is representative of at least 3-4 biological
replicates per condition and genotype. (B) Arthritis score in SKGNur mice ± i.p. zymosan (red)
or PBS (gray), n=4 mice in each group, representative of at least 3 experiments. (C) Bar graph
depicts mean frequency (± SEM) of peripheral naïve or memory, or joint CD4 T cells with
indicated TCR Vb protein usage determined by flow cytometry in CD4 T cells from draining LN
or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan (as seen in B). (D-F)
Representative FACS plots of peripheral naïve or memory, or joint CD4 T cells with indicated
TCR Vb protein usage determined by flow cytometry in GFPlo (light blue) and GFPhi (dark blue)
T cells from LN or joints of SKGNur mice 2.5 weeks after arthritis induction with zymosan and
quantified in Fig. 2.6E or (F), respectively, where bar graphs depict mean frequency (± SEM), n
= 7 mice per group pooled from 2 experiments. (C, F) Significance indicated by asterisk for P
value (exact permutation test) or FDR (paired t-test) < 0.05 (*), < 0.1 (**), or < 0.001 (***).
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Materials and Methods

Antibodies and Reagents. Ghost Dye Violet 510 (Tonbo Biosciences: 13-0870-T100) was used

for live/dead staining. The following antibodies were used for staining as indicated:

CD3e-BUV395 (BD Bioscience: 563565, clone: 145-2C11), CD4-APCeFluor 780 (eBioscience:

47-0042-82, clone: RM4-5), CD25-PerCPCy5.5 (Tonbo 65-0251-U100, clone: PC61.5),

CD44-PE-Cy7 (BioLegend: 103030, clone: IM7), CD62L-BV711 (BioLegend: 104445, clone:

MEL-14), TCR Vβ3-PE (BD Bioscience: 553209, clone: KJ25), TCR Vβ5.1/5.2-PE (BD

Bioscience: 562088, clone: MR9-4), TCR Vβ6-BV421 (BD Bioscience: 744590, clone: RR4-7),

TCR Vβ8-BV421 (BD Bioscience: 742376, clone: F23), TCR Vβ11-PE (BD Bioscience:

553198, clone: RR3-15), TCR Vβ14-Biotin (BD Bioscience: 553257, clone: 14-2),

Streptavidin-BV421 (BioLegend: 405226), FOXP3-eFluor 660 (eBioscience: 50-5773-82, clone:

FJK-16s).

Mice. BALB/c and C57BL/6J mice were purchased from Jackson laboratory, and

BALB/cNur77-eGFP and SKGNur77-eGFP mice were bred in our facility (University of

California, San Francisco) as previously described (10). All mice were housed and bred in

specific pathogen-free conditions in the Animal Barrier Facility at UCSF according to the

University Animal Care Committee and NIH guidelines. All animal experiments were approved

by the UCSF Institutional Animal Care and Use Committee.

Flow Cytometry and Cell Sorting. Cells were stained with antibodies of the indicated

specificities and analyzed on a BD LSR Fortessa flow cytometer. Flow cytometry plots and

analyses were performed using FlowJo v.10.8.0 (Tree Star). Cells were sorted to >95% purity

using a MoFlo XDP (Beckman Coulter).
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Murine Synovial Tissue Preparation. Synovial tissues from ankle joints were digested with 1

mg/mL Collagenase IV (Worthington: LS004188) and DNase I (Sigma: 4536282001) in RPMI

1640 medium for 2 h at 37 °C on a rotator then quenched with 10% fetal bovine serum in RPMI

1640 medium; digested cells were filtered through a 70 µm nylon mesh to prepare single cell

suspensions.

Surface and Intracellular Staining. After live/dead staining with Ghost Dye Violet 510 as per

manufacturer’s instructions, cells were stained for surface markers, washed, and then fixed for 10

min with 4% (vol/vol) fresh paraformaldehyde at room temperature protected from light. Cells

were then permeabilized using the Mouse Regulatory T-Cell Staining kit 1 (eBioscience:

00-5521-00) per manufacturer's instruction and then stained with FoxP3 e660.

In vivo Treatments. Arthritis: Zymosan A (Sigma-Aldrich) suspended in saline at 10 mg/mL

was kept in boiling water for 10 min. Zymosan A solution (2 mg) or saline was intraperitoneally

injected into 8–12-week-old mice. Antiretroviral therapy: 5–7-week-old SKG mice were

administered Truvada combination therapy with emtricitabine (Sigma-Aldrich) and tenofovir

disoproxil fumarate (Acros organics) in a 1:1 ratio (0.5 mg/mL in diH2O for each drug) or

vehicle control. Solution was added to the drinking water supply and changed once per week.

Mice were also given an intraperitoneal bolus injection x1 of Truvada (~160 mg/kg) or vehicle

control in 200 ul PBS at start of treatment. Drinking water dosage with Truvada or diH2O

continued throughout the arthritis course.

Statistics. Flow cytometry data were analyzed by comparison of means using paired or unpaired

2-tailed Student’s t-tests using Prism v.9.2.0 or v.9.3.1 for Mac (GraphPad Software). Unpaired

t-test with Welch’s correction was used to calculate differences in arthritis scores and log-rank

Mantel-Cox test used to calculate differences in Kaplan Meier Survival. Data in all figures
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represent mean ± SEM unless otherwise indicated. Differences were considered significant at P

< 0.05: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

PCR and RT-PCR. BALB/cJ, C57BL/6J, and SKG tail DNA was typed for Mtv-6, -8, -9, and

-17. Standard PCR protocols were used for preparing PCR mixtures. Primer pairs for the

detection of MMTV proviruses were previously described (55). GAPDH primers used: (5'

CATGTTTGTGATGGGTGTGAACCA 3') and (5' GTTGCTGTAGCCGTATTCATTGTC 3').

PCR mixtures for Mtv-6, -8, and -9 were incubated at 94°C for 5 min, then denatured for 44

cycles at 94°C for 1 min, annealed at 46°C for 1 min, polymerized at 72°C for 1 min, and then

incubated at 72°C for 5 min. PCRs for Mtv-17 were conducted similarly except for an annealing

temperature of 50°C. Samples were run on 2% agarose gel.

RT-PCR with Joints. Single cell suspensions of synovial tissues from SKG ankle joints were

spun down at 1500 RPM at 4C. Cell pellets were flash frozen using dry ice in ethyl alcohol.

Frozen cell pellets were used with the RNeasy Mini Kit (Qiagen: 74106) for RNA purification.

The qScript cDNA Synthesis Kit (Quantabio: 95047-100) was used for cDNA library synthesis

from purified total RNA. RT-PCR was conducted as described previously for PCR.

Bulk RNA Sequencing. Negatively selected CD4 T cells from the lymph node were sorted for

CD62LhiCD44loCD25- and the 10% highest (GFPhi) or lowest (GFPlo) expressing T cells. Cells

were washed, pelleted and immediately flash frozen using dry ice in ethyl alcohol. Samples were

processed for bulk RNA-sequencing by Q2 solutions using the TruSeq Stranded mRNA kit

(Illumina: RS-122-2103) for library preparation. The resulting libraries pool into three batches

and sequenced on a Illumina HiSeq 2500 sequencer over three lanes.

Alignment and Initial Processing of Bulk RNA Sequencing Data. The raw fastq files were

clipped and filtered using fastq-mcf v.1.04.636 to remove low quality reads and bases,
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homopolymers, and adapter sequences. The filtered reads were aligned using the STAR v.2.4

(70) with the default settings to the mm10 transcriptome and the resulting bam files were

converted to count matrices for each sample with RSEM v.1.2.14. Genes with less than 10 counts

across all the samples were filtered out. Raw counts were normalized and transformed by the

variance stabilizing transformation (VST) function from DESeq2 v.1.22.2 (71).

Principal Component Analysis. The VST normalized features were used for principal

component analysis with the function plotPCA from DESeq2.

Bulk RNA Sequencing Differential Expression. Differential gene expression for the bulk RNA

sequencing samples was performed with the raw counts from the filtered gene list for the

indicated samples as the inputs. The analysis was run using a negative binomial model with

multiple testing correction with Benjamini-Hochberg implemented via the DESeq function

which includes an internal normalization from DESeq2. For differential gene expression between

samples within the same genotype, mouse identity was included as a covariate.

Functional Enrichment Analysis. The collection of 991 significantly differentially expressed

genes (log2FC > 1 and adjusted p value < 0.05) from the four comparisons [SKGNur GFPhi

versus SKGNur GFPlo , WTNur GFPhi versus WTNur GFPlo, SKGNur GFPhi versus WTNur

GFPhi, SKGNur GFPlo versus WTNur GFPlo] were hierarchically clustered using the Ward

linkage (“ward.D2”) with the R package pheatmap v.1.0.12. The resulting dendrogram was used

to partition the differentially expressed gene list into six gene modules. The gene lists for each

gene module were analyzed using the functional profiling g:GOSt tool from g:Profiler (version

e102_eg49_p15_e7ff1c9) with g:SCS multiple testing correction method applying significance

threshold of 0.05. Select significantly enriched pathways from the GO:BP or KEGG collections

were reported.
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Gene Set Enrichment Analysis. For the bulk RNA differential expression, the differential gene

list was filtered to remove genes with NA for the adjusted p value or log fold change. For the

single-cell RNA differential expression, the differential gene list was filtered to only include

genes which were expressed in at least 1% of cells in the T.4NNr4a1 cluster. These filtered gene list

were used to create ranked gene lists with the sign(log fold change) times the -log10(raw p

value) as the ranking metric. The ranked list was used as input to look for gene set enrichment in

the indicated collection of pathways in the ‘classic’ mode with the GSEAPreranked tool from

GSEA v.4.1.0 with the default settings. For pathway collections of human genes, the

‘Mouse_Gene_Symbol_Remapping_Human_Orthologs_MSigDB’ chip file was used to map

mouse genes from the ranked gene list to the human orthologs. Mouse gene symbols that mapped

to the same human symbol were collapsed based on the max rank.

Single-cell RNA and TCR Sequencing. Negatively selected CD4 T cells from the lymph node

and spleen were sorted for CD62LhiCD44loCD25- and the 10% highest (GFPhi) or lowest (GFPlo)

expressing T cells. Droplet-based paired single-cell RNA and TCR sequencing was performed

using the 10x single-cell 5’+V(D)J v.1 kit per manufacturer's instructions. The resulting cDNA

libraries were sequenced on four lanes of an Illumina Novaseq 6000 sequencer to yield gene

expression (GEX) and T cell receptor (TCR) fastqs.

Alignment and Initial Processing of Single-cell Sequencing Data. The raw fastq files were

aligned using CellRanger v3.0.1 and 3.0.2 software with the default settings to the mm10

transcriptome with the addition of the sequence for the eGFP transcript and the vdj GRCm38 v

3.1.0 reference for the GEX and TCR fastqs, respectively.

eGFP Transcript Sequence.

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTG
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GACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGC

CACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCC

CTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCC

CGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCA

GGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGA

AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAG

GAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGT

CTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCA

CAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCA

TCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCC

TGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACC

GCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAA

Cell Type Classification and Clustering. We filtered out 721 cells with less than 100 or more

than 3000 genes detected and filtered out 14,388 genes detected in less than 3 cells. We also

filtered out 1,066 cells with more than 10% of total counts (UMIs) mapping to mitochondrial

genes and 1008 cells determined to be contaminating B cells based on CD19 expression. The raw

counts were normalized to 10,000 counts per cell and log(count + 1) transformed. For technical

and batch correction, we regressed out total UMI counts and % counts mapping to mitochondrial

genes and used combat for batch correction with each sample as a batch. We identified 1119

highly variable genes (excluding all Trav and Trbv genes to avoid clustering cells based on

expression of those genes) which were scaled and used with the default settings in scanpy v.1.4.3

(72) for PCA analysis followed by leiden clustering after nearest neighbor detection and UMAP
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projection. This analysis identified 13 clusters which we collapsed into 9 cell subtypes based on

differential gene analysis.

Single-cell Differential Expression Analysis. Single-cell differential expression was performed

using the log-normalized gene counts with the rank_genes_groups function from scanpy with the

Wilcoxon rank-sum method and multiple testing correction with Benjamini-Hochberg.

Additionally, the adjusted p values that were equal to 0 were updated to the minimum

representable positive normalized float (2.2250738585072014e-308).

Cell Cycle Phase Assignment and Module Scoring. To assign cells to the cell cycle phases, the

log-normalized scaled gene counts were used with the score_genes_cell_cycle function from the

scanpy v.1.5.1 package with the Mus musculus G1/S DNA Damage Checkpoints and G2/M

Checkpoints gene lists from the REACTOME database being used for the genes associated to the

S phase and genes associated to the G2M phase (73, 74), respectively. For the single cell scoring

of the bulk RNA sequencing gene modules, the log-normalized scaled gene counts were used

with the score_genes function from scanpy.

RNA Velocity Analysis. For each 10x well, we used velocyto v.0.17.17 (75) to create a loom file

with the spliced, unspliced, and ambiguous counts with the Dec. 2011 GRCm38/mm10 repeat

masking gtf file from the UCSC genome browser (76, 77). The loom files across all wells were

merged and then subsetted to all cells in the T.4NNr4a1 cluster. The resulting object was used to

determine the RNA velocity and to predict the latent time for each cell using the 1119 HVGs

with the dynamical model from scvelo v.0.2.1.

We used we used a Gaussian mixture model with the GaussianMixture tool from sklearn v.0.23.1

(78) to deconvolute the underlying individual Gaussian distributions from the latent time

distribution for cells from the T.4NNr4a1 cluster. This separated the cells into an optimal number of
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4 distributions or clusters as determined by the elbow of the Bayesian Information Criterion

(BIC) and Akaike Information Criterion (AIC) plots.

The smoothed gene expression versus latent time was modeled using a linear generalized

additive model using default settings with the LinearGAM function from pygam v.0.8.0 (79).

For trajectory inference between the four clusters (“Stage 1” – “Stage 4”), we used the

graph-based tool PAGA within scvelo to predict velocity-inferred transitions among the clusters.

The latent time distributions from different subgroups were compared using the

Kolmogorov-Smirnov test. The cell cycle distributions between subgroups within stage 1 were

compared using Pearson’s chi-squared test.

