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Purpose: This work is to investigate the feasibility of improving megavoltage imaging quality for
TomoTherapy using a novel reconstruction technique based on tensor framelet, with either full-view
or partial-view data.
Methods: The reconstruction problem is formulated as a least-square L1-type optimization problem,
with the tensor framelet for the image regularization, which is a generalization of L1, total variation,
and wavelet. The high-order derivatives of the image are simultaneously regularized in L1 norm at
multilevel along the x, y, and z directions. This convex formulation is efficiently solved using the
Split Bregman method. In addition, a GPU-based parallel algorithm was developed to accelerate
image reconstruction. The new method was compared with the filtered backprojection and the total
variation based method in both phantom and patient studies with full or partial projection views.
Results: The tensor framelet based method improved the image quality from the filtered backpro-
jection and the total variation based method. The new method was robust when only 25% of the
projection views were used. It required ∼2 min for the GPU-based solver to reconstruct a 40-slice
1 mm-resolution 350 × 350 3D image with 200 projection views per slice and 528 detection pixels
per view.
Conclusions: The authors have developed a GPU-based tensor framelet reconstruction method with
improved image quality for the megavoltage CT imaging on TomoTherapy with full or undersam-
pled projection views. In particular, the phantom and patient studies suggest that the imaging quality
enhancement via tensor framelet method is prominent for the low-dose imaging on TomoTherapy
with up to a 75% projection view reduction. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4816303]
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1. INTRODUCTION

Intensity modulated radiation therapy (IMRT), capable of de-
livering highly conformal dose to the tumor while sparing
the adjacent normal structures, has become the standard treat-
ment for head-and-neck (H&N) and prostate cancer.1, 2 The
rapid dose falloff delivered by most IMRT plans requires re-
producible patient positioning to provide accurate treatment
delivery.

The TomoTherapy Hi-Art Helical Radiotherapy System
(Accuray, Sunnyvale, CA) is an integrated unit dedicated to
IMRT and uses megavoltage CT (MVCT) for volumetric im-
age guidance.3–5 The MVCT images appear noisier than tra-
ditional cone beam CT (CBCT) images due, in part to the less
efficient detection of megavoltage x rays relative to kilovolt-
age x rays. The MVCT dose is relatively small, but its daily
use raises concerns regarding the total imaging dose.6–8 Im-

proving MVCT image quality for regular or low-dose MVCT
scan would improve the utility of the TomoTherapy imaging
system.9

Inspired by compressive sensing,10, 11 a recent technique
that has been employed for low-dose image reconstruction
is the iterative reconstruction method using the L1-type im-
age regularization, such as total variation (TV).12–18 In our
recent work on 4D CBCT,19 we proposed the tensor framelet
(TF), which is better than the framelet for high-dimensional
large-scale image reconstruction in terms of its significantly
reduced demand on the memory and computational cost.

In this work, using TF, we aim to develop a new recon-
struction method to further improve TomoTherapy MVCT
imaging quality from the popular filtered backprojection
(FBP). We will also compare the TF based reconstruction
method with the state-of-art TV based reconstruction method,
with both full-view and partial-view (low-dose) data. The
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low-dose imaging can be achieved through the reduction of
either dose intensity or the number of projection views. This
study focuses on the latter, and the reconstruction with re-
duced dose intensity will be studied in the future.

2. METHODS

2.A. Least-square formulation

With the traditional FBP, the 3D CT images on TomoTher-
apy could be reconstructed slice by slice along the longitu-
dinal direction based on the fan-beam geometry with curved
detectors. To utilize the prior that the CT image or its derivates
can be smooth and sparse for both the inplane directions and
the longitudinal direction, we formulate the image reconstruc-
tion as the following iterative least-square minimization prob-
lem, in which all slices are reconstructed simultaneously so
that the image smoothness and sparsity along the longitudinal
direction can be enforced,

X = arg min
X

1

2
‖AX − Y‖2

2 + λR(X). (1)

In Eq. (1), the first term is the L2-norm data fidelity term
with the imaging data Y and the 3D image X to be recon-
structed, and the second term is the L1-norm image regu-
larization term with the regularization parameter λ and the
proper sparsifying transform, which will be discussed next.

