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Abstract

It is increasingly appreciated that phenotypic stochasticity plays fundamental roles in

biological systems at the cellular level and that a variety of mechanisms generates phenotypic
interconversion over a broad range of time scales. The ensuing dynamic heterogeneity can be
used to understand biological and clinical processes involving diverse phenotypes in different

cell populations. The same principles can be applied, not only to populations composed of
cells, but also to populations composed of molecules, tissues, and multicellular organisms.
Stochastic units generating dynamic heterogeneity can be integrated across various length
scales. We propose that a graphical tool we have developed, called a metronomogram, will
allow us to identify factors that suitably influence the restoration of homeostatic heterogeneity
so as to modulate the consequences of dynamic heterogeneity for desired outcomes.

Online supplementary data available from stacks.iop.org/PhysBio/9/065006/mmedia

1. Introduction

In Liao et al [1], we developed a conceptual tool
for understanding and utilizing dynamic heterogeneity in
cancer therapy. Collisions between biomolecular components
reshuffling in an ongoing way can generate stochasticity at
the subcellular level. These stochastic fluctuations in mRNA
and protein level can result in the generation of heterogeneity
within a cell population, as well as reversible transitions
between multiple states. This phenotypic interconversion tends
to restore a population to its previous composition after it has
been depleted of specific members. We called this tendency
homeostatic heterogeneity. We used these insights to develop
a tool (metronomogram) to help understand how to optimize
therapeutic dosing schedules on a patient-individualized basis
when targeting cells undergoing back and forth transitions
between phenotypes of relative drug-sensitivity and drug-
resistance. For simplicity, we made examples in [1] specific
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in three ways. (i) The sources of stochastic phenotypic
fluctuations were non-genetic fluctuations in mRNA and
protein levels. (ii) We used transitions between drug-sensitive
and drug-resistant cells as our primary example of phenotypic
interconversion. (iii) Our analysis assumed that stochastic
fluctuations occurred within individual cells.

The purpose of this paper is to emphasize that an
understanding of dynamic heterogeneity and its biological
and clinical consequences is not restricted to these specific
examples. In section 2, we describe a collection of unifying
categories of mechanisms that can generate phenotypic
stochasticity. Non-genetic proteomic fluctuation is only
one example in this list. These examples span a broad
range of time scales for phenotypic interconversion. In
section 3, we demonstrate that the concepts of dynamic
heterogeneity and the metronomogram can be used to
understand phenotypes besides those directly related to drug-
resistance. We discuss phenotypic transitions in biofilms,
metastasis and dissemination of tumor cells, and oncogene
overexpression. Notably, stochastic fluctuations need not be
contained within individual cells. Section 4 provides an
example in which the phenotypically interconverting units
are individual organisms. Section 5 discusses examples of
multicellular systems where the ‘stochastic units’ of interest

© 2012 IOP Publishing Ltd  Printed in the UK & the USA
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Figure 1. Regeneration of phenotypic heterogeneity occurs according to different mechanisms and different timescales. (a) Stochastic
delivery of therapeutic agent. (b) Proteomic fluctuations. (¢) Large-scale genetic alterations. (d) Point mutation. (¢) From the almost
‘instantaneous’ apparent drug resistance that results from extrinsic exposure to drug to the extended time scale of years observed with gene
amplification or other chromosomal changes, the rates of interconversion span a remarkable range of time scales. Some have postulated that
this is not by chance but allows a contingency plan for a wide range of challenges.

undergoing phenotypic interconversion may be an integrated
collection of cell clusters or tissues or individuals rather than
individual cells. Because cells in multicellular communities
are connected by a variety of signaling loops, the stochastic
fluctuations in one cell can spill over to modulate the
phenotypes of other cells in the microenvironment. In other
words, stochastic fluctuations can be integrated across various
scales of length and population number.

Generalizing our understanding of dynamic heterogeneity
in these ways expands the number of mechanisms
and molecular targets we can potentially manipulate to
control population heterogeneity and population numbers. In
section 6, we use the metronomogram to propose a strategy
for uncovering factors that modulate the time scales of
phenotypic interconversion in a ‘proliferation-independent’
fashion. This particular form of manipulation would allow
a system to move between the regions above and below
the diagonal of the metronomogram. In this way, the
consequences of dynamic heterogeneity for a population can
be changed from extinction to long-term survival or vice
versa. This strategy suggests an alternative to the ‘whack-a-
mole’ approach to cancer treatment. Rather than engineering
a therapeutic modality (drug, surgery, radiation, etc) and
schedule to address each potential molecular target that might
present itself in the tumor cell population, one could, instead,
coax the tumor cell population to schedule the dynamics of
its phenotypic fluctuations so that a proposed therapeutic
schedule becomes effective. The biologic agents used for
such kinetic manipulation need not themselves be traditional
cytotoxic or cytostatic chemotherapeutic drugs.

2. Multiple mechanisms can generate phenotypic
stochasticity

In [1], we offered a perspective on the origins of stochasticity
by discussing biochemical reactions taking place in individual

cells. These examples are not exclusive. Instead, they are
members of a broader collection of physical mechanisms that
can dynamically generate heterogeneity in the phenotypes of
a population of cells. While specific models vary in molecular
detail, many mechanisms for the generation of stochasticity
can be understood in terms of the small collection of unifying
categories that we now describe using figure 1.

