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Abstract of the Dissertation

Uncertainty in Meta-Analysis: Bridging the Divide

Between Ideal and Available Extracted Data

by

Shemra Rizzo Varela

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2015

Professor Robert Erin Weiss, Chair

Meta-analysis in the health sciences combines evidence from multiple studies to derive

stronger conclusions about the efficacy of treatments. In the process of data extraction

from published papers, it is extremely common for the required data to be ambiguous, in-

complete or missing. We consider the case of meta-analysis of odds-ratios with unknown

number of events and meta-analysis of mean differences with missing standard errors. Ex-

isting approaches consist of computing best-estimates for the missing values then feeding

them into the meta-analysis as extracted data without accounting for the uncertainty of the

computations. These naive approaches lead to over-certain results and potentially inaccurate

conclusions.

Meta-analysis of odds-ratios assumes binomially distributed numbers of events in each

treatment group and requires extracted number of events, which are often not available

due to loss to follow-up. Common practice consists of inferring the probability of survival

from measurements of the Kaplan Meier survival plot and then using it to infer the number

of deaths. We propose the Uncertain Reading-Estimated Events model to construct each

study’s contribution to the meta-analysis separately using the data available for extraction.

In our meta-analysis comparing CABG and PCI for ULMCA stenosis, accounting for the

uncertainty results in increased standard deviations of the log-odds as compared to a naive

meta-analysis that assumes ideal extracted data, equivalent to a reduction of the overall
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sample size of 43% in our example. Simulations show that meta-analysis based on the

observed number of deaths lead to biased estimates while our model does not.

Meta-analysis of mean differences requires extracted mean differences and their standard

errors (SE). However, missing standard errors are pervasive in publications. An algebraic

computation to recover the missing SE utilizes the baseline and follow-up standard devia-

tions, and correlations, which are also typically missing. Traditional approaches, that have

not been theoretically derived, replace missing SEs with various single-value imputations.

We formally derive the Uncertain Standard Error Bayesian model to accommodate multiple

patterns of missingness in the standard deviations. In our meta-analysis comparing home

monitoring blood pressure to usual care, accounting for the uncertainty results in larger

posterior SEs compared to the traditional approaches.
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CHAPTER 1

Introduction to meta-analysis and data extraction

Meta-analysis combines evidence from multiple studies to derive a stronger conclusion about

the research question they have in common. In the health sciences, each study has its own

conclusion in the form of a treatment effect and meta-analysis provides a better understand-

ing of the treatment efficacy. Examples of treatment effects for binary outcomes are odds

ratios, hazard ratios, and difference of proportions. For continuous outcomes we have the

difference in means. Studies in a meta-analysis may be too small or may only focus on only

one medical center or sub-population so their results may not have enough power or may not

be generalizeable. By aggregating the results of all the studies available in a meta-analysis,

the power to detect an effect increases, the precision and accuracy of the estimate of the

effect size improves, and the generalizability of results also increases. Two ways to perform

a meta-analysis are

(1) Combining the individual patient data (IPD), or

(2) Combining published summary statistics.

Meta-analyses that pool the effect sizes found in the summary statistics of published

studies are said to be based on aggregate data. In (1), the meta-analyst collects the dataset

from the authors of each participating study. The datasets are merged to create a larger

dataset that includes all patients from all studies. The results of each participating study

may or may not have been previously published. A hierarchical analysis is performed on the

pooled dataset to estimate the treatment effect. In (2), the meta-analyst extracts estimates of

effects from published studies. In a random effects meta-analysis, each study’s true treatment

effect is assumed to be randomly sampled from a distribution of treatment effects centered
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around an unknown mean. The meta-analysis estimates the mean of the treatment effect

distribution.

Meta-analysis has been heavily criticized since its introduction for its limitations, different

sources of bias, the heterogeneity of studies, and for not predicting accurately the results

of large studies performed later (Eyseneck, 1994; Walker et al., 2008; LeLorier et al., 1997;

Shapiro, 1997). Despite the criticisms, meta-analyses have become extremely popular. A

February 2015 PubMed search revealed that the number of articles that included the word

“meta-analysis” in the title has increased dramatically in the past decade, from 740 articles

in 2004 to 8,077 articles in 2014 (Figure 1). The popularity of meta-analysis is expected

to continue rising, because science needs systematic overviews of randomized trials (Peto,

1987) and because rigorous meta-analyses provide definite advantages over the narrative

reviews used previously (Thacker, 1988). Additionally, meta-analyses shed light on research

questions that need investigation and improve the design of future studies (Berman and

Parker, 2002).

Figure 1.1: Number of articles with meta-analysis in their title listed in PubMed.

Ideally, a meta-analysis includes individual participant data (IPD) from all relevant stud-

ies. However, using IPD in meta-analyses is a rare occurrence. Kovalchik (2012) found that

fewer than 5% of published meta-analyses used IPD. Of the meta-analysts surveyed, 71%
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did not attempt to collect IPD, and almost half of them never considered using IPD or

thought that it did not provide any statistical advantage. While it has been shown that

meta-analyses on IPD yield better results (Stewart and Parmar 1993, Lamber et al. 2002,

Berlin et al. 2002), meta-analyses are traditionally performed on published summary statis-

tics or on a mixture of IPD and summary statistics (Kovalchik and Cumberland, 2012). For

example, in a meta-analysis of aggregate data of odds ratios, the true mean odds ratio is

estimated by computing a weighted average of the odds ratios of the studies. Similarly, in

meta-analysis of mean differences, the true mean difference is estimated by computing a

weighted average of the mean differences of the studies.

Meta-analysis on aggregate data is often considered to be a simple process because the

data is already available in published papers. However, a valid meta-analysis is neither

quick nor easy (Berman and Parker, 2002). There are five main steps in a meta-analysis of

aggregate data:

1. Formulation of the research question. For example: Is treatment A better than treat-

ment B when the outcome is a mortality rate?

2. Definition of the study exclusion/inclusion criteria.

3. Search, identification and evaluation of the research studies.

4. Extraction of data from each study.

5. Data analysis.

Each step presents an opportunity for disaster if not carefully planned and executed. The

bulk of time and effort occurs in the first four steps. Of these, extraction of the data from

each study is the least studied.

Current guidelines for meta-analysis data extraction suggest that “two individuals should

independently abstract the results from every study and differences resolved by consensus”

(Berman and Parker, 2002). Consensus can be achieved by discussion among the data

extractors. In some cases, “a disagreement may require arbitration by another person”
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(Higgins and Deeks, 2011). Furthermore, these individuals should be “blinded to the various

treatment groups through a coded photocopying process”, and then the inter-observed agree-

ment should be measured (Sacks et al., 1987). However, a study concluded that blinding

is extremely time-consuming and that it is not necessary when conducting meta-analyses of

randomized clinical trials (Berlin, 1997).

In the process of data extraction, it is extremely common for the required data to be

ambiguous, incomplete or missing. For example, Riley et al. (2003) performed a systematic

review of prognostic markers for neuroblastoma, the most common extracranial cancerous tu-

mor in childhood. Prognostic markers included DNA or chromosome abnormalities, urinary

catecholamines and biological markers. There were 260 papers with relevant information on

the relationship between the 13 most commonly studied prognostic markers and survival.

Each paper studied a different number of prognostic markers. Riley et al. identified 575 as-

sessments of survival and tumor markers. Hence, to preform 13 meta-analyses, one for each

marker, the authors needed to extract 575 hazard ratios and variances. However, only one

paper, which studied three markers, reported hazard ratios and variances. For 201 marker-

survival associations there were no reported hazard ratios and variances, but Riley et al.

were able to infer them from other summary statistics found in the papers. For example, in

some cases they extracted the hazard ratio and p-value, or the hazard ratio and confidence

interval, or they extracted information from the survival curve and used that information

to estimate the hazard ratio and its variance. For the remaining 371 marker-survival asso-

ciations, there was no useful information in the papers to estimate the hazard ratios and

variances.

Thus, in the meta-analyses that Riley et al. (2003) attempted to perform, only half of a

percent of the hazard-ratio and variance pairs needed were available, and a further 36% were

recovered using other data. Given that 64.5% of the effects were not available or possible to

estimate, Riley et al. (2003) concluded that reliable meta-analyses were impossible to perform

and that no clinical policy decisions could be made from their evidence-based review. In our

datasets, which will be described in detail in the next sections, nine out of ten studies did

not provide the data required for a meta-analysis of odds-ratios and 88% did not provide
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the data required for a meta-analysis of mean differences.

Poor reporting in the papers that are used as input to meta-analysis has led to the

common practice of extracting alternative information and using it to recover or, when

recovering is not possible, to “estimate” the needed summary statistics. However, these best-

estimates have no variance associated, and often no reporting of details of the computation

either. These estimates are then inserted in the meta-analysis as extracted data. I argue that

treating these insertions as observed summary statistics is a questionable practice because

nowhere in the current methodology of meta-analysis is the uncertainty of these estimations

accounted for.

For example, in a meta-analysis of odds ratios the necessary data to be extracted includes

four numbers per study: the number of people experiencing the outcome and the sample

sizes for both the treatment and control groups. The Cochrane Handbook for Systematic

Reviews of Interventions recognizes that these data are often not available in published papers

(Higgins and Deeks, 2011). Best-estimates of the number of events are computed using other

information available in the paper, such as survival probabilities from Kaplan Meier curves.

A best-estimate of the number of people experiencing the outcome is obtained by multiplying

the complement of the survival probability by the sample size. The resulting number is fed

into the meta-analysis as if it had been the true number of people experiencing the outcome.

However, the survival probability has associated uncertainty that is being ignored in this

calculation. Without adequate statistical guidelines, the use of best-estiamtes to replace the

necessary data implies unjustified certainty in the resulting inputs to a meta-analysis, which

leads to unjustified certainty in the output of the meta-analysis. The resulting over-confident

estimates can lead to inaccurate conclusions.

A similar situation occurs in the case of meta-analysis of mean differences. Two numbers

are needed per study: the mean difference and the standard error of the mean difference.

However, the standard error is often missing, as often as 92% of the time (Philbrook et al.,

2007). There are many approaches to estimating the missing standard error, such as inserting

a weighted average of the standard errors of the studies that do provide them (Ma et al.,

2008), or borrowing a standard error from another study that is considered similar enough or
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from a previous meta-analysis. Alternatively, we can look for other information in the paper

that may be helpful in constructing a value for the missing standard error. For example,

the standard deviations of the treatment and control groups at baseline and follow-up can

be used to compute the standard error. Unfortunately, this calculation assumes that the

within-subject correlations are known, which are typically missing. None of these strategies

have been theoretically justified or empirically tested (Wiebe et al., 2006). As in the case of

the meta-analysis of odds ratios, to replace the needed standard errors with best-estimates

results in uncertainty that is not accounted for in the meta-analysis.

This thesis will address the problems that arise during the data extraction step in meta-

analysis of odds-ratios and difference of means. We propose methods to use existing infor-

mation in published papers to model the unavailable data and to combine that model with

a meta-analysis model to incorporate the associated uncertainty in the meta-analysis. This

methodology serves as a statistical guideline and improves the validity of results from meta-

analysis. Both methodologies are illustrated using real datasets. For the meta-analysis of

odds-ratios in chapter 2 we use a dataset that compares two treatments for ULMCA stenosis:

CABG and PCI. For the meta-analysis of mean differences in chapter 3 we use a dataset

that compares the effectiveness of home blood-pressure monitoring versus usual care. Each

chapter is written as a stand alone paper. Hence, they have their own introduction and

review of past methodology with some overlap. Chapter 4 lists other cases of unaccounted

uncertainty in meta-analysis and serves as a guideline for future research.
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CHAPTER 2

Meta-analysis of odds ratios with unknown number of

events

Meta-analysis is widely used to quantitatively combine results from multiple studies. In

the health sciences, meta-analysis can provide stronger and more broadly-based evidence

for treatment efficacy. Ideally, meta-analysis would analyze the combined individual patient

data from all studies (Stewart and Parmar, 1993; Lambert et al., 2002; Berlin et al., 2002). In

practice, this is rarely done (Kovalchik, 2012). Instead, meta-analyses rely on data extracted

from journal articles in the published literature or from presentations at major conferences.

This is known as meta-analysis of aggregate data.

A meta-analysis of odds ratios typically requires four quantities to be extracted per

study: number of events and non-events in the treatment and control groups, which can

easily be summarized in a 2x2 table. The Cochrane Handbook for Systematic Reviews of

Interventions recognizes that data required for the meta-analysis are often not available

in published papers (Higgins and Deeks, 2011), for example, the true number of events.

Software typically requires the data from the 2x2 table from each study regardless of the

outcome that was computed in each study (odds, risk and hazard ratio) (Melle et al., 2004).

The frequent occurrence of incomplete extracted data has led to the common practice of

estimating the missing entries of the 2x2 table using other information available from the

study. For example, it is a very common occurrence to have all four entries missing, but the

row totals are known which correspond to the numbers of people in each group at baseline.

Best-estimates for the missing entries are computed from Kaplan-Meier (KM) survival curves

which are often available in the published study. Because the survival curves rarely include

survival probability values, meta-analysts take manual measurements from the curve to
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estimate them. They then multiply the survival probability and its complement by the row

total of each treatment group to fill in the 2x2 table. These estimates are often rounded to

the nearest integer. The estimated data is introduced in the meta-analysis as observed data,

leading to unjustified certainty in the results and to potentially inaccurate conclusions.

In some cases, the KM survival curve is not available and meta-analysts use the number

of observed events reported in the text as the best approximation of the true number of

events. However, in the presence of loss to follow-up this is an underestimate of the true

number of events and could lead to biased meta-analysis estimates. A typical meta-analysis

includes a combination of studies where the KM probabilities are available for extraction

and studies where only the observed numbers of events are available.

While there have been efforts to promote better reporting practices (Riley et al., 2003),

there is no established protocol for addressing the missing information encountered in the

data extraction step of meta-analysis. For time-to-event data, some methods have been

proposed to handle the missing extracted data for meta-analyses of hazard ratios but not

for odds ratios (Parmar et al., 1998; Tierney et al., 2007). However, the proposed methods

involve calculations that are only approximate, and do not account for the uncertainty in-

troduced by the estimation. Methods to account for uncertainty in meta-analysis of odds

ratios have been proposed for data from randomized trials that includes number of missing

outcomes (non-observed events) (White et al., 2008b,c). However, in time-to-event studies

the number of missing outcomes is typically not reported.