Here, A is a linear operator on X that corresponds to the
x-ray transform on X slice by slice. Considering the compu-
tational efficiency, we use our recently developed new paral-
lel algorithm with O(1) per parallel thread.20, 21 On the other
hand, similar to the backprojection, we use the GPU-based
pixel-driven algorithm for the transpose of A, i.e., the adjoint
x-ray transform AT. That is, the ray passing the center of the
pixel is traced back to the detector array for the backprojec-
tion value through linear interpolation weighted by the ray
intersection length with the pixel.

2.B. Tensor framelet

A popular sparsifying transform is the TV.22 For a 3D im-
age X = {xijk, i ≤ Nx, j ≤ Ny, k ≤ Nz}, the TV transform is

DX|ijk =

⎡
⎢⎣

DxX

DyX

DzX

⎤
⎥⎦

∣∣∣∣∣∣∣
ijk

=

⎡
⎢⎣

Xi+1,j,k − Xijk

Xi,j+1,k − Xijk

Xi,j,k+1 − Xijk

⎤
⎥⎦ (2)

and the isotropic TV norm is defined as

R(X) = ‖DX‖1 =
∑
i,j,k

√
|DxX|2 + |DyX|2 + |DzX|2. (3)

On the other hand, the combination of the L1 norm and TV
was suggested,23 i.e.,

R(X) = ‖X‖1 + λ1‖DX‖1. (4)

In this work, we use the TF,19, 24 denoted by W, to promote
the image smoothness and sparsity, which is a natural multi-
scale generalization of Eq. (4) with WTW = I. In particular,
we use the TF based 1D piecewise-linear B-spline framelet25

(Fig. 1).
For simplicity, let us first consider a one-level TF. That is,

we define the averaging operator

D0X|ijk =

⎡
⎢⎣

D0xX

D0yX

D0zX

⎤
⎥⎦

∣∣∣∣∣∣∣
ijk

= 1

4

⎡
⎢⎣

Xi+1,j,k + 2Xijk + Xi−1,j,k

Xi,j+1,k + 2Xijk + Xi,j−1,k

Xi,j,k+1 + 2Xijk + Xi,j,k−1

⎤
⎥⎦ , (5)

FIG. 1. TF transform. In this example, based on 1D piecewise-linear B-spline framelet, the TF transform of the 3D image consists of the averaged image
(D0), the first-order derivative image (D1), the second-order derivative image (D2) at the fine level (L1) and the coarse level (L0) along x-, y-, and z-direction,
respectively.
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the first-order derivative operator

D1X|ijk =

⎡
⎢⎣

D1xX

D1yX

D1zX

⎤
⎥⎦

∣∣∣∣∣∣∣
ijk

=
√

2

4

⎡
⎢⎣

Xi+1,j,k − Xi−1,j,k

Xi,j+1,k − Xi,j−1,k

Xi,j,k+1 − Xi,j,k−1

⎤
⎥⎦ ,

(6)

and the second-order derivative operator

D2X|ijk =

⎡
⎢⎣

D2xX

D2yX

D2zX

⎤
⎥⎦

∣∣∣∣∣∣∣
ijk

= 1

4

⎡
⎢⎣

−Xi+1,j,k + 2Xijk − Xi−1,j,k

−Xi,j+1,k + 2Xijk − Xi,j−1,k

−Xi,j,k+1 + 2Xijk − Xi,j,k−1

⎤
⎥⎦ . (7)

Then the TF transform is

WX = 1√
3

⎡
⎢⎣

D0X

D1X

D2X

⎤
⎥⎦ , (8)

and similar to isotropic TV norm (3), the TF norm is defined
as

‖WX‖1 = 1√
3

(λ0‖D0X‖1 + λ1‖D1X‖1 + λ2‖D2X‖1)

(9)

with

‖DmX‖1 =
∑
i,j,k

√
|DmxX|2 + |DmyX|2 + |DmzX|2,

m = 0, 1, 2. (10)

On the other hand, as a consequence of Eq. (8), the adjoint TF
transform WT is

WT (WX) = 1

3
[DT

0 (D0X) + DT
1 (D1X) + DT

2 (D2X)], (11)

where

DT
m(DmX) = DT

mx(DmxX) + DT
my(DmyX) + DT

mz(DmzX),

m = 0, 1, 2 (12)

with DT that can be used in the similar fashion with the trans-
pose of TV, i.e., in terms of the pointwise operations instead
of forming the matrix DT explicitly. Therefore, TF generalizes
L1 and TV with high-order derivatives.

