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Abstract

Recent PDP models have been shown to have great prom-
ise in contributing to the understanding of the mecha-
nisms which subserve language processing. In this paper
we address the specific question of how multiply embed-
ded sentences might be processed. It has been shown ex-
perimentally that comprehension of center-embedded
structures is poor relative to right-branching structures. It
also has been demonstrated that this effect can be attenu-
ated, such that the presence of semantically constrained
lexical items in center-embedded sentences improves
processing performance. This raises two questions:

(1) What is it about the processing mechanism that makes
center-embedded sentences relatively difficult?

(2) How are the effects of semantic bias accounted for?

Following an approach outlined in Elman (1990,
1991), we train a simple recurrent network in a prediction
task on various syntactic structures, including center-em-
bedded and right-branching sentences. As the results
show, the behavior of the network closely resembles the
pattern of expenimental data, both in yielding superior
performance in right-branching structures (compared
with center-embeddings), and in processing center-em-
beddings better when they involve semantically con-
strained lexical items. This suggests that the recurrent
network may provide insight into the locus of similar ef-
fects in humans.

The Problem

It has been known for many years that not all embedded
sentences are processed equally easily by listeners. Over
a variety of measures, the comprehension and general
processing of center-embedded structures has been found
to be worse than that of right-branching sentences
(Blaubergs & Braine, 1974; Blumenthal, 1966; Blumen-
thal & Boakes, 1967; Cairns, 1970; Fodor & Garrett,
1967, Larkin & Burns, 1977; Marks, 1968; Miller &
Isard, 1964; Schlesinger, 1968). Thus, in
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(1)(a) The woman saw the boy that heard the man that
left. (RB)

(b) The man the boy the woman saw heard left. (CE)

Sentence (1a), which involves a right-branching structure
(RB), is more readily processed than sentence (1b),
which involves a center-embedding (CE).

The are various reasons why these two classes of
sentences might differ with regard to intelligibility.
These include (a) adherence to canonical word order, (b)
difficulty of subject-verb matching in the matrix and em-
bedded clauses, (c) distance between subjects and verbs,
and (d) consistency of role assignments for nouns in both
main and subordinate clauses. While canonical SV-O
word order in (1a) is maintained through the matrix
clause, in (1b), word order diverges considerably. The
processor is faced with three adjacent nouns followed by
three adjacent verbs. In (1a), the processor must be able
to match the verb encountered in the first relative clause,
heard with the previous noun, boy. This means the pro-
cessor must “store” some notion of this noun until heard
is reached. Once past the verb, it goes on to repeat the
same action with the next relative clause.

In sentences such as (1b), these resolutions are not
made as easily. The processor is required to simulta-
neously keep track of three nouns before it reaches the
first verb, saw. It then must determine all the subject-
verb-object relationships from representations of items
occurring very early in the sentences. As each verbisen-
countered, the noun that serves as its subject was encoun-
tered progressively further back in the sentence, making
the distance between the last verb and its subject consid-
erable.

The difficulties of a subject-verb-object match in
structyres such as (1b) tax the storage capacity of the pro-
cessing mechanism by requiring the simultaneous activa-
tion of a number of items and over a great distance. This
is in contrast with sentences such as (1a) where the stor-
age of information must span over one intervening item
at most and whose S-V-O relationships can be deter-
mined one at a time. A difficulty that both sentences in
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(1) share is that nouns serving as subject in one clause in-
stantiate the object role in another. This shift in perspec-
tive is more difficult in (1b) because the nouns are adja-
cent, thereby increasing the chance of confusion.

A second finding of note is that, despite the prob-
lems posed by CE sentences, their comprehensibility
may be improved in the presence of semantic constraints.
Compare the following in (2)

(2)(a) The man the woman the boy saw heard left.
(b) The claim the horse he entered in the race at the
last minute was a ringer was absolutely false.

In (2b), the three subjects nouns create strong—and
different—semantic expectations about possible verbs
and objects. This semantic information might be expect-
ed to help the hearer more quickly resolve the various
subject and object lineups and as such aids in processing
(Bever, 1970; King and Just, 1991; Schlesinger, 1966;
Stolz, 1967). The verbs in (2a), on the other hand, pro-
vide no such help. All three nouns might plausibly be the
subject of all three verbs.

We believe that such phenomena may provide
valuable clues as to the nature of the processing mecha-
nisms which subserves language. Our goal in this work
has been to test a particular model of language process-
ing (the simple recurrent network) in order to see wheth-
er it might provide an explanation for these effects.

