
UC Berkeley
UC Berkeley Previously Published Works

Title
Concepts relating magnetic interactions, intertwined electronic orders, and strongly 
correlated superconductivity

Permalink
https://escholarship.org/uc/item/1qf3765v

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
110(44)

ISSN
0027-8424

Authors
Davis, JC Séamus
Lee, Dung-Hai

Publication Date
2013-10-29

DOI
10.1073/pnas.1316512110
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1qf3765v
https://escholarship.org
http://www.cdlib.org/


Concepts relating magnetic interactions, intertwined
electronic orders, and strongly correlated superconductivity
J. C. Séamus Davisa,b,c,d,1 and Dung-Hai Leee,f,1

aDepartment of Physics, Cornell University, Ithaca, NY 14853; bCondensed Matter Physics and Material Science Department, Brookhaven National Laboratory,
Upton, NY 11973; cSchool of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland; dKavli Institute at Cornell for Nanoscale Science, Cornell
University, Ithaca, NY 14853; eDepartment of Physics, University of California, Berkeley, CA 94720; and fMaterials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2010.

Contributed by J. C. Séamus Davis, September 9, 2013 (sent for review July 13, 2013)

Unconventional superconductivity (SC) is said to occur when
Cooper pair formation is dominated by repulsive electron–electron
interactions, so that the symmetry of the pair wave function is
other than an isotropic s-wave. The strong, on-site, repulsive elec-
tron–electron interactions that are the proximate cause of such SC
are more typically drivers of commensurate magnetism. Indeed, it
is the suppression of commensurate antiferromagnetism (AF) that
usually allows this type of unconventional superconductivity to
emerge. Importantly, however, intervening between these AF and
SC phases, intertwined electronic ordered phases (IP) of an unex-
pected nature are frequently discovered. For this reason, it has been
extremely difficult to distinguish the microscopic essence of the
correlated superconductivity from the often spectacular phenome-
nology of the IPs. Herewe introduce amodel conceptual framework
within which to understand the relationship between AF electron–
electron interactions, IPs, and correlated SC. We demonstrate its
effectiveness in simultaneously explaining the consequences of AF
interactions for the copper-based, iron-based, and heavy-fermion
superconductors, as well as for their quite distinct IPs.

high-Tc superconductivity | strong correlations | fermiology

Emergence, the coming into being through evolution, is an
important concept in modern condensed matter physics (1).

Superconductivity is a classic example of emergence in the realm
of quantum matter: as the energy scale decreases, the effective
electron–electron interactions responsible for Cooper pairing and
thus superconductivity evolves from the elementary microscopic
Hamiltonian through unanticipated modifications (2). This evo-
lution is why it is so difficult to derive superconductivity (SC) from
first principles. Finding the microscopic mechanism of Cooper
pairing means discovering the nature of the ultimate effective
electron–electron interaction at the lowest energy scales.
In the last three decades, unconventional (3–5) forms of SC have

been discovered in many strongly correlated (repulsive electron–
electron interaction) systems. These materials fascinate a lay per-
son for their high superconducting transition temperatures and
therefore the potential for revolutionary applications in power
generation/transmission, transport, information technology, sci-
ence, and medicine. They intrigue (and challenge) physicists to
identify the mechanism of their high pairing-energy scale and be-
cause of the many intertwined (6, 7) electronic phases (IPs) that
have been discovered in juxtaposition with the unconventional
superconductivity. These IPs have been hypothesized to “arise
together from one parent state” such that “the various order
parameters are intertwined rather than simply competing with
each other” (7). The best known and most widely studied exam-
ples of such materials include the copper-based (8–11) and iron-
based (12–14) high-temperature superconductors, the heavy fer-
mion superconductors (15–17), and the organic superconductors
(18). One thing commonly noted in these systems is that SC nor-
mally borders antiferromagnetism (AF): in the phase diagram
spanned by temperature and a certain control parameter (chem-
ical-doping, pressure, etc.), an SC dome stands adjacent to the AF

phase (Fig.1). However, the precise way the two phases are con-
nected varies greatly from system to system.
Another very common observation is the appearance of other

ordered phases of electronic matter that intertwine with the SC.
These exotic intertwined phases (IPs) occur in the terra incognita
between the SC and the AF (Fig. 1, gray). Examples include the
charge/spin density wave (19–21) and intra-unit-cell symmetry
breaking (21–23) orders in the copper-based superconductors
and the nematic order (24, 25) in the iron-based superconductors.
A key long-term objective for this field has therefore been to
identify a simple framework within which to consider the re-
lationship between the antiferromagnetic interactions, the inter-
twined electronic orders that appear at its suppression, and the
correlated superconductivity.
Because in all of the systems considered here SC emerges from

the extinction of AF, it is widely believed that the effective elec-
tron–electron interaction triggering the Cooper pairing could be
AF in form. In that case, of course, the same argument could apply
to the other intertwined electronic phases. These ideas motivate
the assertion that AF effective electron–electron interactions may
drive both the correlated SC and the other IPs. Until recently,
however, there has been little consensus on this issue. One reason
is that the experimental evidence for many such intertwined states
has only been firmly established in recent years. Another reason
is that, although magnetism in proximity to unconventional SC
appears universal, the nature of the IPs changes from system to
system for reasons that appear mysterious.
In this paper, we therefore explore the plausibility that an AF

effective interaction could be the driving force for both the
unconventional SC and the intertwined orders in the copper-
based, iron-based, and heavy fermion superconductors. [We omit
discussion of organic superconductors (26, 27) for the sake of
brevity.] Here we will not try to rigorously solve for the ground
state under different conditions. Our goal is to ask whether the
known IPs are the locally stable mean-field phases when the sole
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effective electron–electron interaction is AF. We understand
that the actual effective interactions may be more complex than
this simplest AF form; we deliberately omit these details with the
goal of identifying a simple framework within which all of the
relevant phenomena can be considered. Two very recent pre-
prints based on a related approach, but focusing only on the
copper-oxide superconductors, have been published (28, 29).

