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A prenatal skin atlas reveals immune 
regulation of human skin morphogenesis

Nusayhah Hudaa Gopee1,2,18, Elena Winheim3,18, Bayanne Olabi1,2,18, Chloe Admane1,3, 
April Rose Foster3, Ni Huang3, Rachel A. Botting1, Fereshteh Torabi3, Dinithi Sumanaweera3, 
Anh Phuong Le4,5,6, Jin Kim4,5,6, Luca Verger7, Emily Stephenson1,3, Diana Adão3, 
Clarisse Ganier8, Kelly Y. Gim4,5,6, Sara A. Serdy4,5,6, CiCi Deakin4,5,6, Issac Goh1,3, 
Lloyd Steele3, Karl Annusver9, Mohi-Uddin Miah1, Win Min Tun1,3, Pejvak Moghimi3, 
Kwasi Amoako Kwakwa3, Tong Li3, Daniela Basurto Lozada1, Ben Rumney3, Catherine L. Tudor3, 
Kenny Roberts3, Nana-Jane Chipampe3, Keval Sidhpura1, Justin Englebert1, Laura Jardine1, 
Gary Reynolds1, Antony Rose1,3, Vicky Rowe3, Sophie Pritchard3, Ilaria Mulas3, James Fletcher1, 
Dorin-Mirel Popescu1, Elizabeth Poyner1,2, Anna Dubois2, Alyson Guy10, Andrew Filby1, 
Steven Lisgo1, Roger A. Barker11, Ian A. Glass12, Jong-Eun Park3, Roser Vento-Tormo3,  
Marina Tsvetomilova Nikolova13, Peng He3,14, John E. G. Lawrence3, Josh Moore15, 
Stephane Ballereau3, Christine B. Hale3, Vijaya Shanmugiah3, David Horsfall1, Neil Rajan1,2, 
John A. McGrath16, Edel A. O’Toole17, Barbara Treutlein13, Omer Bayraktar3, Maria Kasper9, 
Fränze Progatzky7, Pavel Mazin3, Jiyoon Lee4,5,6, Laure Gambardella3, Karl R. Koehler4,5,6,19 ✉, 
Sarah A. Teichmann3,19 ✉ & Muzlifah Haniffa1,2,3,19 ✉

Human prenatal skin is populated by innate immune cells, including macrophages, 
but whether they act solely in immunity or have additional functions in morphogenesis 
is unclear. Here we assembled a comprehensive multi-omics reference atlas of 
prenatal human skin (7–17 post-conception weeks), combining single-cell and spatial 
transcriptomics data, to characterize the microanatomical tissue niches of the skin. 
This atlas revealed that crosstalk between non-immune and immune cells underpins 
the formation of hair follicles, is implicated in scarless wound healing and is crucial for 
skin angiogenesis. We systematically compared a hair-bearing skin organoid (SkO) 
model derived from human embryonic stem cells and induced pluripotent stem cells 
to prenatal and adult skin1. The SkO model closely recapitulated in vivo skin epidermal 
and dermal cell types during hair follicle development and expression of genes 
implicated in the pathogenesis of genetic hair and skin disorders. However, the SkO 
model lacked immune cells and had markedly reduced endothelial cell heterogeneity 
and quantity. Our in vivo prenatal skin cell atlas indicated that macrophages and 
macrophage-derived growth factors have a role in driving endothelial development. 
Indeed, vascular network remodelling was enhanced following transfer of autologous 
macrophages derived from induced pluripotent stem cells into SkO cultures.  
Innate immune cells are therefore key players in skin morphogenesis beyond their 
conventional role in immunity, a function they achieve through crosstalk with 
non-immune cells.

Human skin organogenesis begins after gastrulation from two primary 
germ layers. The epidermis, the most superficial layer of the skin, mel-
anocytes and neural cells arise from the ectoderm. The dermis, which is 
separated from the epidermis by the basement membrane and contains 
endothelial and mural cells, derives from the mesoderm (apart from 
facial and cranial skin, where it arises from ectoderm-derived neural 
crest cells)2. The skin appendages, which include hair follicles (HFs) 
and sebaceous glands, form in a cephalocaudal direction3. Prenatal 
HFs start forming between 11 and 14 post-conception weeks (PCW)3, 
initiated by interactions between epidermal placodes (focal sites of 
epidermal layer thickening) and dermal condensates (aggregates of 

dermal fibroblasts), whereas sebaceous glands develop from around 
16 PCW3. There is, however, a paucity of information about the precise 
cellular composition of human prenatal skin over these developmental 
periods and whether cells interact in functional microanatomical niches 
that support skin morphogenesis.

Prenatal skin interfaces with the amniotic fluid in a sterile environ-
ment4. However, immune cells such as macrophages seed the skin as 
early as 6 PCW and express a range of pro-inflammatory genes, although 
genes relating to antigen presentation (for example, major histocom-
patibility complex class II (MHCII)) are only upregulated after 11 PCW5. 
Decoupling of the expression of pro-inflammatory genes from MHCII 
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genes before 11 PCW5 suggests that antigen presentation may not be a 
key function of human macrophages during early gestation. Together 
with evidence of their role in tissue homeostasis6,7 and healing in mouse 
models8,9, this raises the question of whether macrophages contribute 
to human early skin morphogenesis.

Our current study provides a comprehensive multi-omics cell atlas 
of 7–17 PCW human prenatal skin. We profiled human prenatal skin 
using single-cell RNA sequencing (scRNA-seq), spatial transcriptomics 
and multiplex RNA in situ hybridization to decode the dynamic cellu-
lar and molecular changes across gestation that regulate skin and HF 
morphogenesis. We leveraged adult healthy skin and HF datasets10,11 to 
compare and assess developmental-specific features that contribute 
to scarless skin healing and cues that guide de novo HF formation. We 
used a hair-bearing SkO model1 to validate the role of macrophages in 
prenatal skin vascular network formation.

Single-cell atlas of human prenatal skin
To characterize the role of distinct lineages and cell states during human 
prenatal skin development, we obtained single-cell suspensions of skin 
from 7 to 17 PCW, spanning the first and second trimesters (Fig. 1a). We 
performed fluorescence-activated cell sorting (FACS) to isolate live, 
single immune (CD45+) and non-immune (CD45–) populations and to 
enhance keratinocyte and endothelial cell capture before scRNA-seq 
profiling (Extended Data Fig. 1a and Supplementary Tables 1 and 2). 
Single-cell αβ T cell receptor (TCR) sequencing data were generated 
to accurately resolve T cell subsets. Spatial validation was carried out 
using multiplex RNA in situ hybridization (RNAscope), newly gener-
ated spatial transcriptomics (Visium) data from embryonic facial and 
abdominal skin, and published Visium data from embryonic limb 
from which only skin areas were analysed12 (Fig. 1a and Supplemen-
tary Table 2). In addition, we integrated new and published single-cell 
datasets of adult skin10 and of a hair-bearing SkO model derived from 
human embryonic stem (ES) cells and induced pluripotent stem (iPS) 
cells1 for comparative analysis (Fig. 1a and Supplementary Table 2). 
We also compared in vivo prenatal and organoid HFs with scRNA-seq 
data of adult HFs11. Our data can be interactively explored through our 
WebAtlas-based13 portal (https://developmental.cellatlas.io/fetal-skin). 
The analysis software for this study is archived at Zenodo (https://doi.
org/10.5281/zenodo.8164271)14.

Our prenatal skin scRNA-seq dataset comprised 534,581 cells, of 
which 433,961 cells passed quality control (Extended Data Fig. 1b). 
Broad cell labels (epidermis, dermal stroma, immune and endothelium)  
and fine-grained annotations of cell states were assigned on the basis 
of differentially expressed genes (DEGs) (Fig. 1b, Extended Data Fig. 1c 
and Supplementary Table 3). Differential abundance analysis test-
ing revealed how different cell populations varied across gestation. 
Among ectoderm-derived cells, neural cells and the periderm, which 
constitutes the first skin permeability barrier2, were enriched in early 
gestation, whereas suprabasal epidermal and HF cells were mainly 
observed in later gestation (Fig. 1c, Extended Data Fig. 1d and Supple-
mentary Table 4). Mesoderm-derived cells, including skin fibroblasts 
and endothelial cells, and immune cells were present throughout gesta-
tion (Fig. 1c, Extended Data Fig. 1d and Supplementary Table 4). Innate 
immune cells, such as macrophages and innate lymphoid cells (ILCs), 
were present from early gestation, whereas B cells and T cells emerged 
later, accompanying thymus, bone marrow and spleen formation from 
around 10 PCW (Fig. 1c, Extended Data Fig. 1d and Supplementary 
Table 4). Some subsets of macrophages, ILCs and fibroblasts exhib-
ited distinct gene expression profiles between early and late gestation, 
which suggested that functional maturation or dual waves of produc-
tion occur during development (Fig. 1c and Extended Data Fig. 1d).

To locate cells identified from scRNA-seq data in situ, we performed 
Cell2location15 analysis of spatial transcriptomics data of facial and 
abdominal skin (10 PCW) and embryonic lower limb skin (6–8 PCW)12 

(Supplementary Table 2). We assessed cell type co-location using 
non-negative matrix factorization (NMF) to computationally pre-
dict microenvironments in conjunction with correlation analyses. 
Co-location was indicated by a high proportion of two or more cell types 
sharing a microenvironment (Fig. 1d) and/or by a positive correlation 
coefficient between cell pairs (Extended Data Fig. 1e,f). NMF can predict 
significant cellular co-locations that are not readily evident in conven-
tional histopathology analyses5,15. Our analysis predicted distinct micro-
environments in prenatal skin comprising epidermal, dermal, vascular 
and neural cells, each including specific types of immune cells (Fig. 1d 
and Extended Data Fig. 1e,f). Macrophages co-located with endothelial 
and neural cells in ‘early and late neurovascular microenvironments’ 
(ME1 and ME5, respectively), whereas pre-dermal condensate (pre-Dc) 
cells co-located with dendritic and lymphoid cells based on correla-
tion analyses (Fig. 1d and Extended Data Fig. 1e,f). These observations 
indicated that immune cells may occupy defined microanatomical 
niches where they have non-immune functions during early gestation.

We next integrated and compared human prenatal and adult skin 
data10 with the SkO model1. The aim was to determine the extent to 
which the SkO model recapitulates human skin differentiation at a 
molecular level and its potential utility to functionally assess the role 
of immune cells in skin morphogenesis (Fig. 1e and Extended Data 
Fig. 2a,b). Broadly, cell states were conserved among SkO, prenatal 
and adult skin, but SkO cell states matched prenatal skin more closely 
than adult skin across culture duration (Extended Data Fig. 2c,d and 
Supplementary Table 5). However, the tempo of differentiation varied 
across the distinct skin cell lineages. Even after 19 weeks of culture, 
fibroblasts, mural and Schwann cells had a low probability of corre-
spondence to adult skin cell states (Extended Data Fig. 2d and Supple-
mentary Table 5). By contrast, accelerated differentiation was observed 
in keratinocytes and melanocytes, with alignment to adult cell states 
seen as early as 4 weeks of SkO culture (Extended Data Fig. 2d and Sup-
plementary Table 5). Notably, the SkO model recapitulated the different 
components of prenatal skin HF, interfollicular epidermis, neural cells 
and dermal fibroblasts, but immune cells were not represented and 
endothelial cells were markedly reduced.

Epidermal placode and matrix formation
The precise mechanisms of de novo HF formation in human embryonic 
development are largely inferred from mouse studies16. Human studies 
have primarily focused on morphological descriptions during develop-
ment17 or cycling HFs in adult skin18. Our single-cell dataset captured 
the onset of HF formation, which enabled direct comparison between 
prenatal developing HFs and adult cycling HFs.

Prenatal skin up to 8 PCW consisted of a layer of epidermal cells 
overlying the dermal stroma, with the periderm seen sloughing from 
11 PCW (Fig. 2a). At 14–15 PCW, budding of basal cells (hair placode and 
germ cells) and elongation of HFs (hair pegs) were observed (Fig. 2a). 
At 17 PCW, hair pegs were evident beneath a stratified epidermal layer 
(Fig. 2a).

Consistent with our histological observations, we identified HF cells 
from 14 PCW in our scRNA-seq data, which comprised placode, matrix 
(SHH +), outer root sheath (ORS) (SLC26A7 +), companion layer (CL), 
inner root sheath (IRS) and cuticle and cortex cells (cuticle/cortex; 
part of the inner layers of the HF) (Fig. 2a–c, Extended Data Fig. 3a,b 
and Supplementary Table 6). In addition, we observed immature and 
mature interfollicular epidermal (IFE) cells. Immature IFE cells, includ-
ing periderm, immature basal and immature suprabasal cells, were 
present from 7 PCW and decreased after 11 PCW, during the transition 
from embryonic to fetal skin (Fig. 2b). Mature basal (DPYSL2 +) and 
suprabasal IFE cells increased after 11 PCW, whereas POSTN + basal cells 
were present throughout gestation (Fig. 2b and Extended Data Fig. 3b). 
Sebaceous and apocrine gland cells, which mature after 16 PCW19, were 
not captured at these stages. Accordingly, sebocyte progenitors are 
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present from day 133 of SkO differentiation1. Within the dermal com-
partment, we observed HF-specialized fibroblasts, the dermal conden-
sate (Dc) and dermal papilla (Dp), from 12 PCW (Extended Data Fig. 3c).

We evaluated hair matrix cells, which arise from the epidermal pla-
code, a prenatal-specific cell state absent in established adult HFs20 
(Extended Data Fig. 3d,e). Compared with adult HFs, prenatal skin 
matrix cells had increased expression of genes involved in chemotaxis, 
such as CXCL14, a chemokine previously reported to recruit regulatory T 

(Treg) cells21, and in control of autoimmunity (CD24)22. This result high-
lighted the potential role of Treg cell accumulation and immune protec-
tion in the early stages of matrix differentiation (Extended Data Fig. 3f). 
Treg cells are known to localize around the HF in late second trimester 
(around 21 PCW) and in postnatal skin23,24. RNAscope (FOXP3+) and 
immunofluorescence staining (FOXP3+) showed that Treg cells were 
primarily located within and around HFs compared to interfollicular 
skin as early as 15 PCW (Fig. 2c and Extended Data Fig. 3g,h).
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Fig. 1 | A single-cell atlas of human prenatal skin. a, Experimental overview 
demonstrating the generation of scRNA-seq data from dissociated prenatal 
skin cells (n = 18, 7–17 PCW). Datasets of adult HF11, adult healthy skin10 and 
hair-bearing SkO1 were integrated for comparison. Spatial experiments were 
carried out using RNAscope, immunofluorescence and Visium analyses. 
Findings of the study were functionally validated using a SkO co-culture.  
b, Uniform manifold approximation and projection (UMAP) visualization of  
the prenatal skin dataset with broad annotation of cell states, as denoted by 
colour and number in the legend. c, Milo beeswarm plot showing the differential 
abundance of neighbourhoods in prenatal skin across gestation time, annotated 
by broad cell labels. Red and blue neighbourhoods are significantly enriched  

in earlier or later gestation, respectively. Colour intensity denotes degree of 
significance. d, Dotplot showing spatial microenvironments (MEs). Cell type  
to microenvironment coefficients are normalized by cell type sums, and cell 
type to microenvironment assignment is shown by colour. ME5, which shows 
co-locating macrophages and endothelial cells, is highlighted (grey). e, UMAP 
visualizations of the integrated prenatal skin, adult skin10 and SkO1 datasets, 
coloured by broad cell lineages. ASDC, Axl+Siglec6+ dendritic cells; DC, dendritic 
cells; HSC, haematopoietic stem cells; LC, Langerhans cells; LE, lymphatic 
endothelium; LTi, lymphoid tissue inducer cell; MEMP, megakaryocyte-erythroid- 
mast cell progenitor; NK cell, natural killer cells; pDC, plasmacytoid dendritic 
cells. The images in a were created using BioRender (https://biorender.com).
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Fig. 2 | Human prenatal HF development. a, Representative images of 
prenatal skin and HF morphogenesis (stained with haematoxylin and eosin). 
Scale bars, 200 µm. b, Average proportions of prenatal skin epidermal cell 
states. c, Large-area (top) and magnified peri-follicular (bottom left) and 
inter-follicular (bottom right) RNAscope images of prenatal skin (15 PCW) 
demonstrating the ORS (SLC26A7), matrix (SHH) and the Dp (NDP) with Treg cells 
(FOXP3) around HFs. Scale bars, 100 µm (top) or 20 µm (bottom). d,e, Inferred 
pseudotime trajectory of prenatal skin and SkO epidermal cells (d) and 
fibroblasts (e). UMAP overlaid with partition-based graph abstraction (PAGA) 
(default threshold), coloured by cell state, showing connectivities (dashed)  
and transitions (arrows). f, Spatial distribution of WNT2+ fibroblasts and 
HOXC5+ early fibroblasts. Predicted cell abundances shown as the sum of 
two-colour gradients per spot (left; scale bars, 100 µm) or averaged across all 
spots located at the same distance from the tissue border (right; mean 
(line) ± 2 s.e.m. (shaded area)). Dotted line indicates the tissue border.  
g, CellPhoneDB-predicted mesenchymal–epithelial interactions (early, 
immature basal; late, DPYSL2+ basal, POSTN+ basal, placode, matrix, ORS, CL, 