The Model

Elman (1990, 1991a) showed that simple recurrent
networks (SRNs) were able to develop internally struc-
tured representations which provide the basis for ab-
stract, productive, and systematic behavior as required in
syntactic processing. Such networks (shown in Figure 1)
were able to use cooccurrence statistics to develop repre-
sentations which captured type/token distinctions, lexi-
cal category distinctions, and aspects of grammatical
structure.

P ————
output units

, hidden units

| |
context units
C————= input units

The SRN model of language processing suggests
that the processing differences between center-embed-
ded and right-branching structures arise as a basic conse-
quence of the processing mechanism itself, rather than
from limitations in a memory system which is separate
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from (although used in) language processing. The state
machine metaphor embodied in a PDP model delincates
a more plausible role for the capacity of memory based
on the nature of the representations used in the process-
ing of a sentence. The PDP processor in the time course
of a sentence creates a representation which integrates
previous context with present input and can be thought of
as a state vector that reflects the processor’s current po-
sition in the sentence. As this vector is continually passed
through a “squashing” function, it has only finite preci-
sion. Finite precision and degradation over time are also
qualities of the human processor.

Using a PDP network, it will be shown how a pro-
cessor that employs this type of representation degrades,
and hence, is finitely precise in such a way that mimics
the pattern of processing center-embedded and right-
branching sentences by human processors. As the state
vector cannot hold information for an infinitely long pe-
riod of time, it is suggested that the representations used
by the human processor are captured best by the state
vector metaphor and are similarly limited.

As it has been experimentally demonstrated that the
processing of center-embedded sentences is aided by the
use of verbs that are semantically constrained, the simu-
lation results of the processing of these structures will
show that the architecture and mode of representation in
the network support this behavior as well. It can best be
understood by considering what types of information are
available to the processor and how they are stored. Dif-
ferent types of information interact in a PDP model and
influence the output such that it is the product of multiple
constraints. The fact that a model such as this uses infor-
mation other than “purely” syntactic information is noth-
ing new; many theories posit the interaction of this sort
as a cornerstone to processing and comprehension. What
a PDP model suggests is that with regard to the process-
ing of embedded sentences, the representations used are
ones where information present in the various levels of
embedding is simultaneously visible and allowed to in-
teract either to facilitate or encumber processing. Unlike
a stack-device metaphor for storage, representation in a
state vector is not encapsulated and unavailable. The
simulations will demonstrate how a PDP model with
these properties produces behavior similar to that of the
human processor and how viewing processing and repre-
sentation in this way accounts for behavioral patterns in
a straightforward way.

Simulations

For the purposes of the simulation, a small vocabulary
was created consisting of 26 words: 10 nouns, 14 verbs,
complementizer “that”, and an end-of-sentence marker,
“". Since one of the behaviors of interest is processing



sentences with semantic bias, some notion of meaning
must be represented. The network can never be semanti-
cally grounded in the sense that it knows what words
mean; semantic relatedness is captured in the co-occur-
rence restrictions of the verbs. Classes of nouns serving
as subjects and objects fall into classes of humans (NH),
animals (NA), documents (DOC), and inanimate objects
(INOBJ). The semantic structure of the artificial lan-
guage is shown below:

VERB POSSIBLE SUBJECTS  POSSIBLE OBJECTS
walk NH, NA —

live NH, NA —

wrile NH DOC

send NH DOC

love NH NH, NA

kick NH NH, NA

bite NA NH, NA

chase NA NH, NA

see NH, NA NH, NA, DOC, INOBJ
hear NH, NA NH, NA

advise NH NH

thank NH NH

own NH NA

tame NH NA

Table 1

The preceding words were constituents of an ar-
tificial grammar that generated both simple and complex
sentences. Sentence types were produced with the basic
pattern of NOUN-VERB-NOUN with verbs equifre-
quent and every instance of noun able to serve as head of
an object- or subject-relative. In this way many different
sentence types were generated including center-embed-
ded/object-relative, right-branching, and subject-relative
constructions. Sample sentences are shown in (3).
(3)(a) Wizard that advises dorothy tames lion.

(b) Dog that dorothy loves bites witch.

(c) Tiger chases lion that hears dorothy that kicks
witch that sees slippers.

(d) Tinman thanks wizard.