TCR Analysis. Cells with <=2 TRA chains and <=1 TRB chains were used in the TCR

clonotype analyses (47). Cells with two TRA chains were removed for the TRBV and TRAV

analyses since the highest frequency for any dual TRA was 0.09% in any one sample (~1 cell).

This removed 10,598 cells or 13.6% of all cells which is consistent with the expected dual TRA

frequency. TRBV and TRAV genes which were not present in at least two mice from the same

subgroup (i.e., SKGNur GFPhi, WTNur GFPhi, SKGNur GFPlo, and WTNur GFPlo) were

removed from the downstream TRBV and TRAV analyses.

Significant differences in the TRBV frequencies between subgroups was determined by exact

permutation test for unpaired samples and exact permutation test (N > 5 paired samples) (80) or

paired t-test (N <= 5 paired samples) using scipy v.1.4.1 followed by Benjamini-Hochberg

correction with statsmodels v.0.11.1 for paired samples.

Significant difference in GFP mean fluorescence intensity (MFI) for cells assigned TRBVs in the

enriched or not-enriched groups was determined with a linear mixed effect model GFP MFI ~
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TRBV group (enriched or not-enriched) + mouse id with a random intercept for each TRBV

protein.
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Introduction

Infection of pregnant individuals with Zika virus (ZIKV), a flavivirus primarily transmitted to

humans via the bite of an infected mosquito, can lead to persistent viral replication in the

placenta and fetal brain that is associated with devastating fetal neurologic outcomes (1–4). In

contrast, for the majority of non-pregnant immunocompetent adults, ZIKV virus is rapidly

cleared from the plasma (5–9), and infection is accompanied by mild symptoms such as fever,

rash, and joint pain or can be asymptomatic (10,11). Since the recent 2015-2016 epidemic in the

Americas, there has been a considerable effort towards the development of a ZIKV vaccine,

particularly for the prevention of mother-to-child transmission of infection (12–14). The majority

of ZIKV vaccine candidates aim to induce durable, high-titer neutralizing antibody responses,

which confer protection in animal models (15,16).

Natural infection with ZIKV in humans generates robust ZIKV-specific antibody

responses (11,17); however, there is wide inter-individual variation in the levels of ZIKV-specific

antibodies that persist in the serum (11,18). Immunity to subsequent infection with ZIKV is

likely to be influenced by the magnitude and durability of the ZIKV neutralizing antibody

response (17,19,20), but little is known about the factors that contribute to inter-individual

variation in antibody responses. There is substantial cross-reactivity between virus-specific

antibodies (18,21,22) and T cell responses (23–25) generated after infection with ZIKV and

those from the closely-related and often co-circulating dengue virus (DENV). However, prior

DENV exposure alone does not appear to explain the wide range of ZIKV antibody titers

observed after natural infection (18).

For other pathogens, baseline immune characteristics and/or signatures of early immune

responses acutely after infection or vaccination have been shown to correlate with the magnitude
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of pathogen-specific antibody titers (26–33). Some aspects of the innate cytokine and cellular

immune responses to ZIKV infection have been described in humans (34–40). However, the

relationship between the acute-phase immune response and the generation of ZIKV-specific

antibodies has not been characterized. This is in part due to the inherent challenges in identifying

and establishing longitudinal cohorts of individuals identified during the earliest days of the

acute phase of a natural infection.

Here, we used high-dimensional single-cell profiling with mass cytometry (CyTOF) to

deeply characterize the cellular innate and adaptive immune response during acute and

convalescent ZIKV infection. We evaluated longitudinal peripheral blood samples collected from

25 individuals in a natural history cohort of healthy, non-pregnant adults from Puerto Rico who

were found to be viremic with ZIKV at the time of blood donation during the recent ZIKV

epidemic of 2015-2016 (9,41,42). We found broadly coordinated cellular responses across

immune cell lineages during acute ZIKV infection and identified distinct cellular immune

signatures during acute ZIKV infection that were associated with the development and

persistence of low versus high neutralizing antibody titers. In addition, we identified stable

immune features that comprise a cytotoxic immune set point associated with low neutralizing

antibody titers. Future vaccine efficacy trials for ZIKV and other acute viral infections may

benefit from the inclusion of these candidate cellular biomarkers to aid in the prediction of

neutralizing antibody titers, and additional strategies may be required to elicit stronger antibody

responses in individuals with cytotoxic-skewed baseline immune set points.
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Results

Identifying Immune Cell Populations that Respond to Acute ZIKV Infection

To characterize the cellular immune response to acute ZIKV infection, we designed two CyTOF

antibody panels to phenotype innate immune and B cell features (panel 1) and T cell features

(panel 2; see Table 3.1). We used these panels to analyze peripheral blood mononuclear cells

(PBMCs) collected longitudinally at up to three timepoints during acute, early, and late

convalescent phases of infection from 25 otherwise healthy blood donors in Puerto Rico who

were found to be viremic for ZIKV at the time of blood donation (“index visit”; study

participants are part of a larger REDS-III cohort; Fig. 3.1A, Table 3.2). 28% (7 of 25) of the

participants were female, and the median age was 45 years (range 21-71). All participants

mounted a detectable ZIKV IgM, IgG, and neutralizing antibody response (reported as the 80%

neutralization titers: NT80; Fig. 3.1B). Although all participants were viremic at the index visit,

68% (17 of 25) had not yet formed ZIKV-specific IgM responses. Of the participants with a

collection visit at the first (“acute”) PBMC collection timepoint (median 8 days after index),

100% had formed IgM antibodies and 22% (5 of 23) had residual detectable plasma viremia.

There was substantial variation in both peak neutralizing antibody titers (ZIKV NT80 titers:

84-37,872) and follow-up titers 6 months after the index visit (0-6,286).

We first characterized how acute ZIKV infection perturbs the frequency and activation of

different immune cell types in peripheral blood. We manually gated major landmark immune cell

populations defined by standard lineage markers (e.g., classical [CD14+] monocytes,

non-classical [CD14-CD16+] monocytes, plasmacytoid dendritic cells [pDCs], classical DCs

[cDCs], CD56bright/dim NK cells, CD4+ T cells, CD8+ T cells, B cells, etc.) and classically-defined

adaptive immune cell subsets (see Supplementary Fig. 3.1 for gating strategy and Table 3.1 for
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mass cytometry antibodies). We first evaluated the relative abundance of 40 cell types (landmark

populations and adaptive immune subsets). We then evaluated the Boolean expression of 30

different phenotypic surface and intracellular proteins on these parent cell types, which yielded a

total of 286 unique phenotypic features (see Table 3.3 for phenotypic features).

To broadly determine how the immune state is perturbed in the context of ZIKV

infection, we performed principal component analysis (PCA) on the manually-gated CyTOF

features (adjusted for age and sex). We mapped the trajectories across the three timepoints in

PCA space for each individual ZIKV-infected participant (Fig. 3.1C) as well as 8 control

ZIKV-uninfected blood donors (black triangles). While there was variation between individuals,

most participants followed a similar general trajectory from right-to-left along PC1 as they

progressed from acute to convalescent ZIKV infection (not observed across longitudinal

sampling of 6 separate ZIKV-uninfected individuals; Supplementary Fig. 3.1D). The number of

days between the index and the acute timepoint negatively correlated with the total distance

traveled in PCA space across the top five PCs as well as the value of PC1 at the acute timepoint

(Fig. 3.1D). These correlations suggest that both the PC1 coordinate and the distance traveled

correspond to movement in virtual infection space as participants resolve their ZIKV infection.

To understand which cellular features contributed to this coordinated movement over time, we

used linear mixed effect modelling on the age- and sex-adjusted feature abundances. While the

frequency of most major immune cell types did not change significantly across the three sampled

timepoints (Supplementary Fig. 3.2A-B), 128 of the 286 phenotypic features did change

significantly across the three sampled timepoints (p_adj<0.05; Fig. 3.1E). The vast majority

(95%) of these changing features were elevated at the acute timepoint and decreased in

abundance by the late convalescent timepoint. A subset of these features initially remained
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elevated at the early convalescent timepoint, while others decreased sharply between the acute

and early convalescence stage (e.g., most populations expressing Ki-67 and CD71).

To leverage the richness of our high dimensional single cell dataset, we performed

unsupervised clustering using the SCAFFoLD algorithm that we have described previously,

which associates cell clusters with user-defined landmark populations (43,44). We observed high

concordance in the frequency of the pre-defined landmark immune cell populations between our

manual gating and SCAFFoLD approaches (Supplementary Fig. 3.2C-D). Linear mixed effect

modeling demonstrated that 15 of 34 clusters assigned to innate immune cell types and 23 of 56

clusters assigned to adaptive immune cell types (innate immune and B cell clusters from CyTOF

Panel 1, T cell clusters from Panel 2) changed significantly in abundance as a percent of their

parent landmark population over time (Fig. 3.1F-G). We again observed diversity in the

direction and speed with which clusters changed in abundance over the three timepoints.

Innate Immune Cell Activation in Acute ZIKV Infection

Little is known about the innate immune response to acute ZIKV infection in humans.

Intermediate (CD14+CD16+) monocytes have been shown to increase in the peripheral blood of

children with acute infection and are themselves a major target for ZIKV infection (37,45). In

adults, we also observed a transiently elevated level of intermediate monocytes during acute

ZIKV infection (Fig. 3.2A; see Supplementary Fig. 3.1 for gating). Intermediate monocytes in

acute infection expressed higher levels of activation markers (Fig. 3.2A). Manual gating and

unsupervised clustering analyses revealed that acute infection was also associated with activation

in the broader classical (CD14+) monocyte population (which includes CD14+CD16+

intermediate monocytes; Fig. 3.2B) as well as non-classical (CD14-CD16+) monocytes

(Supplementary Fig. 3.3A).
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To understand how the expression of activation markers was coordinated on monocyte

populations transiently increased in acute infection, we used our clustering analysis to investigate

co-expression on individual cells contained within the classical CD14+ monocyte cluster (cluster

49) with the greatest median relative change in frequency (-75%) from the acute to late

convalescent timepoints (Fig. 3.2C). This revealed three modules of markers with coordinated

expression patterns: (1) a proliferative module (Ki-67, CD71, and CD38), (2) an early activation

module (HLA-DR, CD86, PD-1, and CD69), and (3) a monocyte maturation/differentiation

module (CD16, CD11c, CD40, and CD4; Fig. 3.2C). Thus, with unsupervised analysis we

identified distinct modules, representing activation/differentiation states, of transiently expanded

monocytes.

The proportion of activated cDCs and pDCs was also increased in acute infection, and

several activation markers were co-expressed on the cDC cluster with the greatest relative

decrease in abundance as infection resolved (Supplementary Fig. 3.3B). Amongst NK cells,

acute infection was associated with increased proliferation and activation in both CD56bright and

the more cytotoxic CD56dim NK cells which resolved during convalescence (Supplementary

Fig. 3.3C). Collectively, these data demonstrate that acute ZIKV infection is characterized by the

activation and differentiation of diverse innate immune cells.

Accumulation of Activated T and B Cells in Acute ZIKV Infection

The population of HLA-DR+CD38+ CD8+ T cells has been found to be enriched for

antigen-specific CD8+ T cells in other acute infections (46–48). Acute ZIKV infection was

accompanied by a profound accumulation of cycling, activated non-naïve CD8+ T cells

co-expressing HLA-DR and CD38 (Fig. 3.2D-E). Indeed, our clustering analysis revealed that

the expression of multiple activation markers on CD8+ T cells in acute ZIKV infection was
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tightly co-regulated on small sub-populations. The majority of HLA-DR+CD38+ CD8+ T cells

were contained within three clusters of CD8+ T cells that expressed the highest levels of other

activation markers (e.g., Ki-67, ICOS, CTLA-4, TIGIT, CD25) and were only transiently

increased in acute infection (summed median frequency of c75, 66, 34 across time: 7.1% =>

3.1% => 1.6%; Fig. 3.2F). Acute ZIKV infection was also associated with a transient increase in

the abundance of small sub-populations of cycling and activated non-naïve CD4+ T cell subsets

and cytotoxic-skewed γδ T cells (Supplementary Fig. 3.4).

Using two established and correlated (Supplementary Fig. 3.5A) methods for

identifying B cell populations that are actively secreting antibodies (CD38hiCD20neg

plasmablasts and CD71hiCD20neg “Antibody Secreting Cells” [ASCs] ((49)), we noted a

significant decrease in the frequency of these cells between acute infection and early/late

convalescence (Fig. 3.2G-H). Phenotypically, a larger proportion of ASCs and other B cell

subsets expressed the transcription factor T-bet, which has been associated with B cell responses

to viral infections (50), during acute infection compared to early and late convalescence

(p_adj=0.02; Fig. 3.2H, Supplementary Fig. 3.5C).

An increased frequency of CD20hiCD71hi “Activated B Cells” (ABCs) has also been

described in other acute infections in humans (49,51). We observed a significant decrease over

time in the proportion of ABCs expressing Ki-67, FCRL5, and CD40 (Fig. 3.2H). Overall,

multiple subsets of B cells transiently expressed several activation markers in acute ZIKV

infection (Supplementary Fig. 3.5B-C). Finally, the expression of CD21 was lower on the two

IgD- memory B cell populations during acute ZIKV infection (Supplementary Fig. 3.5C),

which may identify cells recently exited from a germinal center (52).

74



Coordinated Activation of Innate and Adaptive Immune Cells in Acute ZIKV Infection

We next asked how these immune parameters during acute infection were coordinated to

understand the intercellular dynamics that mediate the observed active immune response. We

focused on the acute timepoint from 17 individuals without detectable anti-ZIKV IgM at their

index visit to limit the variation in the data collected from participants, who may have been

sampled at a different number of days following infection. We first interrogated features enriched

for antigen-specific cells and found the frequencies of ASC B cells and CD38+HLA-DR+

non-naïve CD8+ T cells were positively correlated (Spearman’s r=0.61, p=0.01; Fig. 3.3A).

We broadly characterized the relationships of the acute-phase cellular features by

computing correlations between all cellular features at the acute timepoint, revealing 279 feature

pairs that were positively correlated and 66 that were negatively correlated during acute ZIKV

infection (p_adj<0.05). To focus on the correlations that were exclusive to acute ZIKV infection,

we separated the feature pairs that were uniquely correlated during acute ZIKV infection,

designated as “unique” (n=169), from the remainder – labeled as “shared” – which were

correlated both during acute infection as well as in the uninfected samples (n=176; Fig. 3.3B).