IRS and cuticle/cortex). The top ten interactions per prenatal skin cell pair  
are shown (top), and the same interactions are plotted for SkO (bottom). 
Colour scale represents mean expression values of ligand–receptor pairs. 
CellPhoneDB-computed significance used empirical shuffling and were 
adjusted for false discovery rate (FDR). h, RNAscope images showing ACKR3 
and CXCL12 expression in early epithelium (SERPINB7+) and pre-Dc cells 
(PDGFD+) (top) and co-expression at the dermo–epidermal junction (arrows, 
bottom right). Scale bars, 20 µm. i, Alignment of SkO and prenatal skin 
pseudotime trajectories considering 15 equispaced pseudotime points.  
Left, heatmap shows the number of matching TFs (colour scale) for each  
pair of organoid–prenatal pseudotime points and average alignment path 
(white line) across all TFs along pseudotime (the diagonal path represents  
the best-matched pseudotime point–pairs, and vertical and horizontal paths 
indicate mismatches). Right, average alignment mapping visualized against 
cell type composition per pseudotime point. For details on statistics and 
reproducibility, see Methods.
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Inferred trajectory and pseudotime analysis of epidermal cells in the 
integrated prenatal skin and SkO data predicted the differentiation 
of POSTN+ basal cells into two paths: ORS/CL trajectory, comprising 
DPYSL2+ basal cells, ORS and CL; and IRS trajectory, involving placode, 
matrix, cuticle/cortex and IRS (Fig. 2d, Extended Data Fig. 4a and Sup-
plementary Table 7). Along the ORS/CL trajectory, we identified new 
genes upregulated by DPYSL2+ basal cells, such as AGR2, and previously 
reported genes related to ORS differentiation (BARX2 and SOX9)25,26 
(Extended Data Fig. 4b,c and Supplementary Table 7). AGR2 was down-
regulated along the IRS trajectory, whereas known matrix markers such 
as SHH and WNT10B25,26 were upregulated (Extended Data Fig. 4b,c and 
Supplementary Table 7). Loss of AGR2, which functions in the assembly 
of cysteine-rich receptors enriched in HFs, promotes cell migration27. 
Our findings suggest that increased cellular migration in POSTN+ basal 
cells may be involved in placode specification and dermal invagination.

HF mesenchymal differentiation
We delineated the dermal cell types involved in crosstalk with epi-
dermal cells during HF development and captured the precursors of 
the human Dc (Extended Data Figs. 2b and 3c). In mice, transitional 
PDGFRA+FOXD1+SOX2low fibroblasts termed pre-Dc cells aggre-
gate to form the Dc (FOXD1+SOX2+), which abuts the epithelial hair  
placode26,28. Using orthologous marker genes, we annotated pre-Dc 
cells and the Dc in human prenatal skin28,29. Following HF invagination, 
the Dc becomes encapsulated at its base as the Dp (NDP+, SOX2+)26,28 
(Fig. 2c and Extended Data Fig. 3h).

To infer the origin of pre-Dc cells and the Dc and Dp, we performed 
trajectory and pseudotime analysis of integrated prenatal skin and 
SkO fibroblast clusters (Fig. 2e, Extended Data Fig. 4d and Supple-
mentary Table 7). We excluded FRZB+ fibroblasts, which were primar-
ily observed in one sample from the earliest gestation stage (7 PCW) 
(Extended Data Fig. 3c). Although rare in prenatal skin, FRZB-expressing 
fibroblasts were present in several other developing organs (Extended 
Data Fig. 4e). Inferred trajectory analysis predicted that HOXC5 + early 
fibroblasts (located in the upper dermis (Fig. 2f) and abundant before 
11 PCW (Extended Data Fig. 3c)) differentiated along two paths: the 
first (hair fibroblast trajectory) formed hair-specialized fibroblasts 
(pre-Dc cells, the Dc and Dp) and the second (dermal fibroblast  
trajectory) formed WNT2+ fibroblasts and PEAR1+ fibroblasts (abundant 
after 11 PCW) (Fig. 2e, Extended Data Figs. 3c and 4d and Supplemen-
tary Table 7). Along the hair fibroblast pseudotime, genes involved in 
regulation of cell adhesion (ADAMST1), cell–cell contacts (CLDN11) and 
directed migration (CXCL12) were upregulated as pre-Dc cells migrated 
towards the epidermis, which indicated a process of collective migra-
tion30–32 (Extended Data Fig. 4f and Supplementary Table 7). Genes 
implicated in collagen fibril formation and cell adhesion (COL6A3, 
MFAP4 and PTK7) were expressed as the pre-Dc cells aggregated into 
the Dc (Extended Data Fig. 4f and Supplementary Table 7). Formation of 
the Dp was characterized by genes (RSPO3 and WNT5A) (Extended Data 
Fig. 4f and Supplementary Table 7) that coordinate the differentiation 
of adjacent hair matrix cells33,34.

We explored the mesenchymal–epithelial interactions that instruct 
early HF formation. Receptor–ligand analysis predicted interactions 
between CXCL12 expressed by pre-Dc cells (Extended Data Fig. 4g,h) 
with ACKR3 on epidermal basal cells (Fig. 2g and Supplementary 
Table 8). RNAscope analysis confirmed that these two genes co-located 
(Fig. 2h). This result suggests that CXCL12 probably interacts with ACKR3 
to mediate the migration of pre-Dc cells31,35. Notably, lymphoid tissue 
inducer and ILC3 cells were also predicted to co-locate and interact with 
pre-Dc cells through ligand–receptor signals implicated in the regula-
tion of cellular adhesion and migration (CXCL12–CXCR4 and CXCL12–
DPP4)35,36 (Extended Data Figs. 1f and 5a and Supplementary Table 8), 
which suggested that innate immune cells may support pre-Dc cell 
migration during early HF development. Additional experiments are 

required to functionally validate these interactions in prenatal hair 
formation.

The Dc, for which formation is accompanied by invagination of the 
placode, expressed FAM3C and EFNB1, which were, respectively, pre-
dicted to interact with LAMP1 or CXADR and EPHB6 on the placode, and 
have been reported to promote cell migration and invasion37,38 (Fig. 2g, 
Extended Data Fig. 5b and Supplementary Table 8). Finally, RSPO3 from 
the Dp was predicted to interact with LGR4 and LGR6 (Fig. 2g, Extended 
Data Fig. 5b and Supplementary Table 8) in overlying matrix cells to 
contribute to the proliferation of HF epithelial cells33. Notably, the 
highlighted interactions were conserved between the mesenchymal 
and epithelial cells of the SkO model for corresponding stages dur-
ing HF formation (Fig. 2g, Extended Data Fig. 5c and Supplementary 
Table 8). These results provide orthogonal validation of our findings 
and reinforce the utility of the SkO as an accurate model of prenatal 
skin development.

We further evaluated the differentiation trajectory alignment 
between prenatal skin and the SkO model using the Genes2Genes 
analysis framework39 to compare the expression of transcription fac-
tors (TFs) along the hair fibroblast trajectory. Overall, we observed 
a high number of matching TFs across pseudotime, which indicated 
that there are similar activated gene regulatory programs between 
prenatal skin and SkO during HF fibroblast differentiation (Fig. 2i and 
Supplementary Table 9). TFs that were mismatched across pseudotime 
or drove misalignment in early and late pseudotime (for example, 
HOXA7 and BARX1) were largely attributable to the different origins of 
dermal cells between prenatal skin (trunk and limb) and SkO (neural 
crest differentiation)40 (Extended Data Fig. 5d,e and Supplementary 
Table 9).

We also assessed the expression profiles of genes previously reported 
in mouse HF formation. Similar signalling pathways were upregulated, 
including WNT and EDA for hair placode specification, bone morpho-
genetic protein (BMP) and noggin to inhibit hair formation in IFE cells, 
and PDGFA and TGFβ signalling for HF down growth26 (Extended Data 
Fig. 5f). Additionally, similar to fibroblast differentiation in mouse skin, 
pre-Dcs, the Dc and Dp and dermal fibroblasts in human prenatal skin 
also originated from a common fibroblast progenitor (HOXC5+ early 
fibroblast) (Fig. 2e and Extended Data Fig. 4d). However, cross-species 
data integration of human and mouse HF41 showed that human pre-Dc 
cells and the Dc aligned not only to their counterparts in mouse skin 
but also to fibroblasts in earlier stages of differentiation (Extended 
Data Fig. 5g–i and Supplementary Tables 10 and 11). This result sug-
gests that for corresponding cell types, HF fibroblasts are in a more 
differentiated state in mouse compared to human prenatal skin. Addi-
tionally, dermal fibroblast differentiation into histologically defined 
subsets (papillary and reticular) has been reported to occur early in 
mice (about embryonic day 12.5)42. Our human prenatal skin fibro-
blasts did not significantly express papillary fibroblast markers (for 
example, COL13A1)43 (Extended Data Fig. 5j), which suggested that the 
distinction between papillary and reticular fibroblasts emerges after 
17 PCW. These distinctions between human and mouse skin may be 
attributed to organismal differences in gestation lengths and tempo 
of differentiation. Cellular differentiation occurs at a quicker pace in 
mice44, whereas the longer gestation period in humans permits more 
advanced maturation to take place in utero.

Genetic hair and skin disorders
Having mapped the differentiation of prenatal skin HFs, we leveraged 
this information to assess the extent to which genetic hair diseases 
have their roots in utero. Genes harbouring mutations known to cause 
reduced hair growth (hypotrichosis) or abnormally shaped hair (for 
example, pili torti) (Supplementary Table 12) were expressed along 
the ORS/CL trajectory, IRS trajectory and hair fibroblast trajectory 
pseudotimes (Extended Data Figs. 4f and 6a,b) and in prenatal HF cell 
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states (Extended Data Fig. 6c). This finding suggested that these dis-
orders result from dysfunctional HF development.

Genes causing epidermolysis bullosa (EB), an inherited blistering 
skin disorder characterized by skin fragility secondary to structural 
defects in the epidermis and adjacent dermoepidermal junction45, 
were highly expressed in prenatal epidermal cells and at the dermoe-
pidermal junction (Extended Data Fig. 6d,e). Gene therapy studies 
for dystrophic EB have identified fibroblasts expressing COL7A1 as 
a promising therapeutic strategy46. We observed COL7A1 expression 
across several fibroblast subsets in prenatal skin and SkOs (Extended 
Data Fig. 6d), which lends support to the gene therapy approaches. 
The expression of genes implicated in congenital ichthyoses, a group 
of disorders resulting from abnormal epidermal differentiation47, were 
primarily confined to keratinocytes (Extended Data Fig. 6f).

Notably, we observed similar gene expression patterns across prena-
tal skin and SkO for the above described genetic hair and skin disorders 
(Extended Data Fig. 6c,d,f), which supported the value of the SkO as a 
model to study congenital diseases. Although we found that expression 
of genes implicated in these disorders are confined to structural cells, 
disease manifestations are often associated with immune infiltration, 
which implicates skin–immune crosstalk during pathogenesis48,49.

Scarless healing and potential macrophage 
contribution
Prenatal human skin is able to heal without scarring but loses this 
capacity after 24 PCW50. Scars result from aggregation of collagen 
produced by dermal fibroblasts and failure of the overlying epidermis 
to completely regenerate51. To identify the cellular and molecular 
mechanisms that may endow early prenatal skin with scarless healing 
properties, we investigated the temporal changes in composition and 
transcriptional profile of the dermal fibroblast subsets (Extended 
Data Figs. 3c and 7a). We first compared prenatal skin dermal fibro-
blasts with healthy adult skin fibroblasts10. All adult fibroblast subsets 
expressed high levels of inflammatory cytokines and receptors (for 
example, IL6 and IL1RA) and genes involved in antigen presentation 
(for example, HLA-A), innate immune and inflammatory responses 
(for example, CD55 and PTGES) and cellular senescence (CDKN1A) 
(Fig. 3a and Supplementary Tables 13–15). By contrast, prenatal skin 
fibroblasts had upregulated genes involved in immune suppression 
(CD200), regulation of inflammation (for example, RAMP2) and tis-
sue regeneration (MDK) (Fig. 3a and Supplementary Tables 13–15).

The adult fibroblast gene expression profile was increased in WNT2+ 
and PEAR1+ prenatal fibroblasts, which were abundant in later gestation 
(Fig. 3a and Extended Data Figs. 3c and 7b). Genes associated with a 
pro-inflammatory fibroblast phenotype (APOE, IGFBP7 and ITM2A)43,52 
were also upregulated during the transition from HOXC5+ fibroblasts 
into PEAR1+ fibroblasts (Extended Data Fig. 7c). In addition to transcrip-
tomics differences between fibroblast subsets enriched in early versus 
late gestation, we observed differences within the WNT2+ fibroblast 
population across gestation time (Extended Data Fig. 1d). Late gestation 
WNT2+ fibroblasts had upregulated genes related to extracellular matrix 
and collagen deposition (for example, COL1A1), whereas early WNT2+ 
fibroblasts had DEGs involved in cellular growth and differentiation 
(for example, SFRP1) (Fig. 3b, Extended Data Fig. 7d and Supplemen-
tary Tables 16–18). Notably, WNT2+ and PEAR1+ prenatal fibroblasts 
expressed several genes involved in cellular senescence (CDKN1A), 
cytokine pathways (for example, IL1R1) and collagen deposition (for 
example, POSTN) (Fig. 3a,b), which are highly expressed in pathogenic 
fibroblasts of fibrotic skin disorders53. These results provide further 
support for our finding of progressive acquisition of scar-promoting 
genes in later gestation, consistent with the clinical observation of 
scarring in third trimester skin54.

The role of macrophages in promoting wound healing has been 
described in postnatal mouse skin and in adult human skin55. In prenatal 

skin, macrophage subsets (Extended Data Fig. 7e,f) were predicted 
to co-locate with fibroblasts, neural cells and vascular cells in distinct 
tissue microenvironments in early gestation (Fig. 1d). Specifically, 
LYVE1+ macrophages co-located with WNT2+ fibroblasts (Fig. 3c–e) 
and were predicted to interact through platelet-derived growth fac-
tors (PDGFs) and corresponding receptors (PDGFRα and PDGFRβ) 
expressed on fibroblasts (Extended Data Fig. 7g and Supplementary 
Table 8). Interactions between macrophages and fibroblasts maintain 
tissue homeostasis in diverse organs such as spleen, peritoneum and 
heart56. Our identification of additional growth factor interactions 
(IGF1–IGF1R and GRN–EGFR) (Extended Data Fig. 7g and Supplementary 
Table 8) suggests that LYVE1+ macrophages play a part in the mainte-
nance of prenatal skin dermal fibroblasts.

We recently identified yolk-sac derived TREM2+ macrophages 
that share an expression profile (P2RY12, CX3CR1 and OLFML3) with 
microglia-like macrophages from other developing organs, such as the 
brain, prenatal skin and gonads57,58 (Extended Data Fig. 7e,f). Prenatal 
skin TREM2+ microglia-like (TML) macrophages were highly corre-
lated with embryonic brain microglia57 (Extended Data Fig. 8a,b) and 
co-expressed immunomodulatory genes, including immune-inhibitory 
receptors (for example, CX3CR1) and regulators of IL-6 production 
(for example, SYT11)59 (Fig. 3f, Extended Data Fig. 8c and Supple-
mentary Tables 19–23). Downregulation of inflammation and IL-6 
confers anti-fibrogenic properties in mouse skin transplants and in 
fetal wounds60,61. TML macrophages were predicted to co-locate with 
WNT2+ fibroblasts in early prenatal skin (6–8 PCW) (Fig. 3c,d) and WNT2+ 
fibroblasts had downregulated IL6 expression compared with adult 
fibroblasts (Fig. 3a). This led us to infer a potential contribution of 
macrophages in scarless healing in prenatal skin. Additionally, GAS6, 
expressed by TML macrophages and LYVE1+ macrophages, was pre-
dicted to interact with AXL receptors on WNT2+ fibroblasts (Extended 
Data Fig. 7g and Supplementary Table 8), and these interactions can 
induce immunosuppression and tissue repair62,63.