2.1. Stochastic encounters with (extrinsic) soluble factors

In [1], we described variation in phenotype owing to
fluctuations in the abundances of molecular species within
individual cells. However, variation in perceived phenotype
can also be the result of fluctuations in the abundances of
molecular species extrinsic to individual cells. In the example
of exposure to a drug in figure 1(a), some cells survive and
other cells are killed during a finite duration of exposure to
the drug as a consequence of cell-extrinsic stochasticity in
drug delivery at the microscopic scale. Tortuous vasculature,
heterogeneous blood flow, hypoxia, extracellular acidosis, and
high interstitial fluid pressure all challenge homogeneous
delivery of drug to tumor cells. As those molecules of
drug that do access the tumor undergo Brownian motion,
temporary local gaps appear allowing some cells to ‘slip
through’ unscathed, at least until the next cloud of drug
molecules arrives with a spatial arrangement likely to differ
at the microscopic scale. The extracellular fluid can be
stirred and washed by mechanisms independent of the cell
cycle, so the timescales over which apparently drug-resistant
cells can become apparently drug sensitive are potentially
‘instantaneous.” The mathematical expression of this concept
is the famous pharmacologic exp(-kf) law of cell kill [2].
This ‘law’ predicts that cell-death increases arbitrarily with
increasing drug concentration given in a fixed time period.
In other words, the concept that ‘more is better’ underlying
maximum-tolerated dosing strategies referred to in [1] can be
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Figure 2. Mechanisms by which timescales for the generation of
phenotypic heterogeneity may be similar to timescales for
population expansion. (a) Periodic dilution. () Partition noise
during cell division. (c) Periodic decrease in mRNA and protein
levels.

rationalized by assuming that fluctuations between apparent
states of drug-sensitivity and drug-resistance are exclusively
effected by fluctuations in delivery. As we have described,
drug-sensitivity and resistance are effected by fluctuations
other than that of drug exposure. These considerations are
not exclusive to drug therapy. A similar view of stochasticity
applies to the chance encounters between cells and other
soluble signaling factors such as hormones or growth factors.

2.2. Proteomic fluctuations

Figure 1(b) refers to the concept that fluctuations in
abundances of molecular species result from stochastic
variation in the time intervals between biochemical reactions
inside individual cells. This was the primary model in [1]. As
we will explain, time scales for such cell-intrinsic fluctuations
can be similar in magnitude to time scales for cell division.
Thus, some of these ‘proteomic’ fluctuations, or examples of
‘non-genetic individuality’ as they are sometimes called, can
be characterized by time scales measured in days or weeks.

2.2.1. Time scale analysis for proteomic fluctuations. To
illustrate these points, we provide three examples of
mechanisms that can relate the time scales for the generation
of heterogeneity to the time scales for population expansion
(figure 2). We use these examples to develop qualitative
estimates of orders of magnitude. In physicists’ language, we
are performing ‘back-of-the-envelope’ calculations.

The first example we will describe involves the dilution
of proteins owing to cell division. Sigal er al described
the dynamics of the dissipation of fluctuations in single-cell
protein levels using an auto-correlation function [3]. In their
supplemental theory, the authors calculated the ‘mixing time’
for this auto-correlation function for a simple ‘birth—death’
model of protein translation and degradation. In their example,

the time scale for cell-division defined the time scale for protein
‘memory.” We provide a heuristic for understanding this result
in figure 2(a). At the left, a cell happens to contain eight
copies of a protein inherited from a just-completed mitotic
event. In the next snapshot, transcription and translation occur,
adding eight more proteins to the proteomic atmosphere.
The cell then enters mitosis, with half of the 16 copies of
protein lost to the sister cell not shown. The cell under study
again has only eight copies of protein immediately following
this mitotic event. In this cell, biochemistry is stochastic,
and whereas the cell has just replenished its proteome with
eight new copies of protein, only six new copies of protein
will next be generated. For simplicity, we assume in this
example that proteins are partitioned precisely during mitosis.
This means that 7 of 14 proteins are lost to the sister cell
not shown. When the primary mechanism of protein loss
is cell division, a proteome that starts out by chance rich,
or alternatively, poor, in a particular protein can remain in
such an outlier state for roughly a generation before mitosis
reduces the copy numbers of cytosolic constituents by a
factor of 2. Proteins newly synthesized after mitosis are then
added alongside these remnant populations of proteins. The
molecular composition of the cell now reflects an average
of the protein production rates before and after mitosis. This
‘averaging’ process partially dilutes away those fluctuations
generated preceding mitosis. The cell-division time provides
an order of magnitude for the memory time of the cell.
More sophisticated gene regulatory network architectures,
i.e. relying on feedback loops, can prolong the protein-level
memories of cells, and rapid protein degradation, intervening
between cell division events, can hasten the loss of proteomic
memory.

We provide a second example involving ‘partitioning’
noise. Huh and Paulsson have remarked that fluctuations
in the levels of biological molecules could result from
partitioning of molecules between daughter cells according
to a binomial (coin-toss) process during mitosis [4]. In
figure 2(b), a cell initially containing eight copies of a
protein divides. The individual copies of protein randomly
circulate throughout the increasingly hourglass-shaped cell.
At the moment when the daughters separate, there might
by chance be two copies of protein in the upper daughter
and six in its sister. Even if the duration of the cell
cycle and the rates of transcription and translation were
precisely reproducible over generations, partitioning noise
would introduce fluctuations into the proteome on a time scale
of once a generation. This is beautifully illustrated in the
unequal partitioning of double minute chromosomes (DMs)
which carry amplified copies of the DHFR gene and confer
drug resistance [5]. The examples in figures 2(a) and (b)
are similar. Both ideas are based on (i) an assumption that
stochasticity is present and (ii) an assumption that there is a
time scale at which proteins (or organelles) from one mother
cell are assorted between two daughters. The underlying
stochastic events in each differ, but both perspectives
lead to the same time scale for proteomic fluctuations.
Indeed, Huh and Paulsson explained that their perspective
of partitioning noise could quantitatively accommodate
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experimental measurements previously rationalized in terms
of stochastic gene transcription.