Simple sentences were produced by restricting
noun phrases to simple nouns and thus followed the strict
NOUN-VERB-NOUN pattern. In every case, semantic
restrictions were observed. All subject and object rela-
tives were constructed with the appropriate verbs. A sub-
ject relative for animal nouns was instantiated only by
those verbs for object- relatives which an animal subject
is possible. For object relatives, only verbs which speci-
fied the head noun as possible object type were used to
fill out that relative clause construction. Hence, sentenc-
es of the form shown in (4) did not occur.

(4)(a) *Wizard that bites dorothy tames lion,
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(b) *Dog that dorothy advises bites witch.

Using the back propagation learning (Rumelhart,
Hinton & Williams, 1986), an SRN of the form shown in
Figure 1 was trained in a prediction task on data sets
varying in composition. The network was presented with
sentences, a word at a ime. Each word was represented
with a 26-bit vector in which a single bit was turned on.
As a result, input representation contained no explicit in-
formation about the semantic or grammatical character-
istics of lexical items. This information had to be leamed
by the network based on cooccurrence facts.

An incremental training strategy was used, based
on the results reported in ElIman (1991b), which indicat-
ed that the successful induction of hierarchical grammat-
ical structures requires incremental learning. According-
ly, the network was trained on an initial data set of simple
(monoclausal) sentences; over time, the percentage of
complex sentences was increased until a final ratio of
75% complex/25% simple was achieved. The network
was trained on a total of 40,000 sentences, each of which
was presented 10 times.

Results

Network performance was evaluated by seeing how
closely the network predictions approximated the (em-
pirically derived) likelihood of occurrence of possible
next words, given the prior sentence context; optimal
performance would be achieved if the network learned
the conditional probability distributions. We measured
this by computing the mean cosine of the angle between
the output activation vectors and the empirical likelihood
vectors based on the final training data set. By the end
of training, the network was good at predicting the fol-
lowing word in a variety of sentence structures as well
as predicting the semantically appropriate verbs and ob-
jects for subjects and verbs respectively. The average co-
sine between the two sets of vectors was 0.8784. Perfect
performance would have been 1.0; i.e., the vectors would
have been parallel),

Test 1: center-embedded and right-branching
sentences
The network was tested on subsets of center-embedded
and right-branching sentences. Performance was evalu-
ated on 192 novel sentences, each containing two levels
of embedding as shown in (5).
(5)(a) Tinman hears tiger that sees witch that tames lion.
(RB)
(b) Witch that tiger that tinman hears sees tames lion.
(CE)
Both the likelihood and network output vectors
were computed from these 192 test sentences. A four-bit
vector that gave the distribution of outputs and likeli-



hoods for each of the categories NOUN, VERB, THAT,
and S (end of sentence) was calculated. The mean cosine
of center-embedded structures was 0.7137. The mean co-
sine for right-branching constructions was 0.8484. We
can conclude from this that, given the prediction task, the
network is more successful at right-branching structures
than center-embedded ones.

Discussion

If we equate the network’s error as measured by the co-

sine of the output and likelihood vector with a general
processing difficulty then we have results that closely
model the human data. It is not the case that center-em-
bedded sentences are impossible; they are simply more
difficult relative to other constructions. Another aspect
of the model’s behavior is reminiscent of the human data:
the network’s performance decreases drastically at three
embeddings which is the limit to comprehension reported
in the literature as well.

The network’s performance can be understood if we
consider the way it represents grammatical structure at the
hidden layer. As each new word is presented, the hidden
units receive input from both the current word and the pre-
vious hidden unit state. Thus, a given word’s internal rep-
resentation always reflects the prior context. Among other
things, this context indicates where, in the space of pos-
sible grammatical sentence trajectories, the processor is;
this context also indicates what may be expected before a
sentence-final state is reached. For example, if the current
word is hears, and the previous hidden unit state reflects
the network having seen dog, for instance, then the inter-
nal state will be such that the network will not predict the
end of the sentence. The grammatical structure it has in-
ferred demands that the object of the verb be present be-
fore a final state can be achieved.

The representation of relative position in a sentence
makes certain demands on the processor regardless of the
structure being processed. However, processing structure
type also makes its own demands on the representational
capacity of the processor. The difference in processing of
center-embedded vs. right-branching sentences very
much depends on the amount of information that must be
stored for further processing in the sentence. As each
THAT clause is introduced in center-embedded sentenc-
es, the information about the head noun as well as its po-
sition relative to the matrix sentence must be represented
and stored until the verb of its clause is found. Consider
(6):

(6) Dog that dorothy that tiger chases loves bites witch.

