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Testing a Process Model of Causal Reasoning With Inhibitory Causal Links
Bob Rehder (bob.rehder@nyu.edu)

Department of Psychology, NYU, 6 Washington Pl, New York, NY, 10003, USA

Zachary J. Davis (zach.davis@stanford.edu)
Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA

Abstract

In this paper, we test people’s causal judgments when the
graphs have inhibitory causal relations. We find evidence that
a particularly important class of errors known as Markov vio-
lations extend to these settings. These Markov violations are
important because they are incompatible with causal graphical
models, a theoretical framework that is often used as a com-
putational level account of causal cognition. In contrast, the
systematic pattern of errors are in line with the predictions of
a recently proposed rational process model that models peo-
ple as reasoning about concrete cases (Davis & Rehder, 2020).
These findings demonstrate that errors in causal reasoning ex-
tend across a range of settings, and do so in line with the pre-
dictions of a model that describes the process by which causal
judgments are drawn.
Keywords: causal graphical models; causal reasoning;
Markov violations; rational process model

Introduction
A large literature exists documenting the profound effect that
causal knowledge has on human cognition (Rehder, 2017a;
2017b; Rottman & Hastie, 2014; Sloman & Lagnado, 2015;
Waldmann, 2017). Moreover, the theoretical framework
known as causal graphical models (Pearl, 2009) has been
shown to provide a generally good account of human per-
formance in numerous tasks. While causal graphical models
have been broadly successful at accounting for human per-
formance, recent work has cast doubt on their success as a
model of human causal reasoning. One reason for this doubt
is that people systematically violate a core prediction of these
models known as the Markov condition. In this paper we
find new violations of the Markov condition across a range
of judgments, suggesting that the failure of CGMs to account
for human causal reasoning behavior is more pervasive than
previously thought.

To understand the source of these previously undocu-
mented errors in causal reasoning, we compare people’s be-
havior against the predictions of a recent rational process
model of the cognitive mechanisms that underlie many causal
judgments (Davis & Rehder, 2020). The first section below
describes this model—the “mutation sampler”—and how it
explains some classic causal reasoning errors. We then de-
rive new predictions for causal inferences when the reasoner’s
causal knowledge includes a mix of both generative (a cause
makes its effect more likely) and inhibitory (a cause makes its
effect less likely) causal relations. We then report the results
of a new experiment testing these predictions.
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Figure 1: (A) A common cause graph with generative causal
relations. (B) Possible states of a common cause graph. Filled
circles indicate a variable instantiated with a value of 1 (or
present), open circles one with a value of 0 (or absent). Edges
denote reachable states as defined by the mutation sampler’s
proposal distribution Q(q′|q).

The Mutation Sampler
The mutation sampler carries out resource-constrained infer-
ence using causal graphical models. It assumes that, when
reasoning about a causal system, people think about con-
crete cases—states of a causal system in which all relevant
variables are instantiated with values. Consider the causal
graph in Fig. 1A in which variable C is the cause of vari-
ables EA and EB. Because the variables in this network are
assumed to be binary, the state space of this graph consists
of the eight states shown in Fig. 1B. The mutation sampler
assumes that reasoners sequentially sample these states us-
ing Markov chain Monte Carlo (MCMC) methods, in par-
ticular, the Metropolis-Hastings (MH) rule, a computation-
ally efficient rejection sampling method for estimating prob-
ability distributions (Hastings, 1970; Griffiths et al., 2015;
Van Ravenzwaaij et al., 2018). MCMC methods ensure
that the generated samples will, after normalization, approxi-
mate the true distribution, with convergence guaranteed as the
length of the chain of samples grows large. Whereas MCMC
models often deal with a continuous state space, the mutation
sampler samples over the discrete states of causal graphs like
the one in Fig. 1A.