Compared to the shared correlations, the unique correlations during acute ZIKV infection were

more likely to be between features from different major landmark populations (odds of

correlations being between features belonging to different/the same landmark populations

amongst unique [105/64] versus shared [68/108] correlations; odds ratio [OR] 2.60 [95% CI:

1.65-4.12]; Fig. 3.3C). The unique correlations were also more likely to be between (rather than

within) adaptive and innate immune features (OR 2.77 [1.54-5.10]). Thus, during acute ZIKV

infection, there was more coordination across arms of the immune system (e.g., significant

unique correlation between CD38+ pDCs and CD38+ Th1 CD4+ T cells (r=0.79, p_adj=0.03;
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Fig. 3.3D). We also found that within the positive correlations, the unique correlations were

more likely to be between different markers (OR 2.27 [1.31-3.98]) (e.g., CD40+ cDCs and

Ki-67+ double negative (DN; CD27-IgD-) B cells (r=0.78, p_adj=0.03; Fig. 3.3D)). Together

these findings suggest that during acute ZIKV infection, there is broad coordination of the

expression of a diversity of activation markers across adaptive and innate immune cell types.

Individuals Exhibit Inversely Correlated Cellular Immune Signatures During Acute ZIKV

Infection

We next asked if there were inter-individual differences between study participants that may help

to explain the variable outcomes of acute infection, such as the large differences in neutralizing

antibody titers. Indeed, the feature pairs uniquely correlated during acute infection were more

likely to be negatively correlated across study participants compared to those shared with the

uninfected state (OR 3.80 [2.03-7.42]; Fig. 3.3B-C). For example, uniquely in acute ZIKV

infection, we observed negative correlations between the frequency of activated B cells and

CD4+ Tregs (r=-0.86, p_adj=0.002) and between CD69+ CD56dim NK cells and Helios+ Vδ2- γδ

T cells (r=-0.77, p_adj=0.03; Fig. 3.3E). We hypothesized that these negatively correlated

features unique to acute infection reflected inter-individual variability in the acute-phase immune

response. To investigate, we performed hierarchical clustering of the acute infection feature

correlation matrix (Fig. 3.4A), which revealed the presence of two modules (module 3 and

module 5) that contained sets of features which were inversely correlated with one another

(average correlation: r = -0.79). While the module 5 immune signature was enriched for features

that represent activated innate and adaptive immune cell types, 54% of which were transiently

elevated in acute infection, the module 3 signature was enriched for features that reflect more

cytotoxic-differentiated cell types, 91% of which were “stable,” meaning they did not change in
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abundance in the context of acute ZIKV infection. During acute infection, some individuals had

a higher module 5 score, reflecting dynamic immune activation during acute ZIKV infection,

while others had a higher module 3 score, suggesting a more cytotoxic-differentiated immune

state (Fig. 3.4B). To determine the clinical significance of these acute-phase signatures, we next

asked if these distinct acute-phase cellular immune signatures could predict the magnitude of

ZIKV neutralizing antibody responses after infection.

Transient Expansion of Activated Cell Types in Acute Infection Predicts High Neutralizing

Antibody Titers after ZIKV Infection

We observed a large range in the titers of ZIKV neutralizing antibodies (NT80) that persisted

several months after the resolution of acute infection (Fig. 3.1B). In order to identify the cellular

immune features during acute ZIKV infection that associated with the development of a high

versus low ZIKV NT80 titer 6 months after infection, we again focused our analysis on

individuals sampled as early as possible in the course of infection (i.e., who were ZIKV IgM- at

the index visit). Since prior exposure to DENV is associated with significantly higher long-term

ZIKV NT80 antibody titers ((11) and Supplementary Fig. 3.5D), we also only examined

individuals with serologic evidence of prior DENV infection (final n=14). These individuals

were separated into “high” or “low” 6-month ZIKV NT80 titer groupings based on the tertiles of

the 6-month ZIKV NT80 titers from the whole DENV-exposed REDS-III cohort (low: n=6, <230,

mid: n=3, 230-1240 or high: n=5, >1240), which were measured a median of 181 days after

index visit [range 160-196 days]; Fig. 3.5A). Of note, there was no significant difference in the

age (p=0.31) or sex distribution (p=0.53) between the tertiles.

Using a receiver operating characteristic (ROC) analysis, we found that a module

5-skewed score during acute infection was predictive of a high 6-month ZIKV NT80 titer, while a
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module 3-skewed score during acute infection was predictive of a low 6-month titer (area under

the curve [AUC] = 0.800; Fig. 3.5B). To investigate which individual features were predictive of

high versus low 6-month titers, we returned to an unbiased analysis with the full set of

phenotypic features, examining features with significantly different frequencies at the acute

timepoint between the high and low titer individuals. While we did not observe an association

between the frequencies of antigen specific populations (e.g., ASCs or HLA-DR+CD38+ CD8+

T cells) at the acute timepoint and the level of ZIKV NT80 at 6 months post-infection

(Supplementary Fig. 3.5E-F), we did find unique sets of features associated with high versus

low levels of ZIKV titers.

We found that high levels of ZIKV neutralizing antibody titers 6 months post-infection

were associated with a significantly higher frequency of 11 cellular features during acute

infection (e.g., CD86+ CD14-CD16+ monocytes and pDCs, CD40+ CD14+ monocytes and

cDCs, CD69+ NK cells, CD38+ Th1 and Tfh CD4+ T cells, and CD86+ as well as Ki-67+ DN B

cells; Fig. 3.5C-D). These included multiple activated cell types, eight of which were contained

within module 5. Six of the 11 features associated with the high titer group were specifically

expanded in acute infection (indicated as “Changing”). These features also tended to be low in

frequency in uninfected individuals (see lighter green colors in “Uninfected [UI] Mean”

column). Together, these data suggest that high 6-month ZIKV NT80 titers are associated with

robust but transient expansion of specific, diverse activated cellular features during the acute

phase of infection.

A Cytotoxic Immune Set Point Predicts Low Neutralizing Antibody Titers after ZIKV Infection

In contrast, individuals with low titers of neutralizing ZIKV antibodies 6 months after infection

had an acute infection immune signature defined by higher frequencies of cytotoxic T cell
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features. These included higher Granzyme B expression in Tctl CD4+ T cells, a larger TEMRA

population in CD8+ T cells, higher Eomesodermin expression in non-naïve CD8+ T cells, a

higher overall frequency of non-naïve Vδ2- γδ T cells, and a higher frequency of non-naïve Vδ2-

γδ T cells that express Granzyme B, T-bet and Helios (Fig. 3.5C,E). Most (8 of 9) of the low

titer-associated features were contained within the stable, cytotoxic-skewed module 3. Unlike the

cellular features associated with high 6-month NT80 titers, most of the features associated with

low 6-month NT80 titers were present at high baseline abundance in uninfected individuals (see

darker green/blue colors in the “Uninfected Mean” column), and most (8 of 9) were not

dynamically regulated over the course of ZIKV infection. This supported the notion that the

cytotoxic-skewed immune signature associated with the development of low neutralizing

antibody titers represents a distinct and stable immunologic set point. A higher frequency of

cytotoxic-differentiated T cells can relate to a history of infection with other viruses, in particular

cytomegalovirus (CMV), and a positive CMV serostatus can be associated with impaired

response to vaccination (53–55). However, CMV seropositivity was not significantly associated

with the development of low ZIKV NT80 titers in our cohort (p=0.29).

To determine the predictive power of the high and low titer-associated features, we again

performed an ROC analysis and found that all of the acute infection cellular immune features

associated with high or low antibody titers also reliably predicted these two outcomes in this

cohort (minimum AUC=0.833; Fig. 3.5F). Interestingly, several of the low titer-associated

features at the late convalescent timepoint, after the resolution of infection, remained associated

with and were predictive of low 6-month ZIKV NT80 titers (Fig. 3.5C, black in “Late

Convalescence” column, and Fig. 3.5G). Collectively, our data suggest that high 6-month ZIKV

NT80 titers are predicted by an immune state of transiently expanded, highly activated immune

79



cell features during acute infection. In contrast, low 6-month ZIKV NT80 titers are instead

predicted by a distinct “immune set point” characterized by a stable, high frequency of

cytotoxic-differentiated T cell populations that are not dynamically regulated during acute ZIKV

infection (Fig. 3.6).

Discussion

We present here a deep characterization by mass cytometry of dynamic cellular immune

responses to acute ZIKV infection in human adults. Leveraging a well-characterized longitudinal

cohort of individuals with viremic ZIKV infection, we found that acute ZIKV infection did not

impact the frequency of most major cellular immune populations. However, small populations of

highly activated innate and adaptive immune cells were coordinately and transiently expanded

during acute infection, and distinct acute-phase immune signatures predicted the persistence of

high versus low ZIKV neutralizing antibody titers six months after the resolution of infection.

Our findings build upon a small but growing literature describing cellular immune responses in

acute viral infection in humans (31,46,47,49,56–66), and they suggest immunologic states to

target in order to enhance the efficacy of antiviral vaccines.

Our analysis of cellular activation states enabled us to precisely delineate and

characterize the coordination between innate and adaptive immune cell populations that respond

to acute ZIKV infection. In prior studies, acute ZIKV infection has been associated with

activation of some innate immune cell types (38) and, in children, an increase in the frequency of

monocyte populations that are also a target for viral infection in vivo (37,45). In our study in

adults, we observed not only a similar expansion of intermediate CD14+CD16+ monocytes

during acute infection, but also a transient increase in a suite of activation markers on this cell

type in the acute phase. Additionally, we identified a cluster of CD14+ monocytes that were
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present at a higher frequency during acute infection (c49) with distinct co-regulated markers

denoting proliferation, activation or differentiation states. Amongst adaptive immune cells,

HLA-DR+CD38+ non-naïve CD8+ T cells were expanded at the acute time point, consistent

with other acute viral infections (31,46,47). We found that these cells were contained in three

distinct clusters of cells that co-express different combinations of activation markers. Acute

ZIKV infection was also associated with activation of Th1 and Tctl T cell CD4+ T cell subsets.

Finally, using gating strategies to identify populations of B cells enriched for antigen-specific

cells in other infections (49,67), we identified an expansion of Tbet+ ASCs during acute ZIKV

infection.

Our study describes the diverse and coordinated activation of cellular immune responses

during acute ZIKV infection in human adults. Compared to the baseline correlations that exist in

the uninfected state, we found that acute ZIKV infection drove new coordination between

different immune cell types and across the innate and adaptive immune system. The correlations

unique to acute ZIKV infection (e.g., positive correlations in the proportion of CD38+ pDCs and

CD38+ Th1 CD4+ T cells, or between CD40+ cDCs and Ki-67+ DN B cells) may reflect

interactions that are essential to mount a productive antiviral immune response. Further

exploration of the correlated features in acute infection revealed two distinct modules that were

inversely correlated: one (module 5) contained features reflecting transiently elevated activated

cell populations while the second (module 3) contained features reflecting stable/unchanging

cytotoxic cell populations. Remarkably, these two acute infection immune signatures, which we

identified using an unbiased analysis approach, appear to truly reflect distinct immune states that

differentially impact and predict the development and maintenance of high neutralizing antibody

responses.
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High titers of ZIKV neutralizing antibodies are likely critical for protective immunity in

humans, and they are a key target for ZIKV vaccines (68). Six months following infection,

participants across our cohort had a greater than 100-fold difference in ZIKV neutralizing

antibody titers. Other than a positive association with prior DENV serostatus observed here and

in other studies (11), little is known about what parameters predispose some individuals to

maintain higher versus lower ZIKV neutralizing antibody titers. Interestingly, as has been

observed in SARS-CoV-2 infection (31), the frequency of antibody secreting cells during acute

ZIKV infection did not correlate with antibody levels in convalescence. We did, however, find

several other acute-phase cellular features that were associated with and predictive of high versus

low neutralizing antibody titers, many of which have plausible roles in augmenting a productive

B cell response. For example, CD86 expression on pDCs and monocytes and CD40 expression

on cDCs and monocytes can mediate enhanced antigen presentation to and priming of helper

CD4+ T cells, IFNγ produced by activated Th1 cells or NK cells can promote B cell activation,

and activated Tfh CD4+ T cells can provide direct help to differentiating B cells. Further

investigation could elucidate whether robust induction of these same activated cell populations

also predicts the long-term immunogenicity of vaccines for ZIKV and other viral infections.

In contrast to the dynamically regulated acute-phase cellular immune features associated

with high ZIKV neutralizing antibody titers, a higher frequency of T cells with cytotoxic

differentiation features were associated with low 6-month ZIKV neutralizing antibody titers and

predictive of levels of 6-month ZIKV neutralizing antibody titers. Most of these features did not

dynamically change over the course of infection and were themselves inversely correlated with

the cellular immune features associated with high 6-month ZIKV neutralizing antibody titers

(similar to the inverse correlation between modules 3 and 5 in the correlation matrix). Several of
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the low titer-associated cytotoxic features were also present at higher levels in the low titer

individuals 3-6 months after resolution of the infection, suggesting that they may represent a

stable biological state that is likely reflective of their history of prior antigen encounters. This

state is distinct from the small populations of virus-specific (e.g., HLA-DR+CD38+) T cells that

are transiently expanded in acute infection (31,46,47). The stability of these features suggests

that a cytotoxic immune “set point” may identify individuals predisposed to have a blunted

activation response to acute infection that then leads to impaired neutralizing antibody responses.

In general, a more cytotoxic-skewed T cell compartment can be a sign of immune senescence,

which can in turn be associated with a reduced capacity to generate functional antigen-specific

responses after vaccination (53,55). Thus, in addition to identifying candidate biomarkers of a

“responsive” immune signature that may be useful for predicting the formation of a robust

neutralizing antibody response to other infections or vaccination, our study also provides insight

into potential markers of an immune state that impairs the formation of protective immunity after

acute viral infection. Future studies should explore the generalizability of our findings to other

infections and vaccination and the underlying causes of these distinct immune signatures.