We propose the Uncertain Reading-Estimated Events (UR-EE) Bayesian model to ac-

count for the uncertainty that arises at the data extraction step of meta-analysis. Our model

formally constructs a model to properly account for the contribution of each study to the

meta-analysis. Our constructions do not depend on the desired data but depend rather on

the actual data available from and extracted from each published study. Data available for

extraction includes the number of participants at baseline, and may include one or more of

the following: the rounded survival probabilities or measurements taken off the KM plot;

confidence intervals for the KM survival probabilities; mean, variance, median, and quartiles

of the distributions of follow-up times; the number of observed events, and the number of
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people at risk at the time of interest. Because the information available for extraction is

different for each study, the extracted data from each study must be modeled individually.

The UR-EE model improves the validity of results from meta-analysis by accommodating

all the uncertainty in the data input to the meta-analysis.

The chapter is organized as follows. We introduce two datasets in section 2.1. In section

3.1 we briefly review the classical and Bayesian random effects models and describe the naive

approach to manipulate incomplete extracted data to be able to use the models. In section

2.3 we define the UR-EE Bayesian model for meta-analysis. Results for the two datasets from

UR-EE and naive methods are given in section 3.4. The chapter finishes with discussion.

2.1 Datasets

2.1.1 Unprotected left main coronary artery stenosis data

To exemplify the different types of extracted data and proposed methodology for a meta-

analysis of odds ratios, we carefully re-evaluate a published meta-analysis that compares

two treatments for unprotected left main coronary artery (ULMCA) stenosis (Naik et al.,

2009). The current gold standard treatment is coronary artery bypass grafting (CABG),

which portends high morbidity. Percutaneous coronary intervention (PCI) has emerged as

a plausible alternative. It is desirable to draw a definitive assessment of both treatments.

The meta-analysis performed by Naik et al. (2009) included 10 studies with a total of 3,773

patients. The meta-analysis of mortality after 1 year presents multiple challenges in the data

extraction step. In all studies the type of extractable data was the same for PCI and CABG.

Table 2.1 is a checklist of the components available for extraction from each study.
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Table 2.1: Components of the extracted data from each study in the ULMCA meta-analysis: nij is the number of people at

baseline, eij is the number of observed deaths, rij is the number of people at risk at year 1, x∗ij and y∗ij are the measurements of

the KM plot from the x-axis to the curve at baseline and year 1, κ∗ij is the rounded KM survival probability and (aij−, aij+) is

its confidence interval, mij and v2
ij are the mean and variance of the follow-up times, Q1ij is the median and [Q1ij, Q3ij] is the

interquartile range of the follow-up times for study i and group j. The PCI (j = 1) and CABG (j = 0) groups have the same

type of extractable data but different values.

Study i nij eij rij x∗ij y∗ij κ∗ij a∗ij− a∗ij+ mij v2
ij Q1ij Q2ij Q3ij

Brener X X X X X X

Palmerini X X X X X X X

Seung X X X X X X

Wu X X X X

Sanmartin X X X X X X

Buszman X X X X X

Makikallio X X X X X

White X X X X X X

Serryus X X X X X X

Chieffo X X
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The ten studies have different types of extractable data:

1. All ten papers provide the number of people enrolled at baseline by treatment group.

2. Two papers provide the number of deaths observed after one year. The number of

observed deaths is less than or equal to the true number of deaths, which is unknown

due to loss to follow-up.

3. Four papers provide the number of people at risk after one year.

4. Eight papers provide a measure of central tendency and spread of the follow-up times.

Two papers provide pooled follow-up times only. One paper provides the mean of the

follow-up times by group but no variance.

5. Seven papers have a KM survival plot. Three of these plots have numerical values

for the survival probabilities at year 1. For the remaining four plots, the values must

be manually extracted from the plot using a ruler either in the computer screen or in

print. An additional paper has a mortality rate plot with rounded mortality rates.

6. One paper provides the observed number of deaths by treatment group and does not

mention follow-up times.

This meta-analysis motivates our development of appropriate methodology to incorporate

the uncertainty that arises during data extraction into the meta-analysis model.

2.1.2 Simulated data

To illustrate the dangers of using observed events as a replacement of true number of deaths

in a meta-analysis we construct an extreme meta-analysis comprising ten studies, with 100

subjects on average in each arm. The true odds ratio was set to be equal to one. However,

loss-to-follow up times were set to be considerably different: 50% in the treatment group

and 3% in the control group by year 1. The data can be found in Appendix B. We use this

data to compare the results obtained when we assume that a KM survival plot is available

for all studies and when it is not available for any.
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2.2 Classical and Bayesian random effects meta-analysis models

In this section we briefly review three models for estimating the true population effect size

for binomial outcomes, where the estimate of interest is an odds ratio: 1) the classical

random effects model using the popular estimates in DerSimonian and Laird (1986) and the

maximum likelihood (ML) estimates, and 2) the Bayesian random effects model. Then we

describe the naive approach to dealing with incomplete data to use these models.

All studies cannot be considered to be equivalent experiments. Between-study variation

refers to differences in design, execution and population, and these are reflected in the

underlying true odds-ratios found in each study. The random effects model assumes that

the odds ratios in each study follow a distribution. Within-study variation is modeled as

random sampling error. Thus, the random effects model has two variance components to

explain the variation in odds ratios.

Let nij be the number of subjects at baseline in study i, i = 1, . . . , k and treatment group

j, where j ∈ {1 = treatment, 0 = control}. The numbers of subjects, sij, that experience

the outcome event (say, death) in each group are independent binomial random variables

with πij probability of dying before year 1, sij|nij, πij ∼ Bin(nij, πij) for i ∈ {1, . . . , k} and

j ∈ {0, 1}. Study i’s odds ratio (OR) is

ORi =
πi1/(1− πi1)

πi0/(1− πi0)
. (2.1)

Let Oi = log ORi be the observed log-odds ratio for study i and δi be the true log-odds ratio.

The random effects model is

Oi|δi ∼ N(δi, σ
2
i ), (2.2)

δi ∼ N(d, τ 2), (2.3)

where d is the population mean of true log-odds ratios and the parameter of interest. The

between-study variation is τ 2 and the within-study variance is σ2
i .
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2.2.1 DerSimonian and Laird estimates

In the classical random effects model, d can be estimated as a weighted average of the

observed log-odds ratios

d̂ =

∑
iwiOi∑
iwi

(2.4)

with variance

V̂ar(d̂) =
1∑
iwi

, (2.5)

where the weights are

wi =
1

σ2
i + τ 2

. (2.6)

In practice, the variances τ 2 and σ2
i are unknown. Estimated variances are used instead and

the effect of this practice is generally ignored (Brockwell and Gordon, 2001). The estimate

of σ2
i is the estimated sampling variance for an odds ratio

σ̂2
i = V̂ar[Oi] =

1

si1
+

1

ni1 − si1
+

1

si2
+

1

ni2 − si2
. (2.7)

The most widely used estimate of τ 2 is the DerSimonian and Laird (1986) estimator (DSL)

τ̂ 2 = max

{
0,

Qa − (k − 1)∑
i ai −

∑
i a

2
i /
∑

i ai

}
, (2.8)

where ai = 1/σ̂2
i , and Qa =

∑
i ai(Oi − d̂)2 is the Cochran statistic of heterogeneity.

2.2.2 Maximum Likelihood estimates

Likelihood estimation of τ 2 is an alternative to the DSL estimator in (3.14) (Viechtbauer,

2005). The random effects model can be written as

Oi ∼ N(d, σ2
i + τ 2) (2.9)

and the log-likelihood function is

logL(d, τ 2|O1, . . . ,Ok) = log

(
1

(2π)k/2

)
− 1

2

∑
i

log(σ2
i + τ 2)− 1

2

∑
i

(Oi − d)2

σ2
i + τ 2

. (2.10)
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Because σ2
i is unknown, σ2

i is replaced by σ̂2
i from (2.7). To obtain the maximum likelihood

estimates we take the derivatives of (2.10) with respect to d and τ 2 and set resulting equations

to zero. After some manipulation, we obtain

τ̂ 2 =
∑
i

(Oi − d̂)2 − σ̂2
i

σ̂2
i + τ̂ 2

[∑
i

1

σ̂2
i + τ̂ 2

]−1

. (2.11)

Equations (2.4) and (2.11) can be solved by iterating between d̂t = f(τ̂ 2
t−1) and τ̂ 2

t = f(d̂t),

with starting value τ̂ 2
0 = 0 (Viechtbauer, 2005).

2.2.3 Bayesian model

The Bayesian random effects model allows us to include information or beliefs that may be of

importance for the research question being addressed by assigning prior distributions to the

parameters in the model. The fully Bayesian model accounts for all parameter uncertainty

(Smith et al., 1995; Carlin, 1992).

There are several ways to perform a Bayesian random effects model for meta-analysis.

Some prefer the Normal model in (2.2) and (2.3) with priors for d, σ2 and τ 2. An alternative

formulation preferred by some authors (Smith et al., 1995; Sutton and Abrams, 2001) models

the outcomes sij as binomially distributed and relates the observed log-odds ratios to the

probability of success using a logit transformation. Let each study’s true log-odds ratio be

δi = logit(πi1)− logit(πi0), where logit(πij) = log(πij/(1−πij)), and define ui = [logit(πT i) +

logit(πCi)]/2 as the logit scale average death rate for the ith trial. The model is

sij|πij ∼ Bin(πij, nij) (2.12)

logit(πi0) = ui − δi/2 (2.13)

logit(πi1) = ui + δi/2 (2.14)

δi ∼ N(d, τ 2) (2.15)

µi ∼ N(m,σ2) (2.16)

with priors p(d), p(τ 2), p(m), and p(σ2). By expanding this model, we are able to account

for the uncertainty introduced by the data extraction.
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2.2.4 The naive approach to incomplete extracted data

The classical and the Bayesian random effects meta-analysis models require four quantities

to be extracted from all studies: ni1, ni0, si1 and si0 for all i. Because in most studies there is

loss to follow-up, sij’s are unknown and best-estimates or observed events are used instead.

Meta-analysts use the KM survival probability to estimate the number of deaths. Let κ∗ij be

the extracted reading of the KM survival probability in study i, treatment group j, which

could be a rounded value extracted from the text or the ratio of two measurements off the

KM plot. The two measurements off the plot are x∗ij, the distance between the x-axis and the

KM survival curve at year 1 and y∗ij, the distance between the x-axis and the KM survival

curve at year 0. Then,

κ∗ij =
x∗ij
y∗ij
. (2.17)

Let κ+
ij be the actual KM survival estimate at year 1 that is available in the computer output,

and that κ∗ij is approximating.

The number of deaths calculated based on κ∗ij, and κ+
ij are s∗ij = nij(1 − κ∗ij), and s+

ij =

nij(1 − κ+
ij), respectively. Estimates s∗ij and s+

ij are not necessarily integers. The naive

approach to meta-analysis is to use s∗ij as s+
ij and, in turn, s+

ij as sij. Then these values are

fed into the classical or Bayesian random effects models. The values for s∗ij for the ULMCA

dataset can be found in Table 2.

Let S∗ = (s∗ij), S+ = (s+
ij), κ

∗ = (κ∗ij) and κ+ = (κ+
ij), i = 1, . . . , k, j = 1, 0. Let θ be

the vector of parameters (πij, δi, µi) in the model. The naive Bayesian model computes the

posterior

f(θ|S∗) ∝ f(S∗|θ)f(θ), (2.18)

and incorrectly uses f(θ|S∗) as a replacement for f(θ|S+), ignoring that κ∗ are approximated

or rounded values of κ+, and in turn uses f(θ|S+) as a substitute for f(θ|S), ignoring that

S are not observed but estimated from κ+, which are estimators themselves with additional

associated uncertainty.
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Table 2.2: Extracted data for the ULMCA dataset according to the naive approach.

Study PCI CABG

κ∗i1 × 100% ni1 s∗i1 κ∗i0 × 100% ni0 s∗i0

Brener et al. (2008) 93.3% 97 6.52 94.2% 190 11.08

Palmerini et al. (2006) 89.2% 154 16.68 87.1% 157 20.28

Seung et al. (2008) 96.7% 542 17.89 96.3% 542 20.05

Wu et al. (2008) 83.9% 135 21.74 94.1% 135 7.97

Sanmartin et al. (2007) 88.5% 96 11.04 83.5% 245 40.55

Buszman et al. (2008) 98.1% 52 0.99 92.5% 53 3.98

Makikallio et al. (2008) 94.4% 49 2.74 89.0% 238 26.23

White et al. (2008a) 89.8% 67 6.83 93.2% 67 4.56

Serryus (2008) 95.8% 357 14.99 95.5% 348 15.66

Chieffo et al. (2006) – 107 3.0a – 142 9.0a

Note: a Observed number of deaths extracted from the published paper.

2.3 The uncertain reading-estimated events model

We propose the Uncertain Reading-Estimated Events (UR-EE) model, which does not sub-

stitute S∗ for S+ for S. Instead, it incorporates the uncertainty in the estimator κ+ by

averaging over the possible values of true deaths S given κ+

f(θ|S+) =

∫
f(θ|S)f(S|S+)dS, (2.19)

and over the possible values of S+ given the extracted S∗

f(θ|S∗) =

∫
f(θ|S+)f(S+|S∗)dS+, (2.20)

to obtain a posterior of the parameters given the extracted data S∗

f(θ|S∗) =

∫ ∫
f(θ|S)f(S|S+)f(S+|S∗)dS+dS. (2.21)

We call f(S+|S∗) the Uncertain Reading (UR) density and f(S|S+) the Estimated Events (EE)

density. The UR density captures the uncertainty due to not having the exact KM survival

16



probability. The EE density captures the uncertainty of the number of deaths estimated

using the KM estimator around the true number of deaths due to censoring.

Both the naive and the UR-EE model compute a f(θ|S∗) posterior. The naive model

is overly optimistic while the UR-EE model does not make the incorrect assumption that

f(θ|S∗) = f(θ|S+) = f(θ|S).

Due to the additional incorporated uncertainty in the UR-EE model, we expect that

VarUR-EE(d|S∗) > VarNAIVE(d|S∗). (2.22)

The incorporation of additional, previously ignored uncertainty in the model translates to a

reduction in the effective sample size of the meta-analysis. Let n =
∑
nij, and let nUR-EE

be the effective sample size of the meta-analysis under the UR-EE model. Then

nUR-EE =
VarNAIVE(d|S∗)

VarUR-EE(d|S∗)
n, (2.23)

and we expect that nUR-EE < n.