We further compared prenatal skin fibroblasts and macrophages 
to their counterparts in reindeer skin from antlers, which heal with-
out scarring, and in back skin, which scars64. Early-gestation human 
skin fibroblasts had a higher probability of correspondence to 
pro-regenerative reindeer fibroblasts, whereas in later gestation, 
the probability of matching to pro-fibrotic fibroblasts was higher 
(Extended Data Fig. 8d and Supplementary Table 19). Accordingly, 
several pro-regenerative genes (for example, CRABP1 and MDK) were 
downregulated in late gestation prenatal skin (Extended Data Fig. 8e 
and Supplementary Table 20). Notably, prenatal skin macrophages 
resembled ‘early macrophages’ that are enriched in reindeer antler 
skin but not macrophages in back skin (Extended Data Fig. 8f and 
Supplementary Table 21). Using a scratch assay of SkO-derived fibro-
blasts cultured with or without iPS cell-derived macrophages, we 
demonstrated that scratch wound width closure was improved when 
fibroblasts were co-cultured with macrophages over 72 h (Extended 
Data Fig. 8g).

Collectively, our findings suggest that prenatal skin fibroblasts in 
early gestation downregulate genes involved in extracellular matrix 
formation, collagen deposition and inflammation, which may favour 
tissue regeneration over scarring. Based on our data and previous 
studies, we also posit a potential role for early skin macrophages in 
conferring the distinct property of scarless healing in early prenatal 
skin. However, further studies are required to fully elucidate the inter-
actions between macrophages and fibroblasts in human prenatal skin 
and to conclusively establish their role in scarless healing.

Macrophages in cutaneous neural differentiation
TML macrophages were also predicted to co-locate with Schwann 
cells in prenatal skin (‘early neurovascular microenvironment’, ME1) 
(Figs. 1d and 3g) and expressed genes related to cell migration and 
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Fig. 3 | Early dermal fibroblasts and macrophages potentially contribute to 
scarless skin healing. a, Dot plot showing variance-scaled, mean expression 
(dot colour) and per cent of expressing cells (dot size) of DEGs by prenatal 
(anti-inflammatory and immune suppression) and adult skin fibroblasts 
(pro-inflammatory and immune activation)10. b, Matrix plot showing 
variance-scaled, mean expression (colour) of Milo-generated DEGs (grouped 
by function) by gestational age (grouped PCW) in WNT2 + fibroblasts. Labels in 
bold indicate genes selectively referenced in text. c, Bar plot showing cell type 
co-location, indicated by positive Pearson correlation coefficients calculated 
between per-spot normalized cell type abundances, for selected cell type pairs 
(macrophages and WNT2 + fibroblasts). Pearson correlation coefficients were 
calculated across all skin-covered spots of Visium samples; each sample is 
shown by an individual bar. d, Spatial distribution of LYVE1 + macrophages and 
WNT2 + fibroblasts (top two rows) and of TML macrophages and WNT2 + 
fibroblasts (bottom two rows) (representative 8 PCW samples). Predicted cell 

abundances shown as the sum of two-colour gradients per spot (left; scale bars, 
100 µm) or averaged across all spots located at the same distance from tissue 
border (right; mean (line) ± 2 s.e.m. (shaded area)). Dotted line indicates  
tissue border. e, Immunofluorescence (representative 10 PCW prenatal skin 
cryosections) showing LYVE1+ macrophage (CD45+LYVE1+) co-locating with 
fibroblasts (VIM+). Scale bars, 50 µm. f, Dot plot showing variance-scaled, mean 
expression (dot colour) and per cent of expressing cells (dot size) of genes 
(grouped by function) upregulated by TML macrophages in prenatal and adult 
skin macrophages. Labels in bold indicate genes selectively referenced in text. 
g, Bar plot showing cell type co-location, indicated by positive Pearson 
correlation coefficients calculated between per-spot normalized cell type 
abundances, for selected cell type pairs (TML macrophage and neural cells). 
Pearson correlation coefficients were calculated across all skin spots of Visium 
samples; each sample is shown by an individual bar. For details on statistics and 
reproducibility, see Methods.
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neural development (Fig. 3f, Extended Data Fig. 8c and Supplementary 
Tables 22 and 23), which mirrored the functions of brain microglia and 
peripheral nerve-associated macrophages in mouse skin65. TML mac-
rophages were predicted to interact with Schwann cells, contributing 
to synapse formation and axon guidance (VEGFA–NRP1, VEGFA–NRP2, 
SEMA3C–NRP2 and SEMA3E–PLXND1)66 (Extended Data Fig. 8h and 
Supplementary Table 8). These findings suggest that prenatal skin mac-
rophages may support the establishment of the skin peripheral nervous 
system during early gestation, as previously reported in mouse skin65.

Macrophages support prenatal skin angiogenesis
Macrophages have been implicated in angiogenesis during prena-
tal organ development and in the postnatal setting such as cancer- 
related angiogenesis67,68. Furthermore, macrophages expressing 
pro-angiogenic genes have been observed in diverse tissues during 
human development69. Visium deconvolution analysis predicted 
co-location of prenatal skin macrophages with endothelial cells (‘early 
and late neurovascular microenvironments’, ME1 and ME5) (Fig. 1d 
and Extended Data Fig. 1e). Gene ontology analysis showed that the 
four macrophage subsets (LYVE1+, MHCII+, TML and iron-recycling) 
expressed gene programs that drive angiogenesis (Supplementary 
Tables 23–26). Gene module expression profiles suggested that 
sprouting angiogenesis (growth of new vessels) was promoted by 
LYVE1+ and TML macrophages, blood vessel morphogenesis by LYVE1+ 
macrophages and endothelial cell chemotaxis by iron-recycling mac-
rophages (Extended Data Fig. 8i and Supplementary Table 27). Consist-
ent with this finding, multiplex RNAscope and immunofluorescence 
staining showed LYVE1+ and TML macrophages in close proximity to 
endothelial cells (Fig. 4a and Supplementary Video 1). Predicted ligand–
receptor interactions were consistent with reciprocal communication 
between macrophages and endothelial cells to support angiogenesis, 
chemotaxis and cell migration (for example, CXCL8–ACKR1 and CCL8–
ACKR1)10,70 (Extended Data Fig. 9a and Supplementary Table 28).

Our data suggested that macrophages contribute to prenatal skin 
angiogenesis. Consistent with this hypothesis, we observed fewer and 
less heterogeneous endothelial cells in the immunodeficient SkOs 
compared to prenatal skin, despite the formation of well-developed 
HFs, epidermis and neural cells (Fig. 4b,c, Extended Data Fig. 9b and 
Supplementary Table 29). Inferred trajectory analysis showed that 
early endothelial cells in prenatal skin differentiated into either an 
arteriolar pathway (capillaries, capillary arterioles and arterioles) or 
venular pathway (postcapillary venules and venules), with expression 
of characteristic genes (for example, GJA5 for arteriolar and PLVAP for 
venular) (Fig. 4d and Extended Data Fig. 10a–c). Unlike SkO capillary 
arteriole cells, prenatal skin capillary arteriole cells could further differ-
entiate into arterioles (Fig. 4d and Extended Data Fig. 10a). Additional 
comparison with a human ES cell-derived and iPS cell-derived blood ves-
sel organoid71, which also lacked immune cells, further demonstrated 
the limited vasculature differentiation of this mesoderm-geared blood 
vessel organoid model (Extended Data Fig. 10d). This result confirms 
that immune cells are required to fully recapitulate in vivo endothelial 
cell development.

We next investigated additional mechanisms for failed expansion and 
differentiation of SkO endothelial cells. Expression of genes and gene 
modules related to blood flow and hypoxia were lower in SkO than in 
prenatal skin (Extended Data Fig. 10e,f and Supplementary Table 29). 
However, sprouting angiogenesis potential, assessed by scoring the 
‘tip’ cell state, was increased in both SkO capillary arteriole cells and 
prenatal skin arteriole, capillary arteriole and capillary cells (Extended 
Data Fig. 10g,h). This suggests that despite strong expression of the 
sprouting angiogenesis gene signature, SkO capillary arteriole cells 
are unable to guide stalk cells for new blood vessel formation.

Anti-angiogenic genes (for example, WNT5A) and corresponding 
receptors were highly expressed in SkO, whereas pro-angiogenic genes 

(for example, CXCL8) were upregulated in prenatal skin and primarily 
expressed by macrophages (Extended Data Fig. 11a and Supplementary 
Tables 30–34). Although expression of vascular endothelial growth fac-
tors (VEGF), VEGFA and VEGFB were increased in SkO cells, their recep-
tors (KDR and FLT1) on SkO capillary arterioles were downregulated 
compared to prenatal skin (Extended Data Fig. 11b,c). These receptors 
are known downstream targets of GATA2, which has a key role in angio-
genesis during development and regulates VEGF-induced endothelial 
cell migration and sprouting in vitro72. Regulon analysis showed that 
GATA2 and related regulons (for example, NFATC1) were downregu-
lated in SkO capillary arterioles (Extended Data Fig. 11d,e). Several 
target genes of GATA2 and NFATC1 (for example, VWF), which were 
expressed across the venular trajectory pseudotime and are involved in 
endothelial cell differentiation73, were downregulated in the SkO capil-
lary arterioles compared to prenatal skin (Extended Data Fig. 11c,f). An 
orthogonal approach (NicheNet74) identified macrophage-expressed 
VEGFA as one of the top upstream ligands that regulate differences in 
GATA2 expression between prenatal skin and SkO endothelial cells 
(Extended Data Fig. 11g and Supplementary Tables 35–37). These find-
ings suggest that high VEGF production in the SkO cannot compensate 
for missing macrophage-related factors that drive GATA2 activity and 
downstream VEGF receptor expression (Fig. 4e).

We next introduced autologous iPS cell-derived macrophages 
(Extended Data Fig. 11h) in the early stages of SkO differentiation and 
assessed the endothelial network on day 35 of co-culture. Macrophages 
co-localized with blood vessels even after 5 weeks of culture (Fig. 4f–h). 
A more elaborate and organized vascular network was seen in SkOs 
co-cultured with macrophages compared with control SkOs without 
macrophages (Fig. 4f,g). Control SkOs displayed a mesh-like aggrega-
tion of endothelial cells, quantified as a higher density of endothelial 
cell coverage of SkO volume, which was absent in SkOs co-cultured 
with macrophages (Fig. 4f,g). This disorganized vascular mesh may 
have prevented the isolation of endothelial cells for scRNA-seq analysis 
(Fig. 4b). We also observed a visibly more refined network and a trend 
towards reduced endothelial density in a two-dimensional angiogen-
esis assay of iPS cell-derived endothelial cells cultured with and with-
out macrophages over 72 h (Extended Data Fig. 11i). Collectively, our 
findings demonstrate that interactions between macrophages and 
endothelial cells are required to support angiogenesis through blood 
vessel remodelling.

Discussion
In this study, we characterized the dynamic composition of human 
prenatal skin during the early stages of de novo HF formation and 
highlighted the crucial skin immune and non-immune crosstalk that 
contributes to skin morphogenesis, results that are in line with emerg-
ing evidence in animal and human studies69,75. Our atlas indicated that 
macrophages contribute to scarless skin repair, fibroblast homeosta-
sis and neurovascular development. This is in part contributed to by 
yolk-sac derived TML macrophages, which suggests that these cells 
have broader functions outside the central nervous system in early 
gestation. The presence of TML macrophages has previously been 
identified in several prenatal organs5,58,69.

Successful co-culture with immune cells has been demonstrated 
in some organoid systems76,77. We identified a crucial role of mac-
rophages in vascular network remodelling after adding macrophages 
to hair-bearing iPS cell-derived SkOs. Not only is this important for 
our understanding of the diverse cellular interactions that mediate 
morphogenesis but it also has practical implications for in vitro mod-
els, which commonly fail to vascularize78. Our study provides further 
insights into human HF formation and the origin of the CL, which seems 
to develop along the same trajectory as the ORS. These findings are 
consistent with recent results from mouse studies26,79, which showed 
that CL development occurs before hair matrix formation79 and there 
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is greater transcriptional similarity of CL cells to ORS cells25. Although 
we note similarities between human and mouse in the signalling path-
ways co-ordinating HF formation, our study reveals key cross-species 

distinctions in the differentiation tempo of HF mesenchymal cells. 
Future studies are required to fully delineate the features that distin-
guish human skin development.
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Fig. 4 | Macrophages support prenatal skin angiogenesis. a, Close 
proximity of endothelium with macrophages shown in prenatal skin.  
Left, RNAscope images of cryosections with endothelium (CDH5), TML 
macrophage (P2RY12) and macrophages (CD68). Scale bars, 100 µm. Centre, 
immunofluorescence images of cryosections with LYVE1+ macrophages 
(LYVE1+CD45+) and endothelial cells (CD31+). Scale bars, 10 µm. Right, 
three-dimensional rendering of co-localized areas (magenta) of endothelial 
cells (CD31+) and LYVE1+ macrophages (LYVE1+) from whole-mount 
immunostaining. Scale bars, 80 µm (top) or 5 µm (bottom). b, UMAP 
visualization of endothelial cell states in prenatal skin and SkO. c, Average 
proportions of prenatal skin endothelial cell states (bar colours) across 
gestation. d, Inferred pseudotime trajectory of prenatal skin endothelial  
cell states differentiating along the arteriolar trajectory and the venular 
trajectory: UMAP overlaid with PAGA (default threshold), coloured by cell 
state showing connectivities (dashed) and transitions (arrows). e, Schematic 

showing differences between prenatal skin and SkOs in pro-angiogenic and 
anti-angiogenic factors and corresponding receptors. f, Representative 
whole-mount immunofluorescence images of SkO without (top) and with 
(bottom) macrophage co-culture at day 47 showing macrophages (CD45), 
endothelium (CD31) and DAPI nuclei stain (blue). Scale bars, 100 µm.  
g, Quantification of endothelial cell coverage in SkOs (day 47) cultured with 
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generated from unpaired t-test. h, z projection immunofluorescence of 
cryosections of day 47 SkO co-cultured with macrophages (day 35 of 
co-culture) demonstrating close interactions of macrophages (CD45,  
in magenta) and endothelium (CD31, in green). Scale bar, 50 µm. ECs, 
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reproducibility, see Methods. The images in e were created using BioRender 
(https://biorender.com).
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Article
A combination of fibroblast and macrophage-associated molecular 

features potentially contribute to the ability of prenatal skin to heal 
without scarring, including the presence of fibroblast progenitors, 
a downregulated immune milieu and reduced collagen expression. 
However, we found progressive ‘ageing’ and acquisition of the adult 
‘pro-inflammatory’ phenotype as early as 9 PCW, which could be tar-
geted in fibroblasts to guide postnatal scarless healing. Future studies 
that align human fibroblast subsets across the lifespan are required to 
investigate the dynamics of scarless healing and the roles of mechanical 
forces, microbiota and environmental exposure on fibroblast functions.

Our prenatal human skin atlas represents a valuable resource to 
explore genes that cause congenital hair and skin disorders and is freely 
accessible from our web portal (https://developmental.cellatlas.io/
fetal-skin). We found that implicated genes are indeed expressed during 
prenatal skin development and HF differentiation, thereby supporting 
an in utero origin for these disorders. Our systematic prenatal skin–SkO 
comparison provides a blueprint to guide more faithful in vitro SkO 
generation, which can facilitate future studies of interactions with 
the microbiota, the pathogenesis of congenital skin disorders, and 
hair and skin engineering for therapeutic applications, including hair 
regeneration and skin transplant.
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Methods

Tissue acquisition and processing
Human developmental tissue samples used for this study were obtained 
from the MRC– Wellcome Trust-funded Human Developmental Biol-
ogy Resource (http://www.hdbr.org) with approval from the Newcas-
tle and North Tyneside NHS Health Authority Joint Ethics Committee  
(08/H0906/21+5) and East of England–Cambridge Central Research 
Ethics Committee (NHS REC 96/085). Prenatal skin for immunofluo-
rescence imaging of proteins causing congenital skin disorders were 
obtained with approval from the Guy’s and St Thomas’ Hospital Trust 
Ethics Committee. For samples used for 3D rendering in the Koehler 
Laboratory, fetal tissue specimens were obtained from the Birth 
Defects Research Laboratory at the University of Washington (UW) 
with approval from the UW institutional review board Committee, and 
the study was performed in accordance with ethical and legal guidelines 
of the Boston Children’s Hospital institutional review board. All samples 
were collected following either elective termination of pregnancy or 
miscarriages, with informed written consent, following all relevant 
rules and regulations.