Effective Hamiltonian
Thus, we start by studying the assertion that fermiology (the Fermi
surface topology) + AF effective electron–electron interaction can
generate the known IPs in different types of correlated SC mate-
rials. Our effective Hamiltonian is viewed as evolved from the bare
Hamiltonian for strongCoulomb interactions, and our strategy is to
explore, in different ordering channels, which order dominates as
the exchange constants of the effective interactions increase from
zero. Under these circumstances, it is the AF interaction that is
universal, whereas it is the fermiology that is not. The effective
Hamiltonian corresponding to our assertion is

Heff =
X
k

′X
s

eðkÞnsðkÞ+
X
i; j

JijSi ·Sj: [1]

Here, k and s are the momentum and spin labels, respectively. Si
represents the total spin operator in the ith unit cell and is given

by
1
2
P

τ;sc
†
iτsσ

→
ss′ciτs, where τ labels the degrees of freedom in each

unit cell (e.g., orbital, different sites). In addition, in Eq. 1, Σ′
k is

a sum restricted to the neighborhood of the Fermi surface (which
can have several disconnected pieces), eðkÞ is the dispersion of
the relevant band in the vicinity of the Fermi surface, and JijSi ·Sj
should be understood as an electron–electron scattering term.
Although we write it in real space, it should be converted to
the band eigen-basis and projected to the neighborhood of the
Fermi surface for each different type of system.
Obviously, many simplifying assumptions have already been

made here. Note that, aside from the fact that Σ′
k restricts states

to low single-particle excitation energies, there is no further
constraint on the Hilbert space, there is no gauge field, and the
particle statistics are the usual Fermi statistics. The only effect
of interactions is captured by the Jij term. This simplification asserts
that the low energy physics, even nonfermi liquid behavior, can be
the result of the AF effective interaction. Therefore, although
in the absence of Jij Eq. 1 describes a Fermi liquid, in its presence,
the system may behave otherwise precisely because Jij can drive
many intertwined instabilities, and strong (critical) fluctuations
between these instabilities can then drive non-Fermi liquid be-
havior. Thus, writing down Eq. 1 is not equivalent to assuming
a nearly AF Fermi liquid (30, 31). This statement is particularly

true near, for example, the AF quantum critical point where Jij
can exhibit a strong dependence on the energy cutoff down to
the lowest energy.
Of course, we do understand that many learned readers may

question our starting point of Eq. 1. However, in the search for
a simple conceptual framework within which to understand quite
different correlated superconductors along with their distinct and
complex IPs in multiple material systems (8–17), such a simple
starting point can have many advantages.

Copper-Based Superconductors
For the case of the copper-based SCs (8–11), we use a simple one-
band model to describe the first term of Eq. 1; the relevant Fermi
surface is shown in Fig. 2A. For Jij, we use the simplest nearest
neighbor interaction to emulate the AF correlations. The utility
of Eq. 1 is validated in part by the Fermi liquid quasi-particle
Landau quantization observed by high field quantum oscillation
experiments (32, 33); it is theoretically plausible (34) that such
Fermi liquid behavior can be regained when the strong magnetic
field quenches the relevant fluctuations.
It has been known since the early days of cuprate SC that AF

fluctuations can induce d-wave Cooper pairing (35–37). We begin
by reproducing what is known. Using the effective Hamiltonian
specified above, we obtain (Methods) the leading and subleading
SC gap functions shown in Fig. 2 C and D. (The idea to mean-
field decouple the magnetic interaction to obtain Cooper pairing
originates from refs. 38 and 39.) These two gap functions are ap-
proximately described by cos  kx − cos  ky and cos  kx + cos  ky, respec-
tively. This result indicates that the cuprates can have extended
s-wave pairing tendency (39) after all. Furthermore, Fig. 2B shows
how this Fermi surface exhibits eight special hot spots (the red
dots) where the AF Brillouin zone (BZ; dashed lines) crosses it.
These spots are hypothesized to play a leading role in the interplay
of intertwined phases and superconductivity in cuprates (21, 28).

T
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Control Parameter

AF

IP
SC

Fig. 1. Schematic phase diagram
of unconventional superconductors.
Starting from a robust commensu-
rate AF, a control parameter, such as
carrier density or pressure, is varied
so that the critical temperature TAF
of the AF phase diminishes. Eventu-
ally, an unconventional SC phase
appears at higher values of the
control parameter, and its critical
temperature Tc is usually dome
shaped. The intervening gray region
is where the AF phase and the SC
phase connect. It is here that the
intertwined phases of electronic matter have typically been discovered. The
characteristics of the IPs are highly distinctive to each system, as is the precise
way (e.g., first order, coexistence, quantum critical) that the AF–SC connection
occurs. By contrast, the appearance of unconventional SC phase on suppression
of an AF state is virtually universal.

