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Two-dimensional (2D) perovskites or Ruddleson Popper (RP) perovskites have 

emerged as a class of material inheriting the superior optoelectronic properties of two 

different materials: perovskites and 2D materials. The large exciton binding energy and 

natural quantum well structure of 2D perovskite not only make these materials ideal 

platforms to study light-matter interactions, but also render them suitable for fabrication 

of various functional optoelectronic devices. Nanoscale structuring and morphology 
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control have led to semiconductors with enhanced functionalities. For example, nanowires 

of semiconducting materials have been extensively used for important applications like 

lasing and sensing. Catalyst-assisted Vapor Liquid Solid (VLS) techniques, and template 

assisted growth, have conventionally been used for nanowire growth. However, catalyst 

and template-free scalable growth with morphology control of 2D perovskites have 

remained elusive. In this manuscript, we demonstrate a facile approach for morphology-

controlled growth of high-quality nanowires of 2D perovskite, (BA)2PbI4. We demonstrate 

that the photoluminescence (PL) from the nanowires are highly polarized with a 

polarization ratio as large as ~ 0.73, which is one of the largest reported for perovskites. 

We further show that the photocurrent from the device based on the nanowire/graphene 

heterostructure is also sensitive to the polarization of the incident light with the 

photocurrent anisotropy ratio of ~3.62 (much larger than the previously reported best 

value of 2.68 for perovskite nanowires), thus demonstrating the potential of these 

nanowires as highly efficient photodetectors of polarized light. 

 

 

Organic Inorganic Halide Perovskites (OIHP) or hybrid perovskites have gained 

immense attention in the last few years due to its excellent electronic and optical properties.[1–

4] These materials have found applications in low-cost, highly efficient energy harvesting 

devices.[5–8] They have also shown exceptional performance in optoelectronic devices like light 

emitting diodes (LEDs) and detectors.[9–12] However, these materials suffer from their lack of 

stability in ambient conditions (oxygen and moisture) and their performance degrades with 

time.[13–16] Two dimensional derivatives of perovskites, with hydrophobic organic spacers 

separating the lead halide octahedrons, have led to the emergence of a new class of materials 

with enhanced stability and functionality.[17–20] These 2D perovskites, in addition to being more 

stable, also show high quantum yields and high binding energy of excitons, hence serving as 

ideal platforms to study and manipulate light-matter interactions at the nanoscale.[21–23] 2D 
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perovskites, with their natural quantum confined layered structure, ideally bridge the gap 

between these two emerging classes of materials with exceptional optoelectronic properties: 2D 

materials and perovskites, bringing in the best of both worlds with superior in-plane mobility, 

high binding energy and enhanced stability.[24]  

Morphology control has proven to be an effective strategy in realization of 

semiconductors with greater potential.[25] Nanoplatelets of semiconductors have been used as 

high gain media and observation of whispering gallery modes.[26–28] Nanowires of different 

materials have been used in various applications like photodetectors, sensors and field 

emitters.[29–31]  As such, morphology controlled growth of 2D perovskites is crucial for enabling 

better use of the material in optoelectronics. Additionally, nanowires of 3D perovskites have 

demonstrated low threshold lasing due to dielectric confinements of the excitons in such 

structures.[29,32] Such confinement effects are expected to be much stronger in 1D nanowire 

architecture of 2D perovskites due to their layered structure leading to more pronounced 

confinement effects. The ability to reproducibly synthesize nanowires could facilitate coupling 

the gain media and the cavity within the same material leading to more compact systems for 

lasing. However, template-free and scalable growth of nanowires of 2D perovskites has not 

been realized due to lack of understanding in the fundamental growth mechanism for these 

materials and lack of techniques that enable morphology controlled growth. 