In any Bayesian model we have observed data and parameters (random variables). In

the naive Bayesian model for meta-analysis the “observed” data is not actually observed but

a best-estimate with s∗ij substituting for sij. In contrast, the UR-EE model’s observed data

is the extracted data, nij, κ
∗
ij, and the unknown s+

ij and sij are treated as random variables.

The fully Bayesian UR-EE model adds models

fij(s
∗
ij|s+

ij) (2.24)

fij(s
+
ij|sij) (2.25)

for all i and j to equations (2.12) to (2.15). We call equation (2.24) the Uncertain Reading

density and equation (2.25) the Estimated Events density. The choices of densities for (2.24)

and (2.25) are different for every i due to the differences in extracted data in each study.

In our example, (2.24) and (2.25) have the same form for j = 0, j = 1, however that is due

to the reporting in the studies and not a requirement of our methodology. We describe the

construction of the UR and EE densities next.
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2.3.1 The Uncertain Reading density

The UR density fij(s
+
ij|s∗ij) is obtained from fij(κ

+
ij|κ∗ij), which models the KM survival

probability values based on the extracted rounded or manually measured κ∗ij. Because κ∗ij

could be extracted in at least two ways, the UR density is different for each study i.

Case 1: Rounded κ∗ij. In studies by Seung, Wu, Buszman and Serryus the rounded value

of the survival probability κ∗ij is extracted from the text or a number printed on the KM plot.

Assuming that the probability was rounded to three-digit accuracy, we model the actual KM

survival probability κ+
ij as uniformly distributed centered at κ∗ij

κ+
ij|κ∗ij ∼ Unif(κ∗ij − 0.0005, κ∗ij + 0.0005), (2.26)

s+
ij|s∗ij ∼ Unif(s∗ij − 0.0005nij, s

∗
ij + 0.0005nij). (2.27)

These equations can easily accommodate rounding to different levels of accuracy by changing

the minimum and maximum values in (2.26)-(2.27).

Case 2: Measured κ∗ij. Let xij and yij be the true unknown distances from the x-axis to

the KM survival curve at year 0 and 1, and let x∗ij and y∗ij be the measurements taken off the

KM plot from the x-axis to the survival curve at year 0 and year 1. Then κ∗ij = x∗ij/y
∗
ij. To

account for the measurement error in x∗ij and y∗ij we assume that the uncertainty in x∗ij and

y∗ij is similar to rounding error, in that both are measured by a ruler with equally spaced

tick marks, and that the maximal error in x∗ij − xij and y∗ij − yij is known, typically 1/2 the

distance wij between the tick marks. Then

xij ∼ Unif(x∗ij − (wij/2), x∗ij + (wij/2)), (2.28)

yij ∼ Unif(y∗ij − (wij/2), y∗ij + (wij/2)), (2.29)

and set the true unknown KM survival probability to be κ+
ij = xij/yij. The density fij(κ

+
ij|x∗ij, y∗ij)

is given by the ratio of two uniform random variables and has positive support on the range

of values
x∗ij −

wij

2

y∗ij +
wij

2

≤ κ+
ij ≤

x∗ij +
wij

2

y∗ij −
wij

2

. (2.30)

The exact form of the piecewise density fij(κ
+
ij|x∗ij, y∗ij) is given in Appendix A. Using

fij(κ
+
ij|x∗ij, y∗ij), an exact density fij(s

+
ij|x∗ij, y∗ij) is immediate, but we derive a distribution to
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be a convenient normal approximation to fij(s
+
ij|x∗ij, y∗ij) that is

s+
ij|s∗ij ∼ N

(
s∗ij,
(nij

6

)2
[
x∗ij +

wij

2

y∗ij −
wij

2

−
x∗ij −

wij

2

y∗ij +
wij

2

]2
)
. (2.31)

This has mean and mode at s∗ij and standard deviation such that 99.7% of values fall

within the support in (2.30). Considering that the exact UR distribution, fij(s
+
ij|s∗ij), is a

complicated piecewise function, and that this case holds for several of the studies in the meta-

analysis, a normal approximation facilitates implementation of the proposed methodology.

2.3.2 The Estimated Events density

The KM survival estimate κ+
ij has two kinds of uncertainty associated with it: binomial

sampling and additional uncertainty due to censoring. The binomial sampling is addressed

naturally in (2.12). The EE distribution addresses the additional uncertainty due to cen-

soring. The EE distribution, fij(sij|s+
ij), conditions on the estimated number of deaths

s+
ij = nij(1− κ+

ij), calculated using κ+
ij as input and gives the density of the random variable

sij as output. This distribution is constructed using other information from the ith paper.

Since the EE distribution models numbers of deaths, a discrete distribution that assigns a

probability to each feasible integer value of sij is desirable. However, it is not straightforward

to determine said probabilities. Thus, we approximate fij(sij|s+
ij) with a truncated normal

density, TN(s+
ij,Bij,LBij,UBij), centered around s+

ij with variance Bij, truncated at lower

and upper bounds, LBij and UBij, where the values of Bij, LBij and UBij are dependent on

the number of censored people, cij, in each study. A lower bound, LBij = eij, assumes that

all censored people survived and an upper bound UBij = eij + cij assumes that all censored

people died. Improved lower and upper bounds can be computed with additional informa-

tion available for extraction, such as number of people at risk rij. Simulations (not shown)

showed that asymmetry of the density TN(s+
ij,Bij,LBij,UBij) results in biased estimates of

sij. Thus, we propose a truncated normal with symmetric truncation points

sij|s+
ij ∼ TN(s+

ij,Bij, s
+
ij−min{s+

ij−LBij,UBij −s+
ij}, s+

ij+min{s+
ij−LBij,UBij −s+

ij}). (2.32)
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To estimate the number of censored people, we use information extracted from the papers

about the follow-up distribution times and number of people at risk found in the paper.

We model the log follow-up times as N(ψij, φij), with mean ψij and variance φij. Let λij

be the probability of being censored before year 1, then the estimated number of censored

subjects is cij = nijλij. The information about follow-up times available for extraction in

each paper varies; some papers give means and variances, others give quartiles (Table 2.3).

We enumerate the following cases of extracted data to calculate ψij and φij.

Table 2.3: Follow-up times (in days) for studies in the ULMCA dataset by treatment and

control group.

Study PCI CABG

mi0 v2
i0 Q1i0 Q2i0 Q3i0 mi1 v2

i1 Q1i1 Q2i1 Q3i1

Brener 1020 840 3660 3180

Palmerini 2 417 830 105 430 730

Seung 681 1152 1590 688 1017 1451

Wu 732 402.25 753 1060.25

Sanmartin 474.5 292 1168 584

Buszman 840 297 840 297

Makikallio 360 180 360 180

White 192 362 586 226 600 977

Serryus

Chieffo

Case 1: Follow-up time mean and variance by treatment group. Let mij, vij be the extracted

mean and variance of the follow-up times. Then, ψij = log
[
m2

ij(vij +m2
ij)

−1/2
]
, and

φij = log
(
1 + (vij/m

2
ij)
)
.

Case 2: Follow-up time median and lower and upper quartiles by treatment group. Let

Q2ij and [Q1ij, Q3ij] be the extracted median and upper and lower quartiles. We set
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ψij = log(Q2ij) and φij = [log(Q3ij)− log(Q1ij)] / [Φ−1(0.75)− Φ−1(0.25)].

Case 3: Follow-up time not by treatment group. When the follow-up time summary statistics

are pooled summaries of the treatment and control groups, set ψi1 = ψi0 and φi1 = φi0

and calculate both given the pooled summary statistics.

Case 4: Follow-up time mean but no variance. We use the mean of the standard deviations

in the other studies of the meta-analysis as a value for vij.

To define UBij and LBij, we need the number of subjects at risk, rij, and the number of

observed deaths eij at year 1. The availability of this information varies across studies. We

consider the following cases of information available for extraction.

Case 1: Observed deaths and people at risk are both given in the paper. Define UBij =

nij − rij and LBij = eij.

Case 2: Observed deaths is given but people at risk is not. Define UBij = eij + cij and

LBij = eij.

Case 3: People at risk is given but observed deaths is not. Define UBij = nij − rij and

LBij = max{0, nij − rij − cij}.

Case 4: Neither people at risk nor observed deaths are given. Due to the lack of information,

conservative bounds are UBij = nij and LBij = 0.

The variance Bij = Var(nij(1 − κ∗ij)) = n2
ijbij depends on, bij, the variance of the KM

survival probability. However, studies rarely report KM confidence intervals or KM standard

errors so bij is unknown. To approximate the value of the variance we simulated studies with

characteristics similar to the studies contributing to the ULMCA dataset. We found that

the preferred formula depends on the amount of censoring.

1. Greenwood simplified estimate. When censoring at 12 months is less than 25%, a

simplified version of the Greenwood formula was satisfactory bij = (κ∗ij)
2eij/[nij(nij −

eij)].
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2. Censoring proportional estimate. When censoring at 12 months ranged from 25% to

35%, we found the Greenwood simplified estimate and the censoring proportional es-

timate, bij = (cij/nij)κ
∗
ij(1 − κ∗ij) to be very close to each other. So we suggest the

average of the two. When censoring ranged from 35% to 50% the censoring pro-

portional estimate was superior while the Greenwood simplified estimate consistently

underestimated the KM variance.

3. Follow-up area under the curve (AUC) proportional estimate. The censoring proportion

cij/nij does not take into consideration for how long a censored subject was followed

before being lost. Let aucij be the area under the curve that represents the person-

years lost to follow-up, and the total area be totalij = nij ∗ 1 person-years, then the

follow-up AUC proportional estimate is bij = (aucij / totalij)κ
∗
ij(1−κ∗ij). For censoring

that ranged from 50% to 70%, we found this estimate to be as good as the censoring

proportional estimate, so we suggest using the average of the two. For censoring

in excess of 70% the AUC proportional estimate was adequate while the censoring

proportional estimate consistently overestimated the KM variance.

2.3.3 Survival probabilities not available for extraction

When a paper does not include a KM plot but it includes the number of observed deaths,

the naive approach is to use the number of observed deaths as a replacement for the number

of true deaths. This underestimates the true value and leads to biased information being

input into the meta-analysis. We propose the following estimate of the probability of death

at year 1, sij/nij when only observed deaths are available

k∗ij =
eij
nij

(
1

1− aucij

)
, (2.33)

for 0 < eij/nij < 0.5 and 0 < aucij < 0.5. Then set κ+
ij = k∗ij. In our simulations, (2.33) had

smaller mean square error than eij/nij in estimating sij/nij for all ranges of censoring and

true values of sij/nij.
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2.4 Results

2.4.1 Prior specification

We use proper weakly informative priors. It is unlikely that the underlying odds ratio

associated with the model would exceed 100 in favor of either PCI or CABG (Smith et al.,

1995). With this constraint, a range for d is (−4.6, 4.6). Thus, a normal N(0, 2.352) prior for

d has the mean ± 1.96 SD covering 95% of the prior range. The event (death) rate logit−1 is

very likely to lie in the interval (0.001, 0.999) (Larose and Dey, 1997), which corresponds to

(−3.89, 3.89) as an interval for m. Assuming a normal distribution, the prior is N(0, 1.982).

We use informative Inverse Gamma priors IG(3, 2) for the variance parameters σ2 and τ 2

(Gelman et al., 2004).

2.4.2 Conditional densities

Figure 1 compares the conditional densities f(πij|s∗ij) using the naive Bayesian model (dashed

lines) and f(πij|extracted data) using the UR-EE model (solid lines) in the ULMCA meta-

analysis of mortality at year 1. The dotted line corresponds to the use of the ratio of

two uniform random variables as described in Appendix A, while the dashed line uses the

normal approximation in (2.31). Thus, equation (2.31) serves as an adequate approximation

for the ratio of two uniform random variables, in our situation. Curves corresponding to the

Chieffo paper are not included as the extracted data did not include follow-up information.

Sensitivity analysis (not shown) showed that multiple assumptions about censoring, including

no censoring, in Chieffo’s data did not change the ULMCA meta-analysis result.
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Figure 2.1: Naive conditional densities, f(πij|s∗ij) in solid lines and UR-EE conditional densities f(πij|extracted data) in dashed

lines. Where applicable, the dotted lines (in red) uses the ratio of two uniform random variables while the dashed line (in blue)

uses the normal approximation.
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After accounting for the uncertainty that arises from the estimates of the number of

deaths, there is an increase in the variance of all conditional densities, confirming the con-

servativeness of our model. To quantify the effect, we use the L1 statistic to measure the

distance between the naive and proposed densities (Weiss, 1996). The statistic takes values

[0,1], where a value of zero indicates no difference and a value of one indicates maximal dif-

ference between the densities. The densities in Figure 1 are sorted in increasing order of L1.

The effect of accounting for the different types of extracted data varies greatly among stud-

ies. Minimal differences between the naive and proposed densities are found for the studies

by Wu, Sanmartin, Seung and Buszman where L1 < 0.05. Large differences of L1 > 0.2 are

found in the studies by White and Palmerini. The densities suggest that having a smaller

amount of extractable data available from a study results in large increases in the study

OR’s variance compared to having full information.

2.4.3 Posterior computation

Because the posterior is not available in closed form, we base our inferences on an MCMC

simulation from the posterior distribution f(θ|S∗). We use a Gibbs step (Gelfand and

Smith, 1990) whenever conditional posteriors are available, as for d, σ2, m, τ 2. When the

conditional distribution is of intractable form, such as for mi and δi, we use a Metropolis

step (Metropolis et al., 1953), resulting in a hybrid sampler (Tierney, 1994). Gibbs steps

are included to sample for s+
ij, and s∗ij using the Uncertain Reading and Estimated Events

densities.

The MCMC algorithm to compute the posterior of the UR-EE model was implemented

in R (R Core Team, 2012) using the “ureepkg.” The package was developed specifically

for the ULMCA and simulated data meta-analyses, and is available upon request from the

authors. After an initial burn-in period of 2,000 iterations, we generated an additional

100, 000 iterations, retaining every tenth iteration. We used three chains with different

starting points and assessed convergence by inspecting the densities and time series plots

and the convergence diagnostics of Gelman and Rubin (1992).
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2.4.4 Sensitivity to prior specification

We examine sensitivity of the inference of d to the prior specification of the variance com-

ponents. We use IG(ε, ε) as an attempt at uninformativeness (Gelman, 2006) for the prior

distributions of σ2 and τ 2. The resulting estimates for the log-odds ratio and its standard

deviation do not vary substantially for different choices of prior when using ε ∈ {0.1, 1} when

compared to those obtained using an IG(3, 2) as a prior.