Tissues were processed into single-cell suspensions immediately 
after receipt for single-cell transcriptomic profiling. Tissue was first 
transferred to a sterile 10 mm2 tissue culture dish and cut in <1 mm3 seg-
ments using a scalpel. It was then digested with type IV collagenase (final 
concentration of 1.6 mg ml–1; Worthington) in RPMI (Sigma-Aldrich) 
supplemented with 10% heat-inactivated FBS (Gibco) at 37 °C for 30 min 
with intermittent agitation. Digested tissue was then passed through a 
100 µm cell strainer. For 2 samples (F220, F221), 500 µl of 0.25% trypsin 
(Sigma-Aldrich) was further added to any remaining unfiltered tissue 
and incubated at room temperature for 5 min. Cells were collected by 
centrifugation (500g for 5 min at 4 °C). Cells were treated with 1× RBC 
lysis buffer (eBioscience) for 5 min at room temperature and washed once 
with flow buffer (PBS containing 5% (v/v) FBS and 2 mM EDTA) before cell 
counting and antibody staining. Single-cell suspensions were gener-
ated from skin of 18 donors with ages spanning from 7 PCW to 17 PCW.

scRNA-seq experiment
Dissociated cells were stained with anti-CD45 antibody (1:20, PE, clone 
HI30, BD Biosciences (samples F220 and F221) or 1:33, BUV395, clone 
HI30, BD Biosciences (other sorted samples)) on ice in the dark for 
30 min, except for one sample (F217) for which no cell sorting was per-
formed. To improve capture of less abundant cell populations from the 
CD45– fraction, such as keratinocytes and endothelial cells, additional 
staining was carried out to separate them from the abundant CD34+ stro-
mal cells in a subset of samples. For samples F220 and F221, anti-CD34 
(1:25, APC/Cy7, clone 581, BioLegend) antibodies was used; for samples 
F69 and F71, additional staining included anti-CD34 (1:25, APC/Cy7, 
clone: 581, BioLegend) and anti-CD14 antibodies (1:33, PE-CF594, clone 
MφP9, BD Biosciences). Immediately before sorting, cells were passed 
through a 35 µm filter (Falcon), and DAPI (Sigma-Aldrich) was added at 
a final concentration of 3 µM. Sorting by flow cytometry was performed 
with a BD FACSAria Fusion flow cytometer. The CD45+ fraction was 
sorted from the DAPI–CD45+ gate, and the CD45– fraction was sorted 
from the DAPI–CD45– gate. CD45 gating was contiguous so that no live 
cells were lost in sorting. Live CD45+ and CD45– cells were sorted into 
separate chilled FACS tubes coated with FBS. For samples F220 and 
F221, CD34+ and CD34– fractions were sorted from CD45–CD34+ and 
CD45–CD34– gates, respectively. For samples F69 and F71, in addition to 
the live CD45+ and CD45– cells, we isolated all cells from the CD45– frac-
tion that were not within the CD34+CD14– gate and collected them into 
a separate chilled FACS tubes coated with FBS (Extended Data Fig. 1a).

FACS sorted cell suspensions were counted and loaded onto a 10x 
Genomics Chromium Controller to achieve a maximum yield of 10,000 
cells per reaction. Either Chromium single-cell 3′ reagent kits (v.2) or 
Chromium single-cell V(D)J kits from 10x Genomics were used. Cells 

were loaded onto each channel of the Chromium chip following the 
manufacturer’s instructions before droplet encapsulation on the Chro-
mium Controller. Gene expression and TCR libraries were generated 
according to the manufacturer’s instructions. The gene expression 
libraries were sequenced to achieve a minimum target depth of 20,000 
reads per cell and the TCR libraries were sequenced to achieve a mini-
mum target depth of 5,000 reads per cell using Illumina sequencing 
instruments.

Statistics and reproducibility
Images of haematoxylin and eosin-stained skin sections (Fig. 2a) were 
taken from 13 independent samples from the following gestational ages: 
6 PCW (n = 1 and 3 sections), 8 PCW (n = 3), 11 PCW (n = 2), 14 PCW (n = 1 
and 2 sections), 15 PCW (n = 4) and 17 PCW (n = 2).

Image analysis of multiplex RNAscope and immunofluorescence 
staining was performed on independent biological and/or technical 
replicates for each experiment: n = 5 biological replicates for RNAscope 
slides with FOXP3, SHH, SLC26A7 and NDP probes (Fig. 2c); n = 1  
biological replicate with 4 technical replicates for RNAscope slides with 
ACKR3, CXCL12, PDGFD and SERPINB7 probes (Fig. 2h); n = 3 biological 
replicates with 2 technical replicates for immunofluorescence slides 
with anti-FOXP3, anti-SOX2 and anti-KRT14 (Extended Data Fig. 3h); 
n = 1 biological replicate with n = 2 technical replicates for immunofluo-
rescence slides with anti-LYVE1, anti-CD45 and anti-VIM (Fig. 3e); n = 3 
biological replicates for RNAscope slides with CDH5, CD68, P2RY12 and 
ELAVL3 probes (Fig. 4a); n = 1 biological replicate with 4 technical rep-
licates for immunofluorescence slides with anti-CD45, anti-LYVE1 and 
anti-CD31 (Fig. 4a); n = 15 biological replicates with a minimum of n = 2 
technical replicates for prenatal skin immunofluorescence slides with 
each of the following antibodies: anti-KRT1, anti-KRT14, anti-plectin, 
anti-BP180, anti-laminin-332 and anti-type VII collagen (Extended Data 
Fig. 6e); n = 3 biological replicates for prenatal skin whole-mount immu-
nofluorescence with anti-CD31 and anti-LYVE1 (Fig. 4a); whole-mount 
immunostaining of SkO co-culture with and without macrophages 
was performed on n = 5 SkOs without macrophages and n = 5 SkOs 
with macrophages (Fig. 4f); immunostaining of cryosections of SkOs 
co-cultured with macrophages was performed on n = 2 SkOs (Fig. 4h).

Visium spatial transcriptomic data were generated from n = 4 bio-
logical samples from 3 different sites, with 2 or 3 technical replicates 
each (Figs. 2f and 3d).

Scratch wound assays were performed on SkO-derived fibroblasts: 
n = 3 and each experiment included technical replicates in 3–6 wells 
(Extended Data Fig. 8g). Data represented as the mean ± s.d. and statis-
tics generated with two-way analysis of variance (ANOVA) with Tukey’s 
multiple comparisons test. Endothelial cells and macrophages were 
generated across two independent differentiation batches. Endothe-
lial cell and macrophage co-culture for angiogenesis assays were per-
formed on n = 6 wells (Extended Data Fig. 11i). Data represented as the 
mean ± s.d. and statistics generated with an unpaired t-test.

Human iPS and ES cell line information
The iPS cell line Kolf2.1S was obtained from the HipSci Initiative under 
a material transfer agreement. This line was not independently authen-
ticated. Details about the generation and characterization of the line 
at the time of derivation is available from the HipSci website (https://
www.hipsci.org/#/lines/HPSI0114i-kolf_2).

The WTC-mEGFP-DSP-cl65 iPS cell line and the WA25 ES cell lines 
were obtained under a material transfer agreement with the Coriell or 
WiCell Institute. These lines were determined to have a normal karyo-
type before SkO differentiation.

All cell lines tested negative for mycoplasma before experiments.

Scratch wound assay of fibroblasts in co-culture with macrophages
Fibroblasts were isolated from Kolf2.1S-derived SkOs (n = 10) at day 76. 
In brief, SkOs were washed with dPBS then incubated with dispase and 
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a ROCK inhibitor for 40 min at 37 °C. The epidermis and dermis layers 
of the SkO were separated using forceps, and the dermis was trans-
ferred to collagenase for 40 min at 37 °C. Collagenase was neutralized 
with fibroblast medium, and the single-cell suspension was filtered 
through a 40 µm cell strainer. After centrifugation at 180g for 3 min, the 
fibroblasts were resuspended and seeded in fibroblast medium then 
cultivated as primary fibroblasts. Macrophages were differentiated 
from Kolf2.1S iPS cells as previously described80.

For the scratch assay, fibroblasts and macrophages were seeded 
in 48-well plates at 5:1 ratio then incubated for 24 h at 37 °C. The next 
day, the scratch was generated using a p1000 tip down the centre of 
each well. The assay was imaged using Incucyte S3, whole well mod-
ule and analysed using the ImageJ Wound_healing_size_tool_updated 
macro81. Two-way ANOVA was carried out to assess statistics in Graph-
Pad. Scratch assays performed were n = 3 independent experiments 
with 3–6 replicates per experiment.

Visium spatial data generation
Prenatal facial (n = 1, replicate = 2) and abdominal skin (n = 1, repli-
cate = 2) samples from a single donor at 10 PCW were embedded 
in optimal cutting temperature (OCT) medium and flash-frozen in  
isopentane cooled with dry ice. Cryosections (10 µm) from the OCT 
blocks were cut onto 10x Genomics Visium slides. Sections were 
stained with haematoxylin and eosin and imaged at ×20 magnification 
on a Hamamatsu Nanozoomer. These sections were then processed 
according to the 10x Genomics Visium protocol, using a permeabi-
lization time of 12 min found through a previous tissue optimization 
step. Dual-indexed libraries were prepared as per the manufacturer’s 
protocol, pooled at 2.8 nM and sequenced in 8 samples per Illumina 
Novaseq S4 flow cell with the following run parameters: read 1: 28 cycles; 
i7 index: 10 cycles; i5 index: 10 cycles; read 2: 90 cycles.

Endothelial cell and SkO co-culture with macrophages
Endothelial cell culture co-culture and image acquisition. Endotheli-
al cells were derived from Kolf2.1S iPS cells cultured on Matrigel-coated 
plates in mTeSR1 medium with ROCK inhibitor at 4.5 × 104 cells per cm2. 
iPS cells were differentiated through lateral mesoderm into CD144+ 
endothelial cells as previously described82. Macrophages and SkOs 
were also derived from Kolf2.1S iPS cells according to previously pub-
lished methods1,80. The angiogenesis assay was carried out by cultur-
ing iPS cell-derived endothelial cells and macrophages separately or 
in co-culture in 15-well 3D chambered µ-slide (ibidi, 81506). This was 
done using a three-layered sandwich method, whereby layer one was 
10 µl Matrigel (Corning, 354230), layer two was supplemented Stem-
Pro medium (Gibco, 10639011) + 10% Matrigel with and without the 
endothelial cells and layer three was supplemented StemPro medium 
with and without macrophages. The endothelial cells were left to settle 
for 4 h at 37 °C before addition of macrophages. The assay was imaged 
2 h after initial culture and then every 24 h for 3 days using an EVOS 
7000 microscope, and images were analysed using Fiji distribution 
of the ImageJ software (v.2.14.0)83. Before co-culture, iPS cell-derived 
macrophages were phenotyped using flow cytometry (Extended Data 
Fig. 11h). Macrophages were collected using TrypLE (Gibco) at 37 °C, 
5% CO2 for 5 min, and cells were collected by centrifugation (300g for 
6 min). Cells were washed once with cell staining buffer (BioLegend) 
before cell counting and antibody staining. Nonspecific bindings were 
blocked using Human TruStain FcX (Fc receptor blocking solution, 
BioLegend) for 10 min on ice and then stained using a Fixable Blue 
Dead Cell Stain kit for 10 min on ice (1:500 in PBS, ThermoFisher). 
Cells were washed twice with cell staining buffer. Single-staining was 
performed on cells with anti-CD206 antibody (1:200, PE, clone 19.2, 
ThermoFisher), anti-CD16 antibody (1:50, PE-Cyanine7, clone eBioCB16, 
ThermoFisher), anti-CD14 antibody (1:100, PerCP-Cyanine5.5, clone 
61D3, ThermoFisher), anti-CD1c antibody (1:25, Pacific Blue, clone L161, 
BioLegend), anti-CD45 (1:300, BV480, clone HI30, BD Biosciences) and 

anti-human Lineage Cocktail (1:100, CD3, CD19, CD20, CD56, clones 
UCTH1, HIB19, 2H7, 5.1H11, BioLegend) on ice in the dark for 30 min. 
Before acquiring on the analyzer, cells were washed once in cell strained 
buffer and passed through a 35 µm filter (Falcon). Acquisition by flow 
cytometry was performed using a Cytek Aurora. Live single CD16+, 
CD14+, CD206+, CD45+, CD1c– and Lin– cells were analysed using FlowJo 
(v.10.9.0).

SkO co-culture and image acquisition. The co-culture was performed 
by adding the macrophages to the SkOs on day 12 of culture, with a 1:5 
ratio. SkOs were transferred to a low attachment 96-well plate (Nunclon 
Sphera, Life Technologies) in SkO maturation medium1 containing 
20% Matrigel (Corning). Macrophages were added to the SkOs and the 
co-culture was centrifuged at 100g for 6 min 1 acc, 0 dec. On day 3 of 
co-culture, the cells were transferred to a low-attachment 24-well plate, 
and Matrigel was diluted with fresh SkO maturation medium. On day 35 
of co-culture (day 47 of SkO differentiation), the SkOs were fixed in a 
2 ml tube with 4% paraformaldehyde (PFA) overnight for whole-mount 
serial staining (2 batches of differentiation, SkOs with macrophages 
n = 5, SkOs without macrophages n = 5). The co-culture was then per-
meabilized in blocking buffer (0.3% (v/v) Triton X-100, 1% (v/v) normal 
goat serum based on the antibodies and 1% BSA (v/v) dissolved in 1× 
PBS) for 8 h at room temperature on a shaker. Cells were then incubated 
overnight at 4 °C on a shaker (65 r.p.m.) with the first primary antibody, 
anti-CD45 (1:100, clone YAML501.4, ThermoFisher) for macrophages, 
for 48 h. The morning after, cells were washed and then incubated with 
the first secondary antibody overnight (goat anti-rat IgG, Alexa Fluor 
Plus 647, ThermoFisher). The morning after, SkOs were washed and 
incubated with the second primary antibody, anti-CD31 (1:100, clone 
JC70A, Dako) for endothelial cells for 48 h. The SkOs were then washed 
and incubated with the second secondary antibody (goat anti-mouse 
IgG1, Alexa Fluor 568, ThermoFisher) and DAPI overnight on a shaker. 
Cells were washed and placed in 50% glycerol for 30 min on a shaker at 
room temperature. Cells were then transferred to 70% glycerol over-
night on a shaker at room temperature. The following morning, the 
co-culture was mounted and imaged using a custom 4-camera spinning 
disk confocal microscope. The microscope consists of an OpenFrame 
microscope frame connected to a CrestOptics X-Light V3 spinning 
disk confocal module that has four Teledyne Photometrics Kinetix 
cameras mounted to it. It was assembled by Cairn Research UK. All of the 
organoids were imaged in tiled stacks 800 µm deep using an Olympus 
×10, 0.3 NA air objective with 5 µm z steps. The tiles were then stitched 
using Bigstitcher84 to produce the final image. As the sample holder 
was transparent on both sides, each organoid was imaged twice, once 
from each direction.

Image analysis of endothelial cells and SkOs co-cultured with 
macrophages
Image analysis of endothelial cell culture. To quantify the area 
covered by endothelial cells in the 2D angiogenesis assay with and 
without macrophages, phase-contrast images of the wells at 24, 48 and 
72 h of culture were analysed using the Fiji distribution of the ImageJ 
software (v.2.14.0)83. The endothelial area was estimated by measuring 
the area of the wells covered by all cells (that is, endothelial cells alone 
or endothelial cells with macrophages). To obtain the endothelial 
density (in per cent) the area covered by cells was measured in pixels 
after segmentation using intensity thresholding and normalized to 
the total imaged area (constant, 2,115,570 pixels).

Image analysis of SkO culture. To quantify the endothelial area 
covering organoids with and without macrophages, maximum inten-
sity z projections of confocal stacks of CD31+ staining were analysed  
using the Fiji distribution of the ImageJ software (v.2.14.0)83. The CD31+  
endothelial area was measured in µm2 after segmentation using  
intensity thresholding and normalized to the organoid area (in µm2) 
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to obtain the endothelial density (in per cent). Each dot represents the 
endothelial density of one organoid. The analysed stacks contained 
either 161 or 201 slices, each measuring 1 µm in the z dimension and up 
to 1,415 µm by 1,415 µm in the x and y dimensions. Their maximum inten-
sity z projections covered a total area ranging from 1.86 to 14.74 million 
of µm2 per organoid.

Whole-mount immunostaining of human prenatal skin sample
For the prenatal tissue specimens, a single PBS rinse was followed by 
fixation in a freshly prepared 4% PFA solution in 1× PBS at room tem-
perature for half an hour on a shaker. After three PBS washes, specimens 
were placed in a cold 12.5% SHIELD epoxy solution (LifeCanvas Technol-
ogies, SH-Ex) within SHIELD buffer (LifeCanvas Technologies, SH-BS) 
and gently shaken for 2 days at 4 °C. Next, specimens were moved to a 
SHIELD-ON warming solution (LifeCanvas Technologies, SH-ON) for 
2 h at 37 °C on a gentle shaker. Following extensive washing in fresh 1× 
PBS for 8 h (with hourly refreshment) and a 24-h delipidation step at 
55 °C in SHIELD Delipidation buffer (LifeCanvas Technologies, DB), 
specimens were rinsed in room temperature PBST (PBS with 0.1% Triton 
X-100 and 0.02% sodium azide) for a day. Anti-CD31 (1:100, clone C31.3, 
Novus Biologicals) and anti-LYVE1 (1:50, polyclonal, Novus Biologicals) 
primary antibodies were then applied overnight in a 0.1% PBST buffer 
on a room temperature shaker. Following three 0.1% PBST washes over 
3 h, the specimens were incubated for 4 h at room temperature on a 
shaker with the following secondary antibodies: goat anti-mouse IgG1, 
Alexa Fluor 488 (ThermoFisher) and goat anti-Rabbit IgG, Alexa Fluor 
647 (ThermoFisher). This was then followed by another trio of 0.1% 
PBST washes. Before imaging, the specimens were conditioned in a 1:1 
solution of Easy-Index Matching solution (LifeCanvas Technologies, 
EI-Z1001) and 1× PBS for 4 h at 37 °C, which was subsequently replaced 
with a 100% immersion medium for a minimum of 6 h at 37 °C. Imaging 
was performed using a Nikon A1R HD25 confocal microscope system.