 Solution based techniques have been conventionally used for the growth of 2D 

perovskites. Although solution based techniques offer a cheap route for the manufacturing of 

these layered perovskites, they limit the integration of these materials into the semiconductor 

industry where vapor based vacuum processing is preferred. These solution based processes 

also suffer from lack of controllability and reliability. Low Temperature Vacuum Assisted 

Chemical Vapor Deposition (LTCVD) based on “powder vaporization” methods represents the 

most scalable approach for growth of  semiconductors and has extensively used for scalable 

synthesis of 2D transitional metal dichalcogenides (TMDs). This technique allows more 
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controllable growth of 2D semiconductors by tuning various knobs for growth hence ensuring 

better control over thickness, morphology and composition of the material grown. This catalyst 

free growth of nanowires leads to nanowires with better properties and dimensionality as 

opposed to catalyst assisted traditional VLS techniques. 

 In this paper, we demonstrate a facile strategy for the morphology control of the 2D 

perovskite Butylammonium Lead Iodide ((BA)2PbI4) by changing the concentration of the 

precursors through simply changing the distance of the substrate from the source precursors by 

LTCVD. This paves the way for the controllable catalyst and template free growth of 2D 

(BA)2PbI4 nanowires of high quality, which can be potentially exploited for lasing applications. 

Additionally, we show that the optical response of the nanowires is highly sensitive to the angle 

between the light polarization and nanowire orientation. Finally, we exploit the polarization 

sensitive absorption of these nanowires to demonstrate the application of these as highly 

sensitive polarization photodetectors. 

 

The 2D (C4H9NH3)2PbI4 in our study is grown by our home-built  LTCVD setup. A 

brief description of the growth process is as follows. The CVD growth substrate is placed 

downstream on the quartz tubes.  Precursors Lead Iodide (PbI2) and n-Butylammonium Iodide 

(CH3NH3I) are heated in a ~1 inch tube furnace at a temperature of ~4000C. The furnace is 

purged with ultrahigh purity (UHP) Argon for ~10 minutes prior to the reaction and UHP Argon 

maintained at ~30 sccm is used as the transporting gas during the reaction. The temperature 

ramping rate is ~300C/min and the growth temperature is maintained for ~10 minutes. The 

pressure inside the furnace is maintained at ~600 mtorr during the growth process. A schematic 

of the growth process as well as the temperature ramping rates are illustrated in Figure S1 and 

Figure S2. Figure 1a shows the different regimes of crystal growth. While supersaturation is 

an essential condition for crystal growth, the degree of supersaturation plays a crucial role in 

dictating the morphology of the crystal. Figure 1b shows a schematic of the growth process 

demonstrating a gradient in concentration across the length of the furnace allowing for the 
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growth of samples of different morphology as shown in Figure 1 c-e. We show that while 

substrates closest to the precursors grow as nanoplatelets (Figure. 1c), the ones farthest away 

grow as nanowires (Figure 1e). Figure 1d shows the morphology at intermediate positions. The 

absence of spherical tips at the edge of the nanowires rule out VLS as the mechanism for growth. 

High resolution scanning electron microscopy (SEM) imaging (Figure S3) with of some of the 

nanowire samples show spiraling nature of the growth in some of these nanowires suggesting 

screw dislocation as a likely mechanism for nanowire growth however further experiments need 

to be done for confirmation of the mechanism.At very high initial concentration of precursors, 

dendritic growth was also observed at regions of highest concentrations similar to the findings 

of Song et al.  (Figure S4).[33]In stark contrast to the conventional catalyst assisted VLS 

technique for nanowire growth, where diameter of the nanowire is dictated by the dimensions 

of the metal catalyst, our catalyst independent method offers better control over the dimensions 

of the nanowire. Figure S5 shows the SEM images for distribution of nanowires of different 

dimensions grown by LTCVD. Figure S6 shows higher magnification SEM images showing 

the large difference in diameters of nanowires grown by LTCVD demonstrating good control 

of width of the nanowire using this technique. Additionally the catalyst-free growth ensures 

cleaner nanowires with less contamination resulting in enhanced optoelectronic properties.  