The mutation sampler makes two additional assumptions.
First, MCMC sampling specifies a proposal distribution
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Figure 2: Joint probability distributions for the common
cause graph in Fig. 1A. Graph states are presented on the
horizontal axis. The blue line represents the true joint dis-
tribution entailed by the causal graphical model under a the
parameterization described in Footnote 2. Red lines represent
the joint distributions implied by the mutation sampler, with
thicker lines meaning fewer samples (thick: 4; medium: 8;
thin: 32).

Q(q′|q) that determines which graph state should be proposed
as the next state in the chain. The mutation sampler assumes
a Q(q′|q) that restricts reachable states q′ to those that dif-
fer from the current state q by the value of one binary vari-
able. The mutation sampler derives its name from the fact
that potential proposals are those formed by “mutating” the
value of a single variable. Edges in Fig. 1B denote reach-
able states from some starting state. Reachable states have an
equal probability of being selected as a proposal.

The second assumption is that there is a bias in the start-
ing point for sampling: Sampling always starts from one of
the causal graph’s prototype states. For example, when the
causal relations in Fig. 1A are all generative, the prototype
states are those in which nodes are either all present (000) or
all absent (111), corresponding to the states at the bottom left
and top right corners of Fig. 1B1. The mutation sampler as-
sumes these starting points because they are guaranteed to be
qualitatively consistent with the causal relations. Because the
prototypes include no instances in which a cause is present
but an effect absent (or vice versa), the reasoners can identify
them as consistent with the causal relations without attending
to aspects of the causal graph such as the strength, direction,

1Throughout, a string such as ”101” refers to the states of C, EA,
and EB, respectively, namely that, C = 1, EA = 0, and EB = 1.
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Figure 3: Average conditional probability judgments from
Rehder & Waldmann (2017), in which participants judged the
presence of variable EA on a 0-100 scale. The three judgments
on the left are conditioned on C’s absence whereas those on
the right are conditioned on its presence. In each set, EB is ei-
ther absent (0), unknown, or present (1). Fits of the mutation
sampler (red lines) and the normative model (blue lines) are
superimposed on the empirical ratings (gray bars). Details of
the fitting procedure are available in Davis & Rehder (2020).

or functional form of the causal relations.
Although the chain of MCMC samples converges to the

causal graph’s true joint distribution, the mutation sampler
assumes that people’s capacity for sampling is limited and
thus take only a few samples (on the order of a dozen rather
than thousands or millions). The effects of limited sampling
are illustrated in Fig. 2, which presents multiple joint distri-
butions for the common cause graph in Fig. 1A. The blue line
represents the graph’s true joint distribution—that is, for each
of the eight graph states, the (joint) probability of that state—
under a particular graph parameterization.2As expected, the
prototype states in which variables are either all absent (000)
or all present (111), shown on the far left and right, respec-
tively, are highly probable states. The red lines represent
the approximation to the true joint distribution derived from
the mutation sampler for three different chain (i.e., sampling)
lengths: 4, 8, and 32.3 Examination of the mutation sampler’s

2The joint probabilities are generated assuming that
p(C,EA,EB) = p(EA|C)p(EB|C)p(C) and that p(Ei|C) =
1/(1 + exp(wCEiC + wEi)) where wCEi is the strength of the
causal relationship between C and Ei and wEi is the strength of
exogenous causes of Ei. In Fig. 2, p(C) = .5, wCEA = wCEB = 1,
and wEA = wEB = 0.

3To make the predictions of the mutation sampler comparable
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approximate joint distributions reveals that the probabilities
for the prototype states 000 and 111 are greater than those
in the true joint distribution, a consequence of sampling be-
ginning at those states. Conversely, the probabilities for the
remaining graphs states are less than those in the true joint.
That the differences between the true joint distribution and
the mutation sampler’s approximations becomes small as the
chain length increases confirms that MCMC sampling con-
verges to the true joint as the number of samples grows large.

