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Abstract

Scalable approaches to Dubins vehicle navigation problems under uncertainty

by

Alexey Munishkin

The environment around an autonomously navigated vehicle can have an unpredictable

number of other vehicles and stationary or moving obstacles that may or may not have

harmful intentions. The safe navigation of the autonomous vehicle in the presence of

other vehicles and obstacles can be formulated as a stochastic optimal control problem.

While in theory one can write down the corresponding Hamilton-Jacobi-Bellman (HJB)

equation for any state space control problem, practically solving the equation is com-

putationally infeasible when the state space is large. Moreover, once it is accounted for

a time varying number of obstacles and other vehicles, and the associated time varying

dimension of the state space, it is clear that new approaches to the design of vehicle

navigation have to be considered. This work addresses the problem of autonomous

navigation by a scalable integration of stochastic optimal control solutions to problems

such as vehicle-to-vehicle, vehicle-to-obstacle, or vehicle-to-goal problems. The scal-

able navigation means that the autonomous vehicle or team of vehicles can navigate

toward their goals while coping with a large number of other vehicles, or obstacles in

their proximity. The work is based on the Dubins nonholonomic vehicle model and is

illustrated by multiple scenarios in simulations and with real robots.

xv



Acknowledgments

I would like to thank everyone who has ever helped me. My friends and family, es-

pecially my mother and dear friends Marco Carmona, Samuel Mansfield and Jeremy

Coupe. Especially to my mentor Dejan Milutinović and co-authors David Casbeer and
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Chapter 1

Introduction

1.1 Motivation

With the increased use of mobile robots and autonomous vehicles, there is a press-

ing need to study control algorithms that improve the autonomous capabilities of these

vehicles. In the context of this work that means (1) navigating while taking into ac-

count uncertainty, in the trajectories of other vehicles and obstacles, (2) performing

maneuvers to avoid ”unsafe” configurations in which damage from another vehicle or

obstacle could occur, (3) reaching ”beneficial” or end goal configurations in time opti-

mal (or near optimal) manner, and (4) coping with dynamic multi-agent environments

where the number of agents varies in time. For improvement of autonomous capabili-

ties of the multi-agent vehicle scenario discussed above, the following two questions
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(Q1) How to navigate our agent in the presence of a moving target or an obstacle under

uncertainty?

(Q2) How can we compose the navigation solutions from (Q1) that works in a dy-

namic multi-agent environment full of time-varying number of obstacles and

other agents?

The questions (Q1) and (Q2) serve as a basis for our study of safe, scalable navi-

gation algorithms for a Dubin vehicle [47], which is a non-holonomic kinematic model

that can be used to approximate motions of cars, ships and airplanes. Since we know

the kinematics and goal for the navigation of our vehicle, but we don’t know the intent

or motion of other vehicles and obstacles around our vehicle, we use stochastic optimal

control to design feedback control navigation strategies to account for these uncertain-

ties. The safety aspect of the design is to account for the implementations with real

vehicles or robots and avoid collisions that can result in their damage. Scalable aspect

of the navigation algorithms is a final and perhaps most important factor for navigation

in multi-agent systems. Scalable algorithms that are able to handle changing multi-

agent enviroment with time varying number of agents and possibly new other features

in an autonomous or semi-autonomous multi-agent environment are the main driving

forces behind the novelty and potential applications of this work. To demonstrate fur-

ther the potential impact of this work, we will also deploy our algorithms on real robots

that run in real-time executing the safe and scalable navigation algorithms.
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1.2 Thesis Contributions

The research presented in this thesis addresses the problem of finding control solu-

tions to nonlinear time-varying stochastic differential equation systems [129, 111] for

unmanned fixed-wing aerial vehicles (UAVs). UAVs are used in various applications

in agriculture, environmental monitoring, surveillance, and in new coming applications

such as package delivery, wildfire monitoring and prevention, and transportation ser-

vices [13].

We use stochastic optimal control solution approaches for one-on-one solutions of

vehicle-to-vehicle, vehicle-to-obstacle, or vehicle-to-goal problems. These one-on-one

solutions are composed in various ways using the Markov inequality rule for switching

among optimal one-on-one solutions, or creating an approximate value function for the

overall stochastic system. This composed solution using one-on-one solutions is scal-

able so that it can cope with a large number of other vehicles, or obstacles in proximity

of our controlled vehicle. We have also implemented these scalable control solutions

on real-time robotic systems.

1.3 Outline

This dissertation is organized as follows. Chapter 2 summarizes the state of avail-

able literature. Chapter 3 introduces some of the preliminary modeling, mathematical
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concepts, and tools used in this dissertation. In doing so, we also present a road map

of the remainder of the dissertation. Chapters 4- 11 consist of the appended papers de-

tailing research results. Brief summaries of each of these papers appear below. Chapter

12 concludes the dissertation with a summary of discussion and directions for future

research.

• Chapter 4: Stochastic Optimal Control Navigation with the Avoidance of

Unsafe Configurations

Long-time planning horizons are required to safely navigate one vehicle in the

presence of another, possibly non-cooperative vehicle. They give rise to com-

putational issues preventing the real-time implementation of safe navigation al-

gorithms. In this paper, we consider two nonholonomic vehicles, of which one

(blue) has the goal to enter the “tail” of the other (red). Neither the goal nor the

navigation strategy of the red vehicle is known by the blue vehicle. To anticipate

this uncertainty, the blue vehicle uses infinite horizon stochastic optimal control.

Using the stochastic optimal control and backward Kolmogorov equation, the

blue is navigated to avoid unsafe configurations from which the red can enter the

“tail” of the blue and gain advantage over it. Our results are illustrated by numer-

ical simulations and the feasibility of the control for the real-time implementation

is tested with small-scale robot experiments.
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• Chapter 5: Safe Navigation with Collision Avoidance of a Brownian Motion

Obstacle

This paper develops a control that combines deterministic and stochastic optimal

control solutions to the problem of safe navigation around a spherical obstacle

in order to reach a waypoint location. The solution for navigation towards the

waypoint is based on the deterministic minimum time optimal control. Since the

intent of the obstacle is unknown to the navigating vehicle, the vehicle antici-

pates this uncertainty and uses a stochastic optimal control for navigation around

the obstacle. The two navigation solutions are combined based on their value

functions. Results are illustrated by numerical simulations.

• Chapter 6: Time Efficient Inspection of Ground Vehicles by a UAV Team

Using a Markov Inequality Based Rule

We present a control design for N unmanned aerial vehicles (UAVs) tasked with a

time efficient inspection of M ground moving vehicles. The navigation and intent

of each ground vehicle are unknown, therefore, the uncertainty of its navigation

has to be anticipated in the navigation of each UAV. We use the minimum time

stochastic optimal control to navigate each UAV towards the inspection of ground

vehicles. Based on this control, we formulate assignments of ground vehicles to

be inspected by UAVs as an optimization problem to inspect all ground vehicles

in the minimum expected time. Accounting for ground vehicle uncertain trajec-

5



tories, we update the optimal assignment by a Markov inequality rule. The rule

prevents the possibility of indefinite updating of assignments without finishing

the inspection of all vehicles. On the other hand, it updates an assignment if it

leads to a statistically significant improvement of the expected time of inspection.

The presented approach is illustrated by a numerical example.

• Chapter 7: Scalable Markov Chain Approximation for a Safe Intercept Nav-

igation in the Presence of Multiple Vehicles

This paper studies a safe intercept navigation which accounts for the uncertainty

of other vehicles’ trajectories, avoids collisions and any other positions in which

vehicle safety is compromised. Since the number of vehicles can vary with time,

it is important that the navigation strategy can quickly adjust to the current num-

ber of vehicles, i.e, that it scales well with the number of vehicles.

The scalable strategy is based on a stochastic optimal control problem formula-

tion of safe navigation in the presence of a single vehicle, denoted as the one-on-

one vehicle problem. It is shown that safe navigation in the presence of multiple

vehicles can be solved exactly as an auxiliary Markov decision problem. This

allows us to approximate the solution based on the one-on-one vehicle optimal

control solution and achieve scalable navigation. Our work is illustrated by a

numerical example of safely navigating a vehicle in the presence of four other

vehicles and by a robot experiment.
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• Chapter 8: Stochastic Optimal Control Approach to Navigation with Multi-

Obstacle Avoidance

Collision avoidance for unmanned aerial vehicles (UAVs) and mobile robots is a

fundamental property for these systems to be considered safe, i.e. collision-free

while they navigate towards a waypoint. Modeling these systems as a Dubins

vehicle navigating in the presence of many potentially unknown moving circu-

lar obstacles is considered in this work. Since neither the intent or motion of

these unknown obstacles is known, we develop a scalable navigation strategy by

combining the value function associated with the stochastic shortest path opti-

mal control problem to reaching a waypoint in minimum time and reaching a

safe configuration from each obstacle in minimum time. Results are illustrated

though numerical simulations.

• Chapter 9: Min-Max Time Efficient Inspection of Ground Vehicles by a UAV

Team

We present a control design for N unmanned aerial vehicles (UAVs) tasked with

an inspection of M ground moving vehicles. Though the location of each ground

vehicle is known to each UAV, the navigation and intent of each ground vehi-

cle are unknown, therefore, this uncertainty has to be anticipated in each UAV’s

navigation. We use the minimum time stochastic optimal control to navigate

each UAV towards the inspection of each ground vehicle. Based on this con-
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trol, we formulate assignments of ground vehicles to be inspected by UAVs as an

optimization problem to inspect all ground vehicles in minimum expected time.

Accounting for ground vehicle uncertain trajectories, we update the optimal as-

signment by a Markov inequality rule. The rule prevents the possibility of in-

definite updating of assignments without finishing the inspection of all vehicles.

On the other hand, it updates an assignment if it leads to a statistically signifi-

cant improvement of the inspection’s expected time. The presented approach is

illustrated with numerical examples.

• Chapter 10: Scalable Navigation for Tracking a Cooperative Unpredictably

Moving Target in an Urban Environment

Target tracking in urban environments using a fixed-wing unmanned aerial vehi-

cle (UAV) is challenging due to the line of sight obstructions which are caused

by buildings. Even with a cooperative target that sends out its location to the

UAV, the vehicle may inevitably lose the line of sight due to its limited turn-

ing rate. Parts of the UAV operating space in which the UAV loses the line of

sight are denoted in this paper as shadows. The shadows have complex shapes

and move as the target changes its relative position to buildings. Avoiding the

shadows increases the observation time while tracking the cooperative target. We

present here a scalable feedback control approach for target tracking with shadow

avoidance, which is based on a stochastic optimal feedback control solution. Our
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results are illustrated by numerical simulations.