A B

DC

Fig. 2. Fermi surface and unconventional superconducting states of cuprates.
(A) The cuprate first BZ, within which all of the momentum-space (k-space)
electronic states of the system are described when not in the AF state. It spans
a range −π=a< kx ≤ π=a; −π=a< ky ≤ π=a, where a is the unit cell dimension. The
dimensions of the BZ in A are in units of π=a. The model Fermi surface of the
cuprates, constructed using a tight-binding single band model with first (t),
second (t′), and third (t″) neighbor hopping, where t′=t = 0:3 and t″=t= 0:2, is
shown. (B) This Fermi surface exhibits eight special hot spots (the red dots) where
the AF BZ (dashed lines) crosses it. They appear to play a leading role in the
interplay of intertwined phases and superconductivity (21, 28). The black and
gray arrows are the wavevectors of the leading and subleading charge density
wave instability. (C) The leading spin-singlet superconducting gap function de-
rived from Eq. 1. The hatch size is proportional to the magnitude and the color
indicates the sign (red, −; blue, +). (D) The subleading singlet superconducting
gap function derived from Eq. 1. The hatch size is proportional to the magnitude
and the color indicates the sign (red, −; blue, +). The gap functions in C and D are
well described by cos  kx − cos  ky and cos  kx + cos  ky , respectively.
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In the particle–hole interaction channel, Eq. 1 predicts (Methods)
two types of instabilities: one preserves translation invariance (aQ=
0 instability) and the other (a finite Q instability) does not. Within
our approach, the leadingQ = 0 instability is to a nematic state. The
order parameter and the associated Fermi surface distortion are
shown in Fig. 3A. This instability leads to the breaking of the crystal
90° rotation symmetry, such as has been reported within the CuO2
unit cell (21). The fact that the cuprate Fermi surface has such
a tendency to Pomeranchuk distort has been widely discussed (40).
The subleading Q = 0 instability is twofold degenerate. The

order parameters and the associated Fermi surface distortions are
shown in Fig. 3B andC. (Similar instabilities in hexagonal systems
were discussed recently in ref. 41.) Because the distorted Fermi
surfaces are not k↔− k symmetric, these instabilities lead to time
reversal symmetry breaking. In Fig. 4A, we show the ground state
current distribution produced by these order parameters in Fig.
3 B and C. Depending on the quartic term in the Landau free
energy expansion, the order parameters of Fig. 3 B and C can
coexist. In Fig. 4B, we show the ground state intra-unit-cell cur-
rents associated with the symmetric and antisymmetric combi-
nation of the order parameters in Fig. 3 B and C, respectively.
Clearly this subleading time reversal breaking Pomeranchuk in-
stability leads to states with the same broken symmetry as the loop
current states proposed in ref. 42 and not inconsistent with
reported time reversal symmetry breaking in cuprates (43–45).
However, it is important to stress that our Q = 0 instability does
not lead to a pseudogap. Moreover, although this instability is
subleading here, it is possible that material dependent details
omitted in our simple effective action can change that.

The leading Q ≠ 0 instability in the particle-hole channel is a
charge density wave (CDW) instability [in a recent preprint (28),
a related idea was discussed]. The subject of CDWorder in cuprate
superconductors has a long history. An apparently bidirectional
modulated CDW with only short range order is widely observed
using spectroscopic imaging scanning tunneling microscopy (21),
but it was difficult to be certain these were true bulk phenomena.
Therefore, for a long time the only bulk charge density wave order
that was firmly established experimentally was the unidirectional
charge density wave (stripes) (19) in the La2BaCuO4 family of
compounds (20). Recently, however, signatures of apparent bi-
directional CDW order have been observed by X-ray scattering in
bulk YBa2Cu3O7 crystals (46–48).
In Fig. 5 A–D, we present the leading CDW order parameters

that are generated by Eq. 1. Fig. 5 A–D represents the CDW order
parameters whose ordering wavevectors are the four horizontal
and vertical black arrows connecting the hot spots in Fig. 2B. (The
gray arrows are the ordering wavevector of the subleading charge
density wave order that we find. This result is different from the
result of ref. 28 where the gray arrows are the leading CDW
wavevectors, perhaps due to the difference in the details of effec-
tive interaction and bandstructure used in the two approaches.) At
the quadratic level in a Landau free energy expansion, the order
parameters in Fig. 5 A and B are degenerate with those in panels
Fig. 5 C and D. Depending on the coefficients of the fourth-order
terms, they can be either mutually exclusive (which results in a
unidirectional CDW) or coexist (which results in a bidirectional
CDW). In Fig. 5E, we show the energy gap of a bidirectional CDW
that corresponds to the out-of-phase coexistence of the order
parameters in Fig. 5 A–D (48).
Finally, the fact that there are both strong nematic (Fig. 3A)

and CDW (Fig. 5 A–D) susceptibilities implies that, in the pres-
ence of disorder, which can serve as localized external ordering
fields, locally nematic and CDW ordering can be induced to co-
exist. This statement is consistent with the scanning tunnelling
microscopy (STM) experiments (21). Such short-range disordered
induced ordering can exist even when in the clean limit the system
is not yet long-range ordered.
Obviously there is another key issue requiring discussion here: the

pseudogap of the cuprates. This unexplained gap to single-electron
excitations is anisotropic in k-space and appears at Tp � Tc for
underdoped cuprates (4, 8, 9, 11, 49). We hypothesize that the
consequences of an effective Hamiltonian as described in Eq. 1
could also account for such a pseudogap. The various instabilities

A

B

C

Fig. 3. The Q = 0 intertwined particle-hole instabilities of the cuprates (Meth-
ods). (A) The order parameter of the leadingQ= 0 (Pomeranchuk) instability and
the associated Fermi surface distortion of cuprates derived from Eq. 1. Here the
hatch size is proportional to the magnitude, and the color indicates the sign
(red, −; blue, +), and the dashed line marks the undistorted Fermi surface. This
instability breaks the 90° rotation symmetry and leads to nematicity. (B andC) The
order parameter of a degenerate pair of subleading Q = 0 instabilities and the
associated Fermi surface distortions. Because the distorted Fermi surfaces are not
k↔−k symmetric, these instabilities lead to time reversal symmetry breaking.