In a third example, we discuss the consequences of
protein-level fluctuations during the cell cycle. Various protein
levels are upregulated and downregulated as the cell moves
through the phases of the cell cycle. Any proteins that
are highly upregulated during one phase and essentially
shut off during another must periodically pass through an
intermediate band of small, but finite copy numbers as shaded
in figure 2(c). During these times, the relative magnitude
of stochastic fluctuations may be large relative to expected
average values. Such small protein copy numbers would be
achieved temporarily both while the protein level decreased
and while the protein level subsequently increased, providing
any downstream molecular networks access to a random
number generator, i.e. access to a ‘roll of dice, at least
twice during each cell cycle. Recent experimental work in
synthetic biology suggests that biological circuitry may have
evolved in order to introduce cyclic noise in this way. The
competence circuit of the bacterium B. subtilis has been
modeled as an excitable system with a self-activating protein
ComkK that inhibits ComS, which itself activates ComK. When
the cell enters a ‘cycle’ of excitation, the level of ComS
collapses. The average durations and likelihoods of entering
competence for this circuit are reproduced in a synthetic circuit
topology that, in contrast, causes the regulatory partner of
ComK to increase following excitation. Why, then, does the
native circuit rely on a protein-level collapse? Cagatay et al
have suggested that the collapse of ComS levels provides
a source of molecular noise that leads to variability in
competence duration and thus an evolutionary advantage in
fluctuating environments [6]. In another example, Spudich
and Koshland have hypothesized that a cyclic decrease in
the levels of some proteins could underlie the highly variable
duration of the G-phase of the cell cycle and result in rapid
asynchronization of initially synchronized cell populations
[7]. Some phenotypes are cell-cycle specific. For example,
increased sensitivity to some chemotherapeutic agents requires
exiting G;. Randomness in the duration of G; would manifest
as randomness in the time that elapses before a cell acquires
any such phenotype. In the supplementary data, we discuss
the consequences of this view for the scheduling of doses of
cell-cycle-specific agents using the metronomogram (available
at stacks.iop.org/PhysBio/9/065006/mmedia). It may prove
fruitful to continue studying oscillatory and excitable motifs
in circuits that regulate cell cycle to determine the prevalence
of topologies that cyclically reduce the abundance of proteins
to copy numbers near unity.

2.2.2. Experimental examples. The preceding heuristic
discussions suggest that some fluctuations in protein levels
may be associated with time scales similar to the cell-division
time. In fact, some time scales for the generation of phenotypic
heterogeneity are similar to time scales for proliferation as seen
in a variety of experimental examples.

In the study by Sigal et al the ‘mixing’ times 7,
for 20 proteins were measured in individual cells from a
human lung-cancer cell line [3]. The proteins were involved

in diverse functions including apoptosis, transcriptional
regulation, chromatin remodeling, and cold response. Thus, it
may be unsurprising that the mixing times varied. Interestingly,
however, the variation that was reported covered a range from
7, = 0.8 to 2.6 generations. The time scale for proteomic
fluctuations and the time scale for cell replication shared the
same order of magnitude.

In another example, Chang et al [8] investigated the
generation of phenotypic heterogeneity in populations of
‘EML’ progenitors in the hematopoietic system of the mouse.
Purified subpopulations with low, intermediate, and high levels
of the marker Sca-1 were obtained from an initially broad
distribution. The repopulation of the initial distribution from
these purified subpopulations was visible within days, with
saturation occurring by about two weeks. In this example, re-
establishment of heterogeneity in Sca-1 levels corresponded
to re-establishment of heterogeneity in time rates for realizing
different cell fates. In additional examples, rapid return toward
homeostatic heterogeneity (well underway within three days)
has also been observed in studies of cancer ‘stem’ cells in
mammary cell lines [9, 10]. Taken together, these reports
suggest that various cell populations can achieve time scales
for phenotypic fluctuation of the same order of magnitude as
the time scales for cell replication, consistent with the heuristic
examples from the previous subsection.

We have just considered conceptual and experimental
examples suggesting that time scales for cell replication
and phenotypic conversion can often be similar. In the
supplementary data, we use this observation, along with
equations (1) and (2) from [1], to show that high-frequency
dosing may in some cases be beneficial (available at
stacks.iop.org/PhysBi0/9/065006/mmedia). It also should be
noted that time scales for exhibiting stochastic fluctuations can
sometimes greatly exceed the time scales for cell replication,
as is illustrated in section 2.3.

2.3. Genetic alterations

In the examples above (figures 1(a) and (b)), we discussed non-
genetic sources of cell-cell heterogeneity in drug-response.
The mathematical discussion in this paper and in [1] is agnostic
to the molecular origins of phenotypic heterogeneity, so the
same conceptual lens can be applied to heterogeneity produced
through genetic or epigenetic variation.