• Chapter 11: A Safe Stochastic Optimal Feedback Control Approach to Au-

tonomous Navigation with a Large Number of Obstacles

This paper develops a novel approach to safe and scalable stochastic optimal

control for a short-time navigation of an unmanned fixed-wing aerial vehicle in

the presence of multiple moving obstacles under uncertainty. We first solve a

stochastic optimal control problem for the vehicle navigation in the presence of a

single randomly moving obstacle. We show that the safety of this controller can

be analyzed based on the concept of barrier function and that it has an exact prob-

abilistic measure for obstacle avoidance. In the presence of multiple obstacles,

we exploit this single obstacle stochastic optimal control solution in a multi-step

optimization method. The proposed method allows the navigation that can han-

dle a large number of obstacles and computes an indicator when the solution to

navigate around obstacles is not found.

9



Chapter 2

Related works

The problem of safe navigation can be seen as the problem of collision-free navi-

gation in a cluttered environment [77], with uncertainty, we use stochastic processes in

the description of moving obstacles and vehicles. Alternative approaches to the prob-

lem are to use results of game theory. In addition to related game theory literature we

will also review barrier functions, feedback-based navigation, and obstacle avoidance.

Game Theory: The study of navigation against threats created by other vehicles is

tightly interwoven with the development of game theory [82] and the two-target game

problem [15], [63, 64]. The game includes two vehicles that navigate around each other

until one of the vehicles, the winner of the game, enters its target set. A stochastic vari-

ant of such two-target games is considered in [192] and [193]. These and other earlier
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theoretical works have been surveyed in [69]. Other lines of work have been focused on

real world implementations [50, 84, 115, 181]. Work on extending or solving N-target

vehicles has been done in [60, 183].

In these earlier works on two-targets, the two vehicles are opponents and the tar-

get sets are placed at position from which the winner can harm the other vehicle. The

safe navigation inspired by the game theory would be based on the assumption that

every vehicle in the surrounding is considered as an adversary. This is the worst case

scenario, and it would result in conservative navigation strategies, since in many appli-

cation the other vehicles are not opponents. For this reason we model the motion of

other vehicles as unpredictable and propose a stochastic approach to safe navigation.

Safety is addressed by a predefined or computed avoidance set. Computation of the

avoidance set is closely related to computations of reachable and unreachable sets as-

sociated with games of kind [81]. In the deterministic problems the boundaries between

reachable and unreachable state space regions are sharp and avoidance set can also be

computed using the deterministic optimal control approach [79]. However, in stochas-

tic problems, reachable and unreachable regions are defined in terms of probability and

without sharp boundaries [171].

Extending the game theory or optimal control solutions to multiple agents is diffi-

cult because of the so-called curse-of-dimensionality [138], due to the number of agents

and associated number or variables necessary to describe their positions. In the discrete
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domain, there has been extensive work in solving game theory problems on graphs [2],

which are traditionally called cops and robbers, and in [180] a scalable solution of the

game was proposed. For the continuous domain, [143] provides a framework for com-

bining the kinematic models of various pursuing agents for a real-time implementation

of a chase and search problem. In [45], a hierarchical game extension with a finite time

look ahead to the stochastic setting has been proposed, while in [54], a game theory

problem is partitioned into smaller problems that are then solved separately, and the

solution of the original problem is determined as the lower bound of the smaller prob-

lems. Extending two-target game theoretic pursuit-evader problem has been done in

[60, 183], and some work in the stochastic setting is in [104]. Most of these works

didn’t consider the two target problem in a multi-vehicle scenario and recent work in

N-target problem considers the multi-vehicle setting in a game theoretic setting and us-

ing machine learning and or reinforcement learning approaches [177].

Lyapunov Barrier Functions: The study of safe navigation is typically investigated us-

ing barrier functions [22, 141, 186, 131]. These barrier functions are constructed as

analytical Lyapunov functions [186]. The main idea behind barrier functions is that the

vehicle’s safety is guaranteed so long as the vehicle state-space variables do not enter

any unsafe regions in the state-space domain. Extending to the stochastic case was done

in [141] where one needs to take the expectation of the Lyapunov barrier function. In

12



the stochastic setting it can only be shown that in expectation or with certain proba-

bility that the vehicle remains safe in certain regions of the state-space. Since barrier

functions are related to Lyapunov functions, safety has also been considered in the con-

text of using vectored Lyapunov functions [99] or control vectored Lyapunov functions

[127]. Our work uses stochastic optimal control which when solved via dynamic pro-

gramming gives so-called value function [94, 57]. The value function provides many

similar properties to Lyapunov barrier functions through so-called Viscosity solutions

[56] such as uniqueness and existence of a solution.

Feedback-based navigation: Non path-planning, i.e., feedback-based navigations are

frequently found in a line of work called sense and avoid [13]. They also appear in the

context of pursuit-evasion games [81]. Scalable algorithms for multi-pursuers/multi-

evader games have been considered in [54, 182, 62, 102]. Other non game theory

feedback-based approaches use reachable sets [122, 1, 170], potential fields [178, 70],

harmonic functions [112], Lyapunov functions [87], machine learning or reinforcement

learning [53, 103] and others [191, 72, 200]. Our work can be considered as another

example of feedback-based navigation.

Obstacle avoidance: Obstacle avoidance is encountered in game theory applications

[190, 52], sense and avoid applications [13], and path planning applications [100].
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Many feedback-based navigation methods such as barrier functions [30], reachable sets

[1, 122], potential functions [178, 110], machine learning or reinforcement learning

[199, 132], and some others [184, 200, 68] are used in the design of obstacle avoidance

controllers. Since our work can be considered as another example of feedback-based

navigation, it is another example of feedback-based approach to obstacle avoidance.

14



Chapter 3

Technical Preliminaries

This chapter briefly describes mathematical concepts that we use in Chapters 4-9.

With this we highlight the complexity of solving the optimal control problems for re-

alistic UAV scenarios although a well formulated optimal control solution formulation

exists. Consequently this chapter illustrates the need for the solution approaches devel-

oped in this thesis.

Vehicle and Obstacle Models: In this work we study the navigation of a Dubins vehicle

which has the following kinematics model

dx = vcosθdt (3.1)

dy = vsinθdt (3.2)

dθ = udt (3.3)
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where x and y are the vehicle position coordinates and u is the control variable. u ∈

[−umax,umax], umax < ∞. The control variable u is the turning heading rate and is the

only variable we control since the vehicle forward velocity v > 0 is constant. In the

expression above t and d denote infinitesimally small increments of variables. This way

of writing differential equations is common in the literature on stochastic differential

equations [111, 129].

For other Dubins vehicles in the environment for which we do not know intent for

their navigation we assume a stochastic model, which is

dx = vcosθdt (3.4)

dy = vsinθdt (3.5)

dθ = σRdwR (3.6)

in which the first two expressions are the same as (3.1) and (3.2) while the third one

describes the heading angle kinematics using a stochastic process. In expression (3.3)

dwR is unit intensity Wiener process and σR > 0 is a scaling factor. According to the

model (3.4)-(3.6), for an infinitesimal time-step dt, the increment of the heading angle

is θ(t + dt)− θ(t) and has a normal distribution with mean zero and variance σ2
Rdt.

Therefore, the parameter σR describes the agility of the vehicle’s change in the heading

angle.

In the case of obstacles we always assume the obstacles are non-stationary. To

account for the lack of knowledge about obstacle motion, the motion of each obstacle
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is modeled as a 2D Brownian motion

dxo = σodwx (3.7)

dyo = σodwy (3.8)

where the obstacle position is given by xo, yo, and dwx and dwy denote increments of

two mutually independent unit intensity Wiener processes, one along x- and the other

along y-direction. In our model for obstacles, the positive scaling parameter σo > 0 is

identical for all obstacles.

Note on Brockett’s nonholonomic controllability condition: Our vehicle model (3.1)-

(3.3) is a kinematics model of nonholonomic vehicle and is subject to Brockett’s non-

holonomic controllability condition [118]. In addition our differential system mod-

els are stochastic and have interesting properties associated with them [56, 111, 129].

Brockett also took this into account [33] and noted that discontinuous piece-wise para-

metric controls will stabilize stochastic systems. Controlled Markov processes include

the set of discontinuous piece-wise parametric controls in feedback fashion to grantee

stability and controllability of stochastic systems [56].

Controlled Markov Processes: This section is an abbreviated overview of controlled

Markov processes, a more mathematical rigorous treatment is covered in Chapters 3

and 4 in [56]. In this work we consider Itô stochastic differential equations [129] in the
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form

dx = f (s,x(s),u(s))ds+σdw(s) (3.9)

where state-space is x ∈ Rn, positive time is s ∈ R+, and control is u ∈ Rm. The

nonlinear function f : R+×Rn×Rm → Rn and parameter σ ∈ Rn satisfy the con-

ditions for uniqueness and existence for stochastic differential equations [56]. Function

f can also be a multivariate function which is composed of multiple fi where each

fi : R+×Rn→ Rn can be unique for each controller ui.

The minimum expected cost function is

J = Etx

{
ψ(x(t1))+

∫ t1

t
L(s,x(s),u(s))ds

}
(3.10)

where L is the so-called running cost function and ψ is so-called terminal cost function.

The time horizon in general is finite, however for infinite horizon problems t1→ ∞, a

discounting function e−β (s) is needed and multiplied to L in order to guarantee solution

convergence and obtain stochastic analogs of uniqueness and existence [46, 129, 144].

The optimal control u∗ to cost function (3.10) can be computed as the steady state

of the Hamilton-Jacobi-Bellman (HJB) partial differential equation

−∂V
∂ t

= min
u
{AuV +L(t,x,u)} (3.11)

where V is the so-called value function with boundary conditions

V (x(t1)) = ψ(x(t1)) (3.12)
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and differential operator

AuV =
∂V
∂ t

+
1
2

n

∑
i, j=1

ai, j(t,x,u(t,x))
∂ 2V

∂xi∂x j
+

m

∑
i=1

fi(t,x,u(t,x))
∂V
∂xi

(3.13)

where xi,x j ∈ R is one variable dimension from state space x ∈ Rn. In order to insure

that Au defines a Markov process, discontinuous Markov policies u cannot be omitted.

Dynamic programming: This section continues from the previous section and covers

how to solve the HJB equation in the finite horizon case. Additional information about

dynamic programming in relation to the optimal control of the HJB equation (3.11) is

done with the Verification Theorem in Chapter 3 in [56].

The optimal control u∗ to the HJB equation (3.11) can be computed using a locally

consistent Markov chain discretization method [94]. The discretization yields a Markov

chain with control dependent transition probabilities while the problem of solving the

HJB equation is converted into a discrete dynamic programming problem which can

solved using the so-called value iterations [175]. The result of the computation is a

discrete approximation of the value function V h in (3.11) and approximation of the

optimal control u∗h, where both of them are in the form of a n-dimensional lookup

table in state-space x ∈ Rn. The superscript h indicates that the value function and

control are computed for the discretized problem.