We further perform Atomic Force Microscopy (AFM), Scanning Electron Microscopy 

(SEM) and Energy Dispersive Spectroscopy (EDS) to investigate the quality of the nanowires 

by looking into their morphology and stoichiometry. AFM measurement of one such nanowire 

shows the step height shown in Figure 2a which reveals the thickness of the nanowire to be 

~26.6 nm. The 3D AFM image of the same nanowire is shown in Figure S7. The AFM 

topography image and 3D image demonstrate uniform thickness across the length of the 

nanowire. Field Emission Scanning Electron Microscope (FESEM) images of an individual 

nanowire are shown in Figure 2b. The clean facets of the nanowire point to single crystalline 

nature of the nanowire. EDS provides quantitative information about the elemental composition 
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of the nanowire, and our measurement reveals the stoichiometry of the sample with Pb:I ratio  

approximately 1:4, in excellent agreement with our expectation (Figure S8). EDS spatial 

mapping (Figure. 2c-e) shows the uniform distribution of C, I and Pb across the dimensions of 

the nanowire demonstrating uniformity in chemical composition across the length of the sample. 

Similar results were found for the nanoplatelets as well which showed a uniform distribution of 

the constituent elements across the nanoplatelets (Figure S9). 

 (C4H9NH3)2PbI4 has organic spacers separating the inorganic lead halide layers, as 

schematically shown in Figure S10. This gives it a natural quantum well structure resulting in 

enhanced optical properties (Figure 3a).[34] We next investigate the optical properties of the as-

synthesized nanowires. Figure 3b shows the power dependence of the room temperature PL of 

the nanowires.  The PL spectra of the nanoplatelets exhibit similar behavior to the nanowires at 

room temperature (Figure S 11a), with peaks centered at 519 nm. The inset shows that the 

power dependence has two different regimes following different power laws below and above 

a threshold excitation power. The integrated PL intensity is proportional to the power of the 

incident laser (IaPn) but with different values of n below and above a threshold power. Fitting 

in the lower excitation power regime shows a linear trend while fitting in the higher excitation 

power regime follows sub-linear (n=0.3) power law demonstrating saturation behavior. The sub 

linear power law suggests absorption saturation in the material beyond the threshold power. 

Figure 3c shows the power dependence at low temperatures (77 K). The power dependence is 

observed to be linear when excited with excitation power below 20 µW. At low temperatures, 

higher excitation powers were not used due to the possibility of sample damage due to reduced 

thermal conductivity at low temperatures leading to enhanced sample heating.  The inset shows 

the bright florescence image of a nanowire pointing to the high quality of the samples. The PL 

peaks are much sharper at 77 K with a full width half maximum (FWHM) of 5 nm. The low-

temperature PL spectrum reveals different behaviors for the nanowires compared to the 

nanoplatelets (Figure S 11b). While we see two peaks at 485 nm and 515 nm for the 
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nanoplatelets, only one peak at 518 nm is observed for the nanowires. The excitonic peak shifts 

from 515 nm in nanoplatelets to 518 nm in nanowires can be attributed to the higher excitonic 

binding energy in the nanowires due to quantum confinement and decreasing of dielectric 

constant. This is consistent with the previous reports which suggested thin nanoflakes of 

exfoliated samples from single crystals also show two peaks. The origin of the two peaks has 

been attributed to the existence of 2 phases in the perovskite.[23] However, the presence of only 

one peak in the nanowires at 77 K indicates that only one phase is stabilized in the nanowires 

as opposed to nanoplatelets, and thin flakes exfoliated from bulk single crystals thus ensures 

superior performance of the nanowires in optoelectronic devices. Time-resolved 

photoluminescence (TRPL) was done to get dynamic information about the excited 

photocarriers. Figure 3d shows the decay in PL intensity measured using an Avalanche 

Photodetector (APD) when excited with a pulsed laser with a repetition rate of 40 MHz centered 

at 430 nm. A single exponential fit was used to estimate the lifetime which was found to be 

approximately 0.5 ns, which is longer than the typical lifetime of 250 ps  reported for 

(BA)2PbI4.
[35] The long lifetime compared to previous literature demonstrates high quality of 

the sample for optoelectronic applications.  