For example, gene amplification is reversible and can
occur over months and even years (figure 1(c)) [11, 12]. When
present within a homogeneously staining region (HSR) carried
on an autosome, the gene copy number fluctuates up and
down through mechanisms like homologous recombination
and deletion. Furthermore, we also illustrated how increased
gene copy numbers carried on fragments of chromatin called
‘double minute’ (DM) chromosomes could also exhibit
heterogeneity based on unequal partitioning of these DM
chromosomes during mitosis. DM chromosomes lack a
centromere and thus lack a mechanism to partition equally
at mitosis. The time scales for these two mechanisms is
different and these characteristics have been studied as stable
drug resistance (when DHFR genes are carried on HSRs) and
unstable drug resistance (when the genes are carried on DMs).
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Figure 3. Topologies of transitions that connect interconverting phenotypes. The dynamics of systems in molecular abundance space are
often represented by the motions of weights sliding around potential energy surfaces at roughly terminal velocity in an ambient medium,
with thermal excitation. (a) Reversible transitions proceed back and forth between a pair of states in a bistable system. This corresponds to
two energy valleys. (b) Transitions can occur in stepwise fashion along a continuous spectrum or graded discrete collection of states.

(c) Higher-dimensional topologies introduce the possibility of connecting an initial state, i, to a final state, f, through multiple paths (i.e.
green dotted path going around energy peak and red dashed path passing through intermediate valley). The typical time required to move

from state i to state f along these two paths may differ.

Of the mechanisms contributing to drug resistance
outlined in figure 1, genetic point mutations are probably the
least likely to reverse and most commonly known (figure 1(d)).
Previous authors have outlined a variety of potential clinical
strategies for treating patients in the presence of mutations.
As described in [1], these strategies include targeting the
protein products of mutated genes, exploiting the fitness
costs of mutations conferring drug resistance, and identifying
cell populations in the microenvironment that retain drug-
sensitivity even when the epithelial subpopulation acquires
a mutation that confers resistance. We proposed that an
understanding of homeostatic heterogeneity would improve
our ability to pursue these strategies beneficially.

Additional strategies include prevention of mutation
and the use of ecological predation. A frequent goal of
computational dose-scheduling studies is to optimize the
dosing schedule to minimize the risk of acquiring a mutation
that confers resistance [13]. This is often attempted by
minimizing the size of the proliferative population for as long
as possible. Alternatively, Silva and Gatenby have suggested
allowing a drug-sensitive cell population to survive so that
it can compete with or control a subpopulation harboring
a resistance mutation [14]. For both of these strategies, an
understanding of the kinetics of phenotypic interconversion
will be necessary, either to most effectively deplete the target
population before it acquires a mutation or to avoid completely
eradicating a useful cellular subpopulation.

The mechanisms we have described in figure 1 lead
to phenotypic interconversion over a wide variety of time
scales, as indicated by the wedge in figure 1(e). Extrinsic
stochasticity in the delivery of soluble factors can occur
rapidly compared to the cell-cycle time, or ‘instantaneously.’
Proteomic fluctuations and alterations in gene copy number
span intermediate time scales ranging from days, to weeks,
to months, and years, while point mutations are potentially
permanent. In addition to the variation in time scales seen
among mechanisms, there is also variety in the time scales
that a given mechanism can generate. To understand why,

we use figure 3 to address a simplification from [1]. While
we previously considered the toy model in which transitions
occurred between a pair of phenotypes (figure 3(a)), many
phenotypes can be represented by a continuous spectrum or
graded series of discrete states (figure 3(b)). Suppose that
the rate coefficients connecting states 1 and 2 to each other
are identical to the rate coefficients connecting states 2 and
3, states 3 and 4, etc. Even in this situation, a variety of
time scales can be associated with the system by considering
transitions between different pairs of phenotypic states. The
time scales for converting from state 1 to 5 and vice versa are
slow compared to the time scales for interconversion between
states 1 and 2 because no transitions directly connect states 1
and 5. For a cell in state 1 to reach state 5, it must first pass
through state 2. Previous experimental studies have explored
this relationship and connected these various phenotypic states
to clinical consequence [15, 11].

The topology of the connections between phenotypic
states is potentially more complicated than illustrated in
figure 3(b). Rather than being represented as a line, the network
of phenotypic states may be more accurately characterized as
a two- or even higher-dimensional topology (figure 3(c)). This
provides a large number of ways to connect pairs of cell states,
and thus a variety of time scales over which such conversions
can occur.

3. Dynamic heterogeneity can be used to understand
diverse biological and clinical processes

We developed the metronomogram in [1] to study the example
of drug kill in a population of interconverting drug-resistant
and drug-sensitive cells. However, the mathematical concepts
and the broader perspective of phenotypic stochasticity
described in [1] can also be applied to populations of cells
undergoing interconversion between other phenotypes. We
offer examples with cell adhesion in biofilms, adhesion
and proliferative dormancy in metastasis, and tumorigenic
phenotypes in oncogene-overexpressing cells.



Phys. Biol. 9 (2012) 065006

D Liao et al

(a)

g )

Smooth Wrinkled
Adherent Non-adherent
O Sag K
232
%8
B O

@

fs>fr /'

0.8
Excessive dispersal,

biofilm extinction

0.6

0.4

Fraction swept away f4(Ar)

02 Long-term seeding

of distant colonies
Sfs<[fp

0.15 032 051 074 1.00 1.32 174 232 332 PD
Fractional population expansion fp(Af)

Figure 4. Simplified model for phenotypic switching and survival in biofilm communities. (a) Single cells of the fungus C. neoformans
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of non-adherent cells is slow compared to cell population expansion, the dynamics of the population are described by positions in the
metronomogram below the diagonal (fs < fp), corresponding to expansion of the population of the primary biofilm colony.