There exists many discretization methods and we will focus on the so-called upwind
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derivative approximation

∂V
∂xi
≈ b+

∆xi

(
V h(xh + xh

i )−V h(xh)
)
− b−

∆xi

(
V h(xh)−V h(xh− xh

i )
)

(3.14)

∂ 2V
∂ (xi)2 ≈

σ2

2(∆ai, j)2

(
V h(xh + xh

i )−V h(xh)
)
− σ2

2(∆ai, j)2

(
V h(xh)−V h(xh− xh

i )
)

(3.15)

where the ∆ denotes a positive discrete step size for corresponding variable and

b+ = max{0, f (s,x(s),u(s))} (3.16)

b− = max{0,− f (s,x(s),u(s))} (3.17)

We obtain the dynamic programming expression

V h(x) = min
u

{
∆th(x,u)+ ∑

∆x∈N
p±(x,u)V h(x+∆x)

}
(3.18)

where

p±(x,u) = ∆th(x,u)
(

b±

∆x
+

σ

2(∆x)2

)
(3.19)

are the discrete Markov-chain transition probabilities p±(x,u) from the point x to its

neighboring points N denoted by x±∆x. The implicit time interpolation interval [94]

is given by

∆th(x,u) = 1

/(
∑
∆x

|b±|
∆x

+
σ2

(∆x)2

)
(3.20)

where | · | denotes absolute value.

Expression (3.18) is the discrete version of (3.11) and the discrete approximation V h

of the value function V can be solved numerically using value iterations [175] starting
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from an initial guess for the V h values. Our discrete solution V h is solved on a discrete

bounded state-space domain X ⊂ Rn.

The dynamic programming expression (3.18) is guaranteed to converge toward the

continuous HJB expression (3.11) as the step size ∆→ 0 using a Viscosity solution

approach given in Chapter 13 in [94]. The dynamic programming expression (3.18) is

guaranteed to give a steady-state optimal feedback control uh∗ and corresponding value

function V h solution due to Markov-chain discretization method given by the Markov-

chain transition probabilities (3.19) which is discussed in detail in Chapter 14, Section

3 in [175].
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Chapter 4

Stochastic Optimal Control Navigation

with the Avoidance of Unsafe

Configurations

This chapter is a reprint of the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Stochastic

optimal control navigation with the avoidance of unsafe configurations.” In 2016

international conference on unmanned aircraft systems (ICUAS), pp. 211-218.

IEEE, 2016.

22



4.1 Introduction

With the increased use of mobile robots and autonomous vehicles, there is a press-

ing need to study control algorithms that improve the autonomous capabilities of these

vehicles. In the context of this paper, the improvement means (a) navigating while

taking into account uncertainty in the trajectories of other vehicles; (b) performing ma-

neuvers to avoid unsafe configurations in which damage from another vehicle could

occur; or, (c) reaching “beneficial” configurations, e.g., those states in which the vehi-

cle has an advantage over another vehicle. While it is likely that at least one of these

three characteristics appears in practical applications, all three characteristics exist in

the scenario presented in this paper.

We consider a scenario with two vehicles in which the faster blue (B) has to enter

the “tail” sector of the slower red (R). This relative position of B with respect to R is

considered advantageous. The R’s navigation and intent are unknown to B. However,

R may have the same intent as B. If this is the case, it would be best if B can avoid any

configuration from which R can achieve this potential goal.

A problem in which two vehicles have the intent to reach their respective target

sets gives rise to a two-target pursuit-evasion differential game analyzed in [63, 64]

with deterministic vehicles and the “capture” condition that the winner has to point to

the opponent within a specific radius, e.g. range of the weapon. A stochastic variant

of the problem has been considered in [192, 193]. These and other earlier theoretical
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works have been surveyed in [69]. Another line of work has been focused more on

applications [50, 181]. Observing recurrent computational problems associated with

long-planning horizons, which are essential for making good (non-greedy) maneuver

choices during air combat, in [115] the authors proposed an approximate dynamic pro-

gramming method (ADP) on a finite horizon exploiting a variety of techniques, in-

cluding “extensive feature development, trajectory sampling, reward shaping, and an

improved policy extraction technique using rollout” and a neural net classifier to model

adversary aircraft maneuvering policy.

The contribution of this paper is that it uses infinite horizon stochastic optimal con-

trol to compute a navigation strategy for B to (1) enter the “tail” of R while it (2)

anticipates the uncertainty of R’s trajectory and (3) avoids unsafe configurations from

which R may be able to enter the B’s tail. To identify unsafe configurations, stochastic

optimal control for R to enter the B’s tail is computed together with the corresponding

expected time to reach the B’s “tail”. Any configuration in which this time is shorter

than the time required for B to enter the R’s “tail” is considered unsafe, and included

with a high penalty in the computation of the navigation strategy for B. Our target set is

closely related to the target set in [115], and although we use infinite horizon stochastic

control, there are no real-time computational issues.

The work presented here is based on the methods from [6],[12],[8] and [38], and

this paper reports the first real-time implementation of a computed stochastic optimal
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Figure 4.1: The blue (B) and red (R) vehicles

control navigation strategy.

The rest of the paper is organized as follows. In Section II, we present the problem

formulation followed by Section III on the state space model. In Section IV and V,

minimum time optimal controls for B and R are defined. Section VI discusses the

computation of unsafe configurations. Section VII reports our results of numerical

simulations and small-scale robot experiments. Section VIII gives conclusions.

4.2 Problem Formulation

The problem we consider here includes two vehicles, blue (B) and red (R), see Fig.

4.1. The goal of B is to take an advantageous position with regard to R while the
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intent of R is unknown. Therefore, our problem is to design a navigation strategy for

B which anticipates this uncertainty. While navigating B under the assumption that R

has the goal to take an advantageous position to it, i.e., that R is its opponent, is too

conservative, it makes sense that B should avoid relative configurations from which R

can take an advantage.

Our problem formulation is based on the fixed-speed Dubins vehicle model for both

B and R. The B vehicle has a constant velocity vB > vR and its control variable is the

turning rate uB, i.e.,

dxB = vB cosθBdt (4.1)

dyB = vB sinθBdt (4.2)

dθ = uBdt (4.3)

The R vehicle’s model has the same structure with a constant velocity vR, however,

from the point of view of B, the R’s navigation is unknown. Therefore, we model its

turning rate as a stochastic process, i.e.,

dxR = vR cosθRdt (4.4)

dyR = vR sinθRdt (4.5)

dθR = σRdwR (4.6)

where dwR are unit intensity Wiener process increments. Consequently, θR(t) is a

random walk on the periodic interval [−π,π].
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Instead of dealing with the six state equations in Cartesian coordinates (4.1)-(4.6),

we use the relative coordinates (4.10)-(4.12) and the Itô calculus (see Appendix A to

C ) to derive a stochastic evolution of the relative position between B and R with only

three state variables r,φ and α as

dr = (vR cos(φ −α)− vB cosφ)dt = brdt (4.7)

dφ =

(
−uB +

1
r
(−vR sin(φ −α)+ vB sinφ)

)
dt = bφ dt (4.8)

dα = −uBdt +σRdwR = bαdt +σRdwR (4.9)

The advantageous position for B is the one in the R’s “tail” and with the heading

direction θB aligned, to a certain precision, with the heading direction of R, θR. The

“tail” is a conic section of finite radius behind R depicted in Fig. 4.1. The sector is

bounded with angles ±φm and distances rmin and rmax. While rmax defines the “length”

of the “tail”, the distance rmin is the minimal radius at which the two vehicles can

approach each other without the risk of collision. As part of the problem formulation,

the vehicles are modeled as fixed-speed Dubins vehicles with controllable turning rates,

which are bounded by a certain ωmax. The velocity of B is greater that the velocity of

R, vB > vR, and detailed vehicle models are presented in the following section.

If we denote the states of B and R with (xB,yB,θB) and (xR,yR,θR), respectively,

then the relative state between B and R is uniquely defined with the distance r, bearing
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angle φ and difference of the heading angles α defined as

r2 = (xR− xB)
2 +(yR− yB)

2 (4.10)

φ = arctan
(

yR− yB

xR− xB

)
−θB (4.11)

α = θR−θB (4.12)

Using (4.10)-(4.12) as state variables, we can formally define the target set for B as

TBT =


(r,φ ,α)

∣∣∣∣∣∣∣∣∣∣∣∣

rmin < r < rmax,

−φm < φ < φm,

−αm < α < αm


(4.13)

With the same notation, we can also define the set that B should avoid to prevent a

collision with R as

TBA =

(r,φ ,α)

∣∣∣∣∣∣∣∣
r ≤ rmin,

−π < φ <−φm or φm < φ < π

 (4.14)

The sets TBT and TBA partition the terminal set, TB, as follows: TB = TBT ∪TBA,

where TBT ∩TBA = /0.

4.3 Minimum Time Optimal Control for B

The minimum time optimal control for B is the control that minimizes the cost

function

J (uB) = g(r(tB),φ(tB),α(tB))+
∫ tB

0
dt (4.15)
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subject to the state space evolution (4.7)-(4.9), where tB denotes the time at which B

reaches the terminal set TB and g(r(tB),φ(tB),α(tB)) is the terminal cost of the terminal

state in which (r(tB),φ(tB),α(tB)) ∈ TB. If TB = TBT and g(r(tB),φ(tB),α(tB)) = 0,

then we deal with the pure minimum time optimal control cost function. Otherwise,

TB = TBT ∪TBA and

g(r(tB),φ(tB),α(tB)) =


0, for (r(tB),φ(tB),α(tB)) ∈TBT

M, for (r(tB),φ(tB),α(tB)) ∈TBA

(4.16)

with a large positive value for M to penalize reaching the set TBA, in this case, (4.15)

yields the optimal control that avoids that set.

The optimal control u∗B can be computed as the steady state of the Hamilton-Jacobi-

Bellman (HJB) partial differential equation defined as

0 = min
uB

{
L BV (r,α,φ ,uB)+1

}
(4.17)

where V is the so-called value, or cost-to-go function, V (r,φ ,α) = g for (r,φ ,α) ∈TB

and L B is the differential operator

L B = br
∂

∂ r
+bφ

∂

∂φ
+bα

∂

∂α
+

1
2

σ
2
R

∂ 2

∂α2 (4.18)

The optimal control u∗B can be computed using a locally consistent Markov chain

discretization of the HJB equation. The discretization yields a Markov chain with con-

trol dependent transition probabilities while the problem of solving the HJB equation

is converted into a discrete dynamic programming problem which can be solved using
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the so-called value iterations. The result of the computation is a discrete approximation

of the value function V h and optimal control u∗hB , where both of them are in the form

of a three-dimensional lookup table. The superscript h indicates that the value function

and control are computed for the discretized problem.