On the other hand, notice that Eq. (8) can be rewritten as

WX = 1√
3

⎡
⎢⎣

wxX

wyX

wzX

⎤
⎥⎦ , (13)

and Eq. (11) can be rewritten as

WT (WX) = 1

3
[wT

x (wxX) + wT
y (wyX) + wT

z (wzX)], (14)

with 1D piecewise-linear B-spline framelet wx, wy, wz and
their adjoints. For example,

wxX|ijk =

⎡
⎢⎣

d0xX

d1xX

d2xX

⎤
⎥⎦

∣∣∣∣∣∣∣
ijk

= 1

4

⎡
⎢⎢⎣

Xi+1,j,k + 2Xijk + Xi−1,j,k√
2(Xi+1,j,k − Xi−1,j,k)

−Xi+1,j,k + 2Xijk − Xi−1,j,k

⎤
⎥⎥⎦ . (15)

Thus, since wTw = I, WTW = I.
Next, we formulate TF at multilevel based on the 1D

framelet operator w. Considering the 1D framelet transform
up to L levels (larger number for coarser resolution), we start
from the 1D refinement masks for w at level 0 ≤ l ≤ L

hl =

⎡
⎢⎣

hl
0

hl
1

hl
2

⎤
⎥⎦ = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0︸ ︷︷ ︸
2l−1

2 0 · · · 0︸ ︷︷ ︸
2l−1

1

√
2 0 · · · 0︸ ︷︷ ︸

2l−1

0 0 · · · 0︸ ︷︷ ︸
2l−1

−√
2

−1 0 · · · 0︸ ︷︷ ︸
2l−1

2 0 · · · 0︸ ︷︷ ︸
2l−1

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Then 1D framelet transform w of x is

wx =

⎡
⎢⎣d0

1x0 d0
2x0︸ ︷︷ ︸

Level:0

· · · dl
1x

l dl
2x

l︸ ︷︷ ︸
Level:l

· · · xL+1 dL
1 xL dL

2 xL︸ ︷︷ ︸
Level:L

⎤
⎥⎦,

(17)

and its transpose wT is

wT (wx) =
2∑

m=1

L∑
l=0

dl
mxl + xL+1, (18)

where

dl
mxl = hl

m ∗ xl and xl+1 = dl
0x

l (19)

with * for convolution, x0 = x, 0 ≤ m ≤ 2, and 0 ≤ l ≤ L.
Based on Eqs. (17) and (18), the TF with multilevel is

WX = 1√
3

⎡
⎢⎣

wxXx

wyXy

wzXz

⎤
⎥⎦ , (20)

and the adjoint TF with multilevel is

WT (WX) = 1

3

[ ∑
j,k

wT
x

(
wxX

jk
x

) +
∑
i,k

wT
y

(
wyX

ik
y

)

+
∑
i,j

wT
z

(
wzX

ij
z

)]
, (21)

where Xx, Xy, Xz are the unfolded matrices of X along x, y, z di-
mension, respectively, and the 1D framelet operator w and wT

are with respect to the 1D unfolded dimension x, y, z, respec-
tively. For example, wxXx performs 1D framelet transform
along each x-line for all combination of y- and z-variables.
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Finally, the isotropic TF norm at multilevel is defined as

‖WX‖1 = 1√
3

(
2∑

m=1

L∑
l=0

λl
m‖Dl

mXl‖1 + λL+1
0 ‖XL+1‖1

)
,

(22)

with

‖Dl
mXl‖1 =

∑
i,j,k

√
|Dl

mxX
l
x |2 + |Dl

myX
l
y |2 + |Dl

mzX
l
z|2,

m = 1, 2 (23)

and

‖XL+1‖1 =
∑
i,j,k

√
|XL+1

x |2 + |XL+1
y |2 + |XL+1

z |2. (24)

Notice that the wavelet bases are orthonormal, while the
TF bases are redundant. For example, the Haar wavelet in-
cludes the low-passed average and the first-order derivatives,
while the piecewise-linear TF here also contains the second-
order derivatives. In this sense, TF generalizes TV and the
wavelet with high-order derivatives for characterizing the
smoothness and the sparsity.