3.1. Biofilm adhesion and dispersion

We provide an example of phenotypic transitions in biofilms
in figure 4(a). Individual cells in biofilms of the fungus
C. neoformans switch between a ‘smooth’ state and a
‘wrinkled’ state [16]. The smooth state more strongly adheres
to substrates. If a goal of a biofilm in a natural environment
is to colonize distant niches, phenotypic conversion from the
adherent to less-adherent state could produce ‘seeds’ to be
washed away, perhaps by occasional rainfall. Depending on
environmental conditions, dispersing the entire biofilm at once
might be unlikely to establish a colony. A more successful
strategy may be to maintain a proliferating biofilm at the
primary site from which a small non-adherent population
can be periodically dispersed. In this case, the survival of
the primary biofilm, and thus its ability to shed non-adherent
cells long term, depends on exploring the lower half of the
metronomogram (the area under the diagonal in figure 4(b)).
The survival of the biofilm occurs when the generation of
adhesion heterogeneity is slower than population expansion.
Otherwise the biofilm shrinks as it is repeatedly washed
away. In analogous financial terms, resisting the temptation
to immediately squander a principal can reward the investor
with the ability to live off interest long term.

3.2. Metastasis and dissemination of tumor cells

It has been proposed that primitive multicellular ecologies,
i.e. biofilms, offer a model for malignant tissues [17, 18].
Based on these insights, it may prove fruitful to extend the
above discussion of biofilms to understand the dissemination
of cells from primary tumors. Consistent with this possibility,
previous authors have interpreted the inefficiency of metastasis
formation in terms of the statistics of rare random events [19]. It
has been suggested that the vast majority of disseminated cells
may be metastatically unfit. However, by sheer numbers, some
of these unfit cells nevertheless beat the odds and establish

expanding colonies. Hence, the establishment of secondary
colonies may be increased by maintaining a proliferating
population at the primary site. It is known that cancer cells
can undergo an ‘epithelial-to-mesenchymal’ transition (EMT)
toward more mesenchymal states with decreased adhesion to
neighboring cells [20]. EMT is conventionally regarded as a
deterministic response to external signals. While this can be
interpreted as deterministic modulation by the environment
of deterministic processes within cells, it is important to
consider ways through which stochasticity can also contribute
to EMT. Our group has reported evidence that the EMT
phenotype is influenced by environmental signals which
increase the probability for stochastic events in individual
cells [21]. Additionally, the environment can provide, not
only deterministic modulation of stochastic events in cells,
but also a source of stochasticity itself. Local fluctuations in
external signal concentration, as described in section 2.1, are
examples of sources of noise that are referred to as gene
‘extrinsic’ [22, 23]. Just as in our discussion of biofilms,
primary tumor cell populations may need to ‘stay below the
diagonal of the metronomogram’ in order to increase the
likelihood of establishing secondary colonies. In principle, this
could be achieved by limiting the rate of EMT or by generating
transitions in the opposite direction. In fact, the reverse
‘mesenchymal-epithelial-transition” (MET) occurs and has
been considered as a possible prerequisite for disseminated
cells to settle down into distant metastatic sites. In light of the
current discussion, MET may also provide a cell population
with a way to maintain an established primary tumor. A
possible direction for continued investigation would be to
evaluate the effects of hastening the loss of adhesion on
the survival of the primary tumor and the establishment of
metastatic lesions.

An experimental study of ‘tumor self-seeding’ by Kim
et al suggests another situation in which staying ‘below the
diagonal’ could confer a survival benefit to a tumor cell
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population [24]. In this study, temporary dissemination and
then re-infiltration by tumor cells can confer increased primary
tumor growth and recruitment of supportive stroma. Retaining
a portion of the primary tumor in situ provides homing signals
for the circulating subpopulation.

Metastasis and tumor cell dissemination provide
additional potential opportunities to apply the concept of
homeostatic heterogeneity. Deakin and Turner reported on
phenotypic switching between an amoeboid mode of cell
movement allowing movement through existing gaps in
extracellular matrix and a mesenchymal mode involving
proteolysis of extracellular proteins [25]. The authors suggest
that phenotypic interconversion between these states, rather
than permanent residence in either one state alone, increases
invasiveness and establishment of metastases. In another
example, Heyn er al have suggested that some solitary
disseminated cells may remain in a nonproliferative state
before developing into late metastatic colonies [26]. Even
when the dissemination of cells from a primary tumor
occurs in a short-term burst, the timings of attempts to
establish metastases may effectively be spaced out by
stochastic variation in the durations that single cells remain
in such ‘dormant’ states. This may allow a disseminated
population to sample a variety of time periods when it is
not possible to determine which intervals of time would
be conducive to establishing a metastatic colony. The term
‘dynamic heterogeneity’ has been historically associated with
the spontaneous interconversion of cells between highly-
metastatic and non-metastatic phenotypes at rates much higher
than ‘generally associated with point mutations and deletions’
[27].