3D rendering
3D volume rendering and segmentation was created using Imaris 10 
software at the Boston Children’s Hospital Cellular Imaging Core. For 
Supplementary Video 1, CD31+ vasculature and LYVE1+ macrophages 
were processed using the Imaris ‘Surfaces’ module. Co-localization 
of the CD31 and LYVE1 channels were processed using the ‘Coloc’ 
feature, generating a separate channel for overlapping signals. The 
parameters used in the Coloc feature depended on signal overlap 
and close contact of the CD31 and LYVE1 channels, leading to larger 
areas labelled as co-localized surfaces than the actual contact points 
of vessels and macrophages. Classification was based on estimated 
size and machine learning training. The following build parameters 
were used for CD31+ endothelial cells: area above 11.0 µm2; for LYVE1+ 
macrophages: ‘number of voxels Img=1’ above 953; for co-localized 
surfaces: area above 1,004 µm2; filter type ‘overlapped volume ratio 
to surfaces surfaces=LYVE1’ threshold=0.00976.

Immunofluorescence of prenatal skin and SkO cryosections
Cryosections (10 µm) were obtained from prenatal skin samples or 
iPS cell-derived SkOs frozen in OCT (Tissue-Tek OCT). The acquired 
slides were stored at −80 °C until use. On the day of the experiment, 
the slides were thawed and dried at room temperature, then fixed for 
10 min in 4% PFA solution in 1× PBS (Alfa Aesar, J61899). Slides were 
washed with 1× PBS (Gibco, 10010-015) and incubated for 1 h at room 
temperature with 120 µl per slide of blocking solution (3% goat serum 
prepared in 1× PBS containing 0.1% Triton X-100 (Millipore, 648466)). 
A volume of 120 µl per slide of primary antibodies was then applied 
overnight at 4 °C in the blocking solution (a list of antibodies is supplied 
in Supplementary Table 38). The following day, the slides were washed 
3 times with 1× PBS and then incubated for 1–2 h at room temperature 
with 120 µl per slide of secondary antibodies prepared in blocking 
solution (Supplementary Table 38). Slides were washed three times 

with 1× PBS and incubated with 1 µg ml–1 of DAPI solution prepared in  
1× PBS. Following a final wash with 1× PBS, slides were coverslipped with 
ProLong Gold Antifade mountant (ThermoFisher, P36930). Slides were 
dried overnight in the dark at room temperature and imaged using a 
Leica SP8 Confocal microscope.

Multiplex RNAscope staining and image analysis
Prenatal skin tissue (8, 10 and 15 PCW) was frozen in OCT compound 
(Tissue-Tek OCT). 4-plex smFISH was performed using a RNAscope 
Multiplex Fluorescent Detection kit v.2 (ACDBio, 323100) or a RNAscope 
LS Multiplex Fluorescent Reagent kit v.2 assay and a RNAscope LS 4-Plex 
Ancillary Kit for LS Multiplex Fluorescent (Advanced Cell Diagnostics 
(ACD), bio-techne) according to the manufacturer’s instructions. The 
standard pretreatment for fresh frozen sections of 10–20 µm and per-
meabilization with Protease IV for 30 min at room temperature were 
performed.

Human probes against FOXP3, SHH, SLC26A7, NDP, CDH5, CD68, 
P2RY12, ACKR3, CXCL12, PDGFD and SERPINB7 transcripts were used 
(all from ACDBio catalogue probes). Opal dyes (Akoya Biosciences) 
were used at a dilution of 1:1,000 for the fluorophore step to develop 
each channel: Opal 520 Reagent Pack (FP1487001KT), Opal 570 Rea-
gent Pack (FP1488001KT) and Opal 650 Reagent Pack (FP1496001KT) 
and Atto-425. Finally, the slides were counterstained with DAPI and 
coverslipped for imaging with ProLong Gold Antifade mountant  
(ThermoFisher, P36930).

4-plex RNAscope slides with FOXP3, SHH, SLC26A7, NDP, CDH5, CD68 
and P2RY12 probes were imaged on a Perkin Elmer Opera Phenix Plus 
High-Content Screening System using a ×40 (NA 1.1, 0.149 µm per 
pixel) water-immersion objective with a 2 µm z step. The following 
channels were used: DAPI (excitation (ex.) 375 nm, emission (em.) 
435–480 nm); Atto 425 (ex. 425 nm, em. 463–501 nm); Opal 520  
(ex. 488 nm, em. 500–550 nm); Opal 570 (ex. 561 nm, em. 570-630 nm); 
and Opal 650 (ex. 640 nm, em. 650–760 nm). Confocal image stacks 
were stitched as 2D maximum intensity projections using proprietary 
Acapella scripts provided by Perkin Elmer and visualized using OMERO 
Plus (Glencoe Software).

4-plex RNAscope slides with ACKR3, CXCL12, PDGFD and SERPINB7 
probes were imaged on the same custom spinning disk confocal micro-
scope used for 3D imaging of the organoids. The objective used was a 
×40 Nikon CFI Plan Apochromat Lambda D (NA 0.95). Imaging was per-
formed with a 1.5 µm z step and stitched with the Bigstitcher Fiji plugin 
to generate a final z-projected image from individual tiles for analysis.

Quantification of FOXP3 coverage was carried out using QuPath 
image analysis software (v.0.5.1)85. Two-pixel classifiers were trained: 
one to segment the tissue from the image background and the other 
to segment out the FOXP3 spots against the background. All of the HF 
regions were manually segmented out of the whole skin section image. 
A new segmentation mask was automatically generated from the dif-
ference between the whole skin tissue mask and the HF masks. FOXP3 
coverage was then calculated separately for the HF regions and the 
skin tissue by calculating the percentage of the masks that were taken 
up by segmented FOXP3 spots.

scRNA-seq data analysis
Alignment, quality control, clustering and annotation of prena-
tal skin dataset. The gene expression data were mapped using Cell-
Ranger (v.2.1.1 and v.2.0.2) to an Ensembl 84-based GRCh38 reference 
(10x Genomics–distributed v.1.2.0). The Python package emptydrops 
(v.0.0.5) was used to detect cells in each sample. Potential doublets 
were flagged using Scrublet (v.0.2.1)86 as previously described87. 
Low-quality cells were filtered out first by using a median + (X × MAD) 
score (where MAD is the median absolute deviation) of the median 
score for the mitochondrial UMI fraction (5 × MAD), maximum number 
of UMIs (8 × MAD), followed by strict cut-off values (minimum num-
ber of genes = 200, maximum number of UMIs = 50,000, maximum 



mitochondrial UMI fraction = 0.20). Possible maternal contamination 
(total of 118 cells) was identified using the souporcell pipeline (v.2.4.0)88 
as previously described5,58. In brief, samples were pooled on a per-donor 
basis and processed with souporcell. The common GRCh38 variants file 
(SNPs with ≥2% frequency from 1k genomes) from souporcell authors 
was used. The pipeline was run twice, with genotype clusters set to  
1 and 2 to obtain models for no maternal contamination and possi-
ble maternal contamination. The better model was identified using 
Bayesian information criterion (BIC), calculated using the formula  
BIC = kn log(m) − 2l, where k is the number of genotype clusters set for 
each souporcell run, n denotes the number of loci used for genotype 
deconvolution, m is the cell count for a given donor, and l is the log 
likelihood obtained after running the pipeline with each k. The cells with 
the minor genotype were identified as possible maternal contaminants 
where identified. Data pre-processing was performed using scanpy 
(v.1.4.3)89. After pooling data from all samples, genes detected in fewer 
than three cells were removed, and data were normalized to 1 × 104 UMI 
per cell and log1p transformed.

Highly variable genes were selected on the basis of normalized dis-
persion (scanpy.pp.highly_variable_genes with flavor = “seurat”, min_
mean = 0.0125, max_mean = 3, min_dispersion = 0.5). Dimensionality 
reduction was done using principal component analysis and the first 
50 principal components were used to compute the nearest-neighbour 
graph (scanpy.pp.neighbors with n_neighbors = 15). scVI module within 
scvi-tools (v.0.19.0) was used to correct for donor and 10x kit version 
batch effects (HVG = 15 000, dropout_rate = 0.2, n_layer = 2)90. Leiden 
algorithm was used to cluster cells based on the corrected graph with 
a relatively low resolution (scanpy.tl.leiden with resolution = 0.3) into 
coarse clusters that were manually annotated into broad lineages using 
known marker genes.

For each broad lineage, the data were re-processed starting from 
highly variable gene selection to better reveal finer heterogeneity. At 
this level, we used Harmony (v.0.0.5)91 and scVI from scvi-tools (v.0.19.0) 
in parallel for batch correction (again treating each donor as a separate 
batch) for every broad lineage and observed highly consistent embed-
ding and clustering (data provided on the portal). Leiden clusters at 
the highest resolution were manually annotated using marker genes 
identified through the literature search, and their expression of distinc-
tive DEGs specific to each cluster, such as WNT2 expression in WNT2+ 
fibroblasts. The full list of DEGs for each cluster is provided in Sup-
plementary Table 3. DEGs were calculated using the sctk (Single Cell 
analysis Tool kit) package (https://github.com/Teichlab/sctk), where 
filtering is carried out followed by a two-sided Wilcoxon rank-sum 
test using pass-filter genes only in a one-versus-all fashion. The sctk 
package also carries out comparisons between the group of inter-
est (one with highest expression) and the next group (second highly 
expressed), where the maximum proportion of cells expressing the 
gene in question in the second most highly expressed group was 0.2. For 
epidermal annotations, we created a combined embedding of prenatal 
skin and SkO data1, integrated using the Harmony pipeline, as well as 
integration with adult HF to check annotations, as described below. 
Harmony-corrected principal components were used to compute the 
batch-corrected nearest neighbourhood graph, and the Leiden algo-
rithm was used to cluster the integrated data. The sctk package was then 
used to derive DEGs for each Leiden cluster. Annotation was carried out 
on the clusters based on marker genes and refined annotations in the  
SkO data1.

Clusters of doublets were manually flagged and removed, taking into 
account markers genes and previously calculated scrublet scores. To 
have a final global visualization of the atlas, a doublet-free UMAP was 
generated (Fig. 1b).

Processing, clustering and annotation of SkO dataset. Organoid 
data were pre-processed, filtered, clustered and annotated sepa-
rately before integration with prenatal skin. In brief, cells filtered by 

CellRanger (CellRanger 2.1.0 with GRCh38-1.2.0 and CellRanger 3.0.2 
with GRCh38-3.0.0) from SkO samples (2 strains, each with 4 time 
points) were pooled and quality control thresholds for UMI counts, 
gene counts, percentage of mitochondrial genes and top 50 highly 
expressed genes were established by fitting Gaussian mixture models to 
the distribution of each metric respectively. The following thresholds 
were used: minimum number of genes = 450, maximum number of 
genes = 5,731, minimum number of UMIs = 1,063, maximum number 
of UMIs = 25,559, maximum mitochondrial UMI fraction = 0.133, mini-
mum cumulative percentage of counts for 50 most expressed genes 
in a cell = 23.7%, maximum cumulative percentage of counts for 50 
most expressed genes in a cell = 56.6%. Highly variable gene selection, 
dimensionality reduction and KNN graph construction were done using 
the same method and parameters as prenatal skin. BBKNN (v.1.3.390)92 
was used for batch-correction treating combinations of strains and 10x 
kit versions as batches. Broad lineages were annotated based on known 
markers. Each broad lineage was then re-processed in the same way as 
prenatal skin to annotate cell types at higher resolution.

Integration of prenatal skin and SkO datasets. Prenatal skin cells 
and organoid cells were integrated using Harmony (v.0.0.5)91, treat-
ing datasets as batches (prenatal skin or organoid) and within dataset 
batches as covariates (donor for prenatal skin, strain for SkO, and 10x 
kit version for both datasets). Leiden clusters were annotated using 
known markers.

Comparison of prenatal skin, adult skin and SkO datasets: distance- 
based analysis. Prenatal skin, adult skin and SkO cells were inte-
grated using Harmony (v.0.0.5)91, treating datasets as batches and 
within-dataset batches as covariates (donor for prenatal and adult 
skin and strain for organoid, 10x kit version for all datasets). The prin-
cipal component vectors of the downsampled Harmony-integrated 
object were then used to transform the gene expression matrix 
(NumPy (v.1.23.4) function ‘linalg.lstsq’, rcond = ‘warn’) of all cells in 
the non-downsampled pooled data and project for UMAP visualiza-
tion (Fig. 1e and Extended Data Fig. 2a). The median transformed gene 
expression was used to compute the Euclidean distance between pre-
natal skin, adult skin and SkO for each broad cell cluster, using ‘spatial.
distance_matrix’ function in SciPy (v.1.9.3), which was then plotted as 
a heatmap (Extended Data Fig. 2c).

Time-encoded cell state predictions: prenatal skin, adult skin 
and SkO datasets. The median probability of class correspondence  
between gene expression matrices in single-cell datasets was carried 
out using a logistic regression (LR) framework as previously des-
cribed93, based on a similar workflow to CellTypist tool94. Annotated 
raw scRNA-seq datasets (prenatal skin, adult skin and SkO) were first 
concatenated, normalized and log-transformed. Linear variational 
autoencoder (VAE) latent representations were computed using the  
LDVAE module within scvi-tools (hidden layers = 256, dropout-rate =  
0.2, reconstruction-loss = negative binomial) with dataset and 
chemistry information taken as technical covariates. ElasticNet LR 
models were built using the linear_model.LogisticRegression mod-
ule in the sklearn package (v.0.22). The models were trained on SCVI 
batch-corrected low-dimensional LDVAE representation of the train-
ing data (prenatal and adult skin) using time-encoded labels (age_cell 
category). Regularization parameters (L1-ratio and alpha) were tuned 
using the GridSearchCV function in sklearn (v.1.1.3). The test grid was 
designed with five l1_ratio intervals (0.05, 0.2, 0.4, 0.6 and 0.8), five 
alpha (inverse of regularization strength) intervals (0.05, 0.2, 0.4, 0.6 
and 0.8) at five train–test splits and three repeats for cross-validation. 
The unweighted mean over the weighted mean squared errors (MSEs) 
of each test fold (the cross-validated MSE) was used to determine the 
optimal model. The resultant model was used to predict the prob-
ability of correspondence between trained time-encoded labels and 
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pre-annotated time_encoded clusters (week of culture_cell category) 
in the target dataset (SkO). The median probability of training label 
assignments per predesignated class overall (all cell groups) and for in-
dividual broad cell categories were computed (Supplementary Table 5). 
For visualization, the adult skin dataset was randomly downsampled to 
10% (overall or by cell lineage) and resultant LR probabilistic relation-
ship between labels of the training and target datasets were plotted as 
heatmaps (Extended Data Fig. 2d).

Differential abundance analysis. Differences in cell abundance associ-
ated with gestational age were tested using Milo (v.1.0.0)95, correcting 
for CD45+ and CD45– FACS isolation strategies. We first re-embedded 
cells into a batch-corrected latent space with a dimension of 30 using  
scVI model as implemented in scvi-tools considering donor and chemis-
try as batches. The model was trained using the 15,000 most highly vari-
able genes that were selected based on dispersion (min_mean = 0.001, 
max_mean = 10) as previously described58. Where FACS correction was 
applied, we calculated a FACS isolation correction factor for each sam-
ple s sorted with gate i as (fs = log(piS/Si)) where pi is the true propor-
tion of cells from gate i and S represents the total number of cells from 
both gates58. A KNN graph of cells was constructed based on distances 
in the latent space and cells assigned to neighbourhoods using the 
milopy.core.make_nhoods function (prop = 0.1). The number of cells 
of each cell type was then counted in each neighbourhood (milopy.
core.count_nhoods). Labels were assigned to each neighbourhood 
based on majority voting (milopy.utils.annotate_nhoods) of cell labels  
by frequency (>50%). To test for differential abundance across ges-
tational age, prenatal skin data were split into 4 age bins (7–8 PCW, 
9–10 PCW, 11–13 PCW and 15–17 PCW), and cell counts were mod-
elled using a negative binomial generalized model, with Benjamini– 
Hochberg weighted correction as previously described5,58, to test the 
effects of age (age bins) together with cell sorting correction (milopy.
core.DA_nhoods). Significantly differentially abundant neighbour-
hoods were detected using (SpatialFDR < 0.1, log(fold change) < 0) 
for early enriched neighbourhoods and (SpatialFDR < 0.1, log(fold 
change) > 0) for late neighborhoods (Supplementary Table 4).