Polarization dependent PL measurements shows that the absorption, and hence emission, 

is highly dependent on the polarization of the incident light, with respect to the orientation of 

the nanowire. For extremely narrow nanowires (nanowire width less than Bohr radius of 

exciton), the origin of anisotropy in PL emission has been  attributed to quantum effects. 

However, since Coulomb interaction in 2D perovskites much stronger (indicated by the large 

binding energy), we expect the Bohr radius of the exciton in 2D perovskite to be much smaller 

compared to the diameters of the thinnest nanowires we synthesized (about 50 nm)[3]. Hence 

we attribute the origin of anisotropic response in our narrow nanowires to dielectric 

confinement effects. Figure 4a shows that the emission is the strongest when the nanowire is 

excited with a linearly polarized light parallel to the axis of the nanowire and weakest when it 
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is perpendicular to the axis of the nanowire. Red curve in Figure 4a shows that the cosine fitting 

of the emission spectrum with a period of 2π. Figure 4b shows a color plot demonstrating the 

variation in the PL spectra of the nanowire as a function of the polarization angle. The single 

sharp peak at around 518 nm shows maximum intensity at an angle of 1500 (parallel to the 

orientation of the nanowire) and lowest intensity at 600 and 2400 (perpendicular to the nanowire) 

demonstrating the correlation between the orientation the nanowire with the polarization of the 

incident light and the emission intensity. This large polarization anisotropy in emission from 

nanowires with angle of incident linearly polarized light with respect to the nanowire is 

consistent with the model of nanowires from previous literature.[36]. Figure 4c shows the PL 

emission spectrum along parallel and perpendicular directions. The emission polarization ratio, 

defined as (Imax-Imin)/(Imax+Imin), is found to be as high as 0.73 for extremely narrow nanowires 

where Imax and Imin are the maximum and minimum values of PL intensities at the corresponding 

polarization angles. . In order to investigate the effects of nanowire width on polarization 

dependence of PL,we performed measurements on nanowires with different diameters. 

Polarization-dependent PL measurements were performed on wider samples of (BA)2PbI4. 

While the wider samples showed the same PL peak position, it was found that the polarization 

ratio decreased. Extremely wide samples (approximately 2-3 µm in diameter) (Figure S12 a) 

showed low values of polarization ratio (approximately 0.15) due to negligible effects of 

dielectric confinements, as the diameter of the nanowire was larger than the wavelength of 

excitation laser. Samples with smaller diameter (approximately hundreds of nanometers in 

diameter) showed higher polarization ratio of about 0.42 and 0.73, as shown in Figure S12 b 

and Figure 4 a, consistent with our interpretation.  

The large optical anisotropy in emission opens up applications of the material in all 

optical switches, logic gates and various other applications. Here we demonstrate polarized 

photo-detection with these RP perovskites (n=1) by building a graphene/ (BA)2PbI4 

heterostructure in a graphene field effect transistor (FET) device configuration. The architecture 
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of the device is schematically shown in Figure 5a. We first transfer CVD grown graphene on 

copper film to the Si substrate with 285 nm thermal oxide, and we then grow 2D perovskite 

nanowires on graphene. Finally, gold electrodes are deposited on graphene as contact electrodes 

using a shadow mask. In the perovskite/graphene hybrid structure, the perovskite acts as a 

photoactive light absorbing layer and the graphene works as a current transport layer. The 

photoexcitation of the perovskite alter the conductivity of graphene underneath and hence 

induce the photoconductivity change of the graphene. The induced photocurrent was measured 

by a lock-in amplifier which is synchronized to a mechanical chopper which modulates the light 

intensity. The details of the experimental setup are described in the methods section. Figure 5b 

shows the photocurrent from the device as a function of the source drain voltage. The 

photocurrent is found to be linearly proportional to the source drain voltage, consistent with the 

optical excitation induced conductivity change of graphene. To further confirm that the 

photocurrent response stems from the optical absorption of the perovskite, we measure the 

photocurrent response as a function of the excitation wavelength, as shown in Figure 5c. The 

small bump at 518 nm is consistent with the PL peak of the perovskite, which corresponds to 

the exciton absorption of the perovskite and confirms the photocurrent response from the hybrid 

device originates from the optical response of the perovskite. Interestingly, the photocurrent 

response increases at lower wavelength and is peaked at ~ 480 nm. The pronounced 

photocurrent peaks suggests a strong absorption of light by perovskite at ~ 480 nm. This large 

absorption might due to trap states which are long lived due to localized electrostatic screening 

provided by the BA cations and PbI4 anions.[37] The large absorption of the perovskite in the 