3.3. Oncogene overexpression: HER2 expression in cancer
cells

In a third example, we consider the possibility of fluctuations
in the single-cell levels of HER2 (erbB2) surface receptor.
HER?2 is well-known as the target of the monoclonal antibody
Trastuzumab [28]. However, its biologic role was known
before it was selected as a drug target. Overexpression of
HER?2 with breast cancer cells is associated with aggressive
cellular phenotypes including increased cell proliferation and
survival, decreased dependence on estrogen for proliferation,
poorer differentiation, increased invasiveness and motility, and
increased angiogenesis [29, 30]. HER2 overexpression also
correlates with decreased survival at the patient level [31].

Overexpression of the receptor is found in approximately
20-30% of human breast carcinomas, with 90-95% of these
cases corresponding to amplification of the wild-type gene
[30, 32] and a minority corresponding to transcriptional and
translational mechanisms in the absence of gene amplification
[28]. As we have discussed, both gene amplification and
transcriptional and translational mechanisms can underlie
phenotypic stochasticity and reversible transitions between
phenotypes. Savelyeva and Schwab have noted the possibility
that amplification ‘varies among members of the tumor cell
populations’ [32]. Immunohistochemistry also shows cell—cell
variation in staining for the receptor [33].

Because increases in HER2 are associated with more
aggressive phenotypes, it may be natural to recognize
phenotypic conversion to HER2-overexpressing states as
beneficial for the survival of tumor cells. However, phenotypic
transitions that lower HER2 expression may also provide
a survival benefit. HER2 overexpressing cells respond
to heregulin ligand with biphasic growth [34]. Modest
concentrations of heregulin increase proliferation and colony
formation in vitro, but high concentrations inhibit growth. This
inhibition is only seen in cells with HER2 overexpression.
By contributing to a homeostatic heterogeneity that contains
a low-HER2 subpopulation, phenotypic interconversion
between relatively low- and high-HER2 level states may
reserve a subpopulation of low-HER2 cells prepared to
continue expanding even during pulses of heregulin that inhibit
expansion of high-HER?2 cells. Indeed, immunohistochemistry
of heregulin shows spatial heterogeneity of ligand staining,
consistent with the idea that the levels of heregulin in the
microenvironments of single cells can vary [33]. Patients with
lymphoid infiltration have a better prognosis if they are HER2
positive instead of HER?2 negative, suggesting that HER2 may
be targeted by the immune system [31]. Conversion of high-
HER?2 cells to transient states of low HER2 expression may
allow some cells to escape immune clearance. As discussed in
the examples for biofilms and metastasis, excessive motility
may also counterintuitively impose a survival disadvantage
for a multicellular colony. The ability to convert some cells
with high-HER?2 to a state with lower HER2 expression may
rein in motile cells to prevent the tumor from ‘evaporating’
from a primary site with established stromal support. The
example of HER2 overexpression provides a reminder that
it may be overly simplistic to assume that only one direction
of phenotypic conversion provides a survival advantage for a
cell population. Survival advantage may be provided by virtue
of a combination of directions of phenotypic interconversion.

4. The stochastic units generating dynamic
heterogeneity can be found at many population
scales

4.1. Social modulation of task switching rates in harvester
ants

In the three examples we provided above, we considered
the consequences of dynamic heterogeneity for populations
of cells. As we noted in [1], these concepts apply to
populations composed of molecules, cells, individuals, etc.
In a fourth example, we discuss dynamic heterogeneity
within populations composed of multicellular organisms. In
ecological studies, various species of harvester ants can convert
between phenotypes at different levels. “Task switching’ can
occur between states including patrolling, nest maintenance,
foraging, and midden work (cleaning up debris) [35, 36]. The
rates of transitions depend on the initial and final single-ant
phenotype under consideration. In the species P. barbatus, the
conversion of midden ants to foraging ants and the conversion
of ants performing nest maintenance to patrolling ants are
unidirectional. However, phenotypic conversion occurs both
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Figure 5. Stochastic fluctuations can be integrated at various scales. (a) Some fluctuations in the abundances of some molecules may be
localized to individual cells. These fluctuations are cell-intrinsic. (b) Local signaling may propagate the effects of fluctuations in molecular
levels in small clusters of cells. (c) A phenotypic fluctuation originating in a single cell may cause fluctuations in the phenotypes of other
cells in the tissue at large. Molecular signals may be relayed by non-motile cells, as well as be carried to distant sites by motile cells.

from patrolling to foraging and in the reverse direction.
Phenotypic conversion also proceeds at a finer scale. Not all
‘foragers’ in a colony of P. barbatus forage every day. Ants in
the ‘inactive’ state remain in the nest [37].

How might phenotypic switching provide a survival
benefit to a population of ants? The dispersal of foragers
can provide the benefit of acquiring food. However, the act
of foraging outside of the nest also risks loss of ants to
wind and predation. To remain ‘under the diagonal’ in the
metronomogram, the rate of converting to the actively foraging
state must not be excessive. Because environmental conditions
change, a conversion rate that barely avoids extinction in
one situation could, in other cases, be unnecessarily cautious,
forfeiting the efficient acquisition of food. This suggests that a
species that adjusts the rates of phenotypic switching according
to dynamic environmental conditions enjoys a survival
advantage over a species with more primitive, non-social
phenotypic switching. In fact, the rates at which individual
members of P. barbatus convert from the inactive foraging
state to the active foraging state is modulated nonlinearly by
the time-frequency of encounters with patrollers [37]. Low
frequencies of encounters (up to once every 45 s) could indicate
that patrollers have been swept away, suggesting that foragers
should remain inactive. High frequencies of encounters (i.e.
once every second) may indicate that all of the patrollers
have hurried back to the nest to evade a threat and that
under these circumstances the foragers should also remain
inactive. Intermediate frequencies (i.e. once every 10 s) may
indicate relative safety and signal that the foragers should
activate foraging. These are the frequencies for which the rate
of converting to the actively foraging state peaks.