On the other hand, TF is more suitable than the standard
framelet for the high-dimensional problem in terms of com-
putational efficiency. Take piecewise-linear B-spline framelet,
for example. In terms of the memory, the standard framelet
requires ∼3dN memory, while TF requires ∼3dN memory,
where d is the number of dimension and N = Nx · Ny · Nz. In
terms of the computation cost, the standard framelet needs
∼32dN operations, while TF needs ∼3d2N operations. In
general, based on n refinement masks in 1D, TF requires
∼ndN memory and ∼nd2N operations, while the standard
d-dimensional framelet requires ∼ndN memory and ∼n2dN
operations.

2.C. Split Bregman method

With TF, the formulation is a L1-norm-regularized least-
square optimization

X = arg min
X

1

2
‖AX − Y‖2

2 + λ‖WX‖1. (25)

Here, we choose the Split Bregman method26 for solving this
convex L1-type problem. The method was also used in our
prior related work on CT.17, 19, 27

Note that for many algorithms it is required to dynamically
reduce the regularization parameter λ during iterations in
Eq. (25) for the optimized image quality. However, the prob-
lem may become ill-conditioned for a small λ so that the op-
timal solution may not be reachable.

In comparison, the Split Bregman method works with a
fixed and sufficiently large λ. The method goes as follows.
First, one introduces the Bregman distance of L1 norm with
Vn, a subgradient of ‖WX‖1 at the current iterative Xn,

D(X,Xn) = λ‖WX‖1−λ‖WXn‖1−
〈
V n,X−Xn

〉
, (26)

and minimize

(Xn+1, V n+1) = arg min
(X,V )

1

2
‖AX−Y‖2

2 + D(X,Xn). (27)

That is, we iteratively solve

Xn+1 = arg min
X

1

2
‖AX − Y‖2

2 + λ‖WX‖1 − 〈
V n,X

〉
,

V n+1 = V n − AT (AXn+1 − Y ), (28)

which is equivalent to

Xn+1 = arg min
X

1

2
‖AX − Y + f n‖2

2 + λ‖WX‖1,

f n+1 = f n + (AXn+1 − Y ). (29)

Then, we introduce an auxiliary variable d and reformu-
late the nondifferentiable problem in Eq. (29) as a constrained
problem with d = WX, which is then transformed into the fol-
lowing unconstrained problem through the L2 penalty of the
equality constraint,

X = arg min
X

1

2
‖AX−Y‖2

2+λ‖d‖1 + μ

2
‖WX−d‖2

2. (30)

Again, to solve Eq. (30), instead of dynamically reducing μ,
we use the same Bregman strategy with a fixed μ and another
auxiliary variable v, and the iterations are

Xm+1 = arg min
X

‖AX−Y‖2
2 + μ‖WX−dm + vm‖2

2,

dm+1 = arg min
d

1

2
‖d−(WXm + 1 + vm)‖2

2 + λ

μ
‖d‖1,

vm+1 = vm + WXm + 1−dm + 1. (31)

To summarize, we have the following Bregman loop that
converges with m = n,28

Xn+1 = arg min
X

‖AX−Y + f n‖2
2 + μ‖WX−dn + vn‖2

2,

f n+1 = f n + AXn+1−Y,

dn+1 = arg min
d

1

2
‖d−(WXn + 1 + vn)‖2

2 + λ

μ
‖d‖1,

vn+1 = vn + WXn + 1−dn + 1. (32)

Note that the first step (L2 minimization step) of Eq. (32) is
differentiable and therefore can be solved via

(AT A + μ)Xn+1 = AT (Y−f n) + μWT (dn−vn), (33)

where we have used the TF property WTW = I. This equation
can be conveniently solved by conjugated gradient method
with pointwise operations instead of forming the matrix.