The fact that the mutation sampler reproduces the general
shape of the true joint distribution while also introducing dis-
tortions explains both why people draw approximately veridi-
cal causal inferences and the common errors they make. For
example, Rehder and Waldmann (2017, Experiment 2) in-
structed participants on two generative causal relationships
taken from the domain of either economics, sociology, or
meteorology that formed a common cause network and then
asked them to draw a number of causal inferences. The
key inference ratings from that experiment in which subjects
predicted the presence of EA (EA = 1) conditioned on the
states of C and EB are presented in Fig. 3.4 On the posi-
tive side, subjects correctly judged that EA was more likely
to be present when C was present versus absent (e.g., that
p(EA = 1|C = 0)< p(EA = 1|C = 1)). However, their ratings
also violated the defining property of causal graphical models
known as the Markov condition.

The Markov condition stipulates that the two effects of a
common cause graph should be independent conditioned on
the cause (e.g., when the state of C is known, the probability
of EA should be unaffected by the state of EB). That is, knowl-
edge of C screens off EA from EB. The blue lines in Fig. 3,
which represents the best fits of the normative causal graph-
ical model to these data, confirm that the probability of EB’s
presence or absence should not change the probability of EA
when C’s value is known. In contrast, Fig. 3 reveals that par-
ticipants consistently violated the Markov condition by judg-
ing that EA was more probable when EB was present (e.g., that
p(EA = 1|C = 0,EB = 0)< p(EA = 1|C = 0)< p(EA = 1|C =
0,EB = 1)), a finding that has been replicated in multiple stud-
ies (see Ali et al., 2011; Lagnado & Sloman, Fernbach & Re-
hder, 2013; Mayrhofer & Waldmann, 2015; Park & Sloman,
2013; Rehder & Burnett, 2005; Rehder, 2014; 2018; Rottman
& Hastie, 2016; among others). Importantly, the best fit of
the mutation sampler shown in Fig. 3 reveals that these inde-
pendence violations are predicted by mutation sampling. This
prediction is a direct consequence of the distorted joint distri-
bution induced by the biased starting points combined with a
relatively small number of samples (e.g., Fig. 2). Stated intu-

to the true joint, the samples it generates have been normalized by
dividing the number of visits to each state by the total number of
samples.

4Because subjects were provided no information that distin-
guished C→ EA and C→ EB, the causal graph they were given is
symmetrical and so inferences regarding the presence EB are log-
ically equivalent to those regarding EA (e.g., p(EA = 1|C = 1) is
logically equivalent to p(EB = 1|C = 1)). Thus, the data in Fig. 3
are averaged over both EA and EB inferences.

itively, whereas the Markov condition states that EA and EB
are independent conditioned on C, commencing sampling at
one of the two prototype states (000 or 111) introduces a pos-
itive correlation between EA and EB conditioned on C, one
that manifests itself on the conditional probability judgments
derived from the sampled joint for short sampling chains.

Predictions for Inhibitory Causal Links
We now derive new predictions for the mutation sampler by
varying the sign of the causal relations, that is whether they
are generative (as they were in Rehder & Waldmann, 2017),
or inhibitory. The four experimental conditions shown in
Fig. 4 are a result of independently varying the sign of the
two causal relationship of a common cause network. It also
shows the prototype states that the mutation sampler assumes
for each graph. The charts in the bottom row of Fig. 4 shows
the qualitative predictions for both the normative model (blue
lines) and the mutation sampler (red lines) for the same con-
ditional probability judgments as in Fig. 3.

Note that in all conditions the predictions of the normative
model consist of horizontal lines, as required by the Markov
condition. In contrast, those of the mutation sampler (red
lines) vary with condition. When both causal relations are
generative (Fig. 4A), the prototype states are 000 and 111.
As already demonstrated in Fig. 3, the consequence of those
prototype states is that the mutation sampler yields Markov
violations such that EA is more likely when EB is present ver-
sus absent even conditoning on C.

However, a different pattern emerges in Fig. 4B when
C→ EB is inhibitory. Recall that the mutation sampler de-
fines prototype states as those that are guaranteed to be qual-
itatively consistent with the causal relations. Because (a) the
inhibitory relation between C and EB suggest that those two
variables should have opposite values (i.e., present and absent
or vice versa) and (b) the generative relation between C and
EA suggest they should have the same values, the prototypes
for this network are 001 and 110. The lower panel of Fig. 4B
reveals that the mutation sampler continues to predict Markov
violations but, critically, the direction of those violations has
reversed: conditioned on C, EA is now less likely when EB
is present versus absent. This result obtains because the two
prototypes have introduced a negative correlation between EA
and EB conditioned on C.