Our study provides a first in-depth characterization of the cellular immune response to

acute ZIKV infection in human adults and relates distinct acute-phase cellular immune signatures

to the development of high- or low-titers of durable neutralizing antibodies. Our approach offers

a powerful tool to test whether these features also predict immunogenicity of vaccines for ZIKV

and other viral infections, such as SARS-CoV-2, for which neutralizing antibodies play a major

role in protection. Our findings suggest that targeted therapeutic approaches in individuals

predicted to have poor neutralizing antibody responses to vaccination (e.g., different adjuvants or

83

https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.google.com/docs/about/


a higher dose of vaccine) might increase acute-phase immune activation and subsequently

promote enhanced long-term protective antiviral immunity.

Our study has some important limitations. Although we have made an effort to control

for the variance introduced by sampling time, it was not possible to align participants according

to the exact date they were infected. Our study included only otherwise healthy individuals who

presented for volunteer blood donation and does not include pregnant individuals or infants, who

are key populations affected by this infection. Finally, while it is likely that neutralizing

antibodies play a key role in immunologic protection from ZIKV (69), a titer that correlates with

protection in humans has not yet been identified (14) and other antibody functions (70) and/or

other types of immune responses (17,19,71), may also be critical for robust protection.
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Figure 3.1 Acute infection with ZIKV elicits profound phenotypic changes across
peripheral blood cellular immune populations
(A) 25 adults viremic with acute ZIKV infection at the time of blood donation (“index visit”) had
peripheral blood sampling at up to three timepoints: acute phase of infection, early and/or late
convalescence (see Table 3.2 for clinical characteristics). (B) Plasma ZIKV viral load (VL),
neutralizing antibody titers (NT80), and total IgG and IgM levels of study cohort participants. Red
line connects median values at each sampling timepoint (+/- 95% Confidence Interval, CI). (C)
Directed line plots for each participant in PCA space from early to later timepoints. Black
triangles denote 8 uninfected control samples. (D) Scatterplots of days since index visit at the
acute timepoint and the value of PC1 at the acute timepoint or the total distance traveled in PCA
space between the acute and late convalescent timepoints (Spearman’s correlation with
regression line). (E) Heatmap showing the z-score normalized frequency of the log-adjusted
feature abundances for the manually gated phenotypic features that change significantly over
time (see Table 3.3 for list of features assessed). (F) SCAFFoLD maps showing clusters of cells
associated with landmark cell population nodes (black dots). Clusters that significantly change in
abundance between the acute and late convalescent timepoints are labeled: increase (red),
decrease (blue), or increase and then decrease (green). (G) Heatmap showing the normalized
abundance of the clusters (z-score based on % of parent cell type population) that change
significantly. Significance in (E-G) based on linear mixed effects (LME) model fit with
p_adj<0.05. See also Supplementary Figure 3.1 and Table 3.2-3.3.

86



87



Figure 3.2 Transient accumulation of activated immune cells during acute ZIKV infection
(A) Frequency (as a % of total live cells) and phenotype (z-scored proportion of cells that
express each marker) of CD14+CD16+ monocytes across the course of acute and resolving
ZIKV infection. (B) Heatmap showing z-score normalized median expression of indicated
markers (rows) for each monocyte-associated cell cluster (columns). Column annotation
indicates clusters that significantly decrease (blue), increase (red), increase and then decrease
(green), or remain unchanged (gray) in abundance (as a % of CD14+ monocytes; p_adj<0.05).
(C) Change in abundance of CD14+ monocyte cluster 49 (as a % of CD14+ monocytes;
p_adj=0.0002; left) and Spearman’s correlation matrix of marker expression on single cells in
CD14+ monocyte cluster 49 from acute visit samples (right). (D) Gating scheme for non-naïve
CD8+ T cells that co-express HLA-DR and CD38. Percentages shown are % of parent
populations in plotted sample. (E) Frequency (as a % of non-naïve CD8+ T cells) and phenotype
(z-scored proportion of cells that express each marker) of HLA-DR+CD38+ non-naïve CD8+ T
cells across the course of acute and resolving ZIKV infection. (F) Phenotype (z-scored median
expression of each marker) of CD8+ T cell clusters that significantly decrease (blue), increase
(red), increase and then decrease (green), or remain unchanged (gray) in abundance. (G) Gating
scheme for B cell subsets, including activated and antibody secreting B cells (ABC and ASC,
respectively). Percentages shown are % of parent populations in the plotted sample. (H)
Frequency (as a % of non-naïve B cells) and phenotype of activated B cells (ABCs) and
antibody-secreting cells (ASCs) across the course of acute and resolving ZIKV infection.
p_adj<0.05). *p_adj<0.05, **p_adj<0.01, ***p_adj<0.001. A, C, E, H: Red line connects
median values at each sampling timepoint (+/- 95% CI). UI=uninfected. N=25 participants. See
also Supplementary Figure 3.3-3.5.
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Figure 3.3 Coordinated activation across different cell types in acute ZIKV infection
(A) Scatterplot of the frequency of ASC B cells and CD38+HLA-DR+ CD8+ T cells in acute
ZIKV infection with regression line. (B) Number of significant (p_adj<0.05) positive and
negative correlations between cellular immune features that are present in acute ZIKV infection,
grouped by those that are “unique” to ZIKV versus those “shared” with the uninfected (UI)
cohort. (C) Odds ratio (+/- 95% CI) that cellular immune feature correlations unique to ZIKV
infection are more likely to be associated with different correlation attributes (compared to the
correlations shared with the UI cohort). Correlation plots of select features uniquely correlated in
acute ZIKV infection (Spearman’s r with correlation line): (D) adaptive-to-innate immune
features, (E) negatively correlated features. N=17 participants (anti-ZIKV IgM- at index visit).
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Figure 3.4 Correlated immune cell features during acute ZIKV infection
(A) Correlation heatmap depicting Spearman’s correlation values (no significance cut-off) of all
manually gated features from acute ZIKV infection, representing the 17 participants who were
ZIKV IgM- ("pre-IgM") at the index visit. Hierarchical clustering was used to group cellular
features into five modules. Negatively correlated modules 3 and 5 are indicated with bold
outline. (B) Distribution of (module 5 score - module 3 score) values at the acute visit amongst
the pre-IgM study participants. N=17 participants (anti-ZIKV IgM- at index visit). See also
Supplementary Figure 3.5.
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Figure 3.5 Distinct cellular immune signatures are associated with the development of high
versus low ZIKV neutralizing antibody titers 6 months after infection
(A) ZIKV neutralizing antibody titers (NT80) measured approximately 6 months post-index visit
in the overall REDS-III study participants (gray dots) and the sub-cohort studied here (black
dots). Participants were divided into tertiles based on these values. (B) Receiver operating
characteristic (ROC) curve for predicting high- versus low-titer individuals using the difference
between the acute-phase module 5 and module 3 signature scores. (C) Heatmap showing z-score
normalized abundance at the acute visit for cellular features that were significantly (p_adj<0.05)
increased in high versus low 6-month NT80 titer participants at the acute timepoint. Row
annotations for each feature indicate: Mean values in a cross-sectional uninfected (UI) control
cohort, whether or not the abundance of the feature significantly changed across time between
acute to convalescent infection, and whether or not the abundance of the feature was also present
at a significantly higher frequency (p_adj<0.05) in the same group (high- versus low-titer
participants) at the late convalescent timepoint. Abundance (log-adjusted) of features during
acute ZIKV infection associated with high (D) versus low (E) 6-month neutralizing antibody
titers. (F) ROC curves for predicting high- versus low-titer individuals using the acute ZIKV
cellular features from (C) that are associated with high (left) versus low (right) 6-month ZIKV
NT80 titer. (G) ROC curves for predicting high -versus low- titer individuals using the late
convalescent features associated with low 6-month ZIKV neutralizing antibody titers. For (B, F,
G): The area under the curve (AUC) value and 95% CI for the features corresponding to each
curve are colored by AUC value for each plot. N=14 participants with 6-month ZIKV NT80 titer
data available (anti-ZIKV IgM- at index visit).
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Figure 3.6 Graphical abstract summarizing distinct cellular immune signatures associated
with the development of high versus low ZIKV neutralizing antibody titers 6 months after
infection
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Supplementary Figure 3.1 CyTOF gating strategy and Principal Component Analysis
(PCA) of uninfected participants
Gating strategy for (A) landmark populations, (B) innate immune cells, and (C) T cells. (D) PCA
representation of all manually gated parameters measured on PBMCs from ZIKV-uninfected
control participants (N=6) at longitudinal timepoints.
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Supplementary Figure 3.2 Landmark and sub-landmark population abundance in acute
and convalescent ZIKV infection
Line plots of frequency of indicated (A) landmark cell type and (B) adaptive immune subset for
each participant versus time since index visit. Red line connects median values at each sampling
timepoint with error bars for +/- 95% CI. Scatter plot for feature abundance from cross sectional
uninfected (UI) cohort shown on the far right. Features with p_adj< 0.05 have blue colored titles.
p_adj values obtained by LME model fit with Benjamini-Hochberg FDR correction. High
concordance in landmark cell population frequencies as measured by manual gating versus
SCAFFoLD clustering analysis in Panel 1 (C) and Panel 2 (D). N=25 ZIKV+ and N=8 ZIKV-
participants.

97



98



Supplementary Figure 3.3 Innate immune cell features impacted by acute ZIKV infection
(A-C, left): Line plots showing frequency of phenotypic features (% of cells that express each
marker) versus time since index visit (N=25). Red line connects median values at each sampling
timepoint with error bars for +/- 95% CI. Feature abundance from cross-sectional uninfected (UI)
cohort (N=8) shown on the far right. *p_adj<0.05, **p_adj<0.01, ***p_adj<0.001 (p_adj values
obtained by LME model fit with Benjamini-Hochberg FDR correction). (A-C, right): Heatmaps
showing z-score normalized median expression of indicated markers (rows) for each landmark
cell population-associated cell cluster (column). Column annotation indicates clusters that
significantly decrease (blue), increase (red), increase and then decrease (green), or remain
unchanged (gray) in abundance (as a % of the parent population; p_adj<0.05). N=25 ZIKV+ and
N=8 ZIKV- participants.
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Supplementary Figure 3.4 T cell features impacted by acute ZIKV infection
Significantly changing features (shown as % of parent cells that express each marker) for (A)
non-naïve CD8+ T cells, (B) non-Treg non-naïve CD4+ T cells, (C) CD4+ Tregs, and (D) γδ T
cells for each participant versus time since index visit. Red line connects median values at each
sampling timepoint with error bars for +/- 95% CI. Scatterplot for feature abundance from
cross-sectional uninfected (UI) cohort shown on the far right. *p_adj<0.05, **p_adj<0.01,
***p_adj<0.001 (p_adj values obtained by LME model fit with Benjamini-Hochberg FDR
correction). (E) Phenotype (z-scored median expression of each marker) of non-Treg non-naïve
CD4+ T cell clusters that significantly decrease (blue), increase (red), increase and then decrease
(green) or remain unchanged in abundance (p_adj<0.05). N=25 ZIKV+ and N=8 ZIKV-
participants.
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Supplementary Figure 3.5 B cell dynamics in ZIKV infection and characteristics associated
with ZIKV neutralizing antibody titers 6 months after infection
(A) Correlation plot between the frequency of plasmablast and ASC B cell populations (as a %
of non-naïve B cells; Spearman’s r with regression line). (B) Phenotype (z-scored median
expression of each marker) of B cell clusters that significantly decrease (blue), increase (red),
increase and then decrease (green), or remain unchanged (gray) in abundance (as a % of the total
B cell population; p_adj<0.05). (C) Relative change in the frequency [(late convalescent -
acute)/acute] of the expression of individual activation markers on B cell subsets (median
shown). Colors indicate markers with a significant (p_adj<0.05) change in the percent of the
parent population that expresses the marker are noted (increase=pink, decrease=green). (D)
Difference in 6-month ZIKV NT80 between individuals with or without evidence of prior DENV
infection at index visit (Wilcoxon Rank Sum test). Individuals from our sub-cohort are colored
black and individuals from the larger REDSIII cohort are colored gray. Scatterplots showing
6-month ZIKV NT80 titers versus the frequency of (E) ASC B cells or (F) non-naïve CD8+ T
cells co-expressing HLA-DR and CD38 at the acute timepoint (Spearman’s correlation). (A-C):
N=25 participants; E-F: N=14 participants.
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Tables

Table 3.1 Key resources table
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mass cytometry antibodies:
metal-antigen (clone)

Self-conjugated
unless from
Fluidigm

Y89-CD45 (clone HI30) Fluidigm Cat#3089003B; RRID:AB_2661851

In113-CD14 (clone M5E2) BioLegend Cat#301802; RRID:AB_314184

In115-CD123 (clone 6H6) BioLegend Cat#306002; RRID:AB_2661822

La139-CD33 (clone WM53) BioLegend Cat#303402; RRID:AB_314346

Ce140-CD38 (clone HIT2) BioLegend Cat#303502; RRID:AB_314354

Pr141-CD3 (clone UCHT1) BioLegend Cat#300402; RRID:AB_2661835

Nd142-CD19 (clone H1B19) BioLegend Cat#302202; RRID:AB_2661817

Nd143-CXCR3 (clone G025H7) BioLegend Cat#353702; RRID:AB_10983073

Nd144-CD11b (clone ICRF44) BioLegend Cat#301302; RRID:AB_314154

Nd145-CD4 (clone RPA-T4) BioLegend Cat#300502; RRID:AB_314069

Nd146-CD8 (clone RPA-T8) BioLegend Cat#301002; RRID:AB_2661818

Sm147-CD11c (clone Bu15) BioLegend Cat#337202; RRID:AB_1236381

Nd148-CD16 (clone 3G8) BioLegend Cat#302001; RRID:AB_314201

Sm149-CD138 (clone DL-101) BioLegend Cat#352302; RRID:AB_10915555

Eu151-CD21 (clone Bu32) BioLegend Cat#313502; RRID:AB_416326

Sm152-gdTCR (clone 11F2) Fluidigm Cat#3152008B; RRID:AB_2687643

Eu153-CD45RA (clone HI100) BioLegend Cat#304102; RRID:AB_314406

Sm154-CD40 (clone 5C3) BioLegend Cat#334302; RRID:AB_1236384

Gd156-PDL1 (clone 29E.2A3) BioLegend Cat#329702; RRID:AB_940372

Gd157-CD69 (clone FN50) BioLegend Cat#310902; RRID:AB_314837

Gd158-CD27 (clone O323) BioLegend Cat#302802; RRID:AB_2661825
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gd160-Tbet (clone 4B10) BioLegend Cat#644802; RRID:AB_1595503