2.4.5 Results with ULMCA dataset

Table 2.4 summarizes the results from the naive and UR-EE Bayesian models or the meta-

analyses of mortality of the ULMCA dataset. The results confirm that there is an increase

in variance in all parameters as expected from the discussion around (2.22). The increase

in the standard deviation of the log-odds ratio is 33%. Across all parameters in the model,

there was an average increase of 39% in the standard deviation.

Table 2.4: Posterior mean and 95% credible intervals for parameters d, σ2, m and τ 2 in the

naive and UR-EE Bayesian models for mortality of the ULMCA dataset.

Mean SD

Naive UR-EE Naive UR-EE

Mortality

d -0.09 -0.07 0.22 0.29

σ2 0.25 0.47 0.29 0.48

m -2.65 -2.71 0.18 0.20

τ 2 0.23 0.29 0. 17 0.24

Figure 2 gives OR estimates and 95% intervals for the mortality meta-analysis under the

DSL, ML, naive Bayes and UR-EE models. As expected the UR-EE model interval is wider

than the naive models. According to (2.23), the increase in the standard deviation over the

naive Bayes model is equivalent to a reduction of 43% of the meta-analysis sample size.
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Figure 2.2: Mortality meta-analysis for ULMCA dataset: odds-ratio mean (Bayes and

UR-EE) or point estimate (DSL, ML), exp(d), and 95% confidence interval under various

models.

2.4.6 Results with simulated dataset

The simulated dataset has large censoring (50%) in the treatment arm and little to no

censoring (3%) among controls at year 1 in all ten studies. Log follow-up times N(ψij, φij)

were set to be N(5.89, 0.83) and N(7.05, 0.63), for all i, in the treatment and control groups

respectively. The follow-up times are measured in days. The values for the parameters in

(2.13) to (2.16) were set to d = 1.0, τ 2 = 0.4, m = −0.8, and σ2 = 0.1. Figure 3 shows

the results obtained under different scenarios. Because this is simulated data we are able

to compute the odds ratio and confidence interval using the true number of deaths, which

is the ideal extracted data that is typically unavailable. If we assume that the KM survival

probabilities were available for extraction in both arms in all studies then we can compute

naive Bayes and UR-EE models to obtain similar conclusions as in the ULMCA dataset.

The UR-EE confidence interval is wider than the one obtained under the naive Bayes model,

and both are close to the one obtained from the model based on the true data. The power of

the UR-EE model is portrayed in the extreme case where KM survival probabilities are not

available in all studies. The meta-analysis that uses observed deaths as a substitute for true

deaths results in a biased and inaccurate result: it points to a significant difference in two

arms where none exists! Using the UR-EE model on observed deaths results in an adequate

odds ratio and confidence interval.

27



Figure 2.3: Mortality meta-analysis simulated: odds-ratio mean exp(d) and 95% confidence

interval under various models.

2.5 Discussion

In the ULMCA meta-analysis we re-evaluated, the estimates from ML were slightly more

conservative than those obtained using DSL. The naive Bayesian model was more conserva-

tive than both DSL and ML, and the UR-EE model was, as expected, the most conservative

of all. The odds ratio for mortality reported in Naik et al. (2009), OR=1.00 [95% CI: 0.70

to 1.41], did not use any of the naive methods. Instead it incorporated uncertainty in the

unknown number of deaths by reducing the sample sizes of each study. Naik’s interval is

wider than the ones from DSL and ML but not as wide as the Bayesian naive and UR-EE

models.

The UR-EE model penalizes the lack of important information available for extraction

in the papers by increasing the variance in the estimates of the study level and global

parameters. Given that each study can present its own challenges, our model potentially

requires individual models carefully constructed for each study’s contribution to the meta-

analysis. While the algorithm increases in complexity the more studies it contains, the

results are more conservative and more accurate than traditional meta-analysis methods

such as DSL, ML or a naive Bayesian model, which do not account for the uncertainty of

their extracted data.

Under the UR-EE model, there is an increase in the standard deviation of all parameters

in the model. Thus, non-significant results would be even more non-significant. The con-

clusion for the ULMCA meta-analysis was the same regardless of the method: there is no
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statistical difference in the rates of mortality between PCI and CABG. While the UR-EE

model did not change the conclusions here, in other datasets where the odds ratio intervals

are different but close to 1.0, it is possible that under the UR-EE model, the wider interval

would include 1.0 causing the results to become non-significant. For example, if in our meta-

analysis of mortality, the estimated log-odds d̂ had been within (−0.57,−0.43) or (0.43, 0.57)

instead of zero, with the same standard deviation as in Table 2.4, the resulting confidence

intervals for the odds ratio would be significant in the naive model and non-significant in

the UR-EE model.

Our model’s superiority over the naive models was best exemplified in the extreme case

of the simulated data. The data was simulated such that a naive approach would result in

biased and inaccurate results, which is the case where observed values are used instead of true

values. When feeding that same data into our UR-EE model, we obtained accurate results.

While it was also shown that a naive meta-analysis based on best-estimates obtained from

KM survival probabilities was adequate in our situation, a typical meta-analysis contains a

mix of studies where KM plots are available and where they are not and observed values

are used instead, making our UR-EE model a necessary requirement in the computation of

meta-analyses of odds-ratio with incomplete extracted data.

We have presented a model that incorporates the uncertainty that arises during data-

extraction in the meta-analysis model. Our model would not be necessary if published studies

provided better estimates and standard errors and complete information on their follow-up

times. Unfortunately, the poor reporting of summary statistics will continue to prevail in

the published literature, making the UR-EE model a requirement for any meta-analysis

performed that does not include individual patient data. While the overall conclusion may

not change from those obtained from naive approaches, our method allows researchers to

explore the impact of the uncertainty from the missing extracted data in the final estimates.

For example, if a meta-analysis yields a significant result using standard methods, we strongly

recommend our method be run in parallel to confirm the significance of the results after

accounting for the uncertainty of the missing extracted data to avoid the situation portrayed

in our simulated dataset.
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To improve estimates from meta-analyses, we recommend that referees and editors of

journals require submitted papers to include complete survival plots that contain KM es-

timates and numbers of people at standardized time points, confidence bands for the KM

estimates for both treatment groups, and more complete follow-up time information for both

groups, with minimum means, standard deviations and quartiles and maximum times. If

these data are not going be part of the published paper, it should be made available in online

supplemental materials for future extraction.
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CHAPTER 3

Meta-analysis of mean differences with missing

standard errors

Meta-analysis is commonly used to quantitatively pool the evidence from multiple studies

on a particular research question. In the health sciences, meta-analyses are used to obtain

an estimate of a treatment intervention’s effectiveness along with a measure of precision.

Ideally, meta-analysis would analyze the combined individual patient data (IPD) from all

studies (Stewart and Parmar, 1993; Lambert et al., 2002; Berlin et al., 2002). In practice,

this is rarely done (Kovalchik, 2012). IPD can be costly, time consuming or not possible

to obtain (Riley et al., 2013). Instead, meta-analyses rely on data extracted from journal

articles in the published literature or from presentations at major conferences. This is known

as meta-analysis of aggregate data. Extracted data from each study typically consists of a

treatment effect and its variance.

In a meta-analysis of continuous outcomes the data typically required from each study

are the mean difference and standard error of the mean difference. Existing software to

perform meta-analysis customarily operate on these data (Viechtbauer, 2010). However,

standard errors (SE) for the mean difference are typically missing from published studies

(Wiebe et al., 2006; Furukawa et al., 2006). For example, Streiner and Joffe (1998) reported

that 87% of the studies in their systematic review of antidepressants did not report SEs, 62%

of SEs were missing in the meta-analysis of sodium reduction on blood pressure in Follmann

et al. (1992) and 87% to 92% of SEs were missing in a meta-analysis of various renal function

outcomes after kidney donation (Philbrook et al., 2007). While contacting the authors of

the studies to request the missing data is recommended, in practice the proportion of SEs

recovered this way is very low and a large proportion of standard errors remain missing
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(Furukawa et al., 2006; Philbrook et al., 2007).

There have been efforts to promote better reporting in clinical trials (Moher et al., 2001).

However, the problem of missing SEs has been described as “annoyingly common” (Furukawa

et al., 2006) and recovering all missing data by contacting authors as “impossible” (Philbrook

et al., 2007). Because missing SEs can occur in the majority of studies in the meta-analysis,

omitting studies with missing SEs is not considered a reasonable option. In particular, the

standard errors are used in the weighted computation of the overall meta-analysis estimate

and omitting studies could lead to bias (Wiebe et al., 2006; Furukawa et al., 2006; Philbrook

et al., 2007). Thus, meta-analysts are left to improvise (Wiebe et al., 2006). Sometimes it

is possible to compute the missing SE from an available 95% confidence interval or p-value.

If these are not available it is common to use other information available in the published

paper such as the standard deviations (SD) for the baseline and follow-up mean change for

the treatment and control groups to estimate the missing SE. When baseline and follow-

up information are not available a common approach is to impute the missing SDs using

the average SD from the studies where it is reported. Since studies vary in the amount of

information available for extraction, in most cases, a combination of strategies is used to

impute all the missing SEs of the meta-analysis. However, introducing imputed SEs in the

meta-analysis as observed data is problematic, since it can lead to unjustifiable certainty in

the results and to potentially inaccurate conclusions.

We propose the Uncertain Standard Error (USE) Bayesian model to account for the

uncertainty that arises at the data extraction step of a meta-analysis of continuous outcomes.

We formally construct a model that accounts for the contribution of each study to the

meta-analysis using the data available and extracted from it. Data available for extraction

includes the number of participants at baseline, and may include one or more of the following:

baseline and follow-up means and standard deviations for the treatment and control group,

and correlations. The Bayesian model that we propose models the missing SEs using other

SDs available in the study, allows for different within-subject correlations in the treatment

and control groups, and more importantly, allows for multiple patterns of missingness. The

USE model improves the validity of results from meta-analysis by accommodating all the
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uncertainty in the data input to the meta-analysis.

In section 3.1 we review existing methods to perform a meta-analysis of mean differences

with missing SEs. We introduce the motivating dataset in section 3.2. We describe the USE

model in section 3.3. In section 3.4 we apply the existing methods and the USE model to

our data. The chapter finishes with discussion.

3.1 Methods for meta-analysis of mean differences with missing

standard errors

In this section we briefly review current methods to perform a meta-analysis of mean differ-

ences and the strategies taken by meta-analysts to deal with the missing SEs.

Let nij be the sample size of study i, i = 1, . . . , K where K is the number of studies, and

group j, where j = 1 is the treatment group and j = 0 is the control group. Let µijb be the

mean at baseline for study i and treatment group j. Similarly µijf is the mean at follow-up.

Let δij = µijf − µijb be the mean change in treatment group j and study i. The treatment

effect is the difference of mean changes between the two groups

∆i = δi1 − δi0 = (µi1f − µi1b)− (µi0f − µi0b). (3.1)

Other measurements of the treatment effect have been used, for example using only the

follow-up values, ∆i = µi1f − µi0f , and ignoring the baseline values, but this is not recom-

mended (Riley et al., 2013).

The sample estimate of ∆i is

Di = (X̄i1f − X̄i1b)− (X̄i0f − X̄i0b), (3.2)

where X̄ijb and X̄ijf are the sample means at baseline and follow-up for study i and treatment

group j. If we assume that the variance of the change for one subject is the same for the

two groups, Var(X̄i1f − X̄i1b) = Var(X̄i0f − X̄i0b) = λ2
i , then the variance of Di is

Var(Di) =

(
1

ni1

+
1

ni0

)
λ2
i (3.3)
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and the standard error is

seDi =
√

Var(Di). (3.4)

An estimate of the variance of Di is

V̂ar(Di) =

(
1

ni1

+
1

ni0

)
s2
ip (3.5)

where

s2
ip =

(ni1 − 1)s2
i1 + (ni0 − 1)s2

i0

ni1 + ni0 − 2
(3.6)

is an unbiased estimator of λ2
i , and sij are the sample standard deviations of change in

the two groups. If sij are not available, they can be calculated from the sample standard

deviations at baseline and follow-up, sijb and sijf , as

s2
ij = s2

ijb + s2
ijf − 2rijsijbsijf (3.7)

where rij is the observed within-subject correlation in each group

rij =

∑nij

l=1(Xlijb − X̄ijb)(Xlijf − X̄ijf )

(nij − 1)sijbsijf
, (3.8)

where Xlijb and Xlijf are the measure of the outcome in subject l, study i, treatment group

j, at baseline and follow-up respectively.

The necessary data to feed into a meta-analysis are Di and its variance se2
Di. A random

effects model accounts for the heterogeneity of the studies in the meta-analysis. The model

is

Di|θi ∼ N(θi, se
2
Di), (3.9)

θi|µ, τ 2 ∼ N(µ, τ 2) (3.10)

where θi is the mean effect in study i, µ is the true mean effect of the efficacy of the treatment

and τ 2 is the between-study variance.

The random effects model estimate of the mean effect size, µ̂, is a weighted average of

the individual studies’ effect sizes

µ̂(τ 2) =

∑K
i=1wiDi∑k
i=1wi

, (3.11)
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where the weights wi are the inverse of the sum of the within-study and between-study

variances

wi =
1

se2
Di + τ 2

. (3.12)

The variance of the mean effect size is

Var(µ̂|τ 2) =
1∑K

i=1wi

. (3.13)

The most widely used estimate of τ 2 is the DerSimonian and Laird (1986) estimator (DSL)

τ̂ 2 = max

{
0,

Qa − (k − 1)∑
i ai −

∑
i a

2
i /
∑

i ai

}
, (3.14)

where ai = 1/ŝe2
Di

, and Qa =
∑

i ai(Di− µ̂)2 is the Cochran statistic of heterogeneity. Then

the overall estimate of effect size is µ̂(τ̂ 2) with variance Var(µ̂|τ̂ 2).

3.1.1 Methods for missing mean difference

When Di is missing, but X̄ijb, and X̄ijf are available, Di is computed using equation (3.2).