In Fig. 4C it is now C→ EA that is inhibitory and so the
prototype states are 010 and 101. As in Fig. 4B, the nega-
tive correlation between EA and EB introduced by these pro-
totypes yields Markov violations with the reverse direction
compared to Fig. 4A. Note that because C→ EA is now in-
hibitory, EA is now less likely to be present when C is (cf.
Fig. 4A and Fig. 4B).

Finally, in Fig. 4D both causal relations are inhibitory and
so the prototypes are 011 and 100. Because the correlation
between EA and EB introduced by these prototypes is once
again positive, the direction of the Markov violations is as it
was in Fig. 4A.
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Figure 4: Qualitative predictions of the normative model (blue lines, solid plot points) and the mutation sampler (red lines, open
plot points) for four experimental conditions. The top row shows the condition’s causal network and corresponding prototype
states. (A) Both causal links are generative. (B) C→ EA is generative whereas C→ EB is inhibitory. (C) C→ EA is inhibitory
whereas C→ EB is generative. (D) Both causal links are inhibitory. The weights on the generative and inhibitory relations were
1 and -1, respectively, and wEA = wEB = 0 (see Footnote 2).

These novel predictions are now tested in an experiment
that manipulates whether each causal relation in a common
cause structure was generative or inhibitory.

Method
Materials. Three domains were tested: economics, mete-
orology, and sociology. Subjects were first told that the do-
main they were about to study included three binary variables.
In the domain of economics the variables were interest rates
(either low or normal), trade deficits (small or normal), and
retirement savings (high or normal). In the domain of me-
teorology, the variables were ozone level, air pressure, and
humidity. In sociology they were degree of urbanization, in-
terest in religion, and socio-economic mobility.

Subjects were then presented with a verbal description of
two causal relations that formed a common cause network.
Depending on condition the causal relationships were either
generative or inhibitory and included a description of the
mechanism responsible for that relationship. For example,
one of the economics generative relationships was “Low in-
terest rates cause small trade deficits. The low cost of borrow-
ing money leads businesses to invest in the latest manufactur-
ing technologies, and the resulting low-cost products are ex-
ported around the world.” One of the inhibitory relationships
was “Low interest rates prevents high retirement savings. The
good economic times produced by the low interest rates leads
to greater confidence and less worry about the future, so peo-
ple are less concerned about saving for retirement.”

Procedure. Subjects first studied several screens of infor-
mation about the domain, including the cover story, a descrip-
tion of the three variables, the two causal links, and a diagram
of those links. Participants then took a multiple-choice test of
this knowledge. While taking the test, participants could re-
turn to the information screens they had studied but doing so
obligated them to retake the questions they missed.

Subjects were then presented with the inferences test. Each
trial presented the values of one or two variables and asked
the subject to predict the state of another. For example, a
subject might be told that an economy has low interest rates
and a normal trade deficit and be asked the probability of it
having a high level of retirement savings. Subjects entered
their response by moving a tick on a rating scale whose ends
were labeled 0% and 100%. To ensure that subjects did not
have to rely on their memory, the causal relationships were
repeated on the bottom half of the screen. A total of 24 in-
ference trials were presented, including those shown in Fig. 4
relevant to assessing Markov violations. The order of the 24
test questions was randomized for each participant.

Design and Participants. The experiment consisted of a 3
(domain: economics, meteorology, or sociology) × 4 (causal
network) between-subject design. Subjects were randomly
assigned to these 3 × 4 = 12 between-subject cells subject to
the constraint that an equal number appeared in each cell. 72
New York University undergraduates received course credit
for participating. These samples sizes are similar to those in
Rehder and Waldmann (2017).
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Figure 5: Empirical conditional probability ratings in four experimental conditions (gray bars). The blue and red lines are the
fits of the normative model and the mutation sampler, respectively. Error bars are 95% confidence intervals.