To discretize HJB in the state space, we first define the discrete steps ∆r, ∆φ and

∆α for r, φ and α , respectively, and substitute the following approximations in (4.17)

br
∂V
∂ r ≈

b+
rh

∆r

(
V (rh +∆r,φ h,αh)−V (rh,φ h,αh)

)
(4.19)

−
b−

rh
∆r

(
V (rh,φ h,αh)−V (rh−∆r,φ h,αh)

)
(4.20)

bφ
∂V
∂φ
≈

b+
φh

∆φ

(
V (rh,φ h +∆φ ,αh)−V (rh,φ h,αh)

)
(4.21)

−
b−

φh

∆φ

(
V (rh,φ h,αh)−V (rh,φ h−∆φ ,αh)

)
(4.22)

bα
∂V
∂α
≈

b+
αh

∆α

(
V (rh,φ h,αh +∆α)−V (rh,φ h,αh)

)
(4.23)

−
b−

αh
∆α

(
V (rh,φ h,αh)−V (rh,φ h,αh−∆α)

)
(4.24)

∂ 2V
∂ (α)2 ≈

σ2
R

(∆α)2

(
V (rh,φ h,αh +∆α)−V (rh,φ h,αh)

)
(4.25)

− σ2
R

(∆α)2

(
V (rh,φ h,αh)−V (rh,φ h,αh−∆α)

)
(4.26)

which are the so-called upwind derivative approximations, where b+rh = max[0,brh] ,

b−rh = max[0,−brh] and b+
φ h , b−

φ h , b+
αh , b−

αh are defined in the same way. The superscript

h indicates that the term is evaluated at the points of the discretized state space with

rh+1 − rh = ∆r, αh+1− αh = ∆α and φ h+1 − φ h = ∆φ . After the substitution, we

move all the terms that include V (rh,φ h,αh) to the left side of the expression (4.17)
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approximation and define

∆t =
(
|brh|
∆r

+
|bφ h |
∆φ

+
|bαh|
∆α

+
σ2

R
(∆α)2

)−1

(4.27)

with |brh|= b+rh +b−rh , |bφ h|= b+
φ h +b−

φ h , and |bαh|= b+
αh +b−

αh to obtain V h =V (rh,φ h,αh)

as

V h = minuB{∆t + p∆r+V (rh +∆r,φ h,αh) (4.28)

+p∆r−V (rh−∆r,φ h,αh)+ p∆φ+V (rh,φ h +∆φ ,αh)

+p∆φ−V (rh,φ h−∆φ ,αh)+ p∆α+V (rh,φ h,αh +∆α)

+p∆α−V (rh,φ h,αh−∆α)}

with p∆r± = ∆tb±rh/∆r, p∆φ± = ∆tb±
φ h/∆φ and p∆α± = ∆t

(
b±

αh/∆α +σ2
R/(2∆α2)

)
that

can be interpreted as discrete Markov-chain transition probabilities from the points

denoted in the brackets of the value function on the right side of the point (rh,φ h,αh).

Note that ∆t is the time interpolation interval defined by the other problem parameters;

therefore, this type of discretization is called time implicit discretization [94].

Expression (4.28) is the discrete version of (4.17) and can be solved numerically

using the value iteration [175] starting from an initial guess for the V (r,φ ,α) values.

We define the computational domain as

K = {[Rmin,Rmax]× [−π,π−∆φ)× [−π,π−∆α)} (4.29)

which is the set bounded by the minimal Rmin = rmin and maximal Rmax distances.

Since, in our problem formulation, the angles φ and α have full ranges, in our com-
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Figure 4.2: A plot of the expected time T min
B (x,y) for B to reach R using the optimal

control u∗B. The R vehicle is in the center pointing to the right. The B’s and R’s velocities
are vB = 0.1 and vR = 0.05, respectively.
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putational domain, the pairs of points (rh,−π,αh) and (rh,π − ∆φ ,αh), as well as

(rh,φ h,−π) and (rh,φ h,π−∆α) are next to each other. For the boundary of the com-

putational domain Rmax, we use the reflective boundary conditions V (Rmax,φ
h,αh) =

V (Rmax−∆r,φ h,αh). This way, we avoid specifying the value function at these bound-

aries, but actually incorporate in our solution that the stochastic process does not cross

the boundaries. This is an approximation for the boundary r = Rmax; therefore, we

should use a large enough Rmax.

Once the optimal control is computed, it can be also used to compute the expected

time to reach the target set as

0 = L BT B(r,α,φ)+1 (4.30)

which is the so-called backward Kolmogorov partial differential equation. Since the so-

lution should represent the expected time to reach the set TBT , the boundary condition

for (4.30) is T B(r,α,φ) = 0, for (r(tB),α(tB),φ(tB)) ∈ TBT . The solution can be com-

puted using the value iterations (4.28), where V h is substituted with T h
B = T B(rh,αh,φ h)

and min is excluded, i.e., there is no update of control u∗B, which is the reason why the

variable uB is omitted in (4.30). For the boundary of the computational domain Rmax,

we use the reflective boundary condition equivalent to the one used in the computations

for V h, i.e., T B(Rmax,φ
h,αh) = T B(Rmax−∆r,φ h,αh).

To illustrate the optimal control solution, we created a 2D map depicted in Fig. 4.2.

The map coordinates are the x and y coordinates of B with respect to R, which is in the
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center of the map and pointed to the right. The map depicts a discrete approximation

of the expected time T min
B (x,y) defined as

T min
B (x,y) = min

α

{
T B(r(x,y),α,φ(x,y,α)

}
(4.31)

in which we use T h
B ≈ T B(r(x,y),α,φ(x,y,α). In other words, for every point (x, y)

and any heading angle of B at that point, i.e., the closest discrete point, we depict the

minimum expected time to reach the target set. As expected, the figure shows that B,

which is faster, reaches its target set in a shorter time if it approaches R from the “tail”.

If R is approached from the front, it takes B much longer because it has to avoid the

“nose” of R.

4.4 Minimum Time Optimal Control for R

With the goal of formulating a set of relative positions that should be avoided by

B, we here formulate the optimal control for R to reach an advantageous position with

respect to B. The position is defined as the one in which the R is in the “tail” sector of

B and with the heading angle aligned with that of B’s.

While the “tail” sector can be depicted by a figure similar to Fig. 4.1, but with

the reversed positions of B and R, for its formal definition, we need to introduce a

triple of coordinate variables (r,φR,αR) describing the position of B with respect to R.

The distance r is given by (4.10), while the bearing angle φR and the difference of the
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heading angles αR with respect to R are

φR = arctan
(

yB− yR

xB− xR

)
−θR (4.32)

αR = θB−θR (4.33)

Using these variables, the advantageous position is reached by R when the triple of the

variables is in the set TRT defined as

TRT =


(r,φR,αR)

∣∣∣∣∣∣∣∣∣∣∣∣

rmin < r < rmax,

−φm < φR < φm,

−αm < αR < αm


(4.34)

which is the target set for R. The set that should be avoided by R due to the risk of

collision with B is

TRA =


(r,φR,αR)

∣∣∣∣∣∣∣∣∣∣∣∣

r ≤ rmin,

−π < φR <−φm or

φm < φR < π


(4.35)

and the terminal set TR for R is the union of these two sets, i.e., TR = TRT ∪TRA.

Here we formulate the optimal control for R to reach the target set TRT and avoid

TRA, but the navigaion of B is unknown to R. Therefore, for the control of R, we use

(4.1)-(4.3) and (4.4)-(4.6), in which expressions (4.3) and (4.6) are substituted with

dθ
R
B = σBdwB and dθ

R
R = uRdt (4.36)

respectively. Together with (4.10) and (4.32)-(4.33), this yields a stochastic evolution
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Figure 4.3: A plot of the expected time T min
R (x,y) for R to reach B using the optimal

control u∗R. The B vehicle is in the center pointing to the right. The B’s and R’s velocities
are vB = 0.1 and vR = 0.05, respectively.

of the relative position of B with respect to R as

dr = brdt, dφR = bR
φ dt, dαR = bR

αdt +σBdwB (4.37)

with br from (4.7) and

bR
φ =

(
−uR +

1
r

(
−vR sin(φ R−αR)+ vB sinφ R)) (4.38)

bR
α =−uR (4.39)

The expected time optimal control for R is based on the cost function

J (uR) = g(r(tR),φR(tR),αR(tR))+
{∫ tR

0
dt
}

(4.40)
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where tR is the time at which R reaches the terminal set TR. The terminal costs are

g = 0 for (r(tR),φR(tR)αr(tR)) ∈ TRT and g = M for (r(tR),φR(tR)αr(tR)) ∈ TRA. The

optimal control u∗R can be computed from the corresponding HJB equation

0 = min
uR

{
L RVR(r,αR,φR,uR)+1

}
(4.41)

where the differential operator L R is

L R = br
∂

∂ r
+bR

φ

∂

∂φ R +bR
α

∂

∂αR +
1
2

σ
2
B

∂ 2

∂ (αR)2 (4.42)

and, due to the terminal costs, (4.41) satisfies the boundary conditions

VR(r,φR,αR) =


0, for (r,φR,αR) ∈TRT

M, for (r,φR,αR) ∈TRA

(4.43)

reflecting that R has to avoid the noise of B. To evaluate the expected time to reach the

target set TRT , we solve the backward Kolmogorov equation

0 = L RT R(r,αR,φR)+1 (4.44)

with the boundary condition T R(r,αR,φR) = 0 for (r,αR,φR) ∈ TRT . This expected

time together with the expected time T B from the previous section is important for the

definition of the safety region that should be avoided by B.

All computations of the value function VR, expected time T R and their discrete

approximations V h
R and T h

R can be performed in the same way as in the case of the B

vehicle. Similarly as in the previous sections, to illustrate the optimal control solution
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for R, we create a map, see Fig. 4.3, which depicts the expected time T min
R (x,y) defined

as

T min
R (x,y) = min

α

{
T R(r(x,y),αR,φR(x,y,αR)

}
(4.45)

with the x and y coordinates of R with respect to B, which is now in the center of the

map and pointed to the right. For every point (x,y) and all heading angles of R at (x,y)

we depict the minimum expected time to reach the target set. The shape of the map is

dictated by the fact that R is slower than B. Because of that, the time to enter the tail

of B from the tail direction is very long and the only chance for R to enter its target set

TRT is to get in a configuration in which B is in its proximity, but has to turn around to

enter the tail of R.