Sometimes the X̄ijf are not available for extraction but the study evaluated the difference

of means at follow-up only, (X̄i1f − X̄i0f ), and this information is available for extraction as

well as baseline information, X̄i1b, X̄i0b. In our meta-analysis, this was the case in the study

by Bosworth (2011). Equation (3.1) can be rewritten as

Di = (X̄i1f − X̄i0f )− (X̄i1b − X̄i0b), (3.15)

and again the value of Di can be computed. Imputation of the outcome Di when both X̄ijb

and X̄ijf are missing is beyond the scope of this chapter. In general, studies with missing

and irrecoverable Di are excluded from the meta-analysis. In our dataset, this situation

arises in two studies: Pierce (1984) and Baque (2005).

3.1.2 Methods for missing standard errors

Missing standard deviations or missing standard errors of the mean difference, seDi, are ex-

tremely common. The absence of standard errors in the meta-analysis leads to complications
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in the estimation of the pooled treatment effect µ̂. However, excluding trials that do not

report standard errors or deviations is not advisable because it could lead to biased estimates

of the treatment effect (Fu et al., 2013).

As there is no protocol on how to handle the missing variances, a myriad of methods to

impute or calculate the missing variances have been used in the literature. Many of these

methods have not been empirically tested and it is not known how they affect the overall

estimates of the meta-analysis.

The most commonly used methods to handle missing data can be catalogued as

1. Algebraic calculations

2. Single value imputations of standard deviations

3. Imputation of the correlation

None of these methods account for the uncertainty associated with single imputations.

Bayesian strategies have the potential to account for uncertainty and have been recommended

but are not commonly used in practice. Other less frequently used methods can be found in

the exhaustive search performed by Wiebe et al. (2006).

3.1.2.1 Algebraic calculations

A missing variance can sometimes be recalculated from summary statistics presented in the

published study. When standard deviations are reported, standard errors are obtained with

the simple computation SE = SD/
√
n and viceversa.

Results of a randomized clinical trial are usually presented in the form of a mean difference

and 95% confidence interval. This occurred in four of the studies in our dataset: Soghikian

(1992), Rudd (2004), Staessen (2004), and Madsen (2008). The standard error can be

calculated as

SE =
UCB− LCB

3.92
(3.16)

where UCB and LCB are the upper and lower confidence bounds and 3.92 = 1.96 × 2
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(Fu et al., 2013). Alternatively, if the results are presented as mean difference and a z- or

t-statistic, the standard error can be calculated as

SE =
|D|
z

or SE =
|D|
t
. (3.17)

If the results are presented as mean difference and p-value, the p-value can be converted to

a z-statistic. If the sample size is small, then a t-statistic should be used and we recover the

SE using (3.17).

Sometimes the p-values provided are not exact. For upper boundary p-values, such as

p < 0.05, using p-value=0.05 and the calculations described above will result in a conserva-

tive estimate (a larger SD) that will down weight the trial that does not provide complete

information. For lower boundary p-values, such as p > 0.05, variance imputation is not rec-

ommended since these p-values contain very little information about the variance (Follmann

et al., 1992). Some authors suggest performing a sensitivity analysis using various p-values

in the range [0.05, 1] (Wiebe et al., 2006).

If the results of a study are presented in the form of median and interquartile range

(IQR), or as median and range = max−min, the mean and missing SD can be calculated

only if a bell-curved symmetric distribution is assumed. The distribution of mean differences

D is reasonably assumed to have a symmetric sampling distribution. Using the interquartile

range (IQR), the SD can be calculated as IQR/1.35 or as range/4 for sample sizes between

15 and 70, and range/6 for sample sizes larger than 70 (Hozo et al., 2005). Alternatively, we

can use Pearson’s table for a more precise suggestion of which denominator to use depending

on sample size (Pearson, 1932). Dividing the range by four is also recommended by the

Cochrane Handbook (Higgins and Deeks, 2011). If the results include a p-value from a non-

parametric test, the p-value has been used as a substitute for the p-value of a t-test (Wiebe

et al., 2006).

3.1.2.2 Single value imputations

The simplest single value imputation method is to borrow an SD or SE from somewhere

else. It could be from within the study (using the baseline or follow-up SD, the minimum,
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maximum or average of the two) or from an external source (a study that is considered to

be similar) (Wiebe et al., 2006; Abrams et al., 2005).

One estimate using complete data from the same meta-analysis is the arithmetic mean

of the standard deviations from studies that reported one (Robertson et al., 2004; Follmann

et al., 1992). Suppose the first m studies in a meta-analysis have complete data for the

standard deviation at baseline while the remaining K − m studies are missing the SD at

baseline. Then, the imputed sgjb for study g with missing standard deviation at baseline is

the SE

sgjb =

∑m
h=1 shjb
m

g = m+ 1, . . . , K. (3.18)

This computation also applies for missing standard deviations at follow-up sijf . The prog-

nostic method (Ma et al., 2008) imputes the missing standard error of the mean difference

by computing the average in the standard deviation scale. In this case, assume the first

m studies have standard errors of the mean difference available for extraction. Then, the

imputed value for those missing is

seDg =

∑m
h=1 seDh

√
nh

m
√
ng

g = m+ 1, . . . , K. (3.19)

where nh = nh0nh1/(nh0 +nh1). Unfortunately, this mean imputation strategy is suboptimal

and may underestimate the standard error of the mean difference.

3.1.2.3 Imputation of the correlation

If the standard deviations at baseline and follow-up for the treatment and control groups

are available, then the missing standard error of the estimate of the treatment effect is

computable using equations (3.7), (3.6) and (3.5) if the correlation rij is also available. Un-

fortunately, the correlation rij is also usually missing. In our dataset, only one study reported

correlations: Bosworth (2011). A common strategy is to impute the missing correlations.

Various approaches for imputing the missing correlations have been used: using ρ = 0.5

(Follmann et al., 1992), ρ = 0 (Abrams et al., 2005), ρ < 0.5 (Robertson et al., 2004),

performing sensitivity analysis with values that range from 0 to 1 (Abrams et al., 2005),
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using the arithmetic mean of the correlations that are available for calculation in the meta-

analysis, and using the correlation from an external source such as a previous meta-analysis

or a different dataset (Abrams et al., 2005).

Assuming a value of ρ = 0 is unrealistic because in clinical outcomes at least some

degree of correlation is to be expected (Follmann et al., 1992). Similarly, a value of ρ =

1 is unrealistic because outcome values vary to some extent within individuals over time

(Philbrook et al., 2007). Robertson et al. (2004) suggests to use low values of the correlation

to “err on the safe side” and end up with larger estimates of the SD and wider confidence

intervals. Wiebe et al. (2006) found that few authors actually report the value of ρ that they

used in their imputations.

3.1.2.4 Bayesian models

A random effects Bayesian model assigns priors to µ and τ 2 in equations (3.9) and (3.10).

A Bayesian approach accounts for all the uncertainty of the unknown parameters and the

Bayesian framework allows for the modeling of complex data structures. In the systematic

review of methods for handling missing variance data performed by Wiebe et al. (2006) it

was concluded that Bayesian solutions were rarely used in practice and when used there were

not enough details to allow replication of the analysis.

Stevens (2011) presented a Bayesian meta-analysis of mean differences model imple-

mented in WinBUGS that can take missing SEs and deal with them automatically. How-

ever, the model does not make use of other existing data in the published papers to aid the

imputation of the missing SEs.

Abrams et al. (2005) models the missing SEs based on other SDs available in the published

papers and sets a prior on the unknown correlation and handles one pattern of missing data:

assuming that sijb and sijf are available and only the sij are missing. They assume that the

correlation is the same in the treatment and control group and obtain a distribution for the

correlation from an alternative meta-analysis on a similar outcome.
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3.1.2.5 Algorithms for imputation

In most meta-analyses each study will contribute different amounts of data presented in

different formats such that a single strategy of SD imputation will not suffice. Indeed, a

combination of strategies is typically needed and it will not always be clear which method

to use (Follmann et al., 1992). Various authors have suggested rules of thumb or paths of

imputation in which some methods take precedence over others.

For example, if presented with the choice of imputing SE using a p-value or an imputed

correlation, Follmann et al. (1992) suggests to use the minimum of the two resulting SEs.

Furukawa et al. (2006) recommends to use the pooled SD from the studies that reported them

if the number of missing SDs is small but to borrow an SD from a previous systematic review

if the number of missing SDs is large. Robertson et al. (2004) emphasizes the importance of

performing a full sensitivity analysis after imputation. Cappuccio et al. (2004), Bray et al.

(2010) and Agarwal et al. (2011) followed different algorithms to analyze blood pressure data

in their meta-analyses, using combinations of approaches to impute missing SDs:

Cappuccio et al. (2004) algorithm

Step 1 Recover missing SDs using algebraic calculations.

Step 2 Impute missing SD of the mean change using the average of the baseline and follow-up

blood pressures:

sij =
sijb + sijf

2
(3.20)

for study i with extracted sijb and sijf .

Step 3 Impute remaining missing SDs of mean difference, sij, using the average of all the other

studies with SD of mean difference.

Step 4 Compute the missing SEs of the difference of mean differences using equations (3.7)

and (3.6).

Bray et al. (2010) algorithm
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Step 1 Recover missing SDs using algebraic calculations.

Step 2 Impute correlation using the average of the correlations obtained from studies that

provided complete data, where the observed correlations rij are recovered using

rij =
s2
i1b + s2

i0f − s2
ij

2si1bsi0f
, (3.21)

based on nij observations, for studies with extracted sijb and sijf .

Step 3 If only sijb or sijf is missing, but not both, impute it using the average of the corre-

sponding SDs from other studies.

Step 4 Compute missing SDs of mean difference using equation (3.7) with the imputed corre-

lations and imputed SDs from steps 2 and 3.

Step 5 Impute remaining missing SDs of mean difference, sij, using the average of all other

studies.

Step 6 Compute the missing SEs of the difference of mean differences using equation (3.6).

Agarwal et al. (2011) algorithm

Step 1 Recover missing SDs using algebraic calculations.

Step 2 Impute remaining missing SDs of mean difference, sij, using the average SD of all other

studies.

Step 3 Compute the missing SEs of the difference of mean differences using equation (3.6).

3.2 Dataset

To illustrate the proposed methodology for meta-analysis of mean differences with missing

SEs we re-evaluate a published meta-analysis that compares the effect of home blood pressure

monitoring on systolic and diastolic blood pressure levels when compared to usual care

(Cappuccio et al., 2004; Bray et al., 2010; Agarwal et al., 2011). In our analysis, home

monitoring of blood pressure is the treatment and usual care is considered the control group.
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Hypertension is a preventable cause of stroke and cardiovascular disease. The latter is

the leading cause of death worldwide (Bray et al., 2010). However, hypertension is often un-

derdiagnosed and undertreated (Cappuccio et al., 2004). Blood pressure is usually measured

by doctors and nurses in the healthcare system, but measuring blood pressure at home has

been shown in systematic reviews to be more effective in controlling blood pressure and it is

increasingly becoming a part of hypertension management (Agarwal et al., 2011).

We identified a total of 36 randomized controlled trials. Systolic blood pressure (SBP)

was evaluated in 31 trials with a total of 8,560 patients. Diastolic blood pressure (DBP)

was evaluated in 36 trials with a total of 9,311 patients. The meta-analyses present multiple

challenges at the data extraction step. Tables 3.1 and 3.2 display the data available for

extraction from each study: The mean and standard deviations at baseline for both treat-

ment groups, followed by the mean and standard deviations at follow-up for both groups,

mean difference in each group and its standard deviation and finally, the difference of mean

differences and its standard error. A blank spot in the table means that the value was not

available for extraction in the publication.
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Table 3.1: Extracted data from each study in the SBP meta-analysis includes:

sample sizes nij , mean and SDs at baseline, (X̄i1b, si1b), and at follow-up,

(X̄i1f , si1f ), mean and SD of the change, (X̄ijf -X̄ijb), sij , and the difference

of mean differences and its standard error, (Di, seDi), for treatment group j

and study i = 1, . . . ,K.

Baseline Follow-up Treatment Control Difference of

Treatment Control Treatment Control difference difference differences

Study Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SE

ni1 ni0 X̄i1b si1b X̄i0b si0b X̄i1f si1f X̄i0f si0f (X̄i1f -X̄i1b) si1 (X̄i0f -X̄i0b) si0 Di seDi

Carnahan (1975) 49 48 152.7 156.6 134.7 146.1 -18 -10.5 -7.5

Pierce (1984) 27 29 184 22 179 26

Midanik (1991) 74 72 144.4 15.7 144 16.8 142.6 15.6 144.8 18 -1.8 14.5 0.8 14.2 -2.6

Soghikian (1992) 200 190 137.4 16.95 140.2 17.95 135.9 19.85 142 16.55 -1.5 18.45 1.8 16.55 -3.3 1.83

Friedman (1996) 133 134 169.5 167 158.5 156.4 -11 -10.6 -0.4

Bailey (1999) 31 29 156 22.35 155 21.55 148 16.75 142 16.25 -8 -13 5

Vetter (2000) 296 326 166.1 14.55 168.1 14.45 145.1 14.95 147.6 14.65 -21 -20.5 -0.5

Mehos (2000) 18 18 157.9 16.4 153.9 14.6 140.8 136.8 -17.1 12.92 -7 18.42 -10.1

Artinian (2001) 6 9 148.8 13.8 142.4 16.5 124.1 13.8 143.3 10.7 -24.7 .95 -25.6

Broege (2001) 20 18 150 22 144 20 146 11 144 19 -4 0 -4

Rogers (2001) 99 63 -4.9 24.73 -.13 13.43 -4.7 1.73

Rudd (2004) 69 68 155.92 19.82 154.82 17.12 141.62 19.92 149.42 16.92 -14.2 18.1 -5.7 18.7 -8.5

Staessen (2004) 203 197 160.8 18.6 159.1 19.3 144.82 36.52 136.82 31.72 -15.9 -22.3 6.3 1.63

Baque (2005) 622 703 161 25.53 162 27.13

Halme (2005) 113 119 159.5 17.5 159.1 18.9 146.8 17.8 149.5 20.3 -12.7 19.6 -9.6 19.5 -3.1