Fig. 4. The ground state current of the T-breaking Q = 0 particle-hole
instabilities in the cuprates. (A) The ground state current distribution asso-
ciated with the order parameters in Fig. 3 B and C. (B) The ground state
current distribution produced by the symmetric and antisymmetric linear
combination of the order parameters in Fig. 3 B and C. In A and B, the
thickness of the arrow is proportional to the magnitude of the current.
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(except those at Q = 0) discussed here can all gap out, at least
partially, the single-electron excitation spectrum. However, due to
the intertwining of these instabilities, the order parameter may
fluctuate from one type to another. This fluctuation would prevent
the system from becoming long range ordered without eliminating
the actual pseudogap for the single-electron excitations.
Thus, we consider the order parameters of different inter-

twined orders to form a multicomponent supervector. The mag-
nitude of the supervector is then responsible for the single-
particle gap. The direction of the supervector is the soft degree of
freedom, which ultimately determines the long ranged order of
the system. However, although this direction fluctuates, the sin-
gle-electron excitation spectrum remains gapped. In our case,
when the gap is partial, the low energy excitations include both
the directional fluctuations of the supervector and the remaining
gapless single particle excitations. Of course because of the cou-
pling with the collective excitations, these single-particle excita-
tions can have unusual, e.g., non-Fermi liquid, properties.
Now it remains to show with a supervector formed using the

AF, SC, and CDW order parameters that there is a pseudogap in
the single electron excitation spectrum, no matter where the
supervector points. The results are shown in Fig. 6. In Fig. 6A,
the supervector points in the AF direction. This supervector is shown
by the red arrow on the order parameter sphere on the right. Such an
order has the biggest effect at the hot spots (Fig. 2B) where the gap is
maximal (Fig. 6A,Left). Here and in other panels, a vanishing single-
particle gap at any point on the Fermi surface means that, along the
normal direction, there remains Fermi crossing, i.e., the Fermi sur-
face has either moved or reconstructed. The supervector in Fig. 6B
points in the SC direction. The gap spectrum shown on the left is the
familiar d-wave gap. In Fig. 6C, the supervector points in the CDW
direction. The energy gap spectrumon the left shows a nodal feature.
The supervector in Fig. 6D lies in the plane spanned by the SC and
the CDW but directionally between the two. Finally, in Fig. 6E, the
supervector points in a generic direction. Obviously in reality, dif-
ferent components of the supervector do not have to have the same
norm so that the fluctuations of the supervector actually occur on
a spheroid; hence, there is no enlarged symmetry.Wehope thisfigure
makes the heuristic case that a pseudogap can also be a consequence
of the effective interaction in Eq. 1, when the effects of fluctuating
intertwined order parameters are dominant. Many of the anomalous
physical properties in the pseudogap state could then be attributed to
orientational fluctuations of this intertwined supervector.

Iron-Based Superconductors
Next we carry out the equivalent exercise for the iron-based
superconductors (12–14). The first term of Eq. 1 is studied here

using a five-band tight-bindingmodel with the Fermi surface shown
in Fig. 7A. The blue and red lines mark the hole and electron Fermi
surfaces, respectively. To simulate the magnetic correlation in iron-
based superconductors, we include both the first (J1) and second
(J2) neighbor interaction in Jij. (A similar Hamiltonian, with a
doped Mott insulator basis, was proposed in ref. 50, 51.) This ef-
fective interaction has been derived from the functional renorm-
alization group calculation (52). Phenomenologically, there is
mounting evidence that themagnetic correlations in the iron-based
materials are not due to Fermi surface nesting (53). It is then more
appropriate to view the second term in Eq. 1 as being generated by
excitations over the entire bandwidth. The essential difference
from a Mott insulator here is the absence of a charge gap. There-
fore, the generation of the effective magnetic interactions is more
gradual. Using these inputs for J2=J1 ≥ 0:7, we find (Methods) the
leading and subleading SC order parameter shown in Fig. 7 B and
C, respectively. The leading gap function has the S± symmetry (54)
and the subleading one has dx2−y2 symmetry (13, 14).
In the particle-hole interaction channel, we find that (Methods)

the iron-based superconductors also have strong Q = 0 instabilities.
In Fig. 8A andB, we show the leading and subleading Fermi surface
distortions that we determine from Eq. 1 when the distortion am-
plitude is small. Here the undistorted Fermi surface is shown using
dashed lines. This result agrees with the functional renormalization
group findings (52). The leading Fermi surface distortion preserves
the point group symmetry of the crystal. Note that because both
electron and hole pockets expand (or shrink), it preserves the total
charge density. (We note that a large amplitude distortion of this
type can drive the system to undergo a semimetal to insulator
transition.) The subleading Q = 0 instability breaks the 90° rotation
symmetry. Although it is subleading at the quadratic level of the
Landau free energy expansion, it can become leading once the
cubic coupling with the (strong) AF fluctuation is taken into ac-
count [note that the AF order in the iron-based materials also

E

C D

A B

Fig. 5. The leading intertwined Q ≠ 0 particle-hole instabilities of the cuprates
(Methods). The ordering wavevector is ð±δ, 0Þ in A and B and ð0,±δÞ in C and D.
The black arrows in Fig. 2B are approximately the ordering wavevectors. (E)
The energy gap of CDW produced by the equal amplitude superposition of the
charge density wave depicted in A–D. The phase of the superposition is taken to
be +, +, −, −, and hence corresponds to a d-wave symmetry. (The energy gap
associated with the +, +, +, + superposition of A–D is similar.) The charge density
wave gap plotted in E is defined as the minimum energy gap of the mean-field
Hamiltonian in Methods along the momentum cut normal to the Fermi surface
but within the energy thin shell. The smallness of this combined order param-
eter near the nodes can give rise to the effect of Fermi arcs.