After it has seen tiger, the network must “remem-
ber”: (1) that it has seen three nouns, two animals, one hu-
man; (2) the fact that the human noun came between the
two animals; (3) that the verbs that “go with” these nouns
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will be of a centain class; and (4) that it must find three
verbs in order for the sentence to complete. This places
heavy demands on a processor whose actions are execut-
ed via a state vector representation.

In right-branching constructions, the representa-
tional demands are not as extreme. Consider 7.
(7) Tiger chases dorothy that loves dog that bites witch.

The initial noun that the network encounters is fol-
lowed immediately by a verb. After seeing this verb, the
network can forget about the initial noun because its verb
has been found. For the verb, the network need only store
information about an appropriate object in generating its
predictions. As it encounters the object of the matrix sen-
tence, the processor expects that the sentence be resolved
or that the previous noun be the head of another relative
clause. In the case of right-branching structures, the pro-
cessor need only keep information about one noun after
encountering the relative pronoun. Thus, there is less in-
formation to be stored and over a much shorter distance.

This disparity is clear in the behavior of the net-
work. With right-branching constructions the state vec-
tor need only contain representations of two previous
words as well as the general position in the sentence. No
level of embedding need be stored, because no resolution
crucially depends on it. In contrast, with center-embed-
ded sentences, the state vector must reflect sentence po-
sition and current level of embedding within the sen-
tence. Furthermore, it must also keep information about
the previously introduced nouns without having the
verbs to advance it into the next state. This “state of sus-
pension” imposes a significant tax on the representation-
al capacity of the hidden unit layer, and approaches its
limits of precision.

Researchers have often cited the limitations of
working memory to explain certain processing biases of
the human parsing mechanism, and specifically, to ex-
plain the difficulty in processing center-embedded sen-
tences. In that view, working memory is seen as distinct
from the mechanism which contains the grammatical in-
formation. The current account provides a somewhat dif-
ferent way of thinking about the asymmetry in process-
ing center-embedded vs. right-branching structures. The
account also appeals to the notion of representational
storage capacity. However, the representational limita-
tions are seen as intrinsic to the grammatical processor it-
self, rather than arising from a separate working system.
If we view the process of sentence parsing/comprehen-
sion as movement from one state to another as in a con-
nectionist network, then memory limitations are not an
arbitrary number, but due to the nature of representations
in human memory in sentence processing. This capacity
specifies that a state like representation can only hold so
much information over a certain distance. A reduction in
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the amount or information or in the distance Lo be stored
would facilitate processing, as in right-branching struc-
tures.

Test 2: Semantically biased and unbiased struc-
tures

The other major finding of interest to us was the fact that
not all center-embedded sentences are equally difficult to
process. We thus proceeded to test the network on differ-
ent types of center-embedded sentences. Two sets of
center-embedded sentences were created: one set of 192
sentences with semantically biased verbs, and another set
of 192 sentences with semantically unbiased verbs. Bias
in this case means there is some information in the verb
that uniquely links it with either its subject or object or
both. For instance, in sentence (8a) each verb encoun-
tered can only be resolved with one noun as subject
whereas in (8b), any subject is compatible with any verb.

(8)(a) Dog that dorothy that bear bites tames chases tiger.
(b) Dog that dorothy that bear sees hears walks.

The network’s outputs in response to the two sets of
192 sentences were collected. Likelihood vectors were
calculated based on the two sets of center-embedded sen-
tences combined. Comparisons were made between bi-
ased and unbiased sentences with one embedding, and
then with two levels of embedding. The results were as
predicted. For sentences containing one level of embed-
ding, the mean cosine between the activation and likeli-
hood vectors for unbiased sentences was 0.5719; the
mean cosine for the sentences with semantic biases was
0.6311. For sentences with two levels of embedding, the
overall performance decreased but the same basic pattern
remained. In the unbiased condition the mean cosine

was 0.5385 and in the biased condition it was 0.5719!. It
can be concluded that semantic information which
uniquely linked a subject with its verb in center-embed-
ded sentences aided the network.

Discussion

We see again that the network’s performance parallels
that of human listeners. The network benefits from the
semantic constraints associated with words in order to
represent embedded structures more clearly. The seman-
tic information provided by the verb helps in two ways.
First, it helps the network pinpoint the noun which serves
as its subject by incompatibility of the other nouns in

LToa large extent, the low values here are only an arti-
fact of the measure used. The likelihood vectors are cal-
culated specific to a data set. The test data set only
contains one structure of the many that the network has
mastered, and therefore skews the likelihood vectors in a
way that makes the network’s performance appear low,
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storage. Second, because this resolution can be made
with higher probability, it puts the network in a more pre-
cise stale of expectation for the next word. As the net-
work goes through the sentence, word by word, there
will be various points where it must be able to link words
often separated a great distance with their conceptual de-
pendencies.