In this discussion, social modulation of phenotypic
conversion rates can confer a survival benefit, but populations
of ants displaying phenotypic conversion in the absence of
social modulation might also survive, though with less efficient
collection of food. One may ask whether switching between
active and inactive foraging states evolved at the same time
as social mechanisms for modulating interconversion rates,

or whether, instead, primitive switching evolved first, to be
subsequently refined by the addition of social control. This is
an example of how the concepts described in [1] can point to
directions for research, not only in the clinical treatment of
human disease, but also in ecology and evolutionary biology.

5. The stochastic units generating dynamic
heterogeneity can be integrated

In the Markov model illustrated using roulettes in figure 2(d) of
[1], stochastic fluctuations are depicted as though they occur
independently in different cells. One cell’s spin of a wheel
of fortune is not affected by the spins of other wheels at the
same time, and vice versa. In other words, stochasticity is cell
intrinsic (figure 5(a)). However, this perspective is likely to be
often an oversimplification. Just because a cell is depicted in
a cartoon as a well-defined container does not mean that it is
‘statistically’ isolated.

Molecular fluctuations may propagate through clusters
of cells connected by paracrine signaling (figure 5(b)). Kim
et al have described a paracrine signaling loop in Wntl-
induced mouse mammary tumors where luminal cells provide
Wntl signaling for basal cells presenting the Lrp5 receptor
[38]. In principle, transient fluctuations in Wntl signaling
secreted by the luminal subpopulation could manifest cell-
extrinsic effects, including transient losses in tumor-initiating
capability. In a study of human embryonic stem cells (hESCs),
Bendall et al proposed a model in which hESCs differentiated
into a fibroblast-like population (hdFs). The hdFs in turn
secrete signaling factors, such as IGF-II, that sustain the
hESCs in a self-renewing, pluripotent state [39]. In these two
examples, a transient loss of signaling from one cell type could
result in a loss of stem-like phenotypes in another cell type,
causing the system to ‘differentiate out.’

Fordyce et al have shown that DNA damage stress
in primary human mammary epithelial cells increases the
secretion of Activin A, which can increase the levels of Activin
A in surrounding cells [40]. Human mammary epithelial cells
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(HMEC) respond by secreting molecules (prostaglandins) that
increase the motility of surrounding epithelial cells. Thus
fluctuations in Activin A may ripple outward in a bed of
stationary cells, as well as be carried along by newly mobilized
vehicles (figure 5(c)). In the presence of cell—cell signaling and
cell motility, the fundamental ‘stochastically fluctuating units’
most relevant to consider for therapy may be cell communities
in a tissue, rather than individual cells in a population.

For the particular case of metronomic therapy, this
perspective offers a direction for increasing our understanding
of the role of the microenvironment. As discussed in
[1], rationales that have historically been associated with
high-frequency therapeutic dosing schedules have included
targeting ‘non-epithelial’ populations and processes such as
angiogenesis, carcinoma-associated fibroblasts, and immune
modulation. Our current discussion suggests going beyond
simply regarding stromal cells as secondary targets for
metronomic therapy. We propose that combinations of the
constituents of the microenvironment and the frank carcinoma
may need to be regarded together as the basic, cohesive units, in
which stochastic fluctuations appear, propagate, and integrate.

6. Manipulating populations undergoing dynamic
heterogeneity

To conclude, in this section, we outline a strategy whereby
we can understand the effects of manipulating the components
of a system displaying dynamic heterogeneity. Our purpose is
to modulate the consequences of dynamic heterogeneity for a
designed outcome.

6.1. Proliferation-independent versus
proliferation-dependent modulation of the time scales of
restoring homeostatic heterogeneity

For our discussion, we will discuss the particular example of
periodic drug kill, though the insights developed can be applied
to mechanisms that cell populations could have evolved to
control their own duration of survival.

Previous authors have suggested that the generation
of phenotypic heterogeneity is itself a target for therapy
[41]. Because phenotypic interconversion can maintain a
drug-resistant subpopulation, Sharma et al have suggested
blocking interconversion [42]. In a study of TRAIL-induced
apoptosis, Spencer et al suggested ‘reducing the impact of
cell-to-cell variability . . . through co-drugging’ [43]. However,
because phenotypic interconversion can also generate drug-
sensitivity, we would ask whether, as an alternative,
accelerating the generation of phenotypic heterogeneity could
be beneficial. Because the finite time scale for the generation
of heterogeneity in drug-sensitivity can impose a bottleneck
on the speed with which we deplete the target cell population
[1], we should find strategies for accelerating the acquisition of
drug-sensitivity. In this subsection, we describe the potential
use of the metronomogram to evaluate the ability of a

second biologic agent to hasten the acquisition of sensitivity
to a cytotoxic drug. The approach we will describe is an
example of an emerging strategy: the use of agents that might
themselves be neither cytotoxic nor cytostatic, but which
may, nevertheless, improve the efficacy of more traditional
cytostatic and cytotoxic drugs along with which they are
delivered.