A B

DC

E

Fig. 6. Intertwined instabilities and the cuprate pseudogap. We represent the
three instabilities contained in Eq. 1 (AF, SC, and CDW) using a supervector
representing the combination of the three order parameters. The admixture
of AF, SC, and CDW phases can then be indicated by using the location of
the supervector on a sphere. In each panel from A to E, the direction of the
supervector is shown as the red arrow on the order parameter sphere on the
right of the same panel. The gap shown on the left of each panel is the min-
imum energy gap of the mean-field Hamiltonian in Methods along the mo-
mentum cut normal to the Fermi surface but within the energy thin shell. The
size of the hatch is proportional to the value of the single particle energy gap.
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breaks the 90° rotation symmetry (55)]. In Fig. 8C, we show the
effect of the symmetry breaking distortion we find on the orbital
occupation nxzðkÞ− nyzðkÞ. The fact that one needs magnetic
fluctuations to stabilize the C4-breaking Fermi surface distortion is
consistent with the arguments presented previously (12, 56, 57).
Thus, the result in Fig. 8 B andC can explain the ubiquitous nematic
ordering found in the iron-based superconductors (24, 25). It also
accounts for the photoemission observation of the substantial dif-
ference in the dxz and dyz orbital occupation in the nematic-distorted
state (58).
Within our approach of Eq. 1, iron-pnictides show a very weak

Q ≠ 0 CDW instability. The ordering wavevector of the leading
CDW is approximately (π, π). However, due to the poor overlaps
between the Fermi surfaces on the (π, π) displacement and the
fact that (π, π) only approximately connects electron with electron
or hole with hole pockets, a weak CDWwill not gap out the Fermi
surfaces. Therefore, we will not devote more space to consider-
ation of the CDW instability in pnictides.

Heavy Fermion Superconductors
Finally, we use this same conceptual framework to consider the ca-
nonical heavy fermion superconductor CeCoIn5. The band structure
we used for this material is the one given in ref. 59. The tight-binding
model consists of two orbitals per unit cell: the Wannier orbitals
associated with the light and heavy bands, respectively. The Fermi
surface is shown in Fig. 9A. The Jij we use to emulate the AF cor-
relation in CeCoIn5 is the simple nearest neighbor interaction. With
these inputs, we determine fromEq. 1 the leading and subleading SC
order parameter; the results are shown in Fig. 9B andC. The leading
superconducting gap function, with dx2−y2 symmetry (Methods), is
in excellent agreement with that recently determined by the STM
quasiparticle interference spectroscopy (59). The reason that the SC
gap primarily opens on the large Fermi surface centered at (π, π) is

because the hot spots associated with the AF scattering all reside on
that Fermi surface. This fact is shown in Fig. 9D. Like the cuprates,
the subleading SC gap function has extended s-wave symmetry.
In the particle-hole channel, our general approach in Eq. 1 also

predicts that CeCoIn5 has Q = 0 and Q ≠ 0 instabilities (Methods).
The order parameter and the Fermi surface distortion associated
with the leadingQ= 0 instability is shown in Fig. 10A. This distortion
breaks the crystal 90° rotation symmetry and leads to nematicity. It is
very interesting that, like the cuprates, the subleadingQ= 0 instability
is also to a degenerate pair of time reversal symmetry breaking states.
The order parameter and the distorted Fermi surfaces are shown in
Fig. 10B andC. The obvious similarity between theQ= 0 instabilities
in the heavy fermions and the cuprates is quite striking.
The order parameter of the leading (weak) Q ≠ 0 charge density

wave instability is shown in Fig. 11 A–D. The energy gap produced
by the in-phase coexistence of the order parameters in Fig. 11 A and
B with those in Fig. 11 C and D is shown in Fig. 11E. Experimental
searches of the signatures of these instabilities are under way.
Searching for instabilities intertwined with superconductivity

in heavy fermion compounds now seems an important future
direction. However, one must bear in mind that the equivalent
chemical pressure places CeCoIn5 near the optimal pressure,
where the SC transition temperature is the highest. The intertwined
instabilities tend to occur near the junction between AF and SC.
Therefore, unless negative pressure can somehow be applied, they
can remain out of reach for CeCoIn5. A better system for realizing
intertwined instabilities is CeRhIn5 which is AF at ambient pressure.

A B

C

Fig. 7. Model Fermi surface and superconducting states of iron pnic-
tides. (A) The pnictide-first BZ when not in the AF state. It spans a range
−π=a< kx ≤ kx=a;−π=a< ky ≤ π=a, where a is the dimension of a unit cell con-
taining only one Fe atom (we neglect the effects on unit cell definition of the
out of plane As atoms). Our model Fermi surface of iron-pnictides using a five-
band tight-binding model is shown as five closed contours: two red (outline
the electron pocket) and three blue (outline the hole pocket). (B) The leading
spin singlet superconducting gap function derived from Eq. 1. The symmetry is
S±. The hatch size is proportional to the magnitude, and the color indicates the
sign (red, −; blue, +). (C) The subleading singlet superconducting gap function
derived from Eq. 1. The symmetry is dx2−y2 . The hatch size is proportional to
the magnitude, and the color indicates the sign (red, −; blue, +). The results
in B and C are obtained using J2=J1 = tan  0:3π.