An illustration of the configuration in which R can enter its target set is provided in

Fig. 4.4. In Fig. 4.4a and 4.4b, B, which is faster than R, passes close to R and, in order

to enter the tail of R, it has to make a full turn. While B maneuvers, there is a position

from which R can sharply turn and enter the tail of B. While B is going farther from R,

R is still in its tail and can adjust its heading angle to be aligned with the heading angle

of B. Once the heading angles are aligned, R has reached its target set.
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Figure 4.4: a) Configuration from which R can enter the tail of B; b) B is slightly in
front of R and starts maneuvers to enter its tail; c) R performs a sharp maneuver to enter
the tail of B (gray sector); d) R aligns its heading angle with B and reaches its target set.

4.5 Minimum Time Optimal Control that Avoids Un-

safe Configurations

We should realize that the control for B defined in Section IV does not take into

account that R may have the goal to enter the tail of B. This possibility should be

addressed in the navigation strategy for B so that it avoids any configuration from which

it can happen before B enters its target set. Because of the before condition, it is most

natural to identify unsafe configurations not in terms of probability, but in terms of

expected time.

To identify unsafe configurations for B, we find all relative positions (r,α,φ) in

which the expected time of R to reach its target set is shorter than the expected time of

B to reach its set. This can be expressed with the following inequality

T R(r,−α,π +φ −α)< T B(r,α,φ) (4.46)
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Initialization :
T S

B = TBT ∪TBA
V (rh,αh,φ h) = 0 for all (rh,αh,φ h) ∈TBT
V (rh,αh,φ h) = M for all (rh,αh,φ h) ∈TBA

loop: for all (rh,αh,φ h)
αh

R :=−αh

φ h
R := π +φ h−αh

i f T R(rh,αh
R,φ

h
R)< T B(rh,αh,φ h) then

T S
B = T S

B∪ (rh,αh,φ h)
V (rh,αh,φ h) = M

end i f
end loop

Figure 4.5: Pseudo code for computing the terminal set and associated boundary con-
dition. The symbol “:=” denotes the assignment of the closest discrete value on the
right-hand side of the expression.

in which we exploit the relations αR = −α and φR = π + φ −α , see Fig. 4.1. Once

we find all of these positions, we include them in the terminal set for B and associate

with them a high terminal cost. The pseudo code for computing the resulting terminal

set T S
B and corresponding boundary condition for the discrete approximation of V in

(4.17) is provided in Fig. 4.5.

Instead of TB in (4.28), we use the computed terminal set T S
B and associated

values for V to compute the optimal control uS
B that avoids unsafe configurations. Our

results are illustrated by the examples in the following section.
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4.6 Results

The numerical simulation results of this section are based on the Dubins vehicle

models (4.1)-(4.6) with the velocities vB = 0.1 and vR = 0.05 for B and R, respectively.

These values are selected due to the verification of the results with robot experiments.

We set the velocity of B to be twice as high as the velocity of R. The simulation

parameters are in the ranges that are suitable for testing control algorithms using small-

scale laboratory robot (e-puck) experiments and the speed of algorithms for real-time

implementations.

The navigation uncertainties of R in (4.9) and of B in (4.37) are modeled with σR =

10 and σB = 10, respectively. The target set TBT in (4.13) and the avoidance set TBA

in (4.14) are based on the parameters rmin = 0.05, rmin = 0.15, φm = 10deg and αm =

20deg. The same parameters are used for the target set TRT and the avoidance set TRA

in (4.34) and (4.35), respectively. The value which is used to penalize for state-space

configurations that should be avoided is M = 104.

We first tested the pure time optimal control for B to enter the tail of R while R

was moving along a straight or circular trajectory. Then we simulated B and R, while

each of the vehicles was following its optimal control u∗B and u∗R, respectively. Once we

verified both controllers, we searched for an initial condition from which R entered the

tail of B. This result is presented in Fig. 4.6a. As it can be seen, while B tries to make

a turn in a greedy manner to enter as soon as possible the “tail” of R, it opens space for
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Figure 4.6: a) Simulation with the initial condition providing that R enters the tail of B
while both R and B use their optimal controllers, u∗R and u∗B, respectively. b) Simulation
for the same initial condition as in (a) with R using the optimal controller u∗R, but with
B using the controller uS

B that avoids unsafe positions.

R to enter the tail of B. This scenario has been previously depicted in Fig. 4.4, but on a

scale which better illustrates the maneuvers.

Fig. 4.6b shows the simulation with the same initial condition as in Fig. 4.6a, but

now the B’s controller uS
B , which avoids unsafe configurations, is applied. The outcome

is that B turns in a less greedy manner and, before it starts turning, it first goes to a safe

distance from R. Because it avoids unsafe configurations, B turns counter-clockwise

(CCW) in 4.6b. Therefore, R cannot enter the “tail” of B, however, as the simulation

shows, B also cannot enter the “tail” of R. Although this seems as a possible outcome,

note that we set the initial condition in which B and R are close to each other. In reality,

B will approach R from a distance and maneuver to avoid the position such as our initial

condition in Fig. 4.6a and b. Most of our simulations show that B enters the tail of R

and we present one simulation example in Fig. 4.7, in which B makes multiple turns

before it reaches the “tail” of R.
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Figure 4.7: Simulation in which R uses the optimal control u∗R and B uses the optimal
control uS

B that avoids unsafe configurations. The simulation time progresses from a to
f . Panel f shows the configuration in which B enters the “tail” of R.

The simulation in Fig. 4.7 starts in the position in which B and R are facing each

other. From Fig. 4.7a to c, it can be seen that both B and R turn clockwise (CW ). From

Fig. 4.7c to d, both of the vehicles switch the turning directions and, in Fig. 4.7e, it is

clear that B is in the position to enter the tail of R.
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4.6.1 Robot Experiments

After testing the stochastic optimal controllers in the numerical simulations, we

implemented the numerically computed controllers in experiments with real e-puck

robots. The experimental setup included two e-puck robots with infrared markers that

were tracked by a motion capturing system composed of 4 Bonita 10 Vicon cameras.

The reasons for the experiments are to show that the computed optimal controllers can

be implemented on a real hardware platform and that the speed of control computations

is sufficient for the real-time control.

Our software architecture for the real-time control is depicted in Fig. 4.8. Com-

munication with the e-puck robots is over bluetooth. The Matlab script computes com-

mand values for the left uL and the right uR wheels of each robot and sends the values

to the TCP server, which facilitates communication with the robots. Although all the

values are computed by the single script, the computations are implemented so that the

controls for B and R are computed independently. The Matlab script reads the mea-

Figure 4.8: Software architecture for the robot experiments
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Figure 4.9: a) The robot’s controller; b) Internal structure of the PID controllers imple-
mented for each robot

surements from the motion capturing system, computes the relative position of B with

respect to R and vice versa, and uses the computed values to read necessary control

actions from the lookup tables that store optimal controls. The optimal controls are

optimal turning rates and the Matlab script runs the PID control loops for the turning

rates and fixed velocities of the B and R e-pucks.

The details of the Matlab-implemented control loops are illustrated in Fig. 4.9. For

both B and R, we have the control loop presented in Fig. 4.9a. The figure shows the

lookup table that stores optimal control actions and PID controllers for keeping the

turning rate and velocity at the required levels. While the velocity is at a constant value

of vB = 10cm/s for B and at a constant value of vB = 5cm/s for R, the block “Stochas-

tic Optimal Controller” computes the relative position between the robots, locates the

corresponding turning rate value in the lookup table and reads it so that it is set as a

reference for the PID controller.
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Figure 4.10: Results of the experiments with the e-puck robots. The time progresses
from (a) to (f) until B reaches its target set in the “tail” of R.

Fig. 4.9b shows the internal structure of the couple of PID controllers implemented

for each robot. The PID controller uses the motion capturing system coordinates and

estimates the velocity and turning rate of the robot. These estimated values are used as

measurements in the PID control loops.

With the presented software and control architecture, we were able to run stochastic

optimal control with a sampling time of about 30ms on a PC computer with the Win-

dows 7 operative system without any special real-time software, while the computer

controlled both robots in separate control loops.
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4.7 Conclusions

In this paper, we presented a control design for a vehicle (B) that has the goal to

enter the “tail” of another vehicle (R). The navigation and intent of the R vehicle are

unknown, therefore, the uncertainty of its navigation has to be anticipated in the naviga-

tion of B. Moreover, we identified unsafe configurations for the B vehicle and computed

the controller that avoids them. The control design is based on infinite-time horizon

stochastic optimal control and it was tested in numerical simulations. While it is com-

monly assumed that long-time planning horizons prevent real-time implementations of

controllers, in our approach, it is not the case. To confirm it, we performed real-time

robot experiments. These experiments are the first implementation of the real-time non-

linear stochastic optimal control design following from [6] and [12] to the navigation

of nonholonomic vehicles. Our future work will be focused on the implementation of

the control design on a high-fidelity flight simulator with a three-dimensional target set.
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Chapter 5

Safe Navigation with Collision

Avoidance of a Brownian Motion

Obstacle

This chapter is a reprint of the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Safe navi-

gation with the collision avoidance of a brownian motion obstacle.” In Dynamic

Systems and Control Conference, vol. 58295, p. V003T39A009. American So-

ciety of Mechanical Engineers, 2017.
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Figure 5.1: The relative position among the vehicle, obstacle and the waypoint. ro is the
distance between the vehicle and center of the obstacle. rw is the distance between the
vehicle and waypoint. θ is the heading angle of the vehicle. φw and φo are the bearing
angles to the waypoint and center of the obstacle, Respectively. d is the obstacle radius.

5.1 Introduction

Collision avoidance is an integral part of vehicle navigation algorithms [100]. How-

ever, most of collision avoidance algorithms [40] are based on heuristic methods which

are then integrated with navigation control algorithms without a discussion of a formal

approach to the integration and optimality of the resulting controllers. Since the ob-

stacle trajectory may not be known in advance, here we propose a stochastic optimal

control approach to navigation and obstacle avoidance. The approach integrates a de-

terministic minimum time optimal control solution for navigation towards a waypoint

and a stochastic optimal control solution to avoid an obstacle and account for its mo-

tion uncertainty. The integration is based on the value functions associated with each

solution.
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The problem of avoiding collision with obstacles, other mobile robots or unmanned

aerial vehicles (UAV) while navigating to a location gives rise to a line of work called

reach and avoid [13, 1, 122]. The problem is usually solved by two different controllers,

the main controller for the path planning navigation and the secondary controller tasked

to avoiding collisions [16]. There has been several variants of the secondary controller

exploiting an optimal control value function [97], or using results from game theory

[190]. Recently there has been work on incorporating collision avoidance as part of

the main controller, where the robots [30] or UAVs [125, 73] navigate while avoid

situations that lead to collisions. However, in [30] the mobile robots can change their

velocities, and in [125, 73] a fixed velocity Dubins vehicle avoids collision with other

Dubin vehicles.