Next, we will derive the explicit solution formula for
the third step (L1 minimization step) of Eq. (32) based on
Eq. (22). That is,

d = arg min
d

1

2
‖d − f ‖2 + λ′‖d‖1

=
∑
i,j,k

[
2∑

m=1

L∑
l=0

arg min
dl

m

F (dl
m, f l

m, λl
m)

+ arg min
dL+1

F (dL+1, f L+1, λL
0 )], (34)
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which consists of the subproblems

F (d, f, λ) = 1

2
[(dx − fx)2 + (dy − fy)2 + (dz − fz)

2]

+ λ′λ√
3

√
d2

x + d2
y + d2

z . (35)

Then Eq. (35) can be explicitly solved by

(dx, dy, dz) = (fx, fy, fz)

f
max

(
f − λ′λ√

3
, 0

)
(36)

with

f =
√

f 2
x + f 2

y + f 2
z . (37)

For the notation convenience, we represent this explicit solu-
tion formula to Eq. (34)

d = S(f, λ′). (38)

In this work, the TF parameters are chosen to be

λl
0 = 0, λ0

1 = λ0
2 = 1 and λl+1

m = λl
m/2, (39)

the Bregman parameter

μ = c1 ·
∑Nv

i=1
l2
i , (40)

and the regularization parameter

λ = c2 · μ, (41)

where li is the length of the ray intersection with the pixel for
the ith projection view when the ray passes the center of the
pixel. The purpose of the choice (41) is to take the condition
number of ATA into account so that Eq. (33) is not too ill-
conditioned to solve. Note that c1 in Eq. (40) is to overcome
the ill-posedness of the data fidelity term in Eq. (33) due to
A, and c2 in Eq. (41) controls the smoothness of the image as
a shrinkage index. How to choose their values for this study
will be specified in Sec. 3.D.

To summarize, our solution algorithm for solving Eq. (25)
is through the following simple-to-implement Bregman loop
with X n = d n = vn = f n = 0:

(AT A + μ)Xn+1 = AT (Y − f n) + μWT (dn − vn),

f n+1 = f n + AXn+1 − Y,

dn+1 = S(WXn+1 + vn, λ/μ),

vn+1 = vn + WXn+1 − dn+1. (42)

Regarding the stopping criterion for the image reconstruction
with the experimental data, we define

εn = ‖Xn − Xn−1‖1/‖Xn‖1 (43)

and we find the following to be a robust stopping criterion:

(#(εn+1 < εn) ≥ ε1)‖(#(εn+1 < εn < εn−1) ≥ ε2). (44)

That is, the iteration stops when the iterate difference no
longer decreases significantly. Here, we choose ε1 = 3 and
ε2 = 1.

3. MATERIALS

The proposed TF-based reconstruction method for imag-
ing quality improvement and dose reduction was evaluated in
comparison with FBP and TV, with the data from the Siemens
imaging quality phantom,29 a H&N patient, and a prostate
patient.

3.A. TomoTherapy imaging system

TomoTherapy provides a helical fan beam scan using a
detuned 3.5 MV photon beam. The onboard CT detector is
an arc-shaped xenon detector used in older generator General
Electric CT scanners. The detector consists of 738 channels,
each with two ionization cavities. These cavities are filled
with xenon gas under approximately 5 atm pressure and the
cavities are divided by 0.32 mm wide tungsten septa. The
septa are 2.54 cm long in the beam direction, and the distance
between septa is 0.32 mm. The charge produced in two ad-
jacent xenon cavities is collected together to yield the signal
of a detector channel. The separation between each channel is
1.21 mm. The imaging field of view (FOV) is defined by the
width of the Hi-ART multileaf collimator, which projects to
40 cm at isocenter.

3.B. MVCT acquisition on TomoTherapy

We scanned the Siemens imaging quality phantom, a H&N
patient, and a prostate patient on a TomoTherapy HD unit.
The default image scanning parameters (TomoTherapy V4.2)
were used in this study: 1 mm jaws setting (J1), gantry pe-
riod of 10 s with couch speed of 8 mm/rotation (normal scan
mode). The pulse repetition rate for the imaging mode was
80 Hz. The detector data were exported after each MVCT
scan. An air scan was also acquired to normalize the raw de-
tector output.