Cell state predictions: adult HFs, embryonic macrophages, blood 
vessel organoid, reindeer skin. To compare prenatal skin cells with 
external datasets (adult HF, embryonic macrophages, blood vessel 
organoid, reindeer skin)11,57,64,71, the datasets were downsampled to 
have roughly balanced cell counts per annotated cell type before 
integration with Harmony (v.0.0.5)91, treating datasets as batches and 
within dataset batches as covariates (donor for prenatal skin, site for 
embryonic macrophages, group (cell line: day of culture) for blood 
vessel organoid, chemistry for reindeer skin).

Comparison of cell type correspondence between datasets and 
probability prediction was carried out using a LR framework similar to 
the CellTypist package94. A model was built using the implementation 
of the linear_model.LogisticRegression module from sklearn package 
(v.1.1.3) (parameters: penalty: L2, solver: saga, regularization strength 
C = 0.1) and trained on the gene expression matrix of the training data-
set using all genes that passed quality control. The resulting model was 
used to predict the classes in the target dataset. The correspondence 
between predicted and original classes in the target dataset was com-
puted as the Jaccard index and median probability predictions and visu-
alized as heatmaps. For comparison of the prenatal skin macrophages 
with embryonic macrophages, the embryonic macrophage dataset 
was used as training data and prenatal skin macrophages as query; 
for comparison of the blood vessel organoid with prenatal skin, the 
prenatal skin dataset (downsampled to maximum of 500 cells per cell 
type) was used as training data and the blood vessel organoid data as 
query; for comparison of HF data, merged prenatal and organoid data 
were used as training data and adult dataset as query; for comparison 
of the prenatal skin fibroblasts and macrophages with reindeer skin 

fibroblasts and macrophages, the reindeer skin data subsets were used 
as training data and prenatal skin data subsets as query.

Cross-species comparison: prenatal skin and mouse skin datasets. 
The median probability of class correspondence between human and 
mouse skin single cell datasets was carried out using a LR framework 
as previously described93, based on a similar workflow to the CellTypist  
tool94. Annotated raw scRNA-seq datasets (human prenatal skin 
and mouse embryonic skin41) were first concatenated, normalized, 
log-transformed and subsetted to retain the top 5,000 highly variable 
genes (batch_key=dataset) by dispersion. VAE latent representations 
were computed using scvi-tools (max epochs = 400, batch size = 512) 
with species, dataset and chemistry information taken as categorical 
covariates. ElasticNet LR models were built using the linear_model.
LogisticRegression module in the sklearn package (v.0.22). The models 
were trained on SCVI batch-corrected low-dimensional VAE represen-
tation of the training data (prenatal skin) for broad cell groupings and 
refined cell annotations. The resultant models were used to predict the 
probability of correspondence between trained prenatal skin labels and 
pre-annotated clusters (broad cell groupings and refined annotations) 
in the target mouse skin data. The median probability of training label 
assignments was computed (Supplementary Tables 10 and 11). For 
visualization, resultant LR probabilistic relationship between labels 
of the training and target datasets were plotted as heatmaps.

FRZB comparison across developing organs. To compare gene  
expression of FRZB in fibroblasts across developing organs, a scRNA- 
seq stromal dataset from multiple developing organs5 (available from 
the Human Developmental Cell Atlas (https://developmental.cellatlas.
io/fetal-immune)) was used, which also includes our prenatal skin 
scRNA-seq data. The data were normalized to 1 × 104 counts per cell 
(scanpy.pp.normalize_total), log1p transformed (scanpy.pp.log1p) 
and subsetted to fibroblast cell types only to plot expression of FRZB 
by organ across gestation time.

Trajectory analysis. The CellRank package96 (v.1.5.2) was used to define 
cell transition matrices, lineage drivers and rank fate probabilities of 
terminal state transitions across annotated lineages in a combined  
embedding of prenatal skin and SkO for keratinocytes and fibroblasts 
and in the prenatal skin for endothelial cells. Using pp.moments  
(n_pcs=10, n_neighbours=30) from the scVelo package (v.0.3.0), first 
order kinetics matrices were imputed. Using the palantir kernel and 
the velocity kernel in CellRank96, a mixed probability transition matrix 
was computed with the palantir kernel weighing 70% and the velocity 
kernel 30%. Schur matrix Eigen decomposition (n_components=25, 
method=‘brandts’) identified macrostates, terminal stages and ini-
tial stages. Lineage drivers were then computed for each state using  
compute_lineage_drivers from CellRank and pseudotime and latent 
time computed in scVelo (Supplementary Table 7).

In vivo–in vitro trajectory alignment analysis. We used Dynamic 
Programming-based alignment to evaluate agreement between 
the single-cell trajectories of prenatal skin and SkO fibroblasts, 
which describe the in vivo and in vitro differentiation lineages from 
HOXC5+ early fibroblasts to the Dp. Genes2Genes (G2G)39 is a Bayesian 
Information-theoretic Dynamic Programming framework that consist-
ently captures matches and mismatches between two trajectories at 
both the gene level and the cell level. G2G outputs an optimal trajectory 
alignment that describes a nonlinear mapping of in vivo and in vitro 
pseudotime points in sequential order. This is based on the cost of 
matching or mismatching the gene expression distributions of each pair 
of organoid–reference time points, computed as a statistic of entropy 
difference between the two hypotheses under the minimum message 
length97 criterion. This statistic is a Shannon information distance, 
calculated in the unit of information, nits. Given any gene set, G2G runs 
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Dynamic Programming alignment for each gene, outputting a five-state 
alignment string over matches (one-to-one/one-to-many/many-to-one) 
and mismatches (insertions and deletions–gaps) between the in vivo 
and in vitro pseudotime points in sequential order, which is analogous 
to a DNA/protein alignment output. It then computes an alignment 
similarity measure (that is, the percentage of matches across the align-
ment string) for each gene (Supplementary Table 9). These alignment 
strings enabled us to identify different clusters of genes with different 
alignment patterns. G2G also generates an aggregated cell-level align-
ment across all gene-level alignments, resulting in an overall alignment 
similarity measure as well. This aggregated alignment reflects whether 
the time points are matched or mismatched across genes on average 
(that is, if there is a higher proportion of gene-level alignments at which 
a specific time point pair between the two trajectories is matched, then 
the average alignment includes them as a match).

Using G2G, we examined the in vivo reference versus in vitro query 
alignment in terms of 1,369 human TFs98. These TFs were taken after 
filtering zero expressed genes and genes expressed in fewer than ten 
cells. Given the reference and organoid log1p normalized gene expres-
sion matrices of cells and their pseudotime estimates computed using 
CellRank96, G2G generated fully descriptive TF-level alignments, as 
well as an aggregated cell-level alignment across those TF-level align-
ments. Before alignment, the reference and organoid trajectories were 
discretized over the pseudotime axis in equal length intervals. Note that 
the number of discrete pseudotime points was determined as 15 based 
on the optimal binning structures predicted over their pseudotime 
estimates distributions using the OptBinning99 python package. Also 
note that at each alignment, these are the discrete time points that are 
getting matched or mismatched. For each discrete time point of a TF tra-
jectory in a single dataset, G2G estimates its expression distribution as a 
Gaussian, with a weighted mean and weighted variance computed using 
all the cells (that is, a Gaussian-kernel-weighted interpolation approach 
for each cell’s contribution towards this estimation is based on their 
distance to the particular time point). Next, after interpolating both 
reference and organoid trajectories using the 15 discrete time points, 
the Dynamic Programming alignment was run for each TF, and the TF 
clusters of different alignment patterns (that is, early mismatches, 
mid mismatches, late mismatches, and complete mismatches) were 
identified using the G2G function that runs agglomerative hierarchical 
clustering over the TF-level alignment outputs.

Cell–cell interaction analysis. CellPhoneDB (v.3.0.0) package100 was 
used to infer cell–cell interactions within the prenatal skin scRNA-seq 
dataset overall and in early/late gestation and within the SkO scRNA-seq 
dataset overall. In the overall analysis, we randomly subsampled each 
cell type into no more than 200 cells 3 separate times, using all cells if a 
population contained fewer than 200 cells and excluding populations 
with fewer than 10 cells. The subsampled dataset were analysed sepa-
rately using the permutation-based method to establish significance 
(P value cut-off = 0.05). For the analysis by early/late gestation, the 
prenatal skin scRNA-seq dataset was first split into early (≤11 PCW) and 
late (≥12 PCW) gestation datasets, which were then subsampled (no 
more than 200 cells per cell type) and individually analysed (P value 
cut-off = 0.05). A summary output file was created for each analysis run, 
compiling the interactions for each cell pair (P < 0.05) and adjusting 
P values for multiple testing (FDR set at 0.05) (Supplementary Tables 8 
and 28). Circos plots (Circlize package (v.0.4.15)101) were used for down-
stream visualizations of selected significant (adjusted P value < 0.05) 
interactions between co-locating cell types for interactions found in 
all subsampled analyses.

To explore inferred interactions between macrophage subsets and 
endothelial cells (Extended Data Fig. 9a), we aggregated the interac-
tions predicted for each macrophage subset and the different subtypes 
of endothelial cells (early endothelial cells, arterioles, capillary arteri-
oles, capillaries, postcapillary venules and venules) by averaging the 

means and using the minimum of the adjusted P values as previously 
described5. A curated list of aggregated interactions were plotted for 
visualization using ggplot2 (v.3.3.6). A similar approach was adopted 
for assessing interactions between HF dermal and epidermal cells in pre-
natal skin: for each subset of hair follicle dermal cells, the interactions 
with early epithelial cells (≤11 PCW; immature basal) or late epithelial 
cells (≥12 PCW; DPYSL2 + basal, POSTN + basal, placode, matrix, ORS, 
CL, IRS, cuticle/cortex) were aggregated, and the top 10 interactions 
per cell pair visualized using a heatmap (Fig. 2g). The same analysis 
was performed to obtain the top 10 interactions in SkO HFs (Extended 
Data Fig. 5c), defining early/late to match corresponding cell states 
as in prenatal skin. The top 10 interactions identified in prenatal skin 
HFs were also plotted within the SkO data to highlight similarities and 
differences between the two (Fig. 2g).

Comparison with adult fibroblasts. Integrated scRNA-seq data from 
prenatal skin and adult healthy skin (with original annotations)10 was 
subsetted to the cell group of interest (fibroblasts). DEGs between the 
adult and prenatal skin fibroblasts were derived using the Wilcoxon 
rank-sum test implementation in scanpy and adjusted for multiple 
testing using the Benjamini–Hochberg method (scanpy.tl.rank_genes_
groups, method = “wilcoxon”, corr_method = “benjamini-hochberg”). 
Gene set enrichment analysis was performed using the top 1,000 genes 
in each group ranked by scores (Supplementary Table 13) and the  
implementation of the Enrichr workflow102 in the Python package 
GSEApy (https://gseapy.readthedocs.io/; v.0.10.7) with Gene Ontol-
ogy Biological Process (2021) as the query database (Supplementary 
Tables 14, 15). A selected list of genes was plotted to highlight differ-
ences between prenatal and adult skin fibroblasts.

Gene set enrichment analysis. To determine the significantly overex-
pressed genes for gene set enrichment analysis, we first identified the 
DEGs between cell types for each cell group of interest (myeloid cells) 
using the Wilcoxon rank-sum test implementation in Scanpy (scanpy.
tl.rank_genes_groups, method = “wilcoxon”). Genes with differential 
expression log(fold change) > 1.5 and adjusted P value < 0.01 were con-
sidered as significantly overexpressed (Supplementary Table 22). Gene 
set enrichment analysis was performed using the implementation of 
the Enrichr workflow102 in the Python package GSEApy (https://gseapy.
readthedocs.io/; v.0.10.7) with Gene Ontology Biological Process (2023) 
and Molecular Signatures Database (MSigDB) Hallmark (2020) as query 
databases (Supplementary Tables 23–26).

For comparison between early and late cell states, for cell types of 
interest (WNT2 + fibroblast), we first identified the index cells belonging 
to early neighbourhoods (SpatialFDR < 0.1, log(fold change) < 0) and 
late neighbourhoods (SpatialFDR < 0.1, log(fold change) > 0) based on 
Milo95 differential abundance testing as described above (Supplemen-
tary Table 4). DEGs between early and late cell states were computed 
using the Wilcoxon rank-sum test implementation in scanpy (scanpy.tl. 
rank_genes_groups, method = “wilcoxon”). Genes with differential 
expression log(fold change) > 1 and adjusted P value < 0.01 were consid-
ered as significantly overexpressed (Supplementary Table 16) for gene 
set enrichment analysis using GSEApy (https://gseapy.readthedocs.io/;  
v.0.10.7), with Gene Ontology Biological Process (2023) as query the 
database (Supplementary Tables 17 and 18).

Gene module scoring. Gene module scoring was performed using 
the sc.tl.score_genes function in scanpy. For angiogenesis gene mod-
ules, pre-defined gene sets from the Gene Ontology Biological Process 
Database (2021) in Enrichr libraries103 were used (downloaded from 
Enrichr (https://maayanlab.cloud/Enrichr/#libraries)). For endothe-
lial cell modules, gene sets defining tip, stalk, arteriole, venule and 
lymphatic, capillary (Extended Data Fig. 10g,h) were derived from pub-
lished literature73,104,105, and for the hypoxia score, a hallmark hypoxia 
gene list was used. The list of genes for each gene module is provided 
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in Supplementary Tables 27 and 29. The score for each module is the 
average expression of the gene set provided subtracted with the average 
expression of a reference set of genes. The reference set comprised 100 
genes (ctrl_size=100), which were randomly sampled from all genes in 
the dataset (default gene_pool) with 25 expression level bins (n_bins=25) 
used for sampling. For angiogenesis modules, the mean module scores 
were computed for each cell type of interest (for example, LYVE1+ mac-
rophage) and z score normalized for visualization.

Gene regulatory network analysis. The PySCENIC package106 (v.0.11.2) 
and pipeline were used to identify TFs and their target genes in the com-
bined prenatal skin and SkO scRNA-seq datasets. The ranking database 
(hg38 refseq-r80 500bp_up_and_100bp_down_tss.mc9nr.feather), 
motif annotation database (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) were 
downloaded from the Aert’s laboratory GitHub page. The tool was 
run 10 times, with a dataset comprising at most 1,000 cells per cell 
type × tissue pair (where tissue is prenatal skin or SkO). For each run, 
an adjacency matrix of TFs and their targets was generated and pruned 
using the Aert’s group suggested parameters. Only regulons present in 
at least 6 out of 10 runs were used in the analysis. PySCENIC was used 
to calculate the regulon specificity score for each cell type × tissue pair 
using the aucell function. An average was computed over the multi-
ple runs. These average scores were used to compare regulon activity 
between prenatal skin and SkO. A gene interaction network was first 
built by querying the STRING database with GATA2 target genes, then 
pruned to only keep genes reported as associated with GATA2. The 
list was further truncated to 12 genes, by keeping genes that met the 
following criteria: (1) TFs in the five most active regulons detected in 
fetal skin; and/or (2) organoid capillary arterioles; and/or (3) associated 
with pseudotime (that is, in trajectories); and/or (4) VEGF receptors; 
and/or (5) in the selected gene ontology terms chosen for their role 
in angiogenesis, extracellular matrix organization, or cell migration, 
communication, proliferation, or death (GO:0045765, GO:0001568, 
GO:0030334, GO:0010646, GO:0001936, GO:0045446, GO:0002040, 
GO:0030155, GO:0010941 and GO:0030198).

Comparison of pro-angiogenic and anti-angiogenic genes  
between prenatal skin and SkO. The prenatal skin and SkO datasets 
were integrated using Harmony (v.0.0.5)91 as described above. Differ-
ential expression analysis was performed between prenatal skin and 
SkO cells (all cell types) using the standard scanpy workflow (scanpy.
tl.rank_genes_groups, method = “wilcoxon”). Identified DEGs were 
filtered to only retain those coding for secreted proteins107 (Supple-
mentary Table 39). Gene set enrichment analysis was performed on 
downregulated and upregulated genes separately, using the imple-
mentation of the Enrichr workflow102 in the Python package GSEApy 
(https://gseapy.readthedocs.io/) with Gene Ontology Biological Pro-
cess (2021) as the query database. Significant gene ontology terms 
(adjusted P value < 0.05) (Supplementary Tables 33 and 34) were fil-
tered based on their relevance to vasculature. Only DEGs involved in 
pathways thereby selected were chosen and their role in prenatal skin 
angiogenesis checked in the literature.