Dy161-CTLA4 (clone 14D3) Fluidigm Cat#3161004B; RRID:AB_2687649

Dy162-CD80 (clone 2D10.4) Fluidigm Cat#3162010B; RRID:AB_2811101

Dy163-CD86 (clone IT2.2) BioLegend Cat#305401; RRID:AB_314521

Ho165-CD24 (clone MI5) BioLegend Cat#311102; RRID:AB_314851

Er166-NKG2D (clone ON72) Fluidigm Cat#3166016B; RRID:AB_2892110

Er167-FCRL5 (clone 509f6) BioLegend Cat#340302; RRID:AB_2104586

Er168-Ki67 (clone B56) Fluidigm Cat#3168007B; RRID:AB_2800467

Tm169-CD71 (clone CY1G4) BioLegend Cat#334102; RRID:AB_1134247

Er170-IgD (clone IA6-2) BioLegend Cat#348202; RRID:RRID:AB_10550095

Yb171-CD20 (clone 2H7) BioLegend Cat#302302; RRID:AB_314250

Yb172-BDCA1 (clone L161) BioLegend Cat#331502; RRID:AB_2661820

Yb173-IgM (clone MHM-88) BioLegend Cat#314502; RRID:AB_493003

Yb174-HLA-DR (clone L243) BioLegend Cat#307602; RRID:AB_314680

Lu175-PD-1 (clone EH12.2H7) BioLegend Cat#329902; RRID:AB_940488

Yb176-CD56 (clone HCD56) Fluidigm Cat#3176008B; RRID:AB_2661813

Sm149-CCR4 (clone 205410) R&D Cat#MAB1567; RRID:AB_2074395

Nd150-OX40 (clone A019D5) BioLegend Cat#351302; RRID:AB_10718513

Eu151-ICOS (clone C398.4A) BioLegend Cat#313539; RRID:AB_2810475

Sm154-CX3CR1 (clone 2A9-1) BioLegend Cat#341602; RRID:AB_1595422

Gd155-CCR6 (clone G034E3) BioLegend Cat#353402; RRID:AB_10918625

Tb159-Vd2 (clone B6) BioLegend Cat#331402; RRID:AB_1089226

Dy162-FOXP3 (clone PCH101) BioLegend Cat#3162011a; RRID:AB_2687650

Dy164-EOMES (clone WD1928) ThermoFisher Cat#14-4877-82; RRID:AB_2572882

Ho165-CD127 (clone A019D5) BioLegend Cat#351302; RRID:AB_10718513

Er166-TIGIT (clone A15153G) BioLegend Cat#372702; RRID:AB_2632714
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REAGENT or RESOURCE SOURCE IDENTIFIER

Er167-CCR7 (clone G043H7) BioLegend Cat#353202; RRID:AB_10945157

Tm169-CD25 (clone 2A3) Fluidigm Cat#3169003B; RRID:AB_2661806

Yb171-CXCR5 (clone RF8B2) Fluidigm Cat#3171014B; RRID:AB_2858239

Yb172-Helios (clone 22F6) BioLegend Cat#137202; RRID:AB_10900638

Yb173-Granzyme B (clone GB11) BioRad Cat#MCA2120; RRID:AB_2114582

Biological samples

Cryopreserved human PBMCs
and plasma

REDS-III study
participants

Demographic Data available in Table 3.2

Chemicals, peptides, and recombinant proteins

Cisplatin Sigma-Aldrich Cat #P4394

eBioscience FoxP3/Transcription
Factor Staining Buffer Set

Thermo Fisher
Scientific

Cat #00-5523-00

Maxpar Barcode Perm Buffer Fulidigm Cat #201057

Paraformaldehyde Electron
Microscopy
Sciences

Cat #15710

Intercalator Fluidigm Cat #201103A

Deposited data

Mass cytometry data This paper http://dx.doi.org/10.17632/5cn6cy97b7.1

Software and algorithms

CellEngine CellCarta https://cellcarta.com/cellenginesoftware/

R 3.6.1 The R Foundation https://www.r-project.org/

premessa 0.1.8 R package https://github.com/ParkerICI/premessa

flowCore 1.50.0 (80) RRID:SCR_002205

ggplot2 3.2.1 (82) RRID:SCR_014601

nlme 3.1-140 (81) RRID:SCR_015655

factoextra 1.0.5 (88) RRID:SCR_016692
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REAGENT or RESOURCE SOURCE IDENTIFIER

FactoMineR 1.42 (83) RRID:SCR_014602

seriation 1.2.8 (85) https://cran.r-project.org/package=seriation

ComplexHeatmap 2.1.1 (84) RRID:SCR_017270

SCAFFoLD (43) https://github.com/SpitzerLab/statisticalScaffol
d

igraph 1.2.4.1 (86) RRID:SCR_019225

pROC 1.17.0.1 (87) https://CRAN.R-project.org/package=pROC
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Table 3.2 Study participant clinical characteristics
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Table 3.3 Summary of phenotypic markers assessed on each cell type for manual gating
analysis
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Materials and Methods

Viral Load and Antibody Measurements. ZIKV viral load, antibody levels, and ZIKV and

DENV neutralizing antibody measurements were performed as described previously (9,41). In

brief, ZIKV viral load was measured by quantitative PCR. Anti-Zika virus IgM and IgG were

measured by antibody-capture ELISA using recombinant ZIKV antigen kindly provided by the

US Centers for Disease Control and Prevention (CDC) and as previously described (72,73).

ZIKV neutralizing titers were measured using a ZIKV reporter viral particle neutralization

titration assay (Integral Molecular, Philadelphia, PA) (74), and index donations were tested for

pre-existing DENV IgG with the Detect IgG ELISA (InBios; Seattle, WA).

PBMC Preparation and Mass Cytometry Staining. Whole peripheral blood was collected at

the clinical sites, shipped overnight at ambient temperature to Vitalant, San Francisco, CA, USA,

where they were processed and cryopreserved within 24 h of collection and then stored in liquid

nitrogen as previously described (42). Mass cytometry experiments were performed over the

course of five separate experiments, with normalization between experiments performed as

outlined below. PBMCs were thawed, and only samples with >70% viability were used for

analysis (most were >90% viable after thawing by the Muse Cell Analyzer [Millipore Sigma,

Burlington, MA, USA]) (75,76). We stained 2-4 million cells per panel in two mass cytometry

panels, following a previously published protocol (44) with the following modifications. Briefly,

we marked dead cells by incubating the samples for one minute with 25mM Cisplatin

(Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffered saline (PBS) plus EDTA, performed

surface staining with metal-tagged antibodies in PBS with 0.5% bovine serum albumin (BSA)

for 30 minutes at room temperature, fixed and permeabilized cells following manufacturer’s

instructions for the eBioscience Foxp3/Transcription Factor Staining Buffer Set (Thermo Fisher
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Scientific, Waltham, MA, USA), barcoded samples using mass-tag cellular barcoding reagents

diluted in Maxpar Barcode Perm Buffer (Fluidigm, South San Francisco, CA, USA) as described

previously (44), combined up to twenty barcoded samples into a single tube, performed

intracellular staining with antibodies diluted in eBioscience Foxp3/Transcription Factor kit perm

wash (Thermo Fisher Scientific), fixed cells in freshly prepared 2% paraformaldehyde (Electron

Microscopy Sciences, Hatfield, PA, USA) in the presence of a DNA intercalator (77), and then

washed and ran cells on the Fluidigm CyTOF 2 mass Cytometer within one week of staining.

Mass Cytometry Data Processing.

Data Quality Control. Following data acquisition, the FCS files were normalized across

experiments using bead standards and the data normalization algorithm using the R package

‘premessa.’ The live cell events were debarcoded using a single-cell debarcoding algorithm (78)

and we analyzed >25,000 (mostly >50,000) cells per sample. From the individual sample files,

normalization beads were excluded based on Ce140 and Eu153 signals, single cell events were

identified based on Ir191 DNA signal measured against event length, and CD45- or Pt195+ dead

cells were excluded. Potential batch effects were minimized by including samples from the same

individual in the same experiment. Spillover between the Yb173 and Yb174 channels was

compensated based on the CyTOF metal purity matrix (79) using flowcore (80). Gating was

performed using CellEngine (CellCarta, Montreal, Canada).

Manual Gating. Traditional hierarchical gating was applied to identify 12 “landmark” immune

populations: CD14+ “classical” monocytes, CD14-CD16+ “non-classical” monocytes, classical

and plasmacytoid dendritic cells [cDC and pDC, respectively], basophils, CD56bright and CD56dim

natural killer cells, regulatory CD4+ T cells, non-regulatory CD4+ T cells, CD8+ T cells, gd T

cells as stained by either a pan-γδ T cell receptor (TCR) antibody or an antibody that only
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recognizes gd T cells with the Vδ2 chain (see Supplementary Fig. 3.1 for gating strategy) as

well as well-defined adaptive immune subsets (see Supplementary Fig. 3.2 for the identity of

these populations). Within each of the “parent” cell types, we manually gated positive and

negative populations of biologically relevant phenotypic markers from the two mass cytometry

panels (see Table 3.3 for markers assessed on each “parent” population). For each of the parent

cell types, we only included phenotypic markers for which we could clearly gate a positive

population above background antibody staining levels.

Clustering by Statistical SCAFFoLD. We generated SCAFFoLD maps using the Scaffold R

package. As described previously (43,44), using all of the live CD45+ leukocytes collected

across participants and timepoints for each staining panel, we applied an unsupervised clustering

algorithm based on the CLARA clustering algorithm to partition cells into a user-defined number

of clusters (100 clusters per staining panel). We excluded Ki-67 and Granzyme B to avoid having

functional markers cluster cells across cell types together. Landmark populations were gated as

outlined in Supplementary Fig. 3.1 (for cluster analysis, NK cells were treated as one

population). We next generated force-directed graphs (SCAFFoLD maps) to visualize the

association of each cluster with its likely parent landmark population. We excluded from our

downstream analysis clusters that contained <20 cells in >80% of samples (12 clusters in Panel

1, 2 clusters in Panel 2) as well as clusters that contained cells that did not have the expected

expression of classical landmark population (e.g., we excluded a cluster of cells that clustered

with the CD8+ T cells but appeared to co-express the B cell marker, CD19 and may potentially

represent doublets [median 0.09% of total CD8+ T cells at the acute timepoint]; all together,

these 9 clusters in Panel 1 and 7 clusters in Panel 2 comprised 0.08% and 0.13% of the total live

population at the acute timepoint). Cell clusters were thus determined to be “reliably” assigned to
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landmark cell populations if they were not excluded based on these criteria and if they were

identified in Panel 1 for innate immune cells (total 17 classical and 3 non-classical monocyte, 9

NK cell, 4 cDC, 1 pDC clusters) and B cells (total 14 clusters) and Panel 2 for T cell phenotypes

(total 6 CD4+ Treg, 20 non-Treg CD4+, 14 CD8+, and 2 γδ T cell clusters). In the SCAFFoLD

maps depicted, a representative map from one participant at timepoint 1 is shown.

Quantification and Statistical Analysis

Change in Manually Gated Population and Cell Cluster Frequencies over Time. To measure

the change in abundance of manually gated cell features (e.g., landmark and sub-landmark

populations and populations expressing individual phenotypic markers) and cell clusters, the

frequency of each feature (expressed as a % of the parent population) was log transformed with a

constant factor of 1/10E6 or 1/10E3, respectively. Log-transformed values were adjusted for

participant age and sex using a linear regression and the residuals (log-adjusted abundance) were

used in downstream analyses. For age and sex, the median (± standard deviation) contribution of

each of these factors to the variance for individual features was 1.63 (±5.83)% and 1.17

(±3.16)%, respectively. The change over time for the log-adjusted feature abundance between the

“acute,” “early convalescent” and “late convalescent” visits was assessed using a linear mixed

effect (LME) model with the nlme R package (81) with log-transformed days since index visit as

a fixed effect and participant ID as a random effect. The p values for each group of features were

adjusted for multiple testing correction by Benjamini Hochberg with an FDR cutoff of 5% for a

significant effect of time since index visit on feature abundance. For 95% confidence interval

graphs, line graphs were generated in R using the package ggplot2 (82). The 95% confidence

intervals for the median values were calculated by bootstrapping with 1000 iterations.
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PCA Analysis. The log-adjusted manually gated features that were present across all ZIKV

infected and cross-sectional uninfected samples (281 of 324 total features in the dataset) were

used for principal component analysis with the function PCA (parameters: "scale.unit = TRUE",

ncp = 5) from the R package FactoMineR (83). The samples were visualized in PCA space with

PC1 and PC2 values as the coordinates using factoextra and ggplot2 in R.

Heatmaps. Heatmaps were made in R using the package ComplexHeatmap (84). For the

manually gated features and cluster features summary heatmaps, the row/column orders,

respectively, were determined using the R package seriation (85) with the traveling salesperson

problem (TSP) method.

Network Correlation Analysis. Pairwise Spearman correlations were calculated on the

log-adjusted feature abundances from samples at the acute visit for participants (n=17) who were

previously exposed to Dengue and in an early stage of infection (pre-IgM at the time of Index

visit). The p values were adjusted with the Benjamini-Hochberg method. The correlation matrix

was hierarchically clustered using complete linkage based on Euclidean distance to create

correlation modules. For the relationship between modules, the average value was calculated

across all significant correlations (p_adj<0.05) between features within each module. For the

module 5 - module 3 score, each module score is the sum of the z-score scaled log-adjusted

cellular features within the module. The 95% confidence intervals for the correlation in the

infected samples for each pairwise feature comparison was calculated using bootstrapping with

1000 iterations. For each significant correlation (p adjusted<0.05), the correlation was

categorized as “shared” with the uninfected cohort if the correlation value in the uninfected

cohort fell within the 95% confidence interval from the infected samples or had the same sign as

the infected correlation and a magnitude greater than the 95% confidence interval magnitude
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maximum. Otherwise, the correlation was categorized as “unique.” Fisher’s exact test was used

to determine odds ratio for correlations being unique to ZIKV as the exposure (versus being

“shared” with the uninfected) and the indicated correlation attribute as the outcome. The circular

network graph was visualized using ggplot2 and the marker network graph was visualized with

igraph (86).