UV regime, combined with the high mobility of graphene renders our hybrid device a promising 

candidate for efficient UV detectors.   

We also modulate the hybrid device with on-resonance (photoexcitation at 492 nm) and 

off-resonant (photoexcitation at 570 nm), and the results are shown in Figure 5d. While the on-

resonance excitation generates large photocurrents (red curve in Figure 5d), the off-resonance 
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excitations induce a smaller response (black curve in Figure 5d). It is worth noting that the 

photocurrent response rises quickly after the optical excitation, with the rise time <2 secs, 

limited by the time constant we used for the lock-in measurement. Finally we demonstrate the 

application of the hybrid device (Figure 5e) as a polarized light detector. Upon the excitation 

of a linearly polarized light pulse laser with optical excitation centered at 2.52 eV, the 

photocurrent of the hybrid device is a strong function of the angle between the polarization of 

the incident light and orientation of the nanowire. Similar to the PL spectra, the photocurrent is 

maximum when the polarization of light is parallel to the nanowire and minimum when it is 

perpendicular to it. The anisotropy ratio which is defined by Imax/Imin is found to be 3.62 much 

larger than the previously reported best value 2.68  amongst the family of perovskite 

nanowires.[38] 

In conclusion, we for the first time demonstrate a template-free controlled growth of 2D 

perovskites nanowires by LTCVD method. We demonstrate high-quality nanowires of uniform 

thickness and composition, along with exceptional optical properties. We also reveal that the 

emission from the nanowires is highly dependent on the incoming polarization of the incident 

light owing to anisotropic absorption of the nanowires. The polarization ratio is found to be as 

high as 0.73, one of the largest reported for perovskites.[39] Finally, we fabricate a hybrid 

(C4H9NH3)2PbI4 /graphene/hybrid device and demonstrate its application as a polarization 

photodetector with photocurrent anisotropy ratio of 3.62. 

 

Experimental Section  

Synthesis of Nanowires and Nanoplatelets Of (C4H9NH3)2PbI4: (C4H9NH3)2PbI4 is grown in a 

CVD reactor (Figure 1a) as described in the main manuscript with and PbI2 precursors 

maintained at separate temperatures. The growth temperature profile is provided in Figure S2. 

SiO2 was used as a substrate for CVD growth. Substrates were cleaned with Piranha solution 

prior to growth.    



 

11 

 

Graphene Transfer And Growth On Graphene: Graphene grown on Copper was transferred 

onto 285 nm SiO2/ Si substrate using standard wet transfer techniques. Poly(methyl 

methacrylate) (PMMA) A4 is spin coated onto graphene on Copper substrate at 1500 rpm for 

60 seconds followed by baking at 1200C after each step of spin coating. Copper is etched from 

the spin coated material using ammonium persulfate solution (3g in 50 ml of water). The 

graphene/PMMA stack is scooped from the solution after the copper is completely etched using 

a Si substrate followed by a series of rinsing in DI water. Finally the rinsed stack is scooped 

from DI water using 285 nm Si/SiO2 substrate. The stack is dried in air for a few minutes. In 

the final step, the PMMA is dissolved in acetone and the graphene/substrate stack is rinsed in 

Isopropanol and dried with Nitrogen. This perovskite nanowires are then grown on graphene as 

described in the main text. 

Materials Characterization: Scanning Electron Microscopy (SEM) and Electron Dispersive 

Energy Spectroscopy (EDS) was performed by using a ZEISS SUPRA 55 Field emission 

scanning electron microscope. Tapping mode of Multimode AFM from Digital Instruments was 

used for obtaining the topography images. 