A

B

C

Fig. 8. Leading intertwined instabilities of iron-pnictides. (A) The leading Q =
0 instability and the associated Fermi surface distortions in the iron-based
superconductors derived from Eq. 1. The hatch size is proportional to the mag-
nitude, and the color indicates sign (red, −; blue, +). The dashed lines mark the
undistorted Fermi surface. The area of both electron and hole pockets expand
(or shrink) so that the total charge density is kept constant. This distortion does
not break any symmetry and hence is difficult to pin down. (B) The subleading
Q = 0 instability and the associated Fermi surface distortion derived from Eq. 1.
This distortion breaks the 90° rotation symmetry and couples to the stripe-like
unidirectional AF correlation strongly. Although the instability in B is sub-
leading at the quadratic level of the Landau free energy expansion, it can
become leading once the cubic coupling with the AF order parameter is taken
into account. (C) The effect of the Fermi surface distortion in B on the orbital
occupation nxzðkÞ−nyzðkÞ.
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By carefully studying the pressure–temperature phase diagram, one
might be able to find similar phenomena as in underdoped
cuprates. If so, this will give additional support for applicability
of the simple theory envisioned in Eq. 1.

Conclusion
From the above studies, using the simple concept of a controlling
influence of AF electron–electron interactions, it seems fair to say
that the low-energy effective Hamiltonian given by Eq. 1 can be
very useful in achieving an elementary understanding of the SC and
the intertwined instabilities in several canonical classes of un-
conventional superconductors. Specifically we note that these
studies demonstrate why, although superconductivity is universal,
the nature of the Fermi surface distortion and/or the density wave
instabilities depends so much on the details of the fermiology. Such
dependence is the reason why the intertwined electronic ordered
states in correlated SC compounds are so strongly material de-
pendent. Moreover, due to these distinct intertwined orders, Eq. 1
does not describe a “nearly antiferromagnetic Fermi liquid.” Thus,
our approach indicates that many of the anomalous properties of
the cuprates and the pnictides may be due to the fluctuations of the
order parameter among the relevant intertwined orders, whereas
the severity of these fluctuations can be material dependent. We
understand that the point of view presented here is simplified.
However, with a goal of identifying concepts that can simply
relate strong AF electron–electron interactions, intertwined
electronic ordered phases, and strongly correlated SC in distinct
material types, this is perhaps a good thing. We hope that the ap-
proach presented here can help to distill the essence of the
unconventional pairing mechanism from the impressive phenom-
enology of the IPs in present and future strongly correlated high
temperature superconductors.

Methods
We used the following procedures to determine the favored competing
orders from the effective Hamiltonian, starting with

Heff =
X
k

′X
s

eðkÞnsðkÞ+
X
i,j

JijS
→

i · S
→

j , [2]

where nsðkÞ=ψ†
k,sψk,s, and ψ†

k,s creates an electron in the single-particle
eigenstate at momentum k with spin s. As mentioned in the text, Σk restricts

the sum to single particle eigenstates whose energy is within a thin shell
from the Fermi energy.

First, we reexpress the second term in terms of the band eigen basis:

X
i,j

JijS
→

i · S
→

j =
1
A

X
k,p,q

X
s1,2,3,4

Vqðk;pÞψ†
k+q,s1 σ

→
s1 ,s2ψk,s2 ·ψ

†
p−q,s3σ

→
s3 ,s4ψp,s4 , [3]

where

Vqðk;pÞ= JðqÞ
n
ϕ*
αðk+qÞðk+qÞ ·ϕαðkÞðkÞ

o
×
n
ϕ*
αðp−qÞðp−qÞ ·ϕαðpÞðpÞ

o
:

Here, A is the total area, ϕ is the band eigen wavefunctions in the orbital
basis, and JðqÞ is the Fourier transform of Jij . For the copper-based, iron-
based, and heavy fermion superconductors, JðqÞ is taken to be an overall
coupling strength Jeff times the following form factors:

cos  kx + cos kyðcopper−basedÞ
cos  θ

�
cos  kx + cos  ky

�
+ sin  θ

�
2  cos kxcos ky

�ðiron−basedÞ
cos kx + cos kyðheavy− fermionÞ:

[4]

Jeff is a renormalized coupling strength that is unknown a priori. The result
for the iron-based superconductors were generated with θ= 0:3π. In Vqðk;pÞ,
the band index, e.g., αðk+qÞ, is defined to be the index of the band that is
closest to the Fermi energy at momentum k + q. If the corresponding single
particle state has energy beyond the energy shell, ϕ is set to zero. In Eq. 4,
ϕ is unity, a two-component vector, and a five-component vector for the
cuprates, CeCoIn5, and pnictides, respectively. For CeCoIn5, if one
decides to include the magnetic interaction between the f electrons
only, one needs to replace ϕ*

αðpÞðpÞ ·ϕαðqÞðqÞ in Eq. 4 by ϕ*
2,αðpÞðpÞϕ2,αðqÞðqÞ,

where 2 labels the f electron Wannier orbitals. The results for CeCoIn5

remain qualitatively unchanged using either formula.
The next step is to decouple Eq. 3 in the particle-particle (for Cooper

pairing) and particle-hole (for charge and spin density wave and Pomer-
anchuk distortion). The first-instability-mode analysis described here allows
us to determine the functional form of the order parameter. However, it
does not fix the overall magnitude. Once the functional form is determined,
we use the mean-field Hamiltonians described here to determine the energy
gaps, Fermi surface distortions, etc. The overall magnitude of the order

A B

DC

Fig. 9. Fermi surface and unconventional superconducting states of the heavy
fermion compound CeCoIn5. (A) The first BZ and Fermi surface associated with
a two-band band structure in ref. 58. The BZ spans a range −π=a< kx ≤ π=a;
−π=a< ky ≤ π=a, where a is the dimension of a unit cell. The leading (B) and
subleading (C) spin singlet SC gap functions. The leading gap function has dx2−y2

symmetry and the subleading one has extended S symmetry. In B andC, the hatch
size is proportional to the magnitude of the gap, and the color indicates the sign
(red, −; blue, +). (D) The Fermi surface and hot spots (the pink dots) of CeCoIn5.