Antibody Associations. The NT80 titers at the 6-month timepoint of the DENV-exposed, ZIKV+

individuals from the larger REDS III cohort were classified into antibody tertiles. The

association between age and sex and the 6-month NT80 titer groupings was assessed on the entire

REDS-III cohort using one-way ANOVA and a Chi-square test of independence, respectively. To

test the association between cellular immune phenotypes and ZIKV neutralizing antibody titers,

we used acute or late-convalescent visit samples from participants who had not yet formed IgM

at the index visit, were DENV-exposed, and who had 6-month NT80 titers available (n=14). Exact

permutation tests were used to test for significant differences in the log-adjusted cellular features

(age- and sex-adjusted) between samples from participants in the high versus low tertiles (n=5 in

high group and n=6 in low group). The association between CMV IgG seropositivity and

6-month NT80 titers was assessed using the Wilcoxon Rank Sum test based on a larger subset of

REDS-III study participants for whom CMV serostatus were available (n=10 CMV+, n=23

CMV-).

Antibody Associations Predictive Modeling. We used pROC (87) to plot ROC curves with

log-adjusted feature abundance at the acute or late convalescent visit as the predictor and

6-month NT80 antibody titer category (e.g., “High” or “Low”) as the response for each

participant. The 95% CI for the AUC values were computed with the default “DeLong” method.
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Introduction

Immune checkpoint receptor inhibitors (ICIs), including those targeting cytotoxic T lymphocyte

antigen 4 (CTLA-4), programmed cell death 1 (PD-1), or PD-1 ligand 1 (PD-L1), have been

approved based on improved overall survival in multiple malignancies, particularly those with

high mutational burden due to microsatellite instability (MSI)/mismatch repair deficiency

(MMRD) (1–5). However, in most solid tumors, ICIs as monotherapies are efficacious in only

~20% of patients (6). In the tumor microenvironment, several biomarkers including the

expression of checkpoint receptors, amount of T cell infiltration, and mutational landscape (7–9)

are predictive of response to ICIs. Recently, many features of the circulating immune landscape

have also been shown to be biomarkers predictive of response to immunotherapy (10) and even

to reveal mechanisms of immune response to the tumor through recapitulating features of tumor

infiltrating immune cells (11) and secondary lymphoid organs (12). Defining the molecular

features of circulating immune cells that are predictive of response to immunotherapy has

enormous potential for clinical biomarker profiling due to the easily accessible repeated

sampling to study the changes in response to treatment (13).

In men, prostate cancer is the most common cancer and the second most common cause

of cancer deaths in the United States with significant disparities in clinical outcomes between

ethnicities (14). While the survival rate for patients with localized disease is nearly 100%, the

survival rate for those with distant metastatic prostate cancer is only 30%. Currently, no ICIs are

approved for prostate cancer patients except for tumors with high mutational burden due to

MSI/MMRD. Two large trials of ipilimumab, an anti-CTLA-4 checkpoint receptor inhibitor, in

metastatic castration-resistant prostate cancer (mCRPC) failed to reach the primary endpoint of

an increase in overall survival (15,16). The low level of immune cell infiltration into prostate
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tumors (17) and the immunosuppressive features of the prostate tumor microenvironment (18)

contributed to the failure of ICIs as monotherapies in prostate cancer (19). However, the

improved progression-free survival and prostate-specific antigen (PSA) response in the treatment

arm in the ipilimumab monotherapy trials suggest that ICIs may have unrealized potential as

treatments for advanced prostate cancer.

Currently, sipuleucel-T, an antigen presenting cell vaccine, is the only immunotherapy

approved for the treatment of mCRPC (20). Standard sipuleucel-T treatment consists of three

cycles spaced two weeks apart. In each cycle, the patient undergoes leukapheresis and the

resulting cell product is co-cultured with a fusion protein made of prostatic acid phosphatase

(PAP), a prostate cancer antigen, and granulocyte macrophage colony-stimulating factor

(GM-CSF) for three days before re-infusion into the patient. Paradoxically, while sipuleucel-T

showed an improvement in overall survival that led to its approval, it failed to improve time to

disease progression. Although sipuleucel-T can invoke tumor shrinkage in some patients, it may

even elicit a tolerogenic T cell response and increase tumor burden in others (21). This presents

an opportunity for examining the immune signatures and cell-cell interactions that predict either

type of response in prostate cancer with potential broader significance in other cancers.

The recent success of using two ICIs together in prostate cancer in early clinical trials

(22) highlights the utility of combination immunotherapy. Combination immunotherapy that

targets the myeloid and lymphoid compartment is a rational and compelling strategy. The ex vivo

activation of antigen presenting cells (APCs), which are primarily CD14+, that occurs with

sipuleucel-T leads to the in vivo activation of B and T cell response that predicts increased

overall survival (23).
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Immunosuppressive myeloid cells play an important role in the pathogenesis of prostate

cancer both as suppressive tumor associated macrophages (24) and peripherally as circulating

myeloid derived suppressor cells (MDSCs). MDSCs are a heterogeneous group of cells that are

classified as monocytic or granulocytic origin and are characterized by their ability to inhibit T

cell proliferation and cytokine release (25). Circulating MDSC levels increase with increased

prostate cancer stage and grade (26–28).

Interferon (IFN) signaling has a complex role within the MDSC compartment. Acute IFN

signaling can elicit potent anti-tumor activity in part through suppression of MDSCs, but chronic

IFN signaling in tumor cells and many immune cell types, including MDSCs, has been shown to

be pro-tumor (29–32). Chronic IFN signaling genes are a subset of interferon signaling genes

(ISGs) which maintain high expression for several days after an acute high dose of type I IFN in

response to viral infection (33). Chronic IFN signaling genes are also upregulated during chronic

low level type I IFN signaling both in both a normal setting, i.e., tonic IFN signaling (34), or a

malignant setting, i.e., pro-tumor interferon-related DNA damage response (IRDS) genes

(35,36). The exact set of ISGs which are turned on during chronic IFN signaling vary both with

cell type and the underlying cellular environment. While chronic IFN signaling in tumor cells

has been shown to contribute to immunotherapy resistance (32) the effect of chronic IFN

signaling in myeloid cells, in particular the heterogeneous MDSC subset, on resistance to

immunotherapy has not been well characterized.

Genetic multiplexing (37) can increase the throughput and decrease the batch effects of

single cell experiments. Cellular indexing of transcriptomes and epitopes by sequencing

(CITE-seq) (38) is used to simultaneously obtain gene and protein expression from the same cell.

By using the novel combination of these methods (multiplexed CITE-seq), we simultaneously
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profiled protein and transcriptome expression from the same cell in ~400,000 peripheral blood

mononuclear cells (PBMCs) from longitudinal peripheral blood samples from the prostate cancer

immunotherapy (PCI) cohort, which contains participants with mCRPC receiving

immunotherapy treatment with sipuleucel-T and ipilimumab.

We used this single cell profiling dataset for unbiased discovery of immunosuppressive

transcriptional signatures within the myeloid compartment. We determined that the composition

across these myeloid states associates with clinical response as measured by percent change in

prostate-specific antigen (PSA), a serum marker used as a proxy for prostate tumor response to

therapy. In particular, we identified a co-expressed chronic IFN and complement signature within

the CD14+ myeloid compartment as a stable immune set point that predicts PSA response.

Within the non-naïve CD8+ T cells, we found a Tpex-like CD8+ T cell cluster that was enriched

in responders to immunotherapy. Our results present a CD14+ myeloid signature as a potential

biomarker to identify participants with resistance to immunotherapy and suggest that Tpex-like

cells are important mediators of response to ipilimumab in mCRPC.

Results

Inflammatory-Related Pathways are Upregulated in the Myeloid Compartment in

Pre-Treatment mCRPC Samples Compared to Healthy Controls

We profiled PBMCs from 31 male clinical trial participants (21 white, 3 Hispanic, 3 black, and 5

unknown ethnicity; mean age is 65.8 years) with a median of 4 time points per participant. These

PBMCs were collected during a clinical trial investigating the efficacy of serially combining

sipuleucel-T with ipilimumab either immediately (13 participants) or with a three week cycle

delay (18 participants). Each cohort received 4 doses of ipilimumab (10 mg/kg) spaced three

weeks apart (Fig. 4.1A (left)).
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The samples were processed using a genetic pooling strategy to enable multiplexed

CITE-seq, simultaneous single-cell profiling of 99 cell-surface protein markers and

transcriptomes (Fig. 4.1A (right)). We used a combination of the protein expression for canonical

immune cell markers (e.g., CD3, CD19, CD14, and CD16) and differentially expressed genes

between clusters resulted in identifying 14 cell types from 20 leiden clusters (Fig. 4.1B).

When we compared the healthy controls and pre-treatment mCRPC samples, we

identified a monocyte/cDC cluster, composed of several canonical myeloid cell types (CD14+

classical monocytes, cDCs, etc.), that was almost entirely composed of healthy control samples

compared to a CD14+ MHC Class IIlo cluster that was enriched in the mCRPC samples (Fig.

4.1C). The differentially expressed genes (e.g., SLC7A11, NFE2L2, NQO1, ANXA5) in the

CD14+MHC Class IIlo cluster compared to the monocyte/cDC cluster reflect several genes

previously shown to be upregulated in MDSCs (39–41). We used gene set enrichment analysis

(GSEA) to find inflammation related pathways, namely response to interleukin-1 (IL-1) and in

vitro generation of macrophages from monocytes in culture, that were enriched in the genes

upregulated in the CD14+MHC Class IIlo cluster (Fig. 4.1D). The Monocyte/cDC cluster had

higher expression many cDC associated (CLEC10A, FCER1A, CD1D, and CD74) and monocyte

associated (FCGR3A, LYZ, CD4) genes.

CD14+ Myeloid Cells from mCRPC have Lower MHC Class II Expression and Occupy

Distinct Cell States Compared Compared to Healthy Controls

In order to improve the separation of the myeloid subsets, we subsetted and re-clustered the

myeloid cells (Fig. 4.1E). We used marker genes to identify the canonical myeloid cell types

(Fig. 4.1I). Importantly, canonical myeloid subtypes (e.g., cDC, pDC, and CD16+ monocyte)

from mCRPC and healthy controls were clustered together. This allowed us to refine the myeloid
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cell states that were enriched in the mCRPC versus healthy control samples. The majority of

clusters with significant differential abundance from an exact permutation test were CD14+

clusters that were enriched in the pre-treatment mCRPC samples (cluster 0, 2, 3, 9, and 13) or

healthy control samples (cluster 4 and 5) (Fig. 4.1F-G). The cells in the CD14+ clusters from

mCRPC samples had significantly (p = 3.4E-21) lower expression of MHC Class II versus those

from healthy controls (Fig. 4.1H).

mCRPC Samples Cellular Distribution across Myeloid Clusters Associated with Response to

Immunotherapy

We next explored if the myeloid states we identified in our refined myeloid clustering also

captured heterogeneity within our longitudinal mCRPC samples. Thus we quantified the counts

of each mCRPC and healthy control sample across each of the myeloid clusters. This categorical

data was visualized with correspondence analysis, a dimensionality reduction technique similar

to principal component analysis (PCA) but which appropriately accounts for the compositional

nature of the underlying data (42). The sample level visualization captured the separation of the

healthy control samples (triangles) and pre-treatment (crosses) and post-treatment (dots) mCRPC

samples we had already shown and also heterogeneity within the mCRPC samples (Fig. 4.2A

(top)). We used k-means clustering to cluster the samples based on their coordinates in this

reduced space and found three groupings (Group A, C, and D) of mCRPC samples.

We used the maximal percent change observed from longitudinal serum PSA values to

classify the mCRPC samples into participants with any or no response in accordance with the

most recent Prostate Cancer Clinical Trials Working Group (PCWG3) guidelines (43).

Participants with a negative percent change in PSA at any point were classified as “Any

response” versus participants who only had positive percent change in PSA who were classified
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as “No response”. We found a significant association (Pearson's chi-squared test, Χ2 (2, N = 77)

= 30.0, p = 0.000028.) between mCRPC group label and PSA response category with samples

from Group D more likely than those from Group C to be from participants with “Any response”

(Fig. 4.2B). The samples within group D also had a lower sample level percent change in PSA

compared to those in Group C (Fig. 4.2C).

The visualization of the myeloid cluster coordinates within the correspondence analysis

space suggested that the Group C samples had increased abundance in cluster 3 while Group D

samples had increased abundance in clusters 0, 2, 9, and 13 (designated the “group D clusters”)

(Fig. 4.2A (bottom)).This qualitative observation was confirmed by a quantitative analysis of the

cluster abundances which showed the Group C samples had higher abundance for cluster 3 and

lower abundance for the summed group D cluster abundances and vice versa for the group D

samples (Fig. 4.2D).

mCRPC Participants with Resistance to Immunotherapy Upregulate Chronic Interferon

Signature in CD14+ Myeloid Compartment

We used differential expression analysis to identify the significantly differentially expressed

genes between cells from group C samples within the group C cluster (cluster 3) and cells from

Group D samples from the group D clusters. The cells from the Group C cluster upregulated

many ISGs. (Fig. 4.2E). Many of these ISGs overlapped with those in chronic IFN signatures

described in viral (U-ISGF3 signature (44)), normal (Tonic IFN (34)), and malignant

(IRDS/interferon-driven inhibitory ligands (IDILs) (32,35)) settings. Additionally, the single-cell

score for the gene set significantly upregulated (log fold change > 1.5 and adjusted p value <

0.05) genes in the group C cluster (i.e., Cluster 3 sig.) were more highly correlated with the

chronic IFN signatures compared to an acute IFN gene set (ISGF3 signature (44)) that contains
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ISGs that are upregulated by acute IFN signaling and not by chronic interferon signaling (Fig.

4.2F). Thus, the ISGs upregulated in cluster 3 (Group C cluster) seem to represent genes

upregulated by chronic rather than acute IFN signaling.

The cluster 3 abundance significantly positively correlates with higher percent change in

PSA, representing increased tumor burden, across the mCRPC samples (Fig. 4.2G). We wanted

to investigate if the chronic IFN signature in cluster 3 was driving this association. Thus, we

gated out the cells in cluster 3 which did not express the chronic IFN signature captured by the

U-ISGF3 gene set (which had the highest correlation with the cluster 3 signature). Surprisingly,

the cluster 3 abundance of cells which did not overexpress the chronic IFN signature was also

significantly positively correlated with higher percent change in PSA (Fig. 4.2H). Thus, we

hypothesized that other signatures in cluster 3 were contributing to the association with

resistance to immunotherapy.