In this paper we consider the navigation of a fixed velocity Dubins vehicle [47, 81,

133] to a prescribed waypoint. The vehicle is not subject to any disturbance such as a

stochastic or deterministic wind [8], but there is the threat of a possible collision with

an unpredictably moving circular obstacle as shown in Fig. 5.1. Therefore, the motion

of the obstacle’s center is modeled as a Brownian motion.

The contribution of this paper is that we integrate two optimal controllers into one

controller that navigates towards a waypoint and avoids an obstacle. Solving the opti-

mal control for the full 4-dimensional state space model associated with this problem is

computationally challenging. Therefore, we sacrifice optimality to obtain a sub-optimal
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solution which combines the two optimal solutions. The guarantee of the successful in-

tegration of the sub-problem solutions is achieved similarly to the auxiliary Markov

decision problem (MDP) approach in [73], where the two sub-problems are combined

together by their value functions. Although our approach does not use an approximate

dynamic programming (ADP) for the navigation of UAVs [115, 138], it is based on the

value function approximation, and similarly to the ADP, allows for real-time computa-

tions of control actions.

The rest of this paper is organized as follows. First we formulate the original op-

timal control problem, which includes the waypoint and obstacle. To cope with com-

putationally demanding optimal control solution, we formulate two optimal control

problems of (1) reaching the waypoint in a deterministic setting and (2) avoiding colli-

sion with the stochastic moving obstacle. This is followed by the section in which we

combine these two optimal control solutions into a single sub-optimal controller. The

work of the resulting controller is illustrated by numerical simulations. The last section

of the paper presents conclusions.

5.2 Problem Formulation

The problem we consider here includes one vehicle, a waypoint and a circular obsta-

cle. The goal of the vehicle is to reach the waypoint in a minimum time while avoiding

collision with the randomly moving obstacle, see Fig. 5.1.
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The fixed velocity Dubins vehicle [47, 81, 133] with a controllable turning rate

u ∈ [−umax,umax], umax > 0, is given by

dx = vcosθdt (5.1)

dy = vsinθdt (5.2)

dθ = udt (5.3)

where x and y are the coordinates of the Dubins vehicle position and θ is the heading

angle. The waypoint is fixed in space with coordinates (xw,yw), but the obstacle’s

motion is unknown. Therefore, we model it as a stochastic process

dxo = σdwx (5.4)

dyo = σdwy (5.5)

where dwx and dwy are mutually independent unit intensity Wiener process increments.

Consequently, the obstacle position (xo(t),yo(t)) is a 2D Brownian motion.

We use the relative coordinates (see Fig. 5.1 and (5.22)-(5.23)) and Itô calculus (see

Appendix) to derive a stochastic evolution of the relative position between the vehicle

and the obstacle as

dro =

(
−vcosφo +

σ2

2ro

)
dt +σdwro = brodt +nrodwro (5.6)

dφo =

(
v
ro

sinφo−u
)

dt +
(

σ

ro

)
dwφo = bφodt +nφodwφo (5.7)

where dwro and dwφo are mutually independent unit intensity Wiener processes.
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While the vehicle navigates towards the waypoint (xw,yw), it has to avoid a set of

relative positions

A = {(ro,φo)|ro ≤ d} (5.8)

that overlap with the obstacle, see Fig. 5.1. Now we can define the control u as the

solution of the optimal control problem

J(x̃,u) = min
u

{
E{g(x̃(τ))}+

∫
τ

0
dt
}

(5.9)

where x̃ = (rw,φw,ro,φo) is the four dimensional state that fully describes the relative

positions among the vehicle, the waypoint and the obstacle. In expression (5.9), τ is

the terminal time which corresponds to the time instant of the vehicle reaching either

the waypoint or the obstacle. g is the terminal cost for hitting the obstacle defined as

g(x̃(τ)) = M if (ro,φo) ∈A (5.10)

where M is a large positive cost to penalize reaching the set A .

Notice that the optimal control solution is 4-dimensional, which is computation-

ally challenging [94]. In order to reduce the computational cost, we propose to re-

duce the 4-dimensional single problem into two sub-problems. The first one is a 2-

dimensional problem of reaching the waypoint without the obstacle and the second is a

2-dimensional problem of avoiding the obstacle. These two sub-problems can be solved

independently of each other and then be combined to approximate the solution of the

original 4-dimensional problem of navigating to the waypoint while avoiding the obsta-
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cle. The first sub-problem of navigating to the waypoint (xw,yw) without any obstacle

is given by the control uw which solves the minimum time optimal control problem

J(x̃w) = min
uw

{∫
τw

0
dt
}

(5.11)

where x̃w = (rw,φw) is the relative position between the vehicle and the waypoint, and

τw is the terminal time which corresponds to the time instant when the vehicle reaches

the waypoint. The second sub-problem solution of avoiding the obstacle can be defined

as the control uo which solves the optimal control problem

J(x̃o) = min
uo

E{g(x̃o(τo))} (5.12)

where x̃o(τo) = (ro(τo),φo(τo)) is the relative position between the vehicle at the termi-

nal time point τo when the vehicle hits the obstacle. In the original problem (5.9), the

terminal time τ = min(τw,τo).

5.3 Deterministic Optimal Control to Reach a Waypoint

The first sub-problem is a deterministic optimal control problem where we mini-

mize the time of the vehicle to reach the waypoint in the absence of the obstacle. This

problem has been solved in [8, 21]. Here we introduce necessary variables, present the

final results and their discretization in the discrete state space.

The relative position between the vehicle and target point is uniquely defined with
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Figure 5.2: Time-Optimal partition of the state space and feedback control (5.15). The
control values are in parenthesis to the left of each region. The arrows indicate the lines
of characteristics.

the distance rw and the bearing angle φw. From Fig. 5.1, it follows that

r2
w = (xw− x)2 +(yw− y)2 (5.13)

φw = arctan
(

yw− y
xw− x

)
−θ (5.14)

The minimum time optimal control to reach the waypoint (xw,yw) can be formulated

as a feedback control which is a function of rw and φw. The optimal control which

minimizes (5.11) is

u(rw,φw) =


−umax if (rw,φw) ∈ {S−∪C−},

0 if (rw,φw) ∈ S0,

umax if (rw,φw) ∈ {S+∪C+}

(5.15)
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where the five sets C+, C−, S+, S− and S0 are

C− = {(rw,φw) : rw ≤ 2ρmin sin(φw),φw > 0} (5.16)

S+ = {(rw,φw) : rw > 2ρmin sin(φw),φw > 0} (5.17)

C+ = {(rw,φw) : rw ≤ 2ρmin sin(−φw),φw < 0} (5.18)

S− = {(rw,φw) : rw > 2ρmin sin(−φw),φw < 0} (5.19)

S0 = {(rw,φw) : φw = 0} (5.20)

ρmin = v/umax is the minimum turning radius of the Dubins vehicle. The boundaries be-

tween the sets C+ and S−, C− and S+, as well as S− and S+, are the so-called “switching

surfaces” where the optimal control switches between the control values of each set.

Fig. 5.2 depicts all the sets, as well as the “switching surfaces” depicted as orange

vector field arrows flowing along the boundaries to the location of the waypoint. The

parameters of our Dubins vehicle are umax = 0.5 rad/s and v = 0.1 m/s. The control

values are indicated in parenthesis to the left of each set and the control along the

“switching surface” S0 is u = 0. The location of the waypoint corresponds to the line

rw = 0 and free terminal heading angle φw ∈ [−π/2,π/2).

We also discretize the analytical solution of navigating to the waypoint. To ob-

tain the discretization, we run a simulation from each point of the discrete state space

following the control (5.15) and record the time to reach the waypoint. We associate

that time with the discrete cell from which the simulation started and repeat the same

procedure for all points of the discrete space. For the computational domain K of the
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Figure 5.3: Time in seconds for a Dubinds vehicle with v = 0.1 m/s and umax = 0.5
rad/s to reach the waypoint following the control (5.15).

solution we use

K = {[Rmin,Rmax]× [−π,π−∆φo]} (5.21)

which is the set bounded by the minimal Rmin = 0.05 m and maximal Rmax = 2.04 m

distances. Since, in our problem formulation, the angles φw have a full 2π range, the

computational domain is periodic, i.e., the pairs of points (rh
w,−π) and (rh

w,π −∆φw)

are next to each other. The discrete steps in ∆rw = (Rmax−Rmin)/100 m and ∆φw = 5

deg. We stop the simulation when the Dubins vehicle has reached the minimal Rmin

distance allowed by our computational domain. The result of these computations is the

time T h presented in Fig. 5.3.
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5.4 Stochastic Optimal Control to Avoid Collision with

the Obstacle

This sub-problem is based on the stochastic kinematic model given by expressions

(5.6) and (5.7). The model’s state variables are the distance ro and bearing angle φo,

defined as

r2
o = (xo− x)2 +(yo− y)2 (5.22)

φo = arctan
(

yo− y
xo− x

)
−θ (5.23)

where (x,y,θ) and (xo,yo) define a Dubin vehicle’s pose and obstacle’s position, re-

spectively (see Fig. 5.1).

The set which the Dubins vehicle should avoid is A defined by (5.8). The optimal

control u∗o in (5.12) can be defined as the steady state solution of the Hamilton-Jacobi-

Bellman (HJB) partial differential equation [94]

0 = min
uo
{L oH(ro,φo,uo)} (5.24)

where H can be interpreted as the expected hazard to collide with the obstacle, and L o

is the differential operator

L o = bro

∂

∂ ro
+

1
2
(nronφo +n2

ro
)

∂ 2

∂ r2
o
+bφo

∂

∂φo
+

1
2
(nronφo +n2

φo
)

∂ 2

∂φ 2
o

(5.25)

where bro , nro , bφo and nφo are defined by (5.6) and (5.7), respectively. The solution

of (5.24) can be computed using a locally consistent Markov chain discretization of
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the HJB equation [94]. The discretization yields a Markov chain with control depen-

dent transition probabilities and converts (5.24) into a dynamic programming problem

which can be solved over a discrete space using so-called value iterations [175]. The

value iterations result in a discrete approximation of the value function Hh and optimal

control u∗o
h, where both are in the form of a two-dimensional lookup table. The super-

script h indicates that the value function and control are computed for the discretized

problem.