To accomplish the goal stated above, we must seek a
particular kind of acceleration of the generation of sensitivity
to cytotoxic drug. Specifically, we seek biologic agents that
increase the drug-sensitive fraction generated in a given
time interval without a concomitant increase in population
expansion. To clarify our goal, we illustrate hypothetical
measurements in figure 6. We use figure 6(a) to provide an
example of the kind of dynamical behavior our analysis is
designed to reject. Figure 6(b) provides an example of the
kind of dynamical behavior we seek.

Figure 6(a) illustrates an example of a biologic agent
that produces ‘proliferation-dependent’ acceleration of the
acquisition of drug-sensitivity. Curve 1 represents the
effectiveness of various administration frequencies for a
cytotoxic drug applied at a particular dose. Circle 2 represents
one dosing frequency. Upon the addition of a second biologic
agent, the same dosing frequency now corresponds to circle
5. The biologic agent under investigation indeed produces
an increase in the drug-sensitive fraction fg generated in
the given interdose period Az. The displacement from circle
2 to 5 has a vertical component (arrow 3). However, the
displacement also has a horizontal component (arrow 4),
which represents an increase in the raw population number
generated in the time interval Atz. In this example, the
acceleration of the generation of drug-sensitivity is not worth
the concomitant acceleration in population expansion. The
horizontal movement is sufficient to push circle 5 into the
region below the diagonal, where the target cell population
is expected to expand. Circle 5 has merely explored another
position of the curve to which circle 2 already belonged.
Circle 5 does not move to a different curve. This can result
when the rate coefficients in equations (1) and (2) from
[1] are uniformly multiplied by the same scale factor. This
changes the values of laboratory clock time to which different
points on curve 1 correspond, but the shape of the parametric
plot on the metronomogram is unchanged. This mathematical
picture is consistent with the hypothesis that the biologic agent
accelerates the acquisition of sensitivity to drug by virtue of
increasing the number of proliferation events. This increases
the number of opportunities for stochastic transitions between
states of drug-sensitivity and drug-resistance. However, the
efficiency with which a given number of proliferation
events generates transitions to the drug-sensitive state is
unchanged. This is why we call this category of acceleration
of the acquisition of drug-sensitivity ‘proliferation-
dependent.’

Figure 6(b) is a second example in which a different
biologic agent provides, instead, ‘proliferation-independent’
acceleration of the acquisition of drug-sensitivity. Curve 6
represents the efficacy of a variety of dosing frequencies for a
cytotoxic drug applied at a particular dose. Circle 7 represents
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Figure 6. Using a metronomogram to identify therapies that accelerate the generation of drug-sensitivity in a proliferation-independent
fashion. (a) ‘Proliferation-dependent’ acceleration. (b) ‘Proliferation-independent’ acceleration.

one dosing frequency. Upon administration of the biologic
agent, the dosing frequency that previously corresponded to
circle 7 now corresponds to circle 8. The biologic agent maps
curve 6 below to curve 9 above. The absence of horizontal
movement indicates that the biologic agent has not caused an
increase in population expansion. We seek vertical movement
because it increases the range of drug-dosing frequencies that
lie above the fs = fp diagonal. A larger proportion of curve 9,
as compared to curve 6, resides in the region fy > fp. When
evaluating candidate biologic agents to be combined with
cytotoxic drugs, we seek the vertical motion in figure 6(b).
This is in contrast to the proliferation-dependent motion in
figure 6(a), where an increase in proliferation negates the
acceleration of the acquisition of drug-sensitivity.

6.2. Different factors modulate the kinetics of the generation
of heterogeneity in proliferation-dependent and
proliferation-independent ways

The idea of ‘proliferation-independent’ and ‘proliferation-
dependent’ acceleration of phenotypic conversion has been
applied in regenerative biology. In a study of the generation of
induced pluripotent stem cells (iPSCs) from differentiated cells
in a murine Nanog-GFP system, Hanna ef a/ found that some
candidate molecular manipulations (p21XP, p53KP, Lin28°F)
accelerated the generation of iPSCs relative to laboratory
clock time by virtue of accelerating proliferation [44]. In
contrast, overexpression of Nanog accelerated iPSC generation
significantly through an increase in the probability of acquiring
pluripotency during each cell division. This is proliferation-
independent acceleration.

Candidate methods to identify effective agents to
accelerate phenotypic conversion could use screening
strategies [45], as well as analysis of the effect of stress
signaling factors which indicate a more unpredictable
environment. For example, the cytokine IL-6 increases the
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rate of conversion from non-stem to ‘stem-like’ cancer cells,
as described by Iliopoulos et al [9]. Combined use of agents
that target degradation and synthesis of mRNA and protein
provide an additional approach. This strategy can be described
using the particular example of translational bursts [46].
By decreasing the average copy number of mRNA while
increasing the average rate of translation, the distribution of
single-cell protein levels can be widened while maintaining
the same mean value. The same idea could be applied in other
molecular cascades. Identification of agents through these
strategies will allow modulation of dynamic heterogeneity
that can then be deconstructed through a mathematical
analysis.

7. Summary

In sections 2-5, we explored a variety of mechanisms that
can generate phenotypic stochasticity, a variety of phenotypes
for which phenotypic interconversion can be biologically
and clinically consequential, and ranges of population scales
and integration over which stochastic fluctuations can arise
and propagate. Finally, we outlined strategies for optimizing
modulation of dynamic heterogeneity. Detailed study of
examples like these will undoubtedly elucidate molecules and
pathways that participate in the return of a population of units
to homeostatic heterogeneity and provide clinical utility.
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