Optical and PL Measurements: Photoluminescence (PL) was measured with a home-built 

confocal microscope setup using lasers under different excitation conditions depending on the 

type of measurement. The details of the type of laser used, wavelength and excitation power 

have been listed in the main manuscript. A spectrograph (Andor) and a thermoelectric cooled 

CCD camera (Andor) was used for the spectroscopy measurement. The time-resolved PL 

(TRPL) was measured through the time-correlated single photon counting (TCSPC) technique 

and an avalanche photodiode detector (APD, by Micro Photon Devices) was used. A pulsed 

laser centered at 430 nm was used as the excitation source. For both PL and TRPL 

measurements, the excitation lasers were focused to a spot size with the diameter of 2 μm.  

Continuous wave (CW) diode laser (405 nm) was also used as an excitation source for steady 

state PL measurements 
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.  

Polarization Dependent PL Measurements: Polarization Dependent measurements were carried 

by exciting the sample with linearly polarized light. A polarizer was used in the incident light 

path to excite the sample with linearly polarized light. The emitted light from the sample was 

again passed through a polarizer. The angle of the second polarizer was changed to record the 

intensity of the collected light along different polarizations. 

 

Polarization Dependent Photocurrent Measurements: Photocurrent measurements were done 

using a lock-in amplifier to obtain better signal to noise ratios. A chopper was used to modulate 

the incident laser on the sample and this was used as a reference signal for the current amplifier. 

For wavelength dependent measurements, where the power of the incident laser varied due to 

change in wavelength, all the signals were normalized using a standard Si photodetector. 

Polarization dependent measurements were done as described in the previous section and are 

shown in Figure S13.  
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Figure 1. 2D perovskite morphology evolution with position. (a) Regimes of growth as a 

function of supersaturation, (b) Schematic of the growth process, (c-e) Optical microscope 

images of shape evolution from Nanoplatelets to Nanowires. Part (c) shows Layer by Layer 

(LBL) Growth at high precursor concentrations which transforms to nanowire growth at lower 

precursor concentrations, as shown in part (e). 
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Figure 2. Characterization of 2D perovskite nanowires. (a) Atomic Force Microscope  

topography measurement shows uniform thickness of the nanowire. Inset: Line scan across the 

nanowire showing the thickness of the nanowire to be ~26.6 nm. (b) Scanning Electron 

Microscope image of a nanowire. (c-f) Elemental maps of Lead, Iodine, Silicon and Carbon 

showing uniform distribution of the elements Lead, Iodine and Carbon across the length of the 

nanowire. The Silicon elemental map shows reduced signal across the length of the nanowire 

due to reduced signal from the substrate due to the presence of the nanowire. 
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Figure 3. Optical properties of the 2D perovskite nanowires (a) Schematic band structure of 

2D perovskite showing natural quantum confinement. (b) PL spectra for different excitation 

power at room temperature. Inset:  Integrated PL intensity vs. excitation power. The power 

dependence has 2 regimes where it shows linear (red fitting) and sub linear (blue fitting) power 

law dependence with excitation power respectively. The excitation source is a pulsed laser 

centered at 2.88 eV (430 nm). (c) PL spectra for different excitation power at 77 K. Inset on the 

left shows the florescence image of the nanowire at 77 K. Inset on right shows a linear power 

dependence of the integrated PL intensity. The excitation source is a pulsed laser centered at 

2.88 eV (430 nm) (d) Time-resolved PL at 77K. The data (black dots) is fitted by a single 

exponential fit (red) with the lifetime ~ 512 ps.  
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Figure 4. Polarization dependence of PL intensity from a single 2D perovskite nanowire.    (a) 

PL intensity as a function of the excitation polarization in a polar plot,  and the data (black dots) 

is fitted with a consine (red) function with period of 2π. (b) PL spectra as a function of the 

incident light polarization, and the color represents the PL intensity. It is evident that only one 

sharp PL peak (FWHM of 5 nm) centered at 518 nm is visible. (c) PL spectra with the excitation 

light polarization parallel (red) and perpendicular (black) with respect to the nanowire 

orientation. 
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Figure 5. Polarization dependence of photocurrent of Graphene/(BA)2PbI4 heterostructure (a) 