A

B

C

Fig. 10. The intertwined Q = 0 particle-hole Instabilities of CeCoIn5. (A) The
leading Pomeranchuk instability and the associated Fermi surface distortion. The
hatch size is proportional to themagnitude of the order parameter, and the color
indicates the sign (red, −; blue, +). The dashed line marks the undistorted Fermi
surface. This Fermi surface distortion leads to the breaking of the 90° rotation
symmetry. (B and C) The degenerate pair of subleading Pomeranchuk instabilities
and their Fermi surface distortions. In both panels, the distorted Fermi surfaces do
not respect thek↔− k symmetry. Consequently time reversal symmetry is broken.
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parameter is chosen to yield approximately the same maximal energy gap
when each order parameter exists alone. The purpose is to convey the
qualitative features not to make quantitative comparative predictions.

Cooper Pairing. In the particle-particle channel, we focused on the spin singlet
Cooper pairing. This restriction leads to the following factorization of Eq. 3:

HMF =
X
k

′X
s

eðkÞnsðkÞ+ 3
A

X
p,k

X
a,b

Vscðp;kÞ

×
n
ψ+
−k,aψ

+
k,bΔðpÞeab +Δ* ðkÞebaψp,aψ−p,b +Δ* ðkÞΔðpÞe2ab

o
:

[5]

Here a and b label the spin and e↑↓ = − e↓↑ = 1 and e↑↑ = e↓↓ = 0. In Eq. 5

Vscðp;kÞ= Jðp− kÞ
�
ϕ*
αðkÞð−kÞ ·ϕαðpÞð−pÞ

�
×
�
ϕ*
αðkÞðkÞ ·ϕαðpÞðpÞ

�
: [6]

We then integrate out the electrons and keep up to the quadratic terms in Δ′s.
The result is the following free energy form

1
A

X
k,p
′ ΔðpÞKT ðp;kÞΔ* ðkÞ, [7]

where

KT ðp;kÞ= 6Vscðp;kÞ− 36
Z

d2q

ð2πÞ2
Vscðp;qÞχT ðqÞVscðq;kÞ, [8]

where the temperature (T)-dependent free fermion pair susceptibility is given by

χT ðkÞ∝
1− 2fðeðkÞÞ

eðkÞ : [9]

Here the proportionality constant is unimportant for our purposes because it
can be absorbed into the unknown Jeff (see below).

The leading (subleading) gap functions are the eigenfunctions ofMT ðq;kÞ=
χT ðqÞVscðq;kÞ with the largest (second largest) eigenvalue. (The proportionality
constant in χT changesall eigenvaluesby the samemultiplicative constantbutnot
the eigenfunctions.) These eigenfunctions are the order parameters that will
first (second) become unstable as Jeff increases (at a temperature T much less
than the thickness of the energy shell). These eigenfunctions are obtained nu-
merically after discretizing the momentum space enclosed by the energy shell
[under such discretization,MT ðq, kÞ becomes a matrix]. We diagonalize theMT

matrix and then average the eigenfunctions along the direction perpendicular
to the Fermi surface. This procedure leads to the results presented in the text.

CDW and Pomeranchuk Instability. CDW and Pomeranchuk instability occurs in
the spin singlet particle-hole channel. Decoupling Eq. 3 in this channel leads
to the following mean-field Hamiltonian:

HMF =
X
k

′X
s

eðkÞnsðkÞ

−
3
A

X
k,p,Q

Vcdw ðp; kÞ×
n
ΔQðpÞψ†

k,aψk+Q,a +ψ†
p+Q,aψp,aΔ*

QðkÞ− 2ΔQðpÞΔ*
QðkÞ

o
:

[10]

Here

Vcdw ðp; kÞ= Jðp− kÞ
�
ϕ*
αðp+QÞðp+QÞ ·ϕαðk+QÞðk+QÞ

�
×
�
ϕ*
αðkÞðkÞ ·ϕαðpÞðpÞ

�
:

[11]

Again, we integrate out the fermions to arrive at the following quadratic free
energy form:

1
A

X
k,p,Q

ΔQðpÞ~KQ,T ðp; kÞΔ*
QðkÞ, [12]

where

~KQ,T ðp; kÞ= 6Vcdw ðk;pÞ− 9
Z

d2q

ð2πÞ2 Vcdw ðp;qÞ~χQ,T ðqÞVcdw ðq; kÞ: [13]

Here the free fermion particle-hole susceptibility is given by

~χQ,T ðqÞ∝
f
�
eðq+QÞ�− f

�
eðqÞ�

eðqÞ− eðq+QÞ : [14]

The leading order parameter is the eigenfunction of ~MQ,T ðq, kÞ=
~χQ,T ðqÞVcdw ðq;kÞ with the largest eigenvalue. Here we have to search both
the ordering wavevector Q as well as the leading form factor. This task is
again achieved numerically after discretizing the momentum space within
the energy shell and diagonalizing the resulting matrix ~MQ,T . As before, we
perform an average of the eigenvector along the direction perpendicular to
the Fermi surface, which leads to the results presented in the text.