NicheNet analysis. We used NicheNet74 (v.1.1.1) to infer ligand–target 
gene links by combining scRNA-seq data (prenatal skin and SkO) of 
interacting cells (sender and receiver cells) with existing knowledge on 
signalling and gene regulatory networks. An open-source R implemen-
tation including integrated data sources used in the analysis are avail-
able at GitHub (https://github.com/saeyslab/nichenetr). NicheNet’s 
ligand–activity analysis first assesses and ranks ligands in the sender 
cell type (macrophage subsets), which best predict observed changes  
in expression of target genes of interest in the receiver cell types  
(endothelial cells) compared with background genes. Potential ligands 
were defined as all ligands in the NicheNet model that were expressed 
in at least 10% of cells in each macrophage (sender) cluster and had 

at least one specific receptor expressed in at least 10% of endothe-
lial (receiver) cells. Target genes of interest were identified as DEGs 
between conditions (prenatal skin versus SkO) in receiver cells using 
FindMarkers function in NicheNet (adjusted P value ≤ 0.05 and aver-
age log2(fold change) > 0.25, expressed in at least 10% of endothelial 
cells). Background genes were all genes in the NicheNet model that 
were expressed in at least 10% of receiver cells.

Ligands were prioritized based on ligand activity scores, calcu-
lated as the Pearson correlation coefficient between a ligand’s target 
predictions and the observed target gene expression (Supplemen-
tary Table 35). The top 20 ligands were used to predict active target 
genes (top 200 overall) and construct the active ligand–target links 
(Supplementary Table 36). Receptors of the top-ranked ligands were 
identified from the NicheNet model, which filters for only bona fide 
ligand–receptor interactions documented in the literature and pub-
licly available databases (Supplementary Table 37). To infer signalling 
paths, we defined our ligand (VEGFA, in red) and target genes (GATA2, in 
blue) of interest. NicheNet identifies which TFs best regulate the target 
genes and are most closely downstream of the ligand based on weights 
of the edges in its integrated ligand signalling and gene regulatory 
networks. The shortest paths between these TFs and the defined ligand 
are selected and genes along these paths are considered as relevant 
signalling mediators (in grey). Signalling mediators are prioritized 
by cross-checking the interactions between the defined ligand, target 
genes and identified TFs and signalling mediators across the different 
integrated data sources in NicheNet.

Spatial data analysis
Spatial transcriptomics data were mapped using Space Ranger (v.2.0.1) 
using GRCh38-1.2.0 reference. In parallel, we manually selected 
skin-overlapping spots in embryonic limb data12, comprising samples 
from the following ages: 6 PCW (n = 2, replicate = 2 each) and 8 PCW 
(n = 1, replicate = 3). To map cell types identified by scRNA-seq in the 
profiled spatial transcriptomics slides, we used the Cell2location (v.0.1) 
method15. First, we trained a negative binomial regression model to 
estimate reference transcriptomic profiles for all the cell types pro-
filed with scRNA-seq in the organ (n = 15 samples). We excluded very 
lowly expressed genes using the filtering strategy recommended by 
the authors of Cell2location (cell_count_cutoff=5, cell_percentage_ 
cutoff2=0.03, nonz_mean_cutoff=1.12). Cell types for which fewer than 
20 cells were identified in samples ≤10 PCW were excluded from the 
reference. Individual 10x samples were considered as a batch, donor 
and chemistry type information was included as categorical covariate. 
Training was performed for 250 epochs and reached convergence 
according to manual inspection. Next, we estimated the abundance of 
cell types in the spatial transcriptomics slides using reference transcrip-
tomic profiles of different cell types. All slides were analysed jointly. 
The following Cell2location hyperparameters were used: (1) expected 
cell abundance (N_cells_per_location) = 30; (2) regularization strength 
of detection efficiency effect (detection_alpha) = 20. The training was 
stopped after 50,000 iterations. All other parameters were used at 
default settings. Cell2location estimates the posterior distribution of 
cell abundance of every cell type in every spot. Posterior distribution 
was summarized as 5% quantile, representing the value of cell abun-
dance that the model has high confidence in, and therefore incorporat-
ing the uncertainty in the estimate into values reported in the paper 
and used for downstream co-location analysis.

To identify microenvironments of co-locating cell types, we used 
NMF. We first normalized the matrix of estimated cell type abundances 
by dividing it by per-spot total abundances. Resulting matrix Xn of 
dimensions n × c, where n is the total number of spots in the Visium 
slides and c is the number of cell types in the reference was decomposed 
as Xn = WZ, where W is a n × d matrix of latent factor values for each spot 
and Z is a d × c matrix representing the fraction of abundance of each 
cell type attributed to each latent factor. Here latent factors correspond 

https://gseapy.readthedocs.io/
https://github.com/saeyslab/nichenetr


to tissue microenvironments defined by a set of co-localized cell types. 
We use the NMF package for R108, setting the number of factors d = 10 
and using the default algorithm109. NMF coefficients were normalized 
by a per-factor maximum. We ran NMF 100 times and constructed the 
coincidence matrix. Then we selected the best run based on the lower 
mean silhouette score calculated on the coincidence matrix. If more 
than one run had the minimal mean silhouette, we selected one with 
smaller deviance (as reported by NMF function).

For cell type abundance correlation analysis, we used a per-spot nor-
malized Xn matrix. Pearson correlation coefficient was calculated for 
each pair of cell types (all possible pairs computed) and each sample. 
For visualization of correlation analysis, selected cell pairs were plot-
ted, guided by NMF results and which cell groups or categories formed 
microenvironments. For example, macrophages formed microenviron-
ments with endothelial cells (ME1 and ME5), with neural cells (ME1 and 
ME5) and fibroblasts (ME1, ME4 and ME5) in Fig. 1d (Supplementary 
Table 40).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated and/or analysed during the current study are 
available in the following repositories. Prenatal scRNA-seq skin data are 
available from ArrayExpress under accession numbers E-MTAB-11343, 
E-MTAB-7407 and E-MTAB-13071; accompanying prenatal skin TCR 
sequencing data are available under accession E-MTAB-13065. SkO 
scRNA-seq data are available from the Gene Expression Omnibus (GEO) 
under accession numbers GSE147206, GSE188936 and GSE231607. 
Visium limb data are available under E-MTAB-10367. Visium facial and 
abdominal data are deposited in ArrayExpress under E-MTAB-13024. 
Embryonic macrophage scRNA-seq data are available from GEO under 
accession numbers GSE13345 and GSE137010. All of the blood vessel 
organoid scRNA-seq data analysed as part of this study are included in a 
pre-print article71. Adult healthy skin scRNA-seq data are available from 
ArrayExpress under E-MTAB-8142. Adult HF scRNA-seq data are acces-
sible from GEO under GSE129611. Mouse and reindeer skin scRNA-seq 
data are available from E-MTAB-11920 and GSE168748, respectively. Pro-
cessed data can be accessed on our web portal (https://developmental.
cellatlas.io/fetal-skin). Resource databases used in this study include 
GRCh38 reference, Ensembl Biomart, Gene Ontology Biological Pro-
cess 2021 and 2023, MSigDB Hallmark 2020, ranking (hg38 refseq-r80 
500bp_up_and_100bp_down_tss.mc9nr.feather) and motif annotation 
databases (motifs-v9-nr.hgnc-m0.001-o0.0.tbl) for PySCENIC analysis 
and STRING (v12.0). Source data are provided with this paper.

Code availability
Single-cell and spatial data were processed and analysed using pub-
licly available software packages. Python, R code and notebooks for 
reproducing these analyses are publicly available at Zenodo (https://
doi.org/10.5281/zenodo.8164271)14.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Temporal and spatial composition of human prenatal 
skin. (a) Prenatal skin cells isolation by fluorescence-activated cell sorting into 
CD45+ and CD45− fractions (n = 18); from the CD45− fraction we further isolated 
all cells that were not within the CD34+/CD34+CD14− gate (n = 4) to enrich for 
endothelial cells and keratinocytes. Representative data from n = 1 is shown as 
mean percentage +/− SD values. (b) Quality control plots showing frequency 
distribution of UMI counts (log1p-transformed) and percent of UMI counts in 
mitochondrial genes per sample fraction. (c) Dot plot showing variance-scaled, 
mean expression (dot colour) and percent of expressing cells (dot size) of 
defining genes for cell states corresponding to Fig. 1b. (d) Milo beeswarm plot 
showing differential abundance of neighbourhoods in prenatal skin across 
gestation time, annotated by refined cell labels. Red/blue neighbourhoods are 
significantly enriched in earlier/later gestation respectively. Colour intensity 
denotes degree of significance. (e) Bar plot showing cell type co-location, 
indicated by positive Pearson correlation coefficients calculated between  

per-spot normalised cell type abundances, for selected cell type pairs 
(macrophage and endothelial cells). Pearson correlation coefficients were 
calculated across all skin-covered spots of Visium samples; each sample is 
shown by an individual bar. (f) Bar plot showing cell type co-location, indicated 
by positive Pearson correlation coefficients calculated between per-spot 
normalised cell type abundances, for selected cell type pairs (pre-dermal 
condensate and immune cells: DC1, DC2, LTi and ILC3). Pearson correlation 
coefficients were calculated across all skin-covered spots of Visium samples; 
each sample is shown by an individual bar. ASDC, Axl+Siglec6+ dendritic cells; 
CD45en, CD45 negative fraction enriched for keratinocyte/endothelial cells, 
CD45N, CD45 negative; CD45NCD34N, CD45 negative-CD34 negative; 
CD45NCD34P, CD45 negative-CD34 positive; CD45P, CD45 positive; DC, 
dendritic cells; HSC, hematopoietic stem cells; LC, Langerhans cells; LTi, 
lymphoid tissue inducer cells; MEMP, megakaryocyte-erythroid-mast cell 
progenitor; pDC, plasmacytoid dendritic cells.
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Extended Data Fig. 2 | Comparison of the skin organoid with prenatal and 
adult skin. (a) UMAP visualisation of the integrated prenatal skin, adult skin10 
and SkO1 scRNA-seq datasets, coloured by broad cell types for each dataset.  
(b) UMAP visualisations of integrated data from prenatal skin and SkO, coloured 
by epidermal (left) and dermal (right) cell types. (c) Heatmap showing conserved 
cell states (measured by distance in principal component space) between 

prenatal skin, adult skin10 and SkO1 for broad cell categories. (d) Heatmap 
showing prediction probabilities (overall and per broad cell category) for a 
logistic regression model trained on time-encoded prenatal skin and adult skin 
data (y-axis)10 and projected onto time-encoded SkO data1 (x-axis). Colour scale 
indicates median prediction probabilities. DC, dendritic cells.
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Extended Data Fig. 3 | Prenatal skin epidermal cell composition and 
comparison with adult hair follicles. (a) Schematic of stages of HF formation. 
(b) Dot plot showing variance-scaled, mean expression (dot colour) and percent 
of expressing cells (dot size) of DEGs between gestational stage groups 
(grouped PCW) (right) and expression of the same genes by different epithelial 
cell states in prenatal skin (left). (c) Bar plot showing the average proportions of 
stromal cell states across gestational age in prenatal skin. Bar colours represent 
cell states. (d) Heatmap showing the correspondence (measured by Jaccard 
index) between prenatal skin/SkO (y-axis) and adult (x-axis) epidermal and  
HF cell states from a logistic regression model trained on adult HF data11, 
projected onto integrated prenatal skin/SkO data. (e) UMAPs showing 
clustered cell states in integrated data from adult HFs11 and prenatal/SkO, 

coloured by prenatal skin/SkO cell types (left) and adult cell types (right).  
(f) Volcano plot showing differentially expressed genes between prenatal matrix 
cells and adult matrix cells using Wilcoxon rank-sum, two-sided, Benjamini-
Hochberg adjusted11. (g) Percentage of FOXP3 coverage in HF regions and non-
HF regions across five prenatal skin samples. Data are mean ± SD and statistics 
(p = 0.0131) generated with an unpaired t-test. (h) Immunostained human 
prenatal skin at 15PCW for Tregs with FOXP3 (red; red arrows), epithelial 
keratinocytes with Keratin 14 (yellow) and dermal papilla with SOX2 (cyan; cyan 
arrows). Scale bar: 100 µm. Tregs, Regulatory T cells. For details on statistics and 
reproducibility, see Methods. The images in a were created using BioRender 
(https://biorender.com).

https://biorender.com


Article

4 7 8 9 10 11 12 14 15 16 17

Fraction of cells
in group (%)

Stage (PCW)

FRZB  expression in fibroblastse

Skin
Spleen

Yolk sac
Liver

Thymus
Gut

Bone marrow
Kidney

Mesenteric lymph node

b

lo
g(

Ex
pr

es
si

on
)

UMAP1

U
M

AP
2

AGR2

BARX2 NFATC1

POSTN+

basal
Placode

Inner
root 

sheath

DPSYL2+

basal

Cuticle
/cortex

Companion
layer

Outer
root 

sheath

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

SHH

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

SOX9

SPON2

UMAP1

U
M

AP
2

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

UMAP1

U
M

AP
2

WNT10B

ORS/CL
trajectory

IRS
trajectory

lo
g(

Ex
pr

es
si

on
)

lo
g(

Ex
pr

es
si

on
)

lo
g(

Ex
pr

es
si

on
)

lo
g(

Ex
pr

es
si

on
)

lo
g(

Ex
pr

es
si

on
)

lo
g(

Ex
pr

es
si

on
)

Matrix

3.0
2.5
2.0
1.5
1.0
0.5
0.0

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

2.5
2.0
1.5
1.0
0.5
0.0
-0.5

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

2.5
2.0
1.5
1.0
0.5
0.0
-0.5

4

3

2

1

0

a

Pseudotime

POSTN+

basal

DPYSL2+

basal

Outer
root sheath

Companion
layer

Inner
root sheath

Cuticle/
cortex

Placode
Matrix

1

0

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

ORS/CL
trajectory

IRS
trajectory

POSTN+

basal

Matrix

Companion
layerOuter

root sheath

DPYSL2+

basal

Placode

Cuticle/
cortex

Inner
root sheath

DPYSL2+

basal

Companion
layer

Inner
root sheath

Cuticle/
cortex

Placode

U
M

AP
2

UMAP1

Outer
root sheath

POSTN+

basal

Matrix
IRS

trajectory

ORS/CL
trajectory

130

120

110

100

90

80

70

60

50

Days

PCW

16

14

12

10

8

Prenatal

AG
R

2

BA
R

X2

N
FA

TC
1

SO
X9

SP
O

N
2

SH
H

W
N

T1
0B

Outer root sheath

Companion layer

POSTN+ basal

Placode

Inner root sheath

Cuticle/cortex

c

20 40 60 80

Fraction of cells
in group (%)

0.0 0.5

Mean expression
in group

1.0

DPYSL2+ basal

Matrix

Prenatal

PCW

Days

HOXC5+

early fibroblast

Dermal
papilla

Dermal
condensate

Pre-dermal
condensate

WNT2+

fibroblast

PEAR1+

fibroblast

Myofibroblast

d

10 30 50 70 90
0.0 0.5

Mean expression
in group

1.0

g

4

3

2

1

0

D
er

m
al

 c
on

de
ns

at
e

D
er

m
al

 p
ap

illa

4

3

2

1

0

h

Stage (PCW)

C
XC

L1
2

C
XC

L1
2

7 8 9 10 11 12 13 14 15 16

H
O

XC
5+  e

ar
ly

 fi
br

ob
la

st

Pr
e-

de
rm

al
 c

on
de

ns
at

e

f

Hair follicle fibroblasts

Gene expression

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime

Disease associated gene

7 8 9 10 11 12 1314151617

WIF1
CLDN11
GPC6
ADAMTS1
GRP
CXCL12
VIM
PTK7
CD9
TWIST2
COL3A1
COL1A1
LGALS1
COL6A3
MEF2C
MFAP4
RSPO4
SLC26A7
DLL1
SPON1
NDP
PAPPA2
BMP7
CKB
CXCR4
TRPS1
WNT5A
CYTL1
CRYM
RSPO3