To discretize (5.24) in the state space, we use discrete steps ∆ro and ∆φo for the dis-

cretization of ro and φo, respectively, and the following upwind discrete approximations

of derivatives in (5.24)

∂H
∂ ro
≈

b+rh
o

∆ro

(
H(rh

o +∆ro,φ
h
o )−H(rh

o,φ
h
o )
)

−
b−rh

o

∆ro

(
H(rh

o,φ
h
o )−H(rh

o−∆ro,φ
h
o )
)

(5.26)

∂ 2H
∂ r2

o
≈
|nronφo +n2

ro
|

2∆r2
o

(
H(rh

o +∆ro,φ
h
o )−H(rh

o,φ
h
o )
)

−
|nronφo +n2

ro
|

2∆r2
o

(
H(rh

o,φ
h
o )−H(rh

o−∆ro,φ
h
o )
)

(5.27)

∂H
∂φo
≈

b+
φ h

o

∆φo

(
H(rh

o,φ
h
o +∆φo)−H(rh

o,φ
h
o )
)

−
b−

φ h
o

∆φo

(
H(rh

o,φ
h
o )−H(rh

o,φ
h
o −∆φo)

)
(5.28)

∂ 2H
∂φ 2

o
≈
|nronφo +n2

φo
|

2∆φ 2
o

(
H(rh

o,φ
h
o +∆φo)−H(rh

o,φ
h
o )
)

−
|nronφo +n2

φo
|

2∆φ 2
o

(
H(rh

o,φ
h
o )−H(rh

o,φ
h
o −∆φo)

)
(5.29)
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where b+rh
o
= max[0,brh

o
], b−rh

o
= max[0,−brh

o
] and b+

φ h
o
, b−

φ h
o

are defined in the same way.

The superscript h indicate terms that are evaluated at the points of the discretized state

space rh+1
o − rh

o = ∆ro and φ h+1
o −φ h

o = ∆φo. After the substitution of (5.25)-(5.29) in

(5.24), we move all the terms that include H(rh
o,φ

h
o ) to the left side of the expression

(5.24) to obtain

Hh = min
uo

{
p+

∆ro
Hh(ro +∆ro,φo,uo) + p−

∆ro
Hh(ro−∆ro,φo,uo) (5.30)

+p+
∆φo

Hh(ro,φo +∆φo,uo) +p−
∆φo

Hh(ro,φw−∆φo,uo)
}

where

p±
∆ro

= ∆th(x̃o,u)

(
b±ro

∆ro
+
|nronφo|+n2

ro

(2∆r2
o)

)
(5.31)

p±
∆φo

= ∆th(x̃o,u)

(
b±

φo

∆φo
+
|nronφo|+n2

φo

(2∆φ 2
o )

)
(5.32)

can be interpreted as discrete Markov-chain transition probabilities from the points

(rh
o±∆ro,φ

h
o ±∆φo) of the discrete space to the point (rh

o,φ
h
o ), and

∆th(x̃o,u) =

(
|bh

ro
|

∆ro
+
|nro nφo|
(∆ro)2 +

(nro)
2

(∆ro)2+
|bh

φw
|

∆φw
+
|nro nφo|
(∆φo)2 +

(nφo)
2

(∆φo)2

)−1

(5.33)

where |bh
ro
| = b+ro

+ b−ro
and |bh

φo
| = b+

φo
+ b−

φo
. ∆th(x̃o,u) is the time interpolation in-

terval which depends on the other parameters of the problem; therefore, this type of

discretization is called time implicit discretization [94].

Expression (5.30) is the discrete version of (5.24) and the discrete approximation Hh

of the value function H can be solved numerically using value iterations [175] starting

from an initial guess for the Hh(ro,φo) values.
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Figure 5.4: Expected Hazard for a Dubins vehicle with v= 0.1 m/s and umax = 0.5 rad/s
to avoid the obstacle with noise σ = 0.039

√
m/s following the control (5.24).

The computational domain is (5.21) and it is discretized with the same steps as in the

previous section, i.e., ∆ro =∆rw and ∆φo =∆φw. For the boundary of the computational

domain Rmax, we use absorbing boundary conditions H(Rmax,φ
h
o ) = 0. By this, we

account for the terminal cost (5.10) of hitting the obstacle. This is an approximation

since H(ro,φo) = 0 only for ro→ ∞ therefore, we use a large enough Rmax. The result

of these computations is the expected hazard Hh presented in Fig. 5.4.

Based on the approximation, the probability of collision is

P{(rh
o,φ

h
o ) ∈A }= 1

M
Hh(rh

o,φ
h
o ) (5.34)

which is 0 for ro = Rmax.
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5.5 Safe Navigation Towards a Waypoint

Once the solution for the two sub-problems has been defined, we combine these two

solutions to obtain the solution of the original problem, which is to navigate towards

the waypoint while avoiding collision with the obstacle.

We combine the value functions of out two optimal control solutions together to

approximate the original problem’s value function as

Ṽ h(x̃) = T h(x̃w)+Hh(x̃o) (5.35)

where x̃ = (rw,φw,ro,φo), x̃w = (rw,φw), x̃o = (ro,φo), T h is the time shown in Fig.

5.3 and Hh is the expected hazard shown in Fig. 5.4. Thereby, we obtain Ṽ h which is

the approximate discrete solution to the original 4-dimensional problem of reaching the

waypoint while avoiding collision with the Brownian moving obstacle.

To compute the control, we use the expected one-step look ahead. This method is

similar to applying a gradient decent on the combined value functions (5.35), which

gives the control:

uc(x̃) = argmin
u

∆th(x̃,u)+ ∑
ỹ∈N h(x̃)

ph(ỹ; x̃,u)V h(x̃)

 (5.36)

where ỹ corresponds to the one-step neighboring discrete state space cell locations

around the current x̃ discrete state space cell location. The probability ph(ỹ; x̃,u) corre-

sponds to transitions from x̃ to ỹ. Substituting the right-hand side of expression (5.35)
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to expression (5.36), we obtain

uc(x̃) = argmin
u

∆th(x̃,u)+T h(x̃w)+ ∑
ỹ∈N h(x̃)

ph(ỹ; x̃,u)Hh(x̃o)

 (5.37)

by noting ph(ỹ; x̃,u) ≈ ph(ỹo; x̃o,u) ph(ỹw; x̃w,u) ≈ ph(ỹo; x̃o,u), since the probability

transitions ph(ỹw; x̃w,u)≈ 1 in the direction where the Dubins vehicle will move in the

next time step because it is a deterministic problem. Simplifying expression (5.37), we

obtain

uc(x̃) = argmin
u

T h(ỹw)+ ∑
ỹo∈N h

o (x̃)

ph(ỹo; x̃o,u)Hh(x̃o)

 (5.38)

where ph(ỹo; x̃o,u) corresponds to the discrete Markov-chain transition probabilities in

(5.31)-(5.32), T h(ỹw) = T h(x̃w)+∆th(x̃,u) is the time cost at the next discrete cell loca-

tion ỹw and Hh(x̃o) is the hazard of colliding with the obstacle at discrete cell location

x̃o.

5.6 Results

The numerical simulation results of this section are based on the Dubins vehicle

model (5.1)-(5.3) and (5.4)-(5.5) with the velocity v = 0.1 m/s and maximum turn-

ing rate umax = 0.5 rad/s. The noise intensity for the Brownian moving obstacle is

σ = 0.039
√

m/s. Because of the discrete space approximations used in computing

the control, we stop the simulation once the Dubins vehicle has reached the minimal

distance allowed in our computational domain of 0.05 m to the waypoint (xw,yw), or
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Figure 5.5: Simulation with the vehicle avoiding the stochastic obstacle to reach the
waypoint.

has collided with the obstacle of the radius d = 0.1 m centered at (xo,yo). The sample

time is ∆t = 0.1 seconds. The parameters used for computing the expected hazard in

Fig. 5.4 and the time in Fig. 5.3 are the same and are listed in expression (5.21).

Figure 5a depicts the initial positions of the vehicle and the obstacle. The waypoint

is the black circle farther from the Dubins vehicle (aircraft symbol), whereas the ob-

stacle is the lighter circle closer to the initial position of the Dubins vehicle. While

the pure time optimal control would navigate the Dubins vehicle towards the obstacle,

accounting for the expected hazard pushes the vehicle away from its path, as shown
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in Fig. 5.5b. The Dubins vehicle navigates around the obstacle (see Fig. 5.5c) where

under the threat of colliding with the obstacle, the Dubins vehicle keeps its distance

from it and reaches the waypoint (see Fig. 5.5d).

To see how well this controller satisfies its criteria of avoiding collision with the

obstacle and reaching the waypoint, Fig. 5.6 shows the result of a simulation in which

the waypoint overlaps with the stationary obstacle, i.e. σ = 0. Figure Fig. 5.6a depicts

the initial positions of the vehicle and obstacle and position of the waypoint, which

is inside the obstacle. Figure 5.6b shows that the Dubins vehicle starts to circle the

obstacle, but does not move away as the waypoint is attracting the vehicle closer as

shown in Fig. 5.6c. However, the Dubins vehicle stops moving closer to the waypoint

as the vehicle is moving closer to the obstacle, see Fig. 5.6d. The Dubins vehicle

continues to circle around the obstacle and waypoint location at the distance where

moving closer would increase the chance of collision and moving farther away would

mean being farther from the waypoint, see Figs. 5.6e and f .

5.7 Conclusions

In this paper, we presented the controller for the Dubins vehicle which has the goal

to reach a target location while simultaneously avoiding collision with the randomly

moving circular obstacle. Since the Dubins vehicle does not know the obstacle’s trajec-

tory, this uncertainty has to be anticipated during the navigation. While this problem
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Figure 5.6: Simulation with the vehicle avoiding a stationary obstacle on top of the
waypoint location.
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can potentially be solved optimally using the method of value iterations, this approach

is hindered by the number of state variables that should be considered. Therefore,

we proposed the sub-optimal approach by dividing the original problem in two sub-

problems, where each sub-problem is solved optimally. This approach has potential to

scale well with the number of obstacles, which will be considered in future work.

67



Chapter 6

Time Efficient Inspection of Ground

Vehicles by a UAV Team Using a

Markov Inequality Based Rule

This chapter is a reprint of the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Time Effi-

cient Inspection of Ground Vehicles by a UAV Team Using a Markov Inequality

Based Rule.” In Distributed Autonomous Robotic Systems, pp. 95-108. Springer,

Cham, 2019. (one of three papers nominated for the best student paper

award)
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6.1 Introduction

This paper is the result of an exploration to formulate the control of stochastic multi-

agent systems by an integration of stochastic optimal control strategies that are designed

for a pair of agents. To study such an integration, we consider a scenario with a team

of N unmanned air vehicles (UAVs) that are tasked to inspect efficiently with respect

to time a group of M ground vehicles. However, the navigation strategy of ground

vehicles is unknown. To anticipate this uncertainty, the headings of ground vehicles

are described as stochastic processes, and as the result, the UAV navigation has to be a

solution of a feedback stochastic control problem.