3.C. MVCT image reconstruction

The geometric parameters for image reconstruction were:
source-to-isocenter distance 85 cm, source-to-detector dis-
tance 144 cm. The detector array had 640 pixels and the cen-
tral element was offset by 29.5 pixels. There were 800 pro-
jection views per rotation and the couch speed was 8 mm
per rotation. For the current system, the pixels from the 27th
to the 554th were available for image reconstruction. Since
the center of the curved detector array’s curvature was offset
from the TomoTherapy system isocenter (to improve the ef-
ficiency of the outer channels5, 30), a virtual curved detector
array centered at the isocenter was created with 0.048◦ as the
angular pixel size. The images were reconstructed to a 350
× 350 square pixel array with 1 × 1 mm2 resolution. The
same imaging geometric parameters were used for FBP, TV,
and TF.

The spiral projection views were interpolated to the evalu-
ation slices using supplementary helices.31 The sinogram was
proportionally amplified with the reconstructed image value
to be between 0 and 1. The Ram-Lak filter was used for FBP.
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FIG. 2. Resolution slice reconstruction results from the Siemens image qual-
ity phantom. (a), (b), and (c) are from FBP, TV, TF with 100% data; (d), (e),
and (f) are from FBP, TV, TF with 25% data. The zoom-in details are shown
for the ROI in the selected square.

The two-level piecewise linear TF [i.e., L = 1 in Eq. (22)]
and the TV [i.e., λ0 = λ2 = 0 in Eq. (9)] was utilized
with carefully tuned parameters, for which the details are in
Sec. 3.D.

The GPU-based reconstruction was implemented with a
NVIDIA GeForce GTX 680 GPU card (1536 cores and
2.0 GB device memory). It required ∼2 min for our GPU-
based solver to reconstruct a 40-slice 350 × 350 3D image
with 200 projection views per slice and 528 detections per
view. For each TV or TF reconstruction, it took 10–20 Breg-
man outer iterations. For the number of CG iterations during
each outer iteration, it took 6–10 inner iterations during each
of the first few outer iterations, and 2–5 inner iterations after-
wards. Note each inner iteration computes AX and ATY once.

3.D. On the choice of reconstruction parameters
and display window

Although there have been many attempts for the automatic
optimal choice of reconstruction parameters for iterative algo-
rithm, such as L-curve or the adaptive Levenberg–Marquardt
updates, we used a tedious yet safe way to ensure the optimal
choices of parameters to the best of our capability. That is, we
first narrowed down the possible optimal choices to an inter-
val with reasonable margin, i.e., c1 = [10, 80] and c2 = [0.01,
0.08] based on some educated guess. These ranges were quite
certain for a fixed imaging geometry. Next, we fine-tuned
the parameters, while avoiding exhausting computations. That
is, we sampled each range in a multiplicative fashion, i.e.,
c1 = 10, 20, 40, 80 and c2 = 0.01, 0.02, 0.04, 0.08, recon-
structed with all combinations for each case (i.e., TV or TF
with 100% or 25% data), and then subjectively picked up
the “optimal” choice through visual assessment of the im-
age quality. Then we found that, for both TV and TF, the set
of c1 = 20 and c2 = 0.04 offered the optimal image qual-
ity for 100% data, and the set of c1 = 40 and c2 = 0.04 of-
fered the optimal image quality for 25% data. Note that these
values were only optimized for the given imaging geometry,
although they were independent of the images to be recon-
structed.

On the other hand, to best visualize the image differences,
we chose the display window for Figs. 2–5 to be between Imin

+ 30% · (Imax − Imin) and Imin + 70% · (Imax − Imin), with
Imin and Imax as the minimal and maximal attenuation coef-
ficient corresponding to 0 and 1 before scaling-back the im-
age, respectively. In the unit of cm−1, the display window
was from 0.0375 to 0.0875. To illustrate the effect using a
different display window, Fig. 6 with the window between
Imin and Imax was plotted that corresponded to Fig. 4. Com-
paring Fig. 6(a) with Fig. 4(e), and Fig. 6(b) with Fig. 4(f), it

FIG. 3. Contrast slice reconstruction results from the Siemens image quality phantom. (a), (b), and (c) are from FBP, TV, TF with 100% data; (d), (e), and (f)
are from FBP, TV, TF with 25% data.
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FIG. 4. H&N patient results. (a), (b), and (c) are from FBP, TV, and TF with 100% data; (d), (e), and (f) are from FBP, TV, and TF with 25% data.

is clear that the chosen display window covering 30%–70%
of the total range showed the prominent difference (e.g., on
the piecewise-constant staircase artifacts) in comparing the
reconstructed images with various methods.