Pseudotime
PCW

17

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

Pseudotime
1

0

16

14

12

10

8

Dermal fibroblast
trajectory

HOXC5+

early fibroblast

Dermal
papilla

Dermal
condensate

Pre-dermal
condensate

WNT2+

fibroblast

PEAR1+

fibroblast

Myofibroblast

Hair fibroblast
trajectory

Dermal fibroblast
trajectory

HOXC5+

early fibroblast

Dermal
papilla

Dermal
condensate

Pre-dermal
condensate

WNT2+

fibroblast

PEAR1+

fibroblast

Myofibroblast

Hair fibroblast
trajectory

Organoid

Organoid

130
120
110
100
90
80
70
60
50

HOXC5+ early fibroblast
Pre−dermal condensate
Dermal condensate
Dermal papilla

PCW

Hair fibroblast trajectory
Cell types

Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Differentiation of prenatal hair follicle epithelial 
cells. (a) Inferred pseudotime trajectory of prenatal skin and SkO epidermal 
cell states, differentiating along the ‘ORS/CL’ and ‘IRS’ trajectories, coloured  
by gestational age (PCW) for prenatal skin (middle) and days of culture for  
SkO (bottom). UMAP overlaid with cell directionality (arrows) as inferred over 
the cell-to-cell transition probability matrix from CellRank and coloured  
by pseudotime (top). (b) Inferred pseudotime trajectory of prenatal skin 
epidermal cell states differentiating along the ‘ORS/CL’ and ‘IRS’ trajectories, 
coloured by gene expression (log-transformed). (c) Dot plot showing variance-
scaled, mean expression (dot colour) and percent of expressing cells (dot size) 
in prenatal skin of genes expressed along the ‘ORS/CL’ and ‘IRS’ trajectories.  
(d) Inferred pseudotime trajectory of prenatal skin and SkO fibroblasts 
differentiating along the ‘hair’ and ‘dermal’ trajectories, coloured by 

gestational age (PCW) for prenatal skin (middle) and days of culture for SkO 
(bottom). UMAP overlaid with cell directionality (arrows) as inferred over the 
cell-to-cell transition probability matrix from CellRank and coloured by 
pseudotime (top). (e) Dot plot showing variance-scaled, mean expression  
(dot colour) and percent of expressing cells (dot size) of FRZB gene in fibroblasts 
from developing organs. Gestational ages during which individual organs are 
present are highlighted. (f) Heatmap showing differentially expressed genes 
across pseudotime along the ‘hair fibroblast trajectory’. Gene associated with 
genetic hair disorders is highlighted in grey. (g) Violin plot showing expression 
of CXCL12 in hair mesenchymal cells (violin width proportional to counts).  
(h) Violin plot showing expression of CXCL12 in hair mesenchymal cells by 
gestation (PCW) (violin width proportional to counts).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Differentiation of the prenatal hair follicle 
mesenchyme. (a) Circos plot showing selected significant (adjusted 
p-value<0.05, significance calculated in CellphoneDB using empirical shuffling 
and FDR-adjusted) predicted interactions between pre-dermal condensate and 
ILC3 and LTi cells in prenatal skin. Arrows represent directionality of interactions 
(ligand to receptor); connection width is proportional to the CellphoneDB 
mean value for each ligand-receptor pair. (b) Schematic representation  
of mesenchymal-epithelial signalling and cellular processes during hair 
formation. (c) Heatmap showing significant (adjusted p-value <0.05, 
significance calculated in CellphoneDB using empirical shuffling and 
FDR-adjusted) predicted interactions between hair mesenchymal cells and 
epithelial cells (early: Immature basal; late: DPYSL2+ basal, POSTN+ basal, placode, 
matrix, ORS, CL, IRS, Cuticle/cortex) in SkO. Top 10 interactions per cell pair are 
shown. Colour scale represents the mean expression values of each ligand- 
receptor pair in corresponding cell pairs. (d) Heatmap on the left shows 
interesting trends of distributional distances in the expression of selected 
differentially expressed TFs across pseudotime between prenatal skin 
(reference) and SkO. The distributional distance is a Shannon information 
measure of dissimilarity (unit: nits), and the heatmap visualises these distances 
across time for each TF after log-transformation and smoothening using a 
Gaussian kernel (σ = 2) for highlighting their trends. Heatmaps in the middle 
and right show the interpolated and z-normalised mean expression of those 
selected TFs across pseudotime in prenatal skin and SkO respectively.  

(e) Gene expression plots for representative genes in prenatal skin (green) and 
SkO (blue) across pseudotime. Left column: the interpolated log1p transformed 
expression (y-axis) against pseudotime (x-axis). The lines represent mean 
expression trends; the faded data points are 50 random samples from the 
estimated expression distribution at each time point. Right two columns: 
actual log1p transformed expression (y-axis) against pseudotime (x-axis) 
where each point represents a cell. (f) Dot plot showing variance-scaled, mean 
expression (dot colour) and percent of expressing cells (dot size) of known genes 
involved in hair formation26. (g) UMAP co-embedding of human prenatal (left) 
and mouse embryonic (E12.5, E13.5 and E14.5) (right) skin coloured by broad 
cell cluster annotations. (h) Heatmap showing prediction probabilities from a 
logistic regression model trained on human prenatal skin (x-axis), projected 
onto mouse embryonic skin (y-axis) for broad cell groupings. Colour scale 
indicates median prediction probabilities. (i) Heatmap showing prediction 
probabilities from a logistic model trained on human prenatal skin (x-axis), 
projected onto mouse embryonic skin (y-axis) for refined cell clusters (only 
fibroblast sub-populations shown from all cell types). ( j) Dot plot showing 
variance-scaled, mean expression (dot colour) and percent of expressing cells 
(dot size) of fibroblast marker genes. DC, dendritic cells; Fib, fibroblast; LTi, 
lymphoid tissue inducer cells; Vessel BECs, Vessel blood endothelial cells; 
Vessel LECs, Vessel lymphatic endothelial cells. The images in b were created 
using BioRender (https://biorender.com).

https://biorender.com
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Genetic hair and skin disorders. (a) Heat map showing 
differentially expressed genes across pseudotime along the ‘Inner root sheath 
trajectory’. Genes associated with genetic hair disorders are highlighted in 
grey. (b) Heat map showing differentially expressed genes across pseudotime 
along the ‘Outer root sheath/ Companion layer trajectory’. Genes associated 
with genetic hair disorders are highlighted in grey. (c) Dot plot showing 
variance-scaled, mean expression (dot colour) and percent of expressing cells 
(dot size) of genes implicated in genetic hair diseases in prenatal skin and SkO1. 
(d) Dot plot showing variance-scaled mean expression (dot colour) and percent 

of expressing cells (dot size) of genes causing Epidermolysis Bullosa in prenatal 
skin and SkO1. (e) Indirect immunofluorescence of 15-17 PCW prenatal skin with 
antibodies against keratin 14, plectin, BP180 (type XVII collagen), laminin-332, 
type VII collagen, keratin 1. Scale bars = 25 µm. (f) Dot plot showing variance-
scaled, mean expression (dot colour) and percent of expressing cells (dot size) 
of genes causing congenital ichthyoses in prenatal skin and SkO1. ARCI, 
Autosomal Recessive Congenital Ichthyosis; EKV, Erythrokeratodermia 
Variabilis. For details on statistics and reproducibility, see Methods.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | The role of early dermal fibroblasts in prenatal skin. 
(a) UMAP visualisation showing stromal cells found in prenatal skin, coloured 
by cell state (left) and by gestational age (PCW) (right). (b) Dot plot showing 
variance-scaled, mean expression (dot colour) and percent of expressing cells 
(dot size) of ‘pro-inflammatory and immune activation’ genes (as shown in 
Fig. 3a) in prenatal skin fibroblasts by grouped gestational age (PCW). (c) Heat 
map showing differentially expressed genes across pseudotime along the 
‘Dermal fibroblast trajectory’. (d) Gene set enrichment analysis results for 
differentially expressed genes (wilcoxon, two-sided, Benjamini-Hochberg 
adjusted) in Milo-defined early- and late-specific neighbourhoods of WNT2+ 
fibroblasts. Each plot shows the top 10 enriched gene sets (using Gene Ontology 
Biological Process 2023). The x-axis shows the negative log10 of the adjusted 
p-value (Fisher’s exact test, Benjamini-Hochberg correction for multiple testing); 

dot size is proportional to the number of genes associated with the gene set  
and colour represents the combined Enrichr score calculated within GSEApy. 
(e) UMAP visualisation of the myeloid cells in prenatal skin data, coloured by 
cell state. (f) Dot plot showing variance-scaled, mean expression (dot colour) 
and percent of expressing cells (dot size) of marker genes5 used to annotate 
macrophage subsets in prenatal skin. (g) Circos plot visualisation of 
representative significant (adjusted p-value <0.05, significance calculated in 
CellphoneDB using empirical shuffling and FDR-adjusted) predicted interactions 
between macrophages (LYVE1+ and TML macrophage) and co-localising WNT2+ 
fibroblasts in prenatal skin. Arrows represent directionality of interactions 
(ligand to receptor); connection width is proportional to the CellphoneDB 
mean value for each ligand-receptor pair. ASDC, Axl+Siglec6+ dendritic cells; 
DC, dendritic cells; LC, Langerhans cells.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | The role of macrophages in prenatal skin 
neurovascular development. (a) UMAP showing clustered cell states in 
integrated data from embryonic immune cells57 and prenatal skin myeloid cell 
subset. (b) Heatmap showing the correspondence (measured by Jaccard index) 
between embryonic immune cells (x-axis) and prenatal skin (y-axis) myeloid 
cell states for a logistic regression model trained on embryonic data57 and 
projected onto prenatal skin myeloid cell subset. TML macrophage had the 
highest proportion prediction to Mac4 (embryonic brain microglia). (c) Gene 
set enrichment analysis results of over-expressed genes (wilcoxon, two-sided, 
Benjamini-Hochberg adjusted) in macrophage subsets (TML, Iron-recycling, 
LYVE1 + and MHCII+, macrophages). Each plot shows the top 10 enriched gene 
sets (using Gene Ontology Biological Process 2023 (left) and MSigDB Hallmark 
2020 (right) databases). The x-axis shows the negative log10 of the adjusted 
p-value (Fisher’s exact test, Benjamini-Hochberg correction for multiple 
testing); dot size is proportional to the number of genes associated with the 
gene set and colour represents the combined Enrichr score calculated within 
GSEApy. (d) Heatmap showing prediction probabilities from a logistic 
regression model trained on classes of reindeer fibroblasts (pro-regenerative, 
pro-inflammatory and mixed populations) (x-axis), projected onto prenatal 
skin fibroblasts grouped by age (y-axis). Colour scale indicates median 
prediction probabilities. (e) Dot plot showing the variance-scaled, mean 
expression (dot colour) and percent of expressing cells (dot size) of selected 
pro-regenerative and pro-fibrotic genes in prenatal skin fibroblasts by 

gestational age (grouped PCW). (f) Heatmap showing prediction probabilities 
from a logistic regression model trained on reindeer macrophage clusters 
(x-axis), projected onto prenatal skin macrophage subsets (y-axis). Colour 
scale indicates median prediction probabilities. (g) Percentage scratch width 
closure (y-axis) quantified over time (x-axis) for fibroblasts cultured with 
macrophages (green) or in isolation (black) in n = 3 independent experiments. 
Data represented as percentage values ±SD. Statistics were generated with 
two-way ANOVA with Tukey’s multiple comparisons test (p-values shown at 
6hrs: 0.0480, 12hrs: 0.0035, 18hrs: 0.0001, 24hrs: 0.0042, 66hrs: 0.0118,  
72hrs: <0.0001). (h) Circos plot visualisation of selected significant (adjusted 
p-value <0.05, significance calculated in CellphoneDB using empirical shuffling 
and FDR-adjusted) predicted interactions between TML macrophages and 
co-localising neural cells in prenatal skin. Arrows represent directionality  
of interactions (ligand to receptor); connections are coloured by sender cell 
type with width proportional to the CellphoneDB mean value for each ligand- 
receptor pair. (i) Heatmap of normalised (z-score) mean expression of 
angiogenesis gene modules in prenatal skin macrophages. CD7 hiP: CD7 high 
progenitors; CD7 loP: CD7 low progenitors; ErP, erythroid progenitors;  
GMP, granulocyte-monocyte progenitors; HSPC, haematopoietic stem  
and progenitor cells; LC, Langerhans cells; Mac1-4, macrophages 1-4;  
MkP, megakaryocte progenitors; YSMP, yolk-sac derived myeloid-biased 
progenitors. For details on statistics and reproducibility, see Methods.
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Extended Data Fig. 9 | Endothelial cell heterogeneity and interactions  
with macrophages. (a) Dot plot visualisation of selected significant (adjusted 
p-value<0.05, significance calculated in CellphoneDB using empirical 
shuffling and FDR-adjusted) CellphoneDB-predicted interactions between 
macrophage subsets and co-localising vascular endothelial cells in prenatal 
skin, grouped by function. Right: Ligand (first gene in each gene pair) is 

expressed by macrophages; Left: Ligand (first gene in each gene pair) is 
expressed by endothelial cells. Dot colour represents the mean expression 
values of each ligand-receptor pair for the corresponding cell pairs, dot size 
represents -log10(adjusted p-value). (b) Violin plots of gene module scores in 
prenatal skin and SkO endothelial cells. Scores were derived from marker genes 
for the different endothelial cell groups. LE, lymphatic endothelium.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Factors driving angiogenesis and endothelial  
cell differentiation. (a) Inferred pseudotime trajectory of prenatal skin 
endothelial cell states coloured by gestational age (PCW). UMAP overlaid  
with cell directionality (arrows) as inferred over the cell-to-cell transition 
probability matrix from CellRank (left) and coloured by pseudotime (right).  
(b) Heat map showing differentially expressed genes across pseudotime along 
the ‘arteriolar’ differentiation trajectory. (c) Heat map showing differentially 
expressed genes across pseudotime along the ‘venular’ differentiation 
trajectory. (d) Heatmap showing the correspondence (measured by Jaccard 
index) between prenatal skin (x-axis) and blood vessel organoid cell states71 
(y-axis) for a logistic regression model trained on prenatal skin data. The top 10 

predicted prenatal cell states were retained for visualisation. (e) Dot plot 
showing variance-scaled, mean expression (dot colour) and percent of 
expressing cells (dot size) of blood flow-related genes in prenatal skin and SkO 
capillary arteriole cells. (f) Heatmap of normalised (z-score) mean expression 
of hypoxia gene module in prenatal skin and corresponding cell categories in 
SkO. (g) Violin plots of ‘Tip’ and ‘Stalk’ cell module scores in prenatal skin and 
SkO endothelial cells. (h) UMAP visualisation of the ‘Tip’ cell module score in 
prenatal skin (arterioles, capillaries, capillary arterioles, PROX1hi LE, early 
endothelial cells, LYVE1hi LE, postcapillary venules, venules) and SkO 
endothelial cells (capillary arterioles). LE, lymphatic endothelium; MEMP, 
megakaryocyte-erythroid-mast cell progenitor.
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Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Macrophages support prenatal skin and skin 
organoid angiogenesis. (a) Dot plot showing variance-scaled, mean 
expression (dot colour) and percent of expressing cells (dot size) of pro- and 
anti-angiogenic factors and of corresponding receptors in prenatal skin and 
SkO endothelial cells. Genes encoding the main pro-angiogenic factors 
secreted by macrophages in prenatal skin are highlighted. (b) Dot plot showing 
variance-scaled, mean expression (dot colour) and percent of expressing cells 
(dot size) of vascular endothelial growth factors in prenatal skin and SkOs.  
(c) Dot plot showing variance-scaled, mean expression (dot colour) and 
percent of expressing cells (dot size) of genes (vascular endothelial growth 
factor receptors and endothelial differentiation) in prenatal skin and SkO 
capillary arteriole cells. (d) Comparison of regulon activity between prenatal 
skin (x-axis) and SkO (y-axis) capillary arterioles. (e) Gene regulation network 
for regulons with high specificity score in prenatal skin and/or SkO capillary 
arterioles. Arrows indicate the direction of regulation from transcription 
factor to target gene. Edges show the proportion of genes shared by two 
regulons (colour for proportion in the larger regulon and thickness for 
proportion in the smaller regulon). (f) Gene network for four regulons with 
high specificity score in prenatal skin and/or SkO capillary arterioles (GATA2, 

GATA1, NFATC1, SOX7), and selected GATA2 target genes. The proportion of red 
in the ring around nodes indicates the proportion of gene ontology terms 
associated with angiogenesis in the gene set enrichment analysis performed 
with genes in the network. (g) Tree diagram showing network of interactions 
(NicheNet) linking the ligand VEGFA (red) to GATA2 as target gene (blue) 
through identified signalling mediators and transcriptional regulators (grey). 
Edges representing signalling interactions are coloured red and gene 
regulatory interactions in blue; edge thickness is proportional to the weight  
of the represented interaction. (h) Gating strategy used on iPSC-derived 
macrophages before co-culture (n = 3 batches) to isolate single live cells, 
analyse expression of macrophage markers (CD45, CD14, CD16, CD206) and 
exclude dendritic cells (CD1c). (i) Representative images of angiogenesis assay 
of endothelial cells without (top) and with macrophages (bottom), red arrows 
indicate disorganised network. Quantification of endothelial density in 2D 
cultures of iPSC-derived endothelial cells without (n = 6, grey) and with 
macrophages (n = 6; magenta) at 24, 48 and 72 h of culture from 2 independent 
differentiation batches. Data are mean ± SD and statistics generated with an 
unpaired t-test. For details on statistics and reproducibility, see Methods.
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