As soon as it encounters the first verb it must be
able to determine which noun is its subject and which
noun served as its object. The resources of the network
are heavily taxed at this point, because it has information
about three nouns that it must keep active at some level.
As it encounters the first verb, it is able to make a rela-
tively easy maich. As there no words intervening be-
tween the last mentioned noun and the first verb, this will
be the easiest subject-verb resolution the network has to
make. It is at this point where the network might be aided
by the nature of the verb. If the verb provides some infor-
mation by virtue of its co-occurrence restrictions, and to
a lesser extent its argument structure, the next subject-
verb-object resolution might be greatly aided. That is, if
the first verb encounters is compatible with only the last
mentioned noun, the resolution can be made quickly and
puts the network in a state of awaiting the next word with
stronger expectations.

When the next verb is encountered, the network is
forced to make another subject-verb resolution. If the na-
ture of this second verb is such that it is compatible only
with the intermediary noun and not the first or last men-
tioned nouns, then the network will benefit greatly from
this information. The noun instantiating the subject role
of this verb will be determined with less chance of con-
fusion with the other two nouns. The network has heavy
representational demands at this point because the poten-
tial subjects of the current verb have occurred quite a
long time ago and chance of confusion and intermixing
of information are high. Thus, information that would
clearly delineate a match will be used by the network,
and again, will put the network in a more precise state of
readiness for the next word.

As it encounters the last verb, the network will be
aided by stronger expectations about this verb. Also if
this verb is compatible with only the first noun, then the
network will be able to match it with its noun, which at
this point has occurred many words previous. Semanti-
cally biased words aids in putting the processor in a more
precise state of readiness. A precise state in this case
means that in predicting the word, the activations for in-
compatible verbs are lower and the activations for appro-
priate verbs are higher. For example, consider (9)

(9) Dog that tinman that bear chases tames bites witch.

After the network has seen the verb chases it must
predict a verb that is compatible with a human subject. In



general, the network is pretty good at this. It strongly ac-
tivates human compatible verbs that humans can do com-
pared to the very low activations that are present for bits
corresponding to verbs which require animal subjects.
Where one can see the effect of type of verb is in this pat-
tern of activation. When the network is presented with a
verb that has definite subject specifications relative to the
other words, the activations for appropriate verb for the
next word are higher and the activations for verbs that are
incompatible, and would constitute mistakes, are lower.

If we consider the experimental human data in pro-
cessing these same type of sentences, we can compare
the network’s decrease in error and activation of appro-
priate expectations with a general measure of compre-
hension. The pattern is basically the same. With the in-
clusion of semantic cues, error goes down and appropri-
ate activation increases. This would find its correlate in
better comprehension in human subjects.

We do not claim that poor comprehension in human
subjects is solely due to imprecise predictions, and of
course we recognize that the prediction task captures
only a small part of natural language processing. Al-
though not the only factor in sentence comprehension,
there is evidence that comprehension is in part driven by
the ability to anticipate (e.g., Grosjean, 198; Marslen-
Wilson & Tyler, 1980). The present findings illustrate
general processing characteristics of our PDP model, and
we believe similar behaviors would be observed in a
comprehension task as well.

The network, its architecture, and its representa-
tions suggest similar properties in the human processing
mechanism. That the network uses semantic information
in what would be considered syntactic parsing, is sugges-
tive of a parallel, interactive system. Additionally, the
nature of the interaction of semantic constraints points to
a system that allows the simultaneous availability of all
types of pertinent information up to that point in the sen-
tence. In other words, information is also available not
only across semantic and syntactic modules, insofar as
they exist, but also across levels of embedding.

The network represents what it has seen in a sen-
tence by a state vector. Within this vector, the network
has “stored” information about properties of nouns and
verbs as well as the number of embeddings. Contrary to
a stack-like mechanism, information is simultaneously
available from all levels. There is no encapsulation of
information. Upon encountering a verb, the fact that the
network has information about all the previous nouns
from different levels of embedding and co-occurrence
restrictions of the verb facilitates in the processing of that
word and subsequent words. It is suggested that the hu-
man processing mechanism has the same properties in
order for there to be better comprehension with semanti-

cally biased verbs. Any model which designates a tradi-
tional stack as its primary storage device is hard pressed
to account for the processing difference observed in the
experimental data.
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