3.E. Image quality analysis

To evaluate the imaging quality without undersampling,
we performed the full-view reconstruction with 800 projec-
tions per slice (100% data). To evaluate the imaging qual-
ity with undersampling, we performed the partial-view recon-
struction with 200 projections per slice (25% data). The same

display window was used for presenting the reconstruction
results from FBP, TV, and TF in Figs. 2–5.

For the quantitative resolution analysis, the zoom-in de-
tails of the sixth bar group (Bar 6) and the seventh bar group
(Bar 7) [Fig. 2(a)] of the resolution slice from the Siemens
imaging quality phantom were presented. For better visual-
ization of the resolution for Bar 6 and 7, a cross line was
interpolated across both bars and the values were plotted in
Fig. 7. Furthermore, the full width at half maximum (FWHM)
was calculated in Table I.

For the quantitative contrast analysis, the contrast-to-noise
ratio (CNR) values [i.e., |μt − μb|/(σ t

2 + σ b
2)0.5 with the

FIG. 5. Prostate patient results. (a), (b), and (c) are from FBP, TV, and TF with 100% data; (d), (e), and (f) are from FBP, TV, and TF with 25% data.
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FIG. 6. H&N patient results using 25% data with a different display window.
(a) TV; (b) TF.

averaged value μt/μb of the target/background, and the stan-
dard deviation σ t/σ b of the target/background], were listed in
Table II for various ROIs (Fig. 8) of the contrast slice from
the Siemens imaging quality phantom.

4. RESULTS

4.A. Phantom studies

The reconstruction results from FBP, TV, and TF on a reso-
lution slice and a contrast slice of the Siemens imaging quality
phantom are shown in Figs. 2 and 3, respectively. The quanti-
tative resolution results are given in Fig. 7 and Table I, and the
quantitative contrast results are given in Table II with ROIs in
Fig. 8.

The quantitative calculation of signal-to-noise ratio (SNR)
has not been presented here, since it is apparent from the im-

ages that TV and TF were better than FBP for both 100%
data and 25% data. With 25% data, the TV image showed the
prominent TV-specific cartoon-like artifacts, and thus the TF
image had better SNR than the TV image.

In terms of the image resolution, suggested by Fig. 2, with
100% data, the TF image had the best image resolution in
terms of FWHM, which was mainly due to the reduced back-
ground noise and the maintained fine feature through TF; for
the larger Bar 6, the FBP had the worst image resolution due
to the relatively large background noise; for the smaller Bar 7,
the TV had the worst image resolution due to the diminished
fine feature through TV. With 25% data, for the larger Bar 6,
TF still provided the best image resolution; for the smaller
Bar 7, FBP provided the best image resolution, and the im-
age resolution was slightly degraded in TV and TF. These
findings based on Fig. 2 were further confirmed through the
cross-sectional plot in Fig. 7 and the quantitative FWHM val-
ues in Table I. Note that, for Bar 6 with 25% data [Fig. 7(c)],
although the min−max difference (of the second peak from
left) from TV was larger than that of TF, its FWHM was also
larger since its peak was flat.

In terms of the image contrast in CNR, suggested by Fig. 3
and the quantitative CNR values in Table II, with both 100%
and 25% data, TV and TF were better than FBP. Compar-
ing TV and TF, with 100% data, TV and TF had compa-
rable image CNRs; with 25% data, TF had better contrasts
than TV, which was mainly due to the cartoon-like artifacts
from TV.

To summarize, both the visual images and quantitative
analysis suggested that TF was superior in terms of the SNR,
the resolution, and the contrast. It was clear that TF outper-

FIG. 7. Cross-line plots for quantitative resolution analysis. (a) and (b) are for Bar 6 and 7 with 100% data; (c) and (d) are for Bar 6 and 7 with 25% data. The
unit of x axis is mm, and the unit of y axis is cm−1.
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TABLE I. The FWHM results for Bar 6 and 7 in the resolution slice.
(Unit: mm.)