The Pomerahnchuk distortion is determined as the leading order pa-
rameter in the Q→ 0 limit of MQ,T . In our calculation, we always find both
Q = 0 and Q ≠ 0 instabilities.

Spin Density Wave. A spin density wave is a spin triplet particle-hole instability.
Decoupling Eq. 3 in this channel leads to the followingmean-field Hamiltonian:

HMF =
X
k

′X
s

eðkÞnsðkÞ+ 1
A

X
p,k,Q

Vsdwðp; kÞ

×
�
mQðpÞ ·ψ†

k,cσ
→

cdψk+Q,d +m*
QðkÞ ·ψ†

p+Q,aσ
→

abψp,b −mQðpÞ ·m*
QðkÞ

�
,

[15]

where

Vsdwðp; kÞ= JðQÞ
�
ϕ*
αðp+QÞðp+QÞ ·ϕαðpÞðpÞ

�
×
�
ϕ*
αðkÞðkÞ ·ϕαðk+QÞðk+QÞ

�

+
1
2
Jðp− kÞ×

�
ϕ*
αðp+QÞðp+QÞ ·ϕαðk+QÞðk+QÞ

�
×
�
ϕ*
αðkÞðkÞ ·ϕαðpÞðpÞ

�
:

[16]

Like before, we integrate out the fermions. The resulting quadratic free
energy form reads to

1
A

X
k,p

Ksdw,Q,T ðp; kÞmQðpÞ ·m*
QðkÞ, [17]

where

Ksdw,Q,T ðp; kÞ= −Vsdwðk;pÞ− 2
Z

d2q

ð2πÞ2
Vsdwðp;qÞ~χQ,T ðqÞVsdwðq; kÞ: [18]

Here the free fermion particle-hole susceptibility is given by Eq. 14. The leading
order parameter is the eigenfunction of ~MQ,T ðq, kÞ=~χQ,T ðqÞVsdw ðq; kÞ with the
minimum eigenvalue. As before, we search the leading order parameter nu-
merically after discretizing the momentum space within the energy shell.

Pseudogap of the Cuprates. Fig. 6 is generated by superposing the order
parameter terms in Eq. 5 (SC), Eq. 10 (CDW), and Eq. 15 (spin density wave)
to form a grand mean-field Hamiltonian. If we include all necessary com-
ponents, the supervector with AF, SC, and CDW order as components will
have 3 + 2 + 2 + 2 = 9 components. [The last 2 + 2 is the number of com-
ponents of the CDW, associated with the ð± δ, 0Þ and ð0,± δÞ order.] This
large number is too complex to handle and impossible to present the
results. We simplify the situation to a supervector with only three compo-
nents. The first component is the superconducting order. Here we restrict the
phase of the superconducting order parameter to be real. The second compo-
nent is the CDW order. For this order parameter we choose the bidirectional

A B

DC

E

Fig. 11. The leading intertwined Q ≠ 0 particle-hole Instabilities of CeCoIn5.
(A–D) The leading charge density wave order parameter. (A and B) The or-
dering wavevectors are ± ð0:56π,0:26πÞ. (C and D) The ordering wavevectors
are ± ð0:26π,0:56πÞ. (E) The energy gap produced by the in-phase coexistence
of order parameters in A–D. The hatch size is proportional to the magnitude,
and the color indicates the sign (red, −; black and blue, +).
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CDW corresponding to the in-phase superposition of the fundamental density
wave in two orthogonal directions. Moreover we set the the overall (sliding)
phase of the CDW order parameter to be real. The third component is the AF.
Here we restrict the order parameter to a point in a particular, say the z di-
rection. In addition to the above simplification, we also tune the magnitudes of
the order parameters so that they each gives rise to an energy gap of ap-
proximately equal magnitude. This procedure leads to the following mean-
field Hamiltonian:

HMF =
X
k

′X
s

eðkÞnsðkÞ

+n1

(
1
A

X
p,k

Vsdwðp; kÞ
h
fsdw,Qs ðpÞψ†

k,cσ
z
cdψk+Qs ,d + f*sdw,Qs

ðkÞψ†
p+Qs ,aσ

z
abψp,b

i

+n2

(
1
A

X
p,k

X
a,b

3ea,bVscðp; kÞ×
h
fscðpÞψ+

−k,aψ
+
k,b + f*scðkÞψp,bψ−p,a

i)

+n3

(
1
A

X
k,p,Qc

ð−3ÞVcdw ðp;kÞ
h
fcdw,Qc

ðpÞψ†
k,aψk+Qc ,a + f*cdw,Qc

ðkÞψ†
p+Qc ,aψp,a

i)
:

[19]

Here, Qs = ðπ, πÞ, Qc = ð±δ, 0Þ,ð0,±δÞ, and fsdw,Qs
,fsc ,fcdwQc

are the form factors
of the leading order parameters determined previously, properly scaled
to produce a similar maximum gap when each order parameter exists
alone. The n1, n2, and n3 are the components of the supervector shown
in Fig. 6. In general for incommensurate δ, the above mean-field Ham-
iltonian couples infinite many k points together. The result presented
previously is obtained by truncating this infinite set to the following 10-
element set: fk,k ± ðδ,0Þ,k ± ð0,δÞ,k + ðπ,πÞ,k+ ðπ,πÞ± ðδ, 0Þ,k+ ðπ,πÞ± ð0,δÞg.
This truncation leads to a 20 × 20 Nambu matrix for each k. This matrix is
diagonalized numerically to determine the energy gap. The minimum
energy gap among all k (within the energy thin shell) for each direction
normal to the Fermi surface is plotted in Fig. 6.
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