Tensor Decomposition Reveals Chronic Interferon Signature and Complement Signature

within the CD14+ Myeloid Cell Type

We used single-cell interpretable tensor decomposition (scITD) (45) as an orthogonal unbiased

method to discover gene signatures within the mCRPC samples. We used pseudobulked counts

across the myeloid cell types (Fig. 4.1E), B, T, and NK cell types from samples from each

mCRPC participant as the input tensor (Fig. 4.3A). We used only one sample from each

participant in order to power the discovery of gene programs that captured inter-individual rather

than intra-individual variance. The tensor decomposition uncovered four multi-cellular gene

programs (i.e., factors) with contributions from genes across each input cell type whose

expression (i.e., factor sample scores) captured variance across the input samples. We projected
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those factors onto the tensor from all the mCRPC samples to get scores for each factor across all

the samples.

We show the scores from Factor 2 and the genes with significant loadings in Factor 2 as

an illustrative example. Samples with higher expression of the genes with positive Factor 2

loadings have a positive Factor 2 score while samples with lower expression of the genes with

positive loadings (and higher expression of the genes with negative loadings, if applicable) have

a negative Factor 2 score (Fig. 4.3B (left)). Many of the annotated genes with significant positive

loadings across cell types are ISGs which overlap with the chronic IFN genes we previously

identified as upregulated in cluster 3 (Fig. 4.3B (right)). The Factor 2 sample scores are also

significantly positively correlated with the cluster 3 signature (Fig. 4.3C (left)). Thus Factor 2

seems to capture a chronic IFN signature across cell types that is correlated with the chronic IFN

signature within the CD14+ myeloid compartment that is enriched in cluster 3.

The Factor 3 scores were also significantly positively correlated with the cluster 3

signature while the other two factors were not (Fig. 4.3C (right)). Factor 3 had the highest

number of significant positive gene loadings in the CD14+ cell type. Many of the significant

positive loading genes for Factor 3 in the CD14+ cells are part of the complement system (CA2,

FDX1, LGALS3, FCN1, PRCP, C3AR1).

Co-expression of Chronic Interferon Signature and Complement Signature within CD14+

Myeloid Cells Predicts Resistance to Immunotherapy

We wanted to investigate whether the CD14+ cell gene signatures captured by Factor 2 (chronic

IFN signature) and Factor 3 (complement signature) could independently predict immunotherapy

response. Thus, we scored the expression of each factor signature, including genes with

significant positive loadings for the CD14+ cell type for each factor, across the CD14+ cells and
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gated cells as expressing Factor 2 only (Factor 2 sig. > 0 and Factor 3 sig. < 0) or Factor 3 only

(Factor 2 sig. < 0 and Factor 3 sig. > 0). We used six-fold cross validation to train a support

vector model with a linear kernel as a classifier with the abundance of CD14+ cells expressing

either Factor 2 or Factor 3 as the input variable and immunotherapy response category as the

binary output variable. We used the Receiver Operating Characteristic (ROC) metric to evaluate

the model performance and found that neither factor was predictive of immunotherapy response

status compared to a random classifier (Factor 2 Area under the curve (AUC) = 0.53 and Factor 3

AUC = 0.41) (Fig. 4.3D).

Within cluster 3, in addition to cells that expressed only the Factor 2 or Factor 3

signature, there was a fraction of cells (31%) which co-expressed both signatures (Fig. 4.3E). We

also found an enrichment in the percent of CD14+ cells co-expressing Factor 2 and Factor 3

signatures in samples from participants with resistance to immunotherapy (Fig. 4.3F). Thus, we

hypothesized that the co-expression of Factor 2 and Factor 3 could be a predictor for

immunotherapy response. The abundance of CD14+ cells co-expressing Factor 2 and Factor 3

signatures reliably predicted immunotherapy resistance (AUC = 0.79)  (Fig. 4.3G). The ability to

predict immunotherapy response from pre-treatment and on-treatment samples suggests this

CD14+ state which co-expresses the Factor 2 and Factor 3 signatures is a stable immune set

point present at baseline in mCRPC participants who are resistant to therapy which persists

during immunotherapy treatment.

Tpex-like Cells Enriched in mCRPC Immunotherapy Responders

While the tensor decomposition captured two factors whose co-expression in CD14+ cells was

increased in immunotherapy resistant mCRPC, it did not identify signatures that were enriched in

the responders. The gene signature in the Group D clusters enriched in responders (Fig. 4.2E)
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contained inflammatory chemokines (CXCL3) and cytokines (IL1B and IL1A) which have been

previously shown to be pro-tumor (46,47). Thus, we hypothesized that since the CD14+ cells in

the responders did not have an immunostimulatory signature, they represented a permissive

myeloid compartment where the lack of presumably immunosuppressive chronic

IFN/complement CD14+ signature could allow for anti-tumor activity by other cell types. Thus,

we focused on other immune compartments that could have immunostimulatory/anti-tumor

signatures.

Cytotoxic CD8+ T cells are crucial targets of the response to checkpoint receptor

inhibitors, including ipilimumab. Thus, we focused on the non-naïve CD8+ T cells by subsetting

and clustering them (Fig. 4.4A). Of the 13 clusters, only cluster 6 was significantly enriched

(adjusted p value = 0.03, linear mixed effect model) in participants with any response compared

to participants with no response to immunotherapy (Fig. 4.4B). Interestingly, cluster 6 had the

highest expression of TCF7 across all the non-naïve CD8+ T cell clusters (Fig. 4.4C). Recently,

TCF1+ (encoded by the TCF7 gene) CD8+ T cells which also express some exhaustion markers

(e.g., PD1) have emerged as “stem-like” or progenitor exhausted cells (termed Tpex) which are

enriched in the tumor draining lymph node and can travel to the tumor to mediate the response to

immunotherapy (48,49). To explore if cluster 6 represented a Tpex-like cell state, we scored gene

signatures from a meta-analysis of tumor-infiltrating T cells (50) for terminally exhausted CD8+

T cells (Terminal Tex) and TCF7+ T cells also expressing exhaustion markers (TCF7+ Tex) (Fig.

4.4D-E). The majority of cells (70%) in cluster 6 only expressed the TCF7+ Tex signature and

did not express the Terminal Tex signature (TCF7+ Tex > 0 and Terminal Tex < 0) (Fig. 4.4F).

Overall, our data suggests that resistance to immunotherapy in mCRPC is mediated by an

immunosuppressive CD14+ myeloid cell state marked by the co-expression of a chronic
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interferon signature and complement signature. In contrast, in responders, an inflammatory

CD14+ myeloid state represents a permissive myeloid signature which allows for anti-tumor

Tpex-like CD8+ T cells to mediate a response to immunotherapy (Fig. 4.4G).

Discussion

Here we present single-cell profiling of PBMCs from an mCRPC cohort receiving a combined

immunotherapy regime of sipuleucel-T and ipilimumab. We found an inflammatory CD14+

myeloid signature that was enriched in the pre-treatment mCRPC samples compared to the

healthy controls. Human MDSCs are generally classified into three subtypes: early-stage MDSC

(Lin-HLA-DR-CD33+), polymorphonuclear-MDSC (CD14-CD11b+CD15+), and

monocytic-MDSC (M-MDSC) (CD11b+CD14+HLA-DRlow/-CD15-) (25). The CD14+ myeloid

cells from the mCRPC samples had low expression of MHC Class II suggesting they overlap

with the M-MDSC cell type. Thus, our dataset adds to the small set of studies providing

single-cell profiling of MDSC/MDSC-like cells (51,52).

We performed a myeloid focused sub clustering to define subtypes within the

heterogeneous CD14+ myeloid compartment. We found a co-expressed chronic interferon and

complement signature in the CD14+ myeloid cells which predicted resistance to immunotherapy.

Previously, Keenan et al. described a circulating CD14+ myeloid population with an

inflammatory signature which was associated with resistance to anti-PD-1 therapy in biliary

cancer (53). The CD14+ myeloid compartment in our mCRPC cells had a similar expression of

inflammatory markers but only a subset expressed the predictive chronic interferon and

complement signature. Thus our results may present a refinement of this previously described

peripheral immunosuppressive CD14+ myeloid population. The complement signature is an

intriguing therapeutic target since C3AR1 is associated with macrophage infiltration in prostate
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adenocarcinoma (54) and has been proposed as a potential immune checkpoint receptor target

(55). Recently, Boukhaled et al. showed that epigenetically programmed high interferon response

capacity in CD4 effector T cells predicted resistance to anti-PD1 therapy (56). The chronic

interferon signature we profiled in the CD14+ myeloid compartment was part of a multicellular

pattern that was expressed across all the cell types (including T cells) in our tensor

decomposition analysis. Future studies should focus on the contributions of chronic interferon

signaling in different cell types to immunotherapy resistance.

In the responders, we found an increased level of Tpex-like CD8+ T cells compared to

participants with no PSA response. Tpex cells in the periphery have emerged as important drivers

of response to ICIs. Interestingly, in the context of murine chronic viral infection, TCF1 has been

shown to promote T cell stemness through opposing type I IFN signaling (57). Thus chronic

interferon signaling could be a pre-established immune set-point driven by past infections, tumor

factors, or commensal microbes (58) which favors the development of T cell exhaustion over the

maintenance of T cell stemness.

Our study adds to a growing collection of blood biomarker signatures that predict or

associate with response to immunotherapy (10,12,59–62). The predictive chronic

interferon/complement signature we described could be used as a biomarker to select mCRPC

cohorts who do not have a pre-programmed resistance to immunotherapy. Cohort selection will

be a powerful tool for realizing the potential of current ICIs within prostate cancer and other

solid tumors (63). However even within the mCRPC participants with any response to

immunotherapy, there were only a small number of complete responders (N=3 with a percent

change in PSA less than -50%). Thus, for most responders, the decline in PSA represented a

short-lived response to immunotherapy. Our findings suggest that distinct new targeted
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therapeutic approaches may be needed for individuals who are predicted to have resistance

versus those who are partial responders to current immunotherapy therapies to ultimately

improve response to immunotherapy in prostate cancer and other solid tumors.
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Figures
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Figure 4.1 Inflammatory myeloid signature is a hallmark of metastatic prostate cancer in
the peripheral immune compartment
(A) Combined immunotherapy regime with sipuleucel-T and ipilimumab and blood sampling
timeline for participants with metastatic castration-resistant prostate cancer (mCRPC) in the PCI
cohort (left). Pooling strategy for analysis of mCRPC and healthy control (HC) samples with
multiplexed CITE-seq (right). (B) UMAP of all cells colored and labeled with cell type. (C) Box
plot of abundance of each indicated cell type in the 10 pre-treatment mCRPC samples versus the
9 HC samples. (D) Heatmap showing standard scale normalized expression for the indicated
genes (row labels) for pre-treatment mCRPC and HC samples. Row annotations identify
enriched pathways that the genes are included in. (E) UMAP of myeloid cells colored by leiden
cluster and labeled with annotated cell type. (F) Box plot of abundance of each indicated myeloid
leiden cluster in the 10 pre-treatment mCRPC samples (blue) versus the 9 HC samples (gray).
Significance indicated by asterisk for p value (exact permutation test) < 0.05 (*), < 0.1 (**), <
0.001 (***). (G) UMAP of myeloid cells colored by disease status (mCRPC – Disease [red] or
Healthy Control – Healthy [gray]). (H) Violin plot of single cell scores for MHC Class II gene
set for mCRPC (Disease) or Healthy Control (HC) cells from CD14+ myeloid clusters from
(E/G). Effect size (β) and p value are from a linear mixed-effects model. (I) Dot plot showing
expression of labeled genes for each cluster from (E) is shown by percentage of cells with
expression greater than zero (dot size) and mean expression for cells with nonzero expression
(color).
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Figure 4.2 Chronic interferon signature in CD14+ myeloid compartment captures mCRPC
sample heterogeneity
(A) Correspondence analysis plot based on compositional data for each sample across the
myeloid clusters in Fig. 1E showing coordinates for each sample (top) and for each cluster
(bottom). Dots for each sample are colored according to group (Group A - D) assigned by
k-means clustering on plot coordinates, and the dot shape indicates sample identity as
pre-treatment (+) and during treatment (●) mCRPC samples or HC (▲). (B) Barplot of the
number of samples from participants with no response (orange) or any response (green) within
each myeloid group from A. The p value is from Pearson's chi-squared test. (C) Boxplot of
percent change in PSA for samples in each group from (A). Dots for each sample are colored
according to the response for the participant of origin [no response (orange) or any response
(green)]. (D) Scatter plot showing cluster 3 abundance (Group C enriched cluster) versus the sum
of abundances in cluster 0, 2, 9, and 13 (Group D enriched clusters) for samples in Group C (dots
colored purple) and Group D (dots colored blue). UMAPs highlighting each set of clusters are
shown along each axis. (E) Volcano plot of differentially expressed genes from pseudobulked
counts for cluster 3 from group C samples versus counts for group D clusters (cluster 0, 2, 9, and
13) from group D samples. Dots are colored as significantly overexpressed (adjusted p value <
0.05 and log2 fold change > 1) in Group C cluster (purple), Group D clusters (blue), or not
significantly different between the groups (gray). Labeled genes which are significantly
overexpressed in Group C are colored according to the interferon gene sets they belong to as
indicated in the legend. (F) Hierarchical clustering of Pearson’s correlation values between
single-cell scores in all myeloid cells for the three gene sets used to define chronic interferon
(IFN) signaling, the acute IFN only gene set, and the cluster 3/group C signature from E. Scatter
plot of percent change in PSA versus cluster 3 abundance (G) and cluster 3 abundance for cells
not expressing the U-ISGF3 chronic interferon signature (H) for each mCRPC sample. Dashed
line is the best fit line and Pearson's correlation coefficient r and p value are given in overlaid
text.
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Figure 4.3 CD14+ myeloid cells co-expressing chronic interferon signature and complement
signature are predictive of immunotherapy response resistance
(A) Schematic of tensor decomposition for the pseudobulked counts across 13 cell types across
all cells. (B) Heatmaps showing Factor 2 sample scores (left) and Factor 2 gene loading values
(right). (C) Scatter plot of cluster 3/group C signature from E versus Factor 2 (left) or Factor 3
(right) samples scores. Dashed line is the best fit line and Pearson's correlation coefficient r and p
value are given in overlaid text. (D) ROC curves for predicting no versus any response
individuals using the percentage of cells in CD14+ clusters expressing only Factor 2 CD14+ cell
type signature (left) or only Factor 3 CD14+ cell type signature (right). Legend shows AUC
values for each six-fold cross validation. (E) Density plot for Factor 2 CD14+ cell type signature
versus Factor 3 CD14+ cell type signature in cells from cluster 3. (F) Boxplot of percentage of
cells in CD14+ clusters expressing Factor 2 CD14+ cell type signature and Factor 3 CD14+ cell
type signature in samples from no (orange) or any (green) response individuals. (G) ROC curves
for predicting no versus any response individuals using the percentage of cells in CD14+ clusters
expressing Factor 2 CD14+ cell type signature and Factor 3 CD14+ cell type signature. Legend
shows AUC values for each six-fold cross validation.
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Figure 4.4 Tpex-like non-naïve CD8+ T cell cluster associated with response to
immunotherapy
(A) UMAP of non-naïve CD8+ T cells colored by leiden cluster. (B) Boxplot of percentage of
non-naïve CD8+ T cells in each cluster in A for responders versus non-responders. Significance
indicated by asterisk for p value (linear mixed effect model) < 0.05 (*). (C) Heatmap showing
standard scale expression of marker genes for clusters in A. UMAP of non-naïve CD8+ T cells
colored by single-cell score of TC7+ Tex (D) and Terminal Tex (E) CD8+ T cell signatures (F)
Density plot for TC7+ Tex and Terminal Tex single-cell scores in cells from cluster 6. (G)
Graphical abstract summarizing distinct cellular immune signatures associated with the
resistance or response to immunotherapy in mCRPC.