Bar 6 FWHM Bar 7 FWHM

100% data FBP 1.81 100% data FBP 1.93
TV 1.75 TV 2.37
TF 1.69 TF 1.79

25% data FBP 2.06 25% data FBP 2.20
TV 2.00 TV 2.86
TF 1.79 TF 2.59

formed TV in all above three aspects. However, it was ob-
served from our reconstruction tests and the given example
here that FBP sometimes had better image resolution than TF
(TV as well) when the data were undersampled, which may
be due to the smoothing effect of the image regularization.
This will be addressed in our future work.

4.B. Patient studies

The image reconstruction results for a H&N patient slice
and a prostate patient slice are shown in Figs. 4 and 5, respec-
tively.

For both patient studies with 100% data, TF [Figs. 4(c)
and 5(c)] provided better visual image quality than TV
[Figs. 4(b) and 5(b)], which was in turn better than FBP
[Figs. 4(a) and 5(a)]. In terms of SNR, TV and TF were com-
parable, and better than FBP. Due to the much improved SNR,
the TV and TF images showed better anatomical visualiza-
tion. However, as indicated by the red arrows in Fig. 4, for
example, the cartoon-like piecewise-constant artifact was vis-
ible in the TV image, but not in the TF image. In this sense,
the TF image was better than the TV image.

For both patient studies with 25% data, TF [Figs. 4(f)
and 5(f)] also provided better visual image quality than TV
[Figs. 4(e) and 5(e)], which was in turn better than FBP
[Figs. 4(d) and 5(d)]. Again, the TV and TF images showed
better anatomical visualization than FBP, due to the signifi-
cantly reduced noise level. However, similar to the case with
100% data, as indicated by the red arrows in Fig. 4, for ex-
ample, the cartoon-like piecewise-constant artifact was quite
severe in the TV image. In comparison, such a TV-specific
artifact was not observed for TF due to the use of the second-
order derivative and the multilevel image regularization. On
the other hand, the small object, as indicated by the red ar-
rows in Fig. 5, for example, was still clearly visible for TF,

TABLE II. The CNR results for the contrast slice with ROIs shown in Fig. 5.

ROI1 ROI2 ROI3 ROI4

100% data FBP 4.28 3.23 1.22 0.86
TV 4.55 4.26 2.32 2.29
TF 4.57 4.16 2.28 2.31

25% data FBP 3.56 2.12 0.64 0.47
TV 4.24 3.77 1.59 1.51
TF 4.39 4.02 2.01 2.09

FIG. 8. ROIs for quantitative contrast analysis.

and yet hard to identify in FBP due to the noise, or TV due to
the cartoon artifact.

5. CONCLUSIONS AND DISCUSSIONS

We have proposed a novel TF-based image reconstruc-
tion technique that provides better image quality than FBP
and TV for the MVCT imaging on TomoTherapy with full
or undersampled projection views. In particular, the phantom
and patient studies suggest that the tensor framelet method
is robust for the low-dose imaging on TomoTherapy with
75% reduction of the projection views. In addition, our GPU-
based solver enables rapid image reconstruction. For exam-
ple, it took ∼2 min to reconstruct a 40-slice 1 mm-resolution
350 × 350 3D image with 200 projection views per slice and
528 detections per view.

The low-dose scan through the undersampled projection
views here is equivalent to the scan with faster gantry rotation
speed, assuming the constant pulse rate. Therefore, the SNR
level is maintained for each view, although the overall SNR
of the image may be reduced due to fewer views. Moreover,
the faster-rotation scan with the improved imaging quality by
the proposed TF algorithm from FBP or TV would reduce the
motion artifact due to shorter scanning time.

The proposed method in this study leads to better MVCT
image quality on TomoTherapy, while the imaging dose is
maintained or reduced. In contrast, in Ref. 32, the image qual-
ity can also be improved by increasing pulse rate, yet with
higher imaging doses delivered to the patients. Such high-
dose MVCT image method may be limited to a fewer fraction
courses, such as stereotactic body radiation therapy (SBRT).
Our proposed TF-based reconstruction method, however, is
expected to improve the imaging quality for both conventional
and hypofraction treatment.
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