Results
Initial analyses revealed no effect of domain and so the key
inference ratings in each condition are presented in Fig. 5 col-
lapsed over that factor.5

In all conditions ratings varied in the expected manner with
the state of variable C: When C→ EA was generative (con-
ditions A and B), EA was judged more likely when C was
present versus absent whereas when C→ EA was inhibitory
(conditions C and D), EA was judged more likely when C was
absent versus present. The key result concerned the direc-
tion of the Markov violations in each condition. In condition
A, EA was judged more likely when EB was present versus
unknown versus absent, replicating previous research (e.g.,
Fig. 3). But when one of the two causal links was inhibitory
(conditions B and C), the direction of the Markov violation
reversed: EA was generally judged less likely when EB was
present versus unknown versus absent. Finally, when both
causal relations were inhibitory (condition D), the sign of the
Markov violation was in the same direction as in condition A
(albeit the magnitude of the violation appears smaller, espe-
cially when C was present). This overall pattern of results—
with an apparent positive correlation between effects when
the causal relations were the same sign and a negative cor-
relation for one inhibitory and one generative link—was of
course the one predicted in Fig. 4.

5Because of the symmetry mentioned in Footnote 4, data in pan-
els A and D have been averaged over both EA and EB inferences.
Analogously, EA inferences in condition B are logically equivalent
to EB inferences in condition C and so those results have been com-
bined and presented in panel B. EA inferences in condition C are
logically equivalent to EB inferences in condition B and so those
results are presented in panel C.

These effects were assessed statistically with a model in
which C and the linear and quadratic effects of EB, plus their
interactions, served as predictors. The results are presented
in Table 1. Unsurprisingly, in every analysis there was a large
effect of C, indicating that the judged probability of EA varied
depending on the state of C. More importantly, the linear ef-
fect of EB was also significant in every condition, confirming
the presence of Markov violations.

Table 1 shows that another effect obtained in all condi-
tions was the interaction between the C and the quadratic
effect of EB. For example, in condition A when C was ab-
sent, the rating for p(EA = 1|C = 0) (28.1) was slightly lower
than the average of p(EA = 1|C = 0,EB = 0) and p(EA =
1|C = 0,EB = 1) (17.5 and 38.8, respectively). But when
C was present, the rating for p(EA = 1|C = 1) (85.0) was
slightly higher than the average of p(EA = 1|C = 1,EB = 0)
and p(EA = 1|C = 1,EB = 1) (72.5 and 90.0, respectively).
That is, the sign of the quadratic effect of EB varied with the
state of C. This pattern obtained in all four conditions. Note
that this quadratic interaction is also apparent in the predic-
tions of the the mutation sampler shown in Fig. 4.

Theoretical Modeling
Both the normative model and the mutation sampler were fit
to each subject’s 24 conditional probability judgments. The
results of these fits averaged over subjects are shown in Fig. 5
superimposed on the empirical data. As expected, the fits
of the normative model (horizontal blue lines) reflect the ab-
sence of Markov violations. In contrast, the fits of the muta-
tion sampler (red lines) reproduce the sign of the Markov vio-
lations exhibited by subjects: positive in Conditions A and D
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Table 1: Inferential statistics testing the effect of the states of C and EB on the inference of EA.