Schematic of the perovskite/grapehene hybride device. (b) Photocurrent response as a function 

of the source drain voltage (Vds) with pulsed laser centered at 2.52 eV (492 nm) at excitation 

power of 21 µW. (c) Photocurrent response as a function of the excitation laser energy at a fixed 

power of 21 µW and Vds of 30 mV. (d) Comparison of normalized photocurrent response when 

excited with light of different wavelengths with a pulsed laser centered at 2.52 eV (492 nm) at 

excitation power of 21 µW and bias of 30 mV. (e) Polarization dependence of photocurrent 

with a pulsed laser centered at 2.52 eV (492 nm) and source drain bias of 30 mV. 
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Figure S1. Schematic outlining the entire growth process: Steps 1 through 4 involve cleaning 

the wafer with piranha solution followed by rinsing in acetone and isopropanol. Steps 5-7 

involve putting the precursors into an alumina boat for Low Temperature Chemical Vapor 

Deposition. Steps 8-10 deal with the deposition process which is done at a temperature of 

4000C at a pressure of 600 mTorr with Argon as the transport gas which is maintained at a 

flow rate of 30 sccm during the growth process. The details of the temperature profile in the 

furnace are listed in Figure S2. 
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Figure S2. Temperature profile in the furnace as a function of time. The furnace is held at a 

constant temperature (250C) during the first 10 minutes where it is purged with Argon gas. 

The second phase is the ramping phase where the furnace ramps up to 4000C at 300C/min. In 

the final stage, it is held at 4000C for another 10 mins. 
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Figure S3. SEM images showing spiraling nature of the growth, suggesting Screw Dislocation Driven 
growth as the most likely mechanism for growth 
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Figure S4. Optical Image of dendritic growth at extremely high initial precursor concentrations closest 
to the furnace.  
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Figure S5. SEM Images showing (BA)2PbI4 nanowires of different dimensions grown by 

LTCVD. 
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 Figure S6. Higher magnification SEM images showing (BA)2PbI4 nanowires of different 

dimensions grown  by LTCVD. 
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Figure S7. Surface AFM 3D image of the nanowire shown in Figure 2a. The scan 

area is 10 µm x 10 µm. The 3D AFM image shows uniform topography of the 

nanowire. The measurements were doing using a VEECO MULTIMODE AFM tool 

in the tapping mode. 
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Figure S8. EDAX spectrum for the nanowire showing the presence of Pb and I in the right 

atomic ratio of ∼1:4 confirming the identity of the material. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

 

Figure S9. Elemental characterization of the nanoplatelets: (a) SEM image of the nanoplatelet 

(b-e) Elemental mapping of C, I, Si and Pb using EDS spectroscopy. The uniform distribution 

of the individual elements confirms the homogeneity in chemical composition of the material. 
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Figure S10. Layered Structure of 2D perovskite (BA)2PbI4 with organic spacers separating 

the Lead Halide layers. The layered structure manifests in a form of a natural quantum 

confined structure for the material. 
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Figure S11. PL emission spectrum from nanoplatelet of (BA)2PbI4. The excitation source is a 

pulsed laser with a repetition rate of 40 MHz centered at 2.88 eV (430 nm) (a) Room 

temperature PL showing PL spectrum of nanoplatelets similar to that of nanowires. (b) Low 

Temperature (77K) PL spectrum showing 2 peaks different from a nanowire.  
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Figure S12: Polarization Dependent PL measurements for nanowire samples of different 

widths (a) 2-3 um (b) hundreds of nanometers 
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Figure S13. Schematic showing the experimental setup for doing polarization dependent 

photocurrent measurements. The circularly polarized light from a pulsed laser centered at 2.52 

eV (492 nm) was passed through a linear polarizer to convert to linearly polarized light. A 

source drain bias of 30mV is applied. 

 