McManus (2005) 189 211 157.9 15.7 155 13.6 149 148.4 -8.9 -6.6 -2.3

Zillich (2005) 64 61 151.5 15.6 151.6 12.9 138.1 15.72 142.6 15.92 -13.4 -9 -4.4

Marquez (2006) 100 100 159.1 16.6 155.6 14.6 135.6 13.8 136.7 11.2 -23.5 15.9 -18.9 15.9 -4.6

Kauric (2007) 17 17 161 14 162 12 153 16 161 14 -8.12 9.24 -1 9.84 -7.1

Verber (2007) 216 214 166.2 19.3 165.1 20.8 143.8 18.4 142.2 20 -22.4 -22.9 0.5

Green i (2008) 246 247 152.2 10 151.3 10.6 143.8 14.83 146.3 14.83 -8.4 -5 -3.4

Continued on next page
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Table 3.1 – Continued from previous page

Baseline Follow-up Treatment Control Difference of

Treatment Control Treatment Control difference difference differences

Study Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SE

ni1 ni0 X̄i1b si1b X̄i0b si0b X̄i1f si1f X̄i0f si0f (X̄i1f -X̄i1b) si1 (X̄i0f -X̄i0b) si0 Di seDi

Green ii (2008) 237 247 152.2 10.4 151.3 10.6 137.9 15.23 146.3 14.83 -14.3 -5 -9.3

Madsen (2008) 105 118 153.1 13.2 152.2 13.7 141.1 11.5 142.7 13.3 -12 -9.5 -2.5 1.93

Tobe (2008) 173 97 159 11 160 14 138 13 141 10 -21 -19 -2

Da Silva (2009) 34 31 157 25 159 21 147 18 154 22 -10 -5 -5

De Jesus (2009) 7 12 145.4 5.26 149.2 6.98 142.1 20.9 141.4 15.31 -3.29 18.9 -7.8 13.15 4.5

Marquez (2009) 230 255 152.9 13.8 153.17 12 136.5 9.8 136.7 9.4 -16.4 14.2 -16.5 14.1 0.1

Parati (2009) 187 111 148.4 12.6 148.7 11.7 137.5 17.82 138 16.32 -10.9 -10.7 -0.2

Rinfret (2009) 111 112 162.1 16 162 17 143.5 18.52 148.5 18.62 -18.6 -13.5 -5.1

Godwin (2010) 285 267 149.6 10.5 147.3 9 141.1 18.575 142.8 19.65 -8.5 -4.5 -4

Bosworth (2011)1 131 124 129 19 128 17 129.42 35.42 127.32 34.92 0.36 -0.73 2.09

1 Provided value for the correlations rij .

2 Extracted from a plot.

3 Computable from a confidence interval.

4 Computable from a p-value.

5 Extracted as a standard error.
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Table 3.2: Extracted data from each study in the DBP meta-analysis includes:

sample sizes nij , mean and SDs at baseline, (X̄i1b, si1b), and at follow-up,

(X̄i1f , si1f ), mean and SD of the change, (X̄ijf -X̄ijb), sij , and the difference

of mean differences and its standard error, (Di, seDi), for treatment group j

and study i = 1, . . . ,K.

Baseline Follow-up Treatment Control Difference of

Treatment Control Treatment Control difference difference differences

Study Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SE

ni1 ni0 X̄i1b si1b X̄i0b si0b X̄i1f si1f X̄i0f si0f (X̄i1f -X̄i1b) si1 (X̄i0f -X̄i0b) si0 Di seDi

Carnahan (1975) 50 50 101.7 103.6 91.3 93.2 -10.4 -10.4 0

Haynes (1976) 20 18 98.5 5.85 98.3 6.45 93.1 5.85 96.4 5.55 -5.4 7.65 -1.9 8.55 -3.5

Johnson (1978) 35 35 102.6 6.55 103.2 10.15 94.1 9.35 95.7 12.85 -8.5 10.55 -7.5 11.15 -1

Johnson ii (1978) 35 35 104.2 6.55 103.2 10.15 95.9 9.55 95.7 12.85 -8.3 8.95 -7.5 11.15 -0.8

Earp (1982) 99 63

Pierce (1984) 27 29 106 8 103 11

Stahl (1984) 144 173 109.7 108.6 89.9 88.5 -19.8 -20.1 0.3

Midanik (1991) 74 72 91.3 9.1 92.7 7.7 92.3 9.5 93.6 9.3 1 10 0.9 8 0.1

Soghikian (1992) 200 190 86.1 8.55 86.3 115 86.2 9.95 88 9.65 0.1 9.95 1.7 9.65 -1.6 13

Friedman (1996) 133 134 86.1 84 -5.4 -3.3 -2.1

Bailey (1999) 31 29 93 11.15 95 10.85 89 11.15 89 10.85 -4 -6 2

Vetter (2000) 296 326 101.9 6.25 102 6.55 88.7 8.35 90.1 7.85 -13.2 -11.9 -1.3

Mehos (2000) 18 18 91.1 10.8 89.6 9.8 80.6 85.8 -10.5 7.12 -3.8 8.92 -6.7

Artinian (2001) 6 9 90.2 5.79 91.22 8.66 75.58 11.4 89.05 10.63 -14.62 -2.17 -12.45

Broege (2001) 20 18 81 12 82 13 80 8 83 12 -1 1 -2

Rogers (2001) 99 63 -1.95 10.63 2.08 9.33 -4.03 1.63

Rudd (2004) 69 68 86.32 10.32 87.52 10.82 79.72 10.52 83.92 9.32 -6.5 10 -3.4 7.9 -3.1

Staessen (2004) 203 197 101.8 7.4 101.5 6.5 89.92 14.92 86.72 12.12 -11.81 -14.83 3.02 0.83

Baque (2005) 622 703 94 12.73 94 13.53

Halme (2005) 113 119 94.1 6.8 94.6 7.5 87 9.3 89.1 8.6 -7.1 10.1 -5.5 8.9 -1.6

McManus (2005) 189 211 88.7 7.3 88 7.9 83 83.4 -5.7 -4.6 -1.1

Continued on next page
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Table 3.2 – Continued from previous page

Baseline Follow-up Treatment Control Difference of

Treatment Control Treatment Control difference difference differences

Study Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SE

ni1 ni0 X̄i1b si1b X̄i0b si0b X̄i1f si1f X̄i0f si0f (X̄i1f -X̄i1b) si1 (X̄i0f -X̄i0b) si0 Di seDi

Zillich (2005) 64 61 85.3 11.6 85.3 10.7 76.5 11.52 79.7 10.82 -8.8 -5.6 -3.2

Marquez (2006) 100 100 92.4 10.8 91 9.7 79.5 8.4 81.3 7.6 -12.9 9.9 -9.7 9.8 -3.2

Kauric-Klein (2007) 17 17 94 7 100 10 90 5 97 10 -4 7.94 -3 12.84 -1

Verberk (2007) 216 214 97.1 9.9 97.8 10.8 85.4 10.4 84.3 9.6 -11.7 -13.5 1.8

Green i (2008) 259 258 89 7.9 89.4 8 84.5 9.63 85.7 9.63 -4.5 -3.7 -0.8

Green ii (2008) 261 258 88.9 8.1 89.4 8 81.6 9.83 85.7 9.63 -7.3 -3.7 -3.6

Madsen (2008) 113 123 91.2 8.1 90.5 8.9 85 7.1 85.1 8.2 -6.2 -5.4 -0.8 1.13

Tobe (2008) 173 97 91 10 88 10 80 8 78 9 -11 -10 -1

da Silva (2009) 34 31 89 18 87 16 86 11 89 14 -3 2 -5

De Jesus (2009) 7 12 68.4 11.6 73.9 13.83 74.1 11.1 71.7 13.9 5.7 10.9 -2.3 12.7 7.9

Marquez (2009) 230 255 89.7 9.8 91.01 7.9 80.7 7.9 81.49 7.4 -9 9.4 -9.52 8 0.52

Parati (2009) 187 111 88.7 7.4 88.8 8.6 83.6 72 83.3 10.72 -5.1 -5.5 0.4

Rinfret (2009) 111 112 91.5 12 90.3 12 82.6 9.12 84.7 11.92 -8.9 -5.6 -3.3

Godwin (2010) 285 267 81.5 8.4 81.2 8.2 78.7 10.15 79.4 13.15 -2.8 -1.8 -1

Bosworth (2011)1 148 147 77 12 78 14 1.6

1 Provided value for the correlations rij .

2 Extracted from a plot.

3 Computable from a confidence interval.

4 Computable from a p-value.

5 Extracted as a standard error.
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The necessary data from each study to feed into the usual meta-analysis model is the

overall difference of mean differences and its standard error. Presence or absence of these

data is in the last two columns of tables 3.1 and 3.2. Note that only four studies provided

a confidence interval from which to compute the standard error for the meta-analysis. The

data for SBP has 88% missing SEs and the data for DBP has 89% missing SEs. Additional

data available for extraction to be used to estimate the missing SEs and compute the mean

differences varies across studies and the patterns are similar in both datasets. For the SBP

dataset:

1. Thirty studies provide a mean blood pressure at baseline for both groups. Of these,

twenty-eight studies provide a SD or SE for the mean at baseline.

2. Twenty-eight studies provide mean blood pressure at follow up for both groups. Of

these, twenty-four studies provide a SD or SE for the mean at follow-up.

3. Twenty-nine studies provide a value of the mean change in both groups, but only ten

studies provide a SE of the mean change in the groups.

4. Twenty-nine studies provide a value for the difference of mean differences, but only

four studies provide a SE for the difference of mean differences.

5. Only one paper provides the correlations from each treatment group.

The study by Pierce et al. (1984) did not provide values of blood pressure change, but a

table with frequencies and ranges of change. The study by Baqué et al. (2005) only looked

at the proportion of people that achieved controlled blood pressure and did not provide

the details of the blood pressure changes. These two studies are not included in this meta-

analysis.

We identified nine different scenarios of SDs and SEs availability, which we list in table 3.3.

Only the first two scenarios are considered complete data while the remaining seven scenarios

have missing data. The meta-analyses for SBP and DBP motivate the development of
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appropriate methodology to incorporate the uncertainty arising from estimating the missing

SEs under all scenarios of missing data.

Table 3.3: Patterns of availability of SDs and SE for extraction and corresponding percent

of SBP and DBP studies.

si1b si0b si1f si0f si1 si0 seDi SBP studies DBP studies

Scenario 1 X X X X X X X 3% 3%

Scenario 2 X 0% 0%

Scenario 3 X X X X X 6% 6%

Scenario 4 X X X 3% 3%

Scenario 5 X X 0% 0 %

Scenario 6 X X X X X X 23% 28%

Scenario 7 X X X X 3% 3%

Scenario 8 X X X X 45% 36%

Scenario 9 X X 10% 11%

Scenario 10 6% 11%

3.3 Uncertain Standard Error model

We propose the Uncertain Standard Error (USE) Bayesian model, which incorporates the

uncertainty of the variance estimation in the meta-analysis. In the USE Bayesian model,

the parameters and unknown data are treated as random variables. The Bayesian frame-

work allows us to borrow strength from other studies in estimating the true effect. More

importantly, the Bayesian approach takes account of all parameter uncertainty and allows

for a more flexible and robust modeling strategy than the traditional approaches described

in sections 3.1.2.1, 3.1.2.2, and 3.1.2.3 (Abrams and Sanso, 1998).

Let Υ be the set of all K studies, Ω be the set of studies that did not report a SD at

baseline for the treatment and control groups, Ψ be the set of studies that did not report a
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SD at follow-up in the treatment and control groups and Φ be the set of studies with missing

SE for the difference of mean differences.

Let SE∗
i be the estimated standard errors using traditional methods and SEi be actual

standard error needed for the meta-analysis for study i with missing SE. The traditional

approaches ignore that SE∗
i is only an approximation of SEi. The USE model does not make

that assumption. Instead it incorporates the uncertainty in the estimator. First, it assigns

a distribution of plausible values for the within-subject correlations based on data extracted

from studies with complete data.

To model the true correlations, ρij, we use a truncated normal distribution, N(pj, qj),

centered around the mean of the sample correlations, pj =
∑

i rij/L, from studies with

complete data, i ∈ Υ \ {Ω ∪ Ψ ∪ Φ}, truncated at 0 and 1, where L is the number of

studies with complete data. In this dataset the sample correlations have very little variation,

qj =
∑

i(rij − pj)2/(L− 1), so the normal distribution is adequate and convenient. Second,

the USE model also models the variances at baseline and foliow-up for the treatment and

control groups, σ2
ijb and σ2

ijf , using an Inverse Gamma distribution with known shape and

rate parameters ajb, bjb or ajf , bjf that are calculated as functions of the mean and variance

of the sample variances, s2
ijb and s2

ijf , of studies with complete data. Let Lb and Lf be the

number of studies with extracted s2
ijb an s2

ijf respectively. Then,

mb =

∑
i(s

2
ijb)

Lb

(3.22)

vb =

∑
i(s

2
ijb −mb)

2

Lb − 1
(3.23)

ajb =
m2

b

vb
+ 2 (3.24)

bjb = mb(ajb − 1), (3.25)

σ2
ijb ∼ IG(ajb, bjb) (3.26)

and similarly for ajf and bjf .