151



Materials and Methods

Single-cell RNA and ADT Library Preparation and Sequencing. The 99x antibody pool was

prepared by combining 2 mL of each antibody from the 99x Abseq panel (BD Cat. no. 564220)

and dialyzing into 100 mL of staining buffer using an Amicon Ultra-0.5 device. Antibody pool

was kept at 4 °C during cell thawing.

Frozen PBMCs from participants in each of the 8 multiplexed pools (~16 participants/pool; 13

genetically distinct samples from the PCI cohort and 3 healthy age and gender-matched healthy

controls) were each thawed into 10 mL of CHM media (500 ml RPMI plus 25 mL filtered human

serum, 2.5 mL L-Glutamine, 5 mL Pen-Strep, 5 mL Sodium Pyruvate, and 5 mL Non-essential

Amino Acids) then centrifuged and resuspended in 10 mL of CHM media with DNAseI (15 U /

mL; Roche Cat. no. 04536282001). The cells were incubated in the DNAseI media for 30

minutes at 37 °C before being resuspended in CHM media for cell counting using a Cellometer

Auto T4. Equal number of cells from each sample were combined to create a pool of 1,000,000

cells. The pooled cells were stained at room temperature for 10 minutes with the Human

TruStain FcX blocking reagent (5 mL reagent; BD / 95 mL staining buffer (2% BSA/0.02%

Tween in 1X PBS)) before staining for 45 minutes with the antibody pool at 4 °C. Stained cells

were washed three times with 2 mL of staining buffer for each wash. The resulting cell pool was

resuspended in CHM media and filtered through a Flowmi strainer (Sigma Cat. no.

BAH136800040) to remove cell clumps. The single cell suspension was diluted to yield a 3,906

cell / mL solution of which 20 mL was used to load 78,125 cells/well over 4 wells per pool onto

the 10x Genomics controller for a target capture rate of 30-40% of loaded cells/well for a yield of

~4,000 cells/sample.
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Droplet-based paired single-cell gene expression (GEX) library prep was performed using the

10x Genomics Chromium Single Cell 3' v.3 kit per manufacturer’s instructions from 10x

Genomics with the addition of a 0.5 mL of a 4 mM of an additive primer (5’-

CAGACGTGTGCTCTTCCGATCT) at the cDNA amplification step for the generation of the

antibody derived tag (ADT) cDNA from the BD Abseq panel. The supernatant from the post

cDNA amplification reaction cleanup was used to prep the ADT cDNA libraries per

manufacturer’s instructions from BD as detailed in Neely et al. (64). The resulting GEX and

ADT libraries were sequenced on an Illumina Novaseq 6000 sequencer with paired-end (PE)

reads with a target of ~25,000 PE reads per cell for both the GEX and ADT libraries from each

well.

Bulk RNA Sequencing for Genotyping. RNA extraction from at least 40,000 cells was

performed with the Qiagen Rneasy Mini Kit per manufacturer’s instructions. cDNA was

prepared and amplified using the previously published SMARTSeq2 protocol using the Illumina

Nextera XT DNA Library Preparation Kit. The resulting libraries were sequenced on an Illumina

HiSeq 4000 sequencer with paired-end (PE) reads with a target of 25,000,000 reads per sample.

Genotypes for each participant were extracted from the resulting fastqs as described in (65).

Briefly, quality control for the raw fastq reads was completed with FastQC v.0.11.8 (66) and low

quality reads were trimmed with Trim Galore v.0.4.4_dev as a wrapper for Cutadapt v.1.18 (67).

The filtered reads were aligned using the STAR v.2.4.2a_modified (68) with the default settings

to the GRCh38 transcriptome. GATK v.4.0.6.0 (69) was used to call SNPs to yield genotypes for

each individual.

Alignment of Single-cell Sequencing Data. The GEX and ADT fastq files were aligned using

CellRanger v.3.0.1 with the default settings to the GRCh38 transcriptome or a customized
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reference file from BD for the Abseq antibodies, respectively, resulting in 873,755 cells (based

on the CellRanger cell calling algorithm from the GEX libraries) with counts for 33,538 genes

and 99 proteins.

Demultiplexing. The aligned GEX sequencing reads were demultiplexed with freemuxlet (70),

as previously described (71), to identify cells from each participant based on host genetics and to

exclude doublets from the data. The genotypes estimated from bulk RNA-seq were compared to

those estimated by freemuxlet to match the sample ids with the freemuxlet ids. By repeating this

protocol over 8 pools, 98% of cells from a total of 117 samples were successfully demultiplexed.

Cell and Gene Filtering. The GEX and ADT count matrices from all pools were combined and

filtered (72). Low quality cells (17% of total cells) were filtered out based on having number of

genes detected or total counts of unique molecular identifiers (UMIs) less than 3 median absolute

deviations (MAD) below the median and with percent of total UMIs mapping to mitochondrial

genes greater than 3 MAD above the median for each 10x well. Genetic doublets (24% of high

quality cells) were removed by only keeping cells which were called as singlets for the same

participant from the consensus of freemuxlet and souporcell v.2.0 (73). To detect non-genetic

doublets, we ran the scrublet well on cells from each individual well and used a Gaussian

mixture model to cluster the simulated doublet scores into two distributions. The minimum

doublet score of the distribution with the higher peak doublet score was used as the threshold to

mark “neotypic” doublets based on the doublet score for each cell assigned by scrublet v.0.2.3.

These neotypic doublets (1.1% of high quality cells) were also removed. We filtered out 7,031

genes that were detected in less than 3 cells.

To avoid overly stringent filtering based on low counts of HBB, we filtered out red blood cells

(RBCs) (1.0% of high quality singlets) based on clustering cells in each well into RBC and
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non-RBC distributions based on raw HBB counts using a Gaussian mixture model implemented

with sklearn v.0.24.1 (74). Platelets (raw PF4 count > 0) (2.6% of high quality singlets) were

also filtered out. Finally, cells from healthy control samples that were genetically female (5.2%

of high quality singlets) and cells from samples (N=7) with less than 1000 cells (0.5% of filtered

singlets) were also removed to leave a matrix of 408,783 cells and 26,867 genes.

Processing for ADT Counts. The ADT counts were CLR normalized by cell.

Normalization, Batch Correction, and Visualization. The raw counts were normalized to

10,000 counts and log1p transformed. For downstream analyses, we excluded all RBC related

genes (HBA1, HBA2, HBB, HBG1, HBG2, HBQ1, HBD, HBM, HBZ) and XIST, to avoid

clustering cells based on detection of these genes. We identified 1,850 highly variable genes

which were used with the default settings in scanpy v.1.7.1 for principal component (PC)

analysis. These PC coordinates were used as the input to Harmony v.0.0.5 (75) for batch

correction with each pool as a batch. The top 20 batch corrected PCs were used for nearest

neighbor detection with scanpy.pp.neighbors. The neighborhood graph was used for clustering

with the leiden algorithm (76) and dimensionality reduction with uniform manifold

approximation and projection (UMAP) (77). This resulted in 20 clusters which were collapsed

into 14 cell types. We used the expression of marker genes and proteins for the B cell, myeloid,

and NK cell type annotations. For the T cells, we automatically gated positive and negative cells

using a Gaussian mixture model implemented with sklearn v.0.24.1 to gate CD4+ T cells

(CD3+CD4+CD8-), CD8+ T cells (CD3+CD4-CD8+), DP T cells (CD3+CD4+CD8+), and DN

T cells (CD3+CD4-CD8-).

Sub-clustering of Myeloid Cells. We first subsetted 80,280 myeloid cells. We assigned cell

cycle phase to each cell using the scanpy function sc.tl.score_genes_cell_cycle with the gene list
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from (78). We regressed out percent of counts mapped to mitochondrial genes, percent of counts

mapped to ribosomal genes. We identified 1,551 highly variable genes which were used with the

default settings in scanpy v.1.7.1 for principal component (PC) analysis. These PC coordinates

were used as the input to Harmony v.0.0.5 for batch correction with cell cycle phase, disease

status, and pool as a batch, iteratively. The top 20 batch corrected PCs were used for nearest

neighbor detection with scanpy.pp.neighbors, clustering with the leiden algorithm, and

visualization with UMAP. This resulted in 15 clusters which were collapsed into 6 cell types.

Sub-clustering of Non-naïve CD8+ T Cells. We first subsetted 45,780 non-naïve CD8+ T cells.

Naïve CD8 T cells were removed by gating CD45RA+CCR7+ cells from the CD8+ T cells with

a Gaussian mixture model implemented with sklearn v.0.24.1. We assigned cell cycle phase to

each cell using the scanpy function sc.tl.score_genes_cell_cycle with the gene list from (78). We

identified 1,603 highly variable genes which were used with the default settings in scanpy v.1.7.1

for principal component (PC) analysis. These PC coordinates were used as the input to Harmony

v.0.0.5 for batch correction with cell cycle phase, disease status, and pool as a batch, iteratively.

The top 20 batch corrected PCs were used for nearest neighbor detection with

scanpy.pp.neighbors, clustering with the leiden algorithm, and visualization with UMAP to

identify and graph 13 clusters.

Differential Gene Expression. Pseudobulked samples were normalized with the variance

stabilizing transformation (VST) function from DESeq2 v.1.22.2 (79). Differential gene

expression was done with a negative binomial model with multiple testing correction with

Benjamini-Hochberg implemented via DESeq2.

Gene Set Enrichment Analysis. The differential gene list was filtered to remove genes with NA

for the adjusted p value or log fold change. The filtered gene list was used to create ranked gene
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lists with the sign(log fold change) times the -log10(raw p value) as the ranking metric. The

ranked list was used as input to look for gene set enrichment in pathways from the BP: subset of

GO gene sets of the C5: ontology gene sets and the ImmuneSigDB subset of the C7:

immunologic signature gene sets from the Human Molecular Signatures Database (MSigDB)

(80) in the ‘classic’ mode with the GSEAPreranked tool from GSEA v.4.1.0

(http://www.broad.mit.edu/gsea/) with the default settings.

Differential MHC Class II Expression. MHC Class II expression single cell scores were

assigned using the log-normalized scaled gene counts and the gene list (HLA-DRA, HLA-DRB5,

HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DQA2, HLA-DQB2, HLA-DOB, HLA-DMB,

HLA-DMA, HLA-DOA, HLA-DPA1, HLA-DPB1, CD74) as inputs to the score_genes function

from scanpy. Significant difference in MHC Class II expression for cells from CD14+ clusters

from mCRPC or healthy control (HC) samples was determined with a linear mixed effect model

MHC Class II score  ~ disease category (mCRPC or HC) + leiden cluster with a random

intercept for each sample implemented with statsmodels v.0.13.2 (81).

Correspondence Analysis. We implemented the correspondence analysis (CA) from prince

v.0.7.1 (82). We performed k-means clustering with sklearn v.0.23.1 on the standard scaled CA

coordinates. We determined the number of clusters using the cluster number from 1 to 10 clusters

with the minimum silhouette score and minimum sum of square error.

PSA Analysis. We calculated percent change in PSA from the baseline PSA value closest to

after the completion of sipuleucel-T (Day 0) [range of baseline PSA: -16 days to 19 days; median

days = -3.5. Participants with any negative percent change in PSA were assigned as “Any

response” and participants with only positive percent change in PSA were assigned as “No
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response”. For the association between PSA response status and CA plot myeloid group, we used

a chi-square test from scipy v.1.8.1 (83).

Gene Set Scoring. For single-cell scoring of gene signatures, we used the indicated gene list to

create single-cell scores from the log-normalized scaled gene counts with the score_genes

function from scanpy v.1.9.1.

Tensor Decomposition. We used pool distributed samples (one from each participant) for the

initial tensor decomposition with scITD v.1.0.2. Only samples with at least 10 cells in every cell

type were included in the initial tensor decomposition and for the projection of the factors.

Predictive Modeling. We created a support vector classifier model with sklearn v. 1.1.1. For the

training/test splits, we partitioned all the samples from a particular participant into either the

training or test set to avoid inflated performance due to overfitting in the training set on samples

from a participant and then testing on samples from the same participant in the test set.

Other. We used scipy v.1.8.1 for Pearson correlation coefficient calculation, NumPy v.1.22.4

(84) for the best fit line analysis, pandas v.1.4.3 (85) for data frame manipulation, and matplotlib

v.3.5.2 (86) and seaborn v.0.11.2 (87) for the visualizations. Figure 4.1A and 4.4G were created

with BioRender.com.
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