Condition A Condition B Condition C Condition D
Effect F p BF F p BF F p BF F p BF

C 200 < 10−10 > 108 303 < 10−18 > 1015 246 < 10−16 > 1014 136 < 10−8 > 106

EB
Linear 59.2 < 10−6 > 104 46.4 < 10−17 > 105 20.6 < 10−4 373 11.2 .003 11.8
Quadratic 0.14 .710 .259 21.8 < 10−4 526 0.81 .374 .261 1.65 .216 .494

C×EB
Linear 7.17 .015 3.61 5.53 .024 2.00 1.98 .168 .442 3.81 .068 1.14
Quadratic 8.67 .009 5.74 11.7 .002 20.8 6.83 .013 3.37 9.84 .006 8.08

and negative in Conditions B and C. And, the mutation sam-
pler reproduces the interaction between C and the quadratic
effect of EB. These effects resulted in the mutation sampler
yielding a better fit (AICs of 103.1, 121.2, 120.9, and 118.6
in conditions A, B, C, and D, respectively) as compared to
the normative model (120.3, 127.2, 127.0, and 123.5). In the
mutation sampler fits the median value of the chain length
parameter across the four conditions was 7.9.

Discussion
This article tested predictions regarding the presence of new
causal reasoning errors. Previous demonstrations of Markov
violations have all exhibited a characteristic direction: in a
common cause network, the presence of an effect is judged
more likely when the other effect is also present even when
the state of the common cause was known. This article’s em-
pirical contribution is to demonstrate that this result does not
generalize to all common cause graphs. When one of the two
causal relations is inhibitory, the direction of the Markov vi-
olations reverses such that an effect is judged to be less likely
when the other effect is present.

These findings are inconsistent with some past character-
izations of Markov violations. For example, Rottman and
Hastie (2016) proposed that causal inferences are guided by a
monotonicity principle in which the strength of a causal infer-
ences is a function of the number of graph variables present
minus the number of variables absent. Relatedly, Rehder and
Waldmann (2017) proposed a rich-get-richer principle ac-
cording to which reasoners assume that one variable is more
likely to be present to the extent that other variables in the
causal model are also present. The current results indicate
that neither of these principles generalize to causal graphs
with inhibitory links.

The reversal of the direction of the Markov violations was
predicted by the mutation sampler. As a rational process
model the mutation sampler explains why people draw ap-
proximately correct causal inferences but also why they make
systematic errors. In particular, starting MCMC sampling
at one of a graph’s prototype states combined with short
sampling chains yields a distorted joint distribution and, in
turn, causal inferences that violate the Markov condition. We
demonstrated how the prototype states for causal graphs with

a mix of generative and inhibitory causal relations are suffi-
cient to reverse the usual direction of Markov violations (i.e.,
rather than richer, the rich got poorer).

We also showed that the prototype states for a graph with
nothing but inhibitory links explained the traditional direction
of the Markov violation observed in that condition (Fig. 5D).
Nevertheless, note that the magnitude of those violations was
somewhat smaller than in the other conditions. Interestingly,
we also note that the effect of C was smallest in Condition D.
One possible explanation for these results is that the verbal
descriptions of the inhibitory relations led them to be viewed
as the less efficacious as compared to the generative relations.
It also possible that people generally reason less confidently
with inhibitory relations.

The mutation sampler shares some similarities with men-
tal models theory (MMT) (Johnson-Laird, 1980), which also
posits that the fundamental units of reasoning are concrete
possibilities and gives special status to certain states (referred
to as initial mental models in MMT). Recently, Johnson-Laird
et al. (2015) defined a sampling process in which mental
models are stochastically generated, which then form the ba-
sis for a caual inference. Nevertheless the mutation sampler
and MMT posit different initial states in some circumstances
(Davis & Rehder, 2020). More fundamentally, the mutation
sampler but not MMT is an example of a rational process
model that approximates the normative standard to the extent
that sufficient cognitive resources are available.

Markov violations have been a key data point in assess-
ing the suitability of the causal graphical model framework
for a psychological theory of causal cognition. The current
results indicate that those violations are both more prevalent
than previously thought and vary systematically with the rel-
ative mix of generative and inhibitory causal relations. The
mutation sampler, a model designed to account for Markov
violations with purely generative causal relations, in fact cor-
rectly anticipated the novel direction of those violations when
inhibitory relations are present. The mutation sampler makes
novel predictions for other causal network topologies that will
be tested in future work, in addition to other predictions that
can be derived from a process level account, such as response
times and the within-person variability of causal judgments.
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