The USE model computes the variances of mean change by group using σ2
ij = σ2

ijb+σ2
ijf−

2ρijσijbσijf and estimates the variance of the difference of mean differences with equations

(3.5). Typically, se2
Di are assumed to be known and replaced by the observed within-study
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variances, using equation (3.5) as ŝe2
Di. A Bayesian model can allow for uncertainty in the

within-study variances and model them using the fact that (n− 1)s2/σ2 follows a chi-square

distribution with n − 1 degrees of freedom. However, it has been reported that doing so

has little impact in the overall uncertainty (Abrams et al., 2005; Hardy and Thompson,

1996). Therefore, we followed the convention to treat ŝe2
Di as equal to se2

Di to facilitate

implementation of the model. The full Bayesian model is

ρij ∼ N(pj, qj)I(0, 1), j ∈ {1, 0},∀i ∈ Φ ∩ (Ω ∪Ψ) (3.27)

σ2
ijb ∼ IG(ajb, bjb), ∀i ∈ Ω, (3.28)

σ2
ijf ∼ IG(ajf , bjf ), ∀i ∈ Ψ, (3.29)

σ2
ij = σ2

ijb + σ2
ijf − 2ρijσijbσijf ∀i ∈ Φ ∩ (Ω ∪Ψ), (3.30)

se2
Di =

[
1

ni1

+
1

ni0

]
(ni1 − 1)σ2

i1 + (ni0 − 1)σ2
i0

ni1 + ni0 − 2
∀i ∈ Φ ∩ (Ω ∪Ψ), (3.31)

se2
Di =

[
1

ni1

+
1

ni0

]
(ni1 − 1)s2

i1 + (ni0 − 1)s2
i0

ni1 + ni0 − 2
∀i ∈ Φ ∩ (Ωc ∪Ψc), (3.32)

Di|θi, se2
Di ∼ N(θi, se

2
Di), i = 1, . . . , K, (3.33)

θi|µ, τ 2 ∼ N(µ, τ 2), (3.34)

with priors

µ ∼ N(u, v), (3.35)

τ 2 ∼ IG(c, d). (3.36)

As a prior for µ we use a non-informative distribution, N(u, v), with u = 0 and v = 1002,

to allow Bayesian inference for a parameter about which not much is known beyond the

data in the meta-analysis at hand. For τ 2 we use an informative prior, IG(c, d). We expect

considerable between-study variance due to large differences in the study populations, and

designs. Thus, we set c = 7 and d = 60 so that the mean of τ 2 in the prior distribution is 10

and the variance is 20.
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3.4 Results

We compare the following models applied to the blood pressure monitoring datasets intro-

duced in section 3.2:

1. The USE Bayesian model with the extracted dataset with missing standard deviations

and standard errors.

2. Naive Bayesian models (equations 3.33 to 3.36) with datasets completed using the

prognostic algorithm, and the algorithms used in Cappuccio et al. (2004), Bray et al.

(2010), and Agarwal et al. (2011) as described in section 3.1.2.5

3. Complete-cases naive Bayesian model, using only on 12 studies in the SBP and 14 in

the DBP dataset.

Using complete data from 12 studies in the SBP we obtain the following values to feed into

the USE model: a1b = 5.6, b1b = 1212, a0b = 6.4 , b0b = 1322, a1f = 3.3, b1f = 813, a0f = 3.6,

b0f = 859, p1 = 0.47, q1 = 0.04, p0 = 0.51, q0 = 0.02.

3.4.1 Posterior computation

The models were implemented using JAGS (Plummer et al., 2003). The USE Bayesian model

can be found in the Appendix C. We used a burn-in of 5,000 iterations. Posterior results

were generated from 50,000 samples retaining every 10th one. We used three chains with

different starting points and assessed convergence by inspecting the posterior densities and

the convergence diagnostics of Gelman and Rubin (1992). Autocorrelation plots and time

series plots verified that the chains mixed satisfactorily.

3.4.2 Sensitivity to prior specification

We perform sensitivity analysis on the choice of prior for the between-study variance. We

compare our chosen prior, τ 2 ∼ IG(7, 60), to three others: prior 2 is τ 2 ∼ IG(3, 20) with

mean 10 and variance 100, prior 3 is τ 2 ∼ IG(2.4, 2.8) with mean 2 and variance 10 and
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finally prior 4 is the uniform U(0, A) on τ , not τ 2, as recommended by Gelman (2006)

with A=10. In the τ 2 scale, prior 4 has mean 33 and variance 871. Table 3.4 displays the

results for parameters µ and τ by prior and Figures 3.1 and 3.2 display the posteriors of the

parameters µ and τ by prior using the SBP and DBP datasets. All 95% credible intervals

are (2.5%, 97.5%). For the meta-analysis of SBP, the results for µ are not sensitive to the

choice of prior. In contrast, the results for random study effects’ standard deviation τ are

affected by the choice of prior: we obtain the smallest posterior mean (τ̄ = 2.6) using prior 3

and the largest (τ̄ = 3.2) using prior 4. Priors 1 and 2 result in very similar posterior mean

(τ̄ = 3). Priors 2 and 3 result in similar standard deviations for τ . The largest posterior SD

occurs when using prior 4 and the smallest when using prior 1. These conclusions apply also

to the meta-analysis of DBP.

Table 3.4: Posterior mean, standard deviation and 95% credible interval for parameters µ

and τ , for the SBP and DBP dataset, listed by prior in the USE model.

SBP

µ τ

Prior mean sd 95% CI mean sd 95% CI

τ 2 ∼ IG(7, 60) -2.93 0.74 (-4.43, -1.47) 3.03 0.45 (2.30, 4.06)

τ 2 ∼ IG(3, 20) -2.91 0.74 (-4.36, -1.43) 2.94 0.54 (2.05, 4.14)

τ 2 ∼ IG(2.4, 2.8) -2.86 0.68 (-4.23, -1.55) 2.55 0.57 (1.59, 3.79)

τ ∼ U(0, 10) -2.93 0.78 (-4.47, -1.39) 3.24 0.73 (2.06, 4.85)

DBP

µ τ

Prior mean sd 95% CI mean sd 95% CI

τ 2 ∼ IG(7, 60) -1.19 0.52 (-2.22, -0.19) 2.33 0.29 (1.84, 2.99)

τ 2 ∼ IG(3, 20) -1.16 0.46 (-2.06, -0.23) 1.95 0.30 (1.44, 2.63)

τ 2 ∼ IG(2.4, 2.8) -1.06 0.37 (-1.80, -0.35) 1.35 0.29 (0.87, 1.99)

τ ∼ U(0, 10) -1.10 0.40 ( -1.93, -0.33) 1.56 0.37 (0.90, 2.36)
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Figure 3.1: Posterior of µ in the USE model and SBP dataset by prior. Prior 1 is

τ 2 ∼ IG(7, 60), prior 2 is τ 2 ∼ IG(3, 20), prior 3 is τ 2 ∼ IG(2.4, 2.8) and prior 4 is

τ ∼ U(0, 10).

Figure 3.2: Posterior of τ in the USE model and SBP dataset by prior. Prior 1 is

τ 2 ∼ IG(7, 60), prior 2 is τ 2 ∼ IG(3, 20), prior 3 is τ 2 ∼ IG(2.4, 2.8) and prior 4 is

τ ∼ U(0, 10).

3.4.3 Results for he SBP and DBP datasets

Posterior means, standard deviations and credible intervals for parameters µ and τ under

the USE model and naive Bayesian with various algorithms applied to the SBP and DBP

datasets can are given in Table 3.5. Figures 3.3 to 3.6 display the corresponding posterior

distributions. All models use prior τ 2 ∼ IG(7, 60).
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Table 3.5: Posterior mean, standard deviations and 95% credible intervals for parameters µ and τ for the SBP and DBP

meta-analyses under various models. Let Y be all the data input to the model.

SBP

µ τ

Model mean sd 95% CI P (µ < 0|Y ) mean sd 95% CI

USE model -2.92 0.75 (-4.44, -1.46) 1 3.02 0.44 (2.72, 4.00)

Complete cases -2.71 1.21 (-5.12, -0.33) 0.99 3.20 0.55 (2.30, 4.52)

Algorithm in Cappuccio et al. (2004) -2.86 0.74 (-4.31, -1.40) 1 3.02 0.44 (2.29, 4.00)

Algorithm in Bray et al. (2010) -2.84 0.73 (-4.29, -1.43) 1 3.01 0.44 (2.29, 3.99)

Algorithm in Agarwal et al. (2011) -2.77 0.73 (-4.17, -1.32) 1 3.03 0.44 (2.29, 4.01)

Prognostic algorithm in Ma et al. (2008) -2.80 0.71 (-4.21, -1.39) 1 3.07 0.45 (2.31, 4.02)

DBP

µ τ

Model mean sd 95% CI P (µ < 0|Y ) mean sd 95% CI

USE model -1.19 0.51 (-2.20, -0.22) 1 2.33 0.30 (1.84, 3.00)

Complete cases -1.32 0.87 (-3.02, 0.40) 0.94 2.68 0.41 (2.01, 3.65)

Algorithm in Cappuccio et al. (2004) -1.18 0.51 (-2.19, -0.20) 0.99 2.34 0.29 (1.83, 2.98)

Algorithm in Bray et al. (2010) -1.14 0.51 (-2.13, -0.14) 0.99 2.32 0.29 (1.82, 2.96)

Algorithm in Agarwal et al. (2011) -1.21 0.51 (-2.22, -0.24) 0.99 2.34 0.30 (1.84, 3.02)

Prognostic algorithm in Ma et al. (2008) -1.16 0.50 (-2.16, -0.17) 0.99 2.35 0.30 (1.85, 3.03)
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The interval for the complete-cases approach is the largest for all parameters in both

meta-analyses. Parameter of interest µ, in the SBP meta-analysis, has a 61% wider credible

interval using complete-cases compared to the USE model, and 71% wider in the DBP meta-

analysis. This is not surprising due to the substantial loss of information: only 12 out of 29

SBP studies have complete data and only 15 out of 33 SBP studies have complete data. Also,

the complete-case analysis operates on a 67% reduced sample size in the SBP meta-analysis

and 66% reduced sample size in the DBP meta-analysis. Furthermore, the loss of all the

studies without SE leads to non-significants result in the DBP meta-analysis. This strongly

supports the existing recommendation to not omit studies in the meta-analysis.

In both meta-analyses, modest differences are observed for the posterior estimates of µ

across models, with a slightly larger posterior interval from the USE model. There are no

differences in the estimates of τ . All approaches do similarly well for µ possibly because

these meta-analyses contain over thirty studies and there is enough information available for

extraction to estimate the treatment effect. The conclusions of the meta-analyses about the

treatment effect do not change from previously published results and across models: there

is a significant reduction of 2.9 (1.46, 4.44) mmHg in systolic blood pressure and 1.2 (0.22,

2.20) mmHg in diastolic blood pressure in the home monitoring groups compared to usual

care.

Figure 3.3: Meta-analysis for SBP monitoring vs usual care: Posterior distribution of µ

under various models.
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Figure 3.4: Meta-analysis for SBP monitoring vs usual care: Posterior distribution of τ

under various models.

Figure 3.5: Meta-analysis for DBP monitoring vs usual care: Posterior distribution of µ

under various models.
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Figure 3.6: Meta-analysis for DBP monitoring vs usual care: Posterior distribution of τ

under various models.

The USE model improves the validity of the meta-analysis. It is a formally constructed

model, whereas the other approaches are simple algorithms with no theoretical foundation

and that have not been empirically tested. Moreover, instead of inserting a single value for

the missing SE and hoping for the best, as in the case of the standard algorithms, the USE

model computes a posterior distribution for every missing standard deviation, σijb, σijf , and

standard error seDi. Figure 3.4.3 displays the posteriors for the missing standard errors, seDi,

and vertical lines which are the single value imputations from various insertion algorithms

for the SBP dataset. In all cases the prognostic algorithm yields smaller inserted values for

the missing SEs than the Agarwal (2011) algorithm. Also, in all cases the values inserted

by the Cappuccio (2004) algorithm are smaller than those from the Bray (2010) algorithm.

In general, the inserted values from all algorithms are consistently smaller than the mean of

the posterior distributions from the USE model. Thus, accounting for the uncertainty in the

data extraction results in somewhat increased SEs.
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Figure 3.7: Posteriors of missing SE of the difference of mean differences, seDi. Vertical lines are the single value imputations

from the four standard algorithms.
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3.5 Discussion

The systematic review of methods for handling missing variance data performed by Wiebe

et al. (2006) concluded that Bayesian solutions were rarely used in practice for meta-analyses

of continuous outcomes. When Bayesian solutions were used, they were poorly described

and were considered “unclear.” We have provided a fully Bayesian model to handle missing

variance data in meta-analysis of continuous outcomes. Our model is superior to existing

approaches to handle the missing data for several reasons: First, existing approaches are

only algorithms for inserting values for missing standard deviations and are not theoretically

justified. In contrast, we have formally constructed a model that accommodates the com-

plexity of the data. Second, existing approaches consist of the insertion of a single value and

the value is then treated as observed extracted data. Instead, our Bayesian model naturally

incorporates the uncertainty involved in estimating missing standard deviations and stan-

dard errors. Thus, it eliminates the need to perform a sensitivity analysis for every inserted

value. Third, our model accommodates all the patterns of missingness observed in real data.

However, as with any Bayesian analysis, careful specification of the prior distributions for

the variance parameters may be required.

We have applied our model and traditional approaches to meta-analyses of home monitor-

ing of blood pressure compared to usual care with outcomes change in systolic and diastolic

blood pressures. Previous meta-analyses have concluded that there exists a significant reduc-

tion in systolic and change in diastolic blood pressure in the home monitoring groups. All of

the algorithms and the USE model applied to our updated meta-analyses agree with the re-

sult, except for the case of a meta-analysis of complete data only. Performing meta-analyses

using only studies with complete data is discouraged because, as our data illustrates, much

information is lost by a complete-cases analysis. The USE model generates slightly larger

posterior SEs than using inserted values from the existing algorithms, as is to be expected

because our model accounts for the uncertainty of estimating the missing data, which other

approaches ignore.

Since it is unavoidable to encounter missing variances in meta-analyses of mean difference,
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further work is needed to determine how much the results are affected by the number of

studies, the sample size per study, loss to follow-up, and the percentage of missing data

allowed in meta-analysis that undergo variance imputation.
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CHAPTER 4

Future work in meta-analysis data extraction

I discuss two additional situations in meta-analysis where the data needed to be extracted

from publications is missing or incomplete.

4.1 Data Extraction Problems in Meta-analysis of Hazard Ratios

While the majority of survival meta-analyses analyze odds ratios, time-to-event outcomes are

commonly analyzed using a Cox model, which gives a hazard ratio as an output. Tierney

et al. (2007) claimed that if there is sufficient data available to estimate an odds ratio,

there is usually sufficient data to estimate a hazard ratio. Tierney et al. (2007) proposed

methodology to estimate hazard ratios by carefully manipulating summary data found in

published papers. However, the uncertainty created with these estimates is not accounted

for in the meta-analysis. Appropriate methodology to account for this uncertainty is needed.

4.2 Data Extraction Problems in Dose-Response Meta-Analysis

Dose-response meta-analyses are useful to study how much the risk increases as exposure

increases. The meta-analysis is performed on the dose-response patterns reported by each

study. However, very few publications provide estimates of a slope with dose as a continuous

variable. Instead, publications typically provide estimates of relative risk of the response

per unit of exposure for specific dose categories (Ilyasova et al., 2005). For example, in a

meta-analysis of the dose-response relationship between coffee intake and risk of heart-failure

(Mostofsky et al., 2012) one study contributing to the meta-analysis had the following coffee
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consumption categories: 0 to < 1, 1 to < 3, 3 to < 5, 5 to < 7 and ≥ 7 cups a day, while

another contributing study had: ≤ 1 cups , 2 cups, 3 cups, 4 cups, and ≥ 5 cups a day.

Because the categories are not the same and some are intervals, it is problematic to compute

a slope. Current practice assigns a single representative dose value for each category. If the

category is an interval, then the midpoint is chosen as a representative dose value. Slopes

of the dose-response relationship are calculated for each study using the representative dose

values. Using standard methods of meta-analysis, a single slope estimate is obtained from a

weighted average of the individual slopes (Shi and Copas, 2004). Appropriate methodology

to account for the uncertainty of the slopes is needed.
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Appendix A

Ratio of two uniformly distributed random variables

Let xtrue ∼ Unif(x−w, x+w) and ytrue ∼ Unif(y−z, y+z), where x > w > 0 and y > z > 0.

Then, the density of p = xtrue/ytrue is

for x−w
y−z
≤ x+w

y+z

g(p|x, y, w, z) =



0 for p ≤ (x−w)
(y+z)

(y+z)2− (x−w)2

(p)2

8wz
for (x−w)

(y+z)
≤ p ≤ (x−w)

(y−z)

y
2w

for (x−w)
(y−z)

≤ p ≤ (x+w)
(y+z)

(x+w)2

(p)2
−(y−z)2

8wz
for (x+w)

(y+z)
≤ p ≤ (x+w)

(y−z)

0 for (x+w)
(y−z)

≤ p,

for x−w
y−z
≥ x+w

y+z

g(p|x, y, w, z) =



0 for p ≤ (x−w)
(y+z)

(x−w)2

(p)2
−(y+z)2

8wz
for (x−w)

(y+z)
≤ p ≤ (x+w)

(y+z)

x
2z(v)2

for (x+w)
(y+z)

≤ p ≤ (x−w)
(y−z)

(x+w)2

(p)2
−(y−z)2

8wz
for (x−w)

(y−z)
≤ p ≤ (x+w)

(y−z)

0 for (x+w)
(y−z)

≤ p.
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Appendix B

Simulated data for the UR-EE model

Table B.1: Simulated data for the UR-EE model: nij is the number of people at baseline,

eij is the number of observed deaths, sij is the number of true deaths and κij is the KM

survival probability at year 1, for study i and group j.

Study ni1 ei1 si1 κi1 lost to ni0 ei0 si0 κi0 lost to

follow-up follow-up

j = 1 j = 0

1 45 17 23 0.53 16 32 12 12 0.63 0

2 139 21 31 0.82 60 36 6 6 0.83 0

3 75 25 30 0.59 29 15 4 4 0.73 0

4 80 31 35 0.53 22 23 10 10 0.57 0

5 156 43 55 0.66 66 187 72 73 0.61 4

6 87 23 30 0.68 35 90 19 20 0.79 5

7 183 21 24 0.87 72 116 32 32 0.72 3

8 141 26 29 0.78 62 70 22 22 0.69 0

9 158 27 32 0.80 68 168 63 64 0.62 2

10 120 38 45 0.60 47 48 20 20 0.58 1
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Appendix C

USE Bayesian model in JAGS

USE model for the SBP dataset:

model_USE_SBP <-"model{

phoc ~ dnorm(0.47 , 26.22)I(0,1)

phot ~ dnorm (0.51, 41.85)I(0,1)

# Carrahan

inv.xt.var[1] ~ dgamma(a.xt, b.xt)

inv.xc.var[1] ~ dgamma(a.xc, b.xc)

inv.yt.var[1] ~ dgamma(a.yt, b.yt)

inv.yc.var[1] ~ dgamma(a.yc, b.yc)

xt.var[1]<-1/inv.xt.var[1]

xc.var[1]<-1/inv.xc.var[1]

yt.var[1]<-1/inv.yt.var[1]

yc.var[1]<-1/inv.yc.var[1]

var.t[1]<- xt.var[1] + yt.var[1] - 2*phot*sqrt(xt.var[1])*sqrt(yt.var[1])

var.c[1]<- xc.var[1] + yc.var[1] - 2*phoc*sqrt(xc.var[1])*sqrt(yc.var[1])

pooled.variance[1]<- ((nt[1]-1) * var.t[1] + (nc[1]-1)*var.c[1])/(nt[1]+nc[1]-2)

sem[1]<- sqrt(pooled.variance[1])*sqrt(1/nt[1]+1/nc[1])

# Friedman

inv.xt.var[4] ~ dgamma(a.xt, b.xt)

inv.xc.var[4] ~ dgamma(a.xc, b.xc)

inv.yt.var[4] ~ dgamma(a.yt, b.yt)

inv.yc.var[4] ~ dgamma(a.yc, b.yc)

xt.var[4]<-1/inv.xt.var[4]

xc.var[4]<-1/inv.xc.var[4]
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yt.var[4]<-1/inv.yt.var[4]

yc.var[4]<-1/inv.yc.var[4]

var.t[4]<- xt.var[4] + yt.var[4] - 2*phot*sqrt(xt.var[4])*sqrt(yt.var[4])

var.c[4]<- xc.var[4] + yc.var[4] - 2*phoc*sqrt(xc.var[4])*sqrt(yc.var[4])

pooled.variance[4]<- ((nt[4]-1) * var.t[4] + (nc[4]-1)*var.c[4])/(nt[4]+nc[4]-2)

sem[4]<- sqrt(pooled.variance[4])*sqrt(1/nt[4]+1/nc[4])

# Baiely

var.t[5]<- xt.var[5] + yt.var[5] - 2*phot*sqrt(xt.var[5])*sqrt(yt.var[5])

var.c[5]<- xc.var[5] + yc.var[5] - 2*phoc*sqrt(xc.var[5])*sqrt(yc.var[5])

pooled.variance[5]<- ((nt[5]-1) * var.t[5] + (nc[5]-1)*var.c[5])/(nt[5]+nc[5]-2)

sem[5]<- sqrt(pooled.variance[5])*sqrt(1/nt[5]+1/nc[5])

# Vetter

var.t[6]<- xt.var[6] + yt.var[6] - 2*phot*sqrt(xt.var[6])*sqrt(yt.var[6])

var.c[6]<- xc.var[6] + yc.var[6] - 2*phoc*sqrt(xc.var[6])*sqrt(yc.var[6])

pooled.variance[6]<- ((nt[6]-1) * var.t[6] + (nc[6]-1)*var.c[6])/(nt[6]+nc[6]-2)

sem[6]<- sqrt(pooled.variance[6])*sqrt(1/nt[6]+1/nc[6])

# Artinian

var.t[8]<- xt.var[8] + yt.var[8] - 2*phot*sqrt(xt.var[8])*sqrt(yt.var[8])

var.c[8]<- xc.var[8] + yc.var[8] - 2*phoc*sqrt(xc.var[8])*sqrt(yc.var[8])

pooled.variance[8]<- ((nt[8]-1) * var.t[8] + (nc[8]-1)*var.c[8])/(nt[8]+nc[8]-2)

sem[8]<- sqrt(pooled.variance[8])*sqrt(1/nt[8]+1/nc[8])

# Broege

var.t[9]<- xt.var[9] + yt.var[9] - 2*phot*sqrt(xt.var[9])*sqrt(yt.var[9])

var.c[9]<- xc.var[9] + yc.var[9] - 2*phoc*sqrt(xc.var[9])*sqrt(yc.var[9])

pooled.variance[9]<- ((nt[9]-1) * var.t[9] + (nc[9]-1)*var.c[9])/(nt[9]+nc[9]-2)

sem[9]<- sqrt(pooled.variance[9])*sqrt(1/nt[9]+1/nc[9])

# McManus

inv.yt.var[14] ~ dgamma(a.yt, b.yt)

inv.yc.var[14] ~ dgamma(a.yc, b.yc)

yt.var[14]<-1/inv.yt.var[14]
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yc.var[14]<-1/inv.yc.var[14]

var.t[14]<- xt.var[14] + yt.var[14] - 2*phot*sqrt(xt.var[14])*sqrt(yt.var[14])

var.c[14]<- xc.var[14] + yc.var[14] - 2*phoc*sqrt(xc.var[14])*sqrt(yc.var[14])

pooled.variance[14]<- ((nt[14]-1) * var.t[14] + (nc[14]-1)*var.c[14])/(nt[14]+nc[14]-2)

sem[14]<- sqrt(pooled.variance[14])*sqrt(1/nt[14]+1/nc[14])

# Zillich

var.t[15]<- xt.var[15] + yt.var[15] - 2*phot*sqrt(xt.var[15])*sqrt(yt.var[15])

var.c[15]<- xc.var[15] + yc.var[15] - 2*phoc*sqrt(xc.var[15])*sqrt(yc.var[15])

pooled.variance[15]<- ((nt[15]-1) * var.t[15] + (nc[15]-1)*var.c[15])/(nt[15]+nc[15]-2)

sem[15]<- sqrt(pooled.variance[15])*sqrt(1/nt[15]+1/nc[15])

# Verberk

var.t[18]<- xt.var[18] + yt.var[18] - 2*phot*sqrt(xt.var[18])*sqrt(yt.var[18])

var.c[18]<- xc.var[18] + yc.var[18] - 2*phoc*sqrt(xc.var[18])*sqrt(yc.var[18])

pooled.variance[18]<- ((nt[18]-1) * var.t[18] + (nc[18]-1)*var.c[18])/(nt[18]+nc[18]-2)

sem[18]<- sqrt(pooled.variance[18])*sqrt(1/nt[18]+1/nc[18])

# Green i

var.t[19]<- xt.var[19] + yt.var[19] - 2*phot*sqrt(xt.var[19])*sqrt(yt.var[19])

var.c[19]<- xc.var[19] + yc.var[19] - 2*phoc*sqrt(xc.var[19])*sqrt(yc.var[19])

pooled.variance[19]<- ((nt[19]-1) * var.t[19] + (nc[19]-1)*var.c[19])/(nt[19]+nc[19]-2)

sem[19]<- sqrt(pooled.variance[19])*sqrt(1/nt[19]+1/nc[19])

# Green ii

var.t[20]<- xt.var[20] + yt.var[20] - 2*phot*sqrt(xt.var[20])*sqrt(yt.var[20])

var.c[20]<- xc.var[20] + yc.var[20] - 2*phoc*sqrt(xc.var[20])*sqrt(yc.var[20])

pooled.variance[20]<- ((nt[20]-1) * var.t[20] + (nc[20]-1)*var.c[20])/(nt[20]+nc[20]-2)

sem[20]<- sqrt(pooled.variance[20])*sqrt(1/nt[20]+1/nc[20])

# Tobe

var.t[22]<- xt.var[22] + yt.var[22] - 2*phot*sqrt(xt.var[22])*sqrt(yt.var[22])

var.c[22]<- xc.var[22] + yc.var[22] - 2*phoc*sqrt(xc.var[22])*sqrt(yc.var[22])

pooled.variance[22]<- ((nt[22]-1) * var.t[22] + (nc[22]-1)*var.c[22])/(nt[22]+nc[22]-2)

sem[22]<- sqrt(pooled.variance[22])*sqrt(1/nt[22]+1/nc[22])
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# Da silva

var.t[23]<- xt.var[23] + yt.var[23] - 2*phot*sqrt(xt.var[23])*sqrt(yt.var[23])

var.c[23]<- xc.var[23] + yc.var[23] - 2*phoc*sqrt(xc.var[23])*sqrt(yc.var[23])

pooled.variance[23]<- ((nt[23]-1) * var.t[23] + (nc[23]-1)*var.c[23])/(nt[23]+nc[23]-2)

sem[23]<- sqrt(pooled.variance[23])*sqrt(1/nt[23]+1/nc[23])

# Parati

var.t[26]<- xt.var[26] + yt.var[26] - 2*phot*sqrt(xt.var[26])*sqrt(yt.var[26])

var.c[26]<- xc.var[26] + yc.var[26] - 2*phoc*sqrt(xc.var[26])*sqrt(yc.var[26])

pooled.variance[26]<- ((nt[26]-1) * var.t[26] + (nc[26]-1)*var.c[26])/(nt[26]+nc[26]-2)

sem[26]<- sqrt(pooled.variance[26])*sqrt(1/nt[26]+1/nc[26])

# Rinfret

var.t[27]<- xt.var[27] + yt.var[27] - 2*phot*sqrt(xt.var[27])*sqrt(yt.var[27])

var.c[27]<- xc.var[27] + yc.var[27] - 2*phoc*sqrt(xc.var[27])*sqrt(yc.var[27])

pooled.variance[27]<- ((nt[27]-1) * var.t[27] + (nc[27]-1)*var.c[27])/(nt[27]+nc[27]-2)

sem[27]<- sqrt(pooled.variance[27])*sqrt(1/nt[27]+1/nc[27])

# Godwin

var.t[28]<- xt.var[28] + yt.var[28] - 2*phot*sqrt(xt.var[28])*sqrt(yt.var[28])

var.c[28]<- xc.var[28] + yc.var[28] - 2*phoc*sqrt(xc.var[28])*sqrt(yc.var[28])

pooled.variance[28]<- ((nt[28]-1) * var.t[28] + (nc[28]-1)*var.c[28])/(nt[28]+nc[28]-2)

sem[28]<- sqrt(pooled.variance[28])*sqrt(1/nt[28]+1/nc[28])

# Bosworth

var.t[29]<- xt.var[29] + yt.var[29] - 2*phot*sqrt(xt.var[29])*sqrt(yt.var[29])

var.c[29]<- xc.var[29] + yc.var[29] - 2*phoc*sqrt(xc.var[29])*sqrt(yc.var[29])

pooled.variance[29]<- ((nt[29]-1) * var.t[29] + (nc[29]-1)*var.c[29])/(nt[29]+nc[29]-2)

sem[29]<- sqrt(pooled.variance[29])*sqrt(1/nt[29]+1/nc[29])

for (i in 1:length(mean.diff)){

mean.diff[i] ~ dnorm(theta[i], prec[i])

prec[i]<- 1/(sem[i]*sem[i])

theta[i] ~ dnorm(mu, inv.tau2)
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}

mu ~ dnorm(0, 0.001)

inv.tau2 ~ dgamma(7, 60)

tau2<-1/inv.tau2

tau<-sqrt(tau2)

}"
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