A solution of the feedback stochastic optimal control problem for the two groups

with N and M agents has to depend on the number of variables that increases quickly

due to the number of combinations in which N agents can inspect M agents. This num-

ber should also account for solutions allowing that a single UAV may need to inspect

multiple ground vehicles. In principle, we can formulate the minimum time stochas-

tic optimal control using the Hamilton-Jacobi-Bellman equation and all necessary co-

ordinates describing relative positions among vehicles. However, the computational

complexity of such a solution goes quickly beyond the computational power of modern

computers because of the combinatorial increase of the number of relative coordinates,

as well as due to the so-called curse-of-dimensionality that results in the computational

complexity which increases with the power of the number of relative coordinates. Con-
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sequently, we propose an approach in which we first solve for the stochastic optimal

control of one UAV inspecting one ground vehicle (one-on-one) and use this to formu-

late a time efficient solution for the problem of N UAVs inspecting M ground vehicles.

The minimum time stochastic optimal control of a single UAV entering the tail

sector of another vehicle while safely navigating around it is presented in [125]. The

computational method for this type of a one-on-one agent problem has been improved

and used with a scalable value approximation [73] in a complex scenario of a single

UAV safely intercepting a group of vehicles [124]. Here we consider a scenario of

having multiple UAVs inspecting multiple ground vehicles and we assume that the

UAVs are able to avoid each other, or more realistically, they are able to fly at different

altitudes. Consequently, collision avoidance is not considered and the main problem

lies in how to assign [34, 166] each UAV to ground vehicles, so that the inspection

time for all ground vehicles is time efficient. Previously, the authors studied a related

assignment problem [24], but in terms of path-planning [100].

Non path-planning, i.e., feedback-based navigations are frequently found in a line

of work called sense and avoid [13], and game theoretic approaches to safe navigation

[122]. They also appear in the context of pursuit-evasion games [81], including two

car-like vehicles investigated in [64]. Scalable algorithms for multiple-pursuers/single-

evader games have been considered in [54, 182]. Game theoretic problems for multi-

pursuit and multi-evasion strategies using a hierarchical or decomposition algorithmic
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Figure 6.1: Geometry of the multi-agent/multi-target problem. θBi and θR j are the
heading angles of the ith blue and jth red, respectfully. α ji = θRi−θB j is the difference
between the headings. φ ji is the bearing angle of the jth blue to ith red.

approach [62, 102] are more similar to the multi-agent problem in this paper.

In this work, we approach the problem of N UAVs inspecting M ground vehicles

as a Markov inequality-based switching problem which is inspired by the result [120]

for one UAV inspecting multiple ground vehicles. Dealing here with N UAVs, the

switching is among possible inspection assignments of UAVs to the ground vehicles

to be inspected. No knowledge of the ground vehicles navigation strategy or intent is

known by UAVs, therefore, each of the ground vehicles heading angles is anticipated

to be a Brownian random walk. The contribution of this paper is that it solves the

stochastic multi-agent problem using one-on-one stochastic optimal control solutions

and the switching rule for the time-efficient navigation. The presented approach scales

well with the number of agents and allows for real-time computations of control actions.
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The paper is organized as follows. Section 6.2 discusses the problem, which stating

succinctly is controlling a team of UAVs to inspect every ground vehicle in a minimum

time. The stochastic optimal control of a single UAV to inspect a single ground vehicle

in a minimum time is presented in Section 6.3. The time-efficient dynamic assignment

problem approach is discussed in Section 6.4. Section 6.5 shows results for two UAVs

and three ground vehicles, and Section 6.6 provides conclusions.

6.2 Problem Formulation

Let us consider a scenario with five agents depicted in Figure 6.1. Three of the

agents, labeled with Ri, i = 1,2,3, are ground vehicles with equal speeds vRi = vR, and

we refer to them as red agents. The other two agents, B j, j = 1,2, are fixed-wing aerial

vehicles flying at different altitudes at equal speeds vB j = vB, and we refer to them

as blue agents. The constant speed assumption approximates that the UAVs cannot

stop and that without energy constraints, the UAV will fly at maximum speeds to cover

larger areas of interest. We assume that the speed of blue (aerial) agents is larger than

the speed of red (ground) agents, vB > vR. The kinematics of the jth blue agent is

described using the deterministic kinematics of a Dubins vehicle, which is
dxB j = vB cos(θB j)dt (6.1)

dyB j = vB sin(θB j)dt (6.2)

dθB j = uB jdt (6.3)
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where the couple (xB j ,yB j) and θB j describe the 2D agent position and heading angle,

respectively. The control input for the vehicle is a bounded turning rate uB j ∈ [−1,+1].

The relative position between each jth blue B j and ith red Ri is uniquely defined

based on the relative coordinates

r ji =
√

(xRi− xB j)
2 +(yRi− yB j)

2, (6.4)

φ ji = arctan
(

yRi− yB j

xRi− xB j

)
−θB j ,φ ∈ [−π,π) (6.5)

α ji = θRi−θB j ,α ∈ [−π,π) (6.6)

where r ji is the distance between B j and Ri, φi j is the bearing angle from B j to Ri, and

α ji is the difference between the Ri and B j heading angles. The definitions of these

coordinates are also illustrated in Figure 6.1. Based on these relative coordinates, we

define the tail sector Ti(t) for each ith red agent as

Ti(t) =


(r,φ ,α) :

r ≤ Rmin

|φ | ≤ φm

|α| ≤ αm


(6.7)

where αm and φm are the angles defining the tail sector width and alignments of the

agents heading angles. A successful inspection is defined using (6.7) as (r ji,ϕ ji,α ji) ∈

Ti, i.e., it occurs when agent B j is in this sector behind Ri, and its heading is aligned

with that of Ri.

The control problem in this paper is to find the control for the B agent team provid-

ing that the time of inspection of all ground vehicles is minimal, i.e., that the B team
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visit all tail sectors of R vehicles in a minimum time. However, B agents have no knowl-

edge of the R ground vehicles’ navigation strategy, i.e., the motion of the corresponding

tail sectors. To anticipate that uncertainty, the kinematics of each Ri, i = 1, ...M agent

is modeled by the stochastic kinematics

dxRi = vR cos(θRi)dt (6.8)

dyRI = vR sin(θRi)dt (6.9)

dθRi = σRdwi (6.10)

where the position of Ri is given by xRi , yRi and the heading angle is θRi =
∫ t

0 σRdwi.

The latter describes that the heading angles of R agents are random walks since dwi

denotes the Wiener process increments. The scaling parameter σR is identical for all R

agents.

A solution of the minimum time feedback optimal control problem for N blue (B)

and M red (R) agents depends on the number of variables that increases quickly due

to the number of combinations in which N blue agents can visit M tail sectors of R

vehicles. This number should also account for solutions allowing that a single B agent

may need to visit multiple R agent tail sectors. While in principle we can formulate

the stochastic optimal control using the Hamilton Jacobi Bellman (HJB) equation and

all necessary coordinates describing relative positions of Bs and Rs, the computational

complexity of such a solution goes quickly beyond the computational power of modern

computers because of the number of relative coordinates, as well as due to the so-called
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curse-of-dimensionality.

We approach the problem by dividing it into (1) the minimum time stochastic op-

timal control problem of one B and one R agents (one-on-one), and (2) the problem of

computing inspection assignments of B agents. This approach allows us to formulate

the solution for the navigation strategy of Bs that scales well with the number of agents

and guarantees that all R agents are inspected efficiently with respect to time. This

guaranteed property and time efficiency are achieved by the optimality of the one-on-

one problem and assignment updates when the assignment leads to a robust decrease of

time for the inspection of all agents.

6.3 Minimum Time Stochastic Optimal Control

In this section, we deal with the scenario of a single B j that enters the tail sector Ti

of a single Ri in the minimum expected time, thus i = j = 1. To simplify the notation,

in this section we will drop subscripts i and j from B j, Ri and Ti.

Using Îto calculus, the kinematic model of B (6.1)-(6.3), the kinematic model of R

(6.8)-(6.10) and the definitions of relative coordinates between B and R (6.4)-(6.6), we

can derive the following stochastic differential equations describing the evolutions of
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relative positions between B and R

dr = (vR cos(φ −α)− vB cos(φ))dt = brdt (6.11)

dφ =

(
−uB +

−vR sin(φ −α)+ vB sin(φ)
r

)
dt = bφ dt (6.12)

dα =−uBdt +σRdw = bαdt +σRdw (6.13)

The minimum expected time control uB to reach the target set T (t) is the one that

minimizes the cost

J (uB) = E
{

g(τ)+
∫

τ

0
1dt
}

(6.14)

with the terminal cost g(τ) = g(r(τ),φ(τ),α(τ)) defined as

g(τ) =


0 if (r(τ),φ(τ),α(τ)) ∈T

M if (r(τ),φ(τ),α(τ)) ∈P

 (6.15)

where the set P is defined as

P(t) =


(r,φ ,α) :

r ≤ Rmin

|φ |> φm

|α|> αm


(6.16)

The cost function J is constructed to yield the optimal control uB that minimizes the

time for B to reach the target set T and avoids configurations in which B is in the

proximity of R, but not in the target set T . This is expressed by the definition of

terminal cost g(τ) in which there is a large positive penalty M >> 0 for the set P and

no penalty for reaching the set T .
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The cost function J (uB) gives rise to the stochastic HJB equation defining the

evolution of the cost-to-go function U =U(r,ϕ,α) for the optimal control

0 = min
uB

{
br

∂U
∂ r

+bφ

∂U
∂φ

+bα

∂U
∂α

+σ
2 ∂ 2U

∂α2 +1
}

(6.17)

with the two boundary conditions U = 0 for all (r,φ ,α) ∈ T and U = M for all

(r,φ ,α) ∈ A . The solution of the HJB equation yields the cost-to-go function U and

the corresponding optimal state feedback control uB = uB(r,φ ,α). Once the optimal

control is computed, it can be used to compute the expected time V = V (r,ϕ,α) to

reach the target under the optimal control by computing the steady-state solution of the

backward Kolmogorov (BK) equation

0 = br
∂V
∂ r

+bφ

∂V
∂φ

+bα

∂V
∂α

+σ
2 ∂ 2V

∂α2 +1 (6.18)

with the boundary condition V = 0 for all (r,φ ,α) ∈T and reflective boundary condi-

tion elsewhere on the boundary of the solution domain.

The solution of the optimal control problem used in this paper is based on the so-

called locally consistent Markov chain discretization of the HJB equation. The dis-

cretization yields a Markov chain with control uB-dependent transition probabilities

while the problem of solving the HJB equation is converted into a discrete state space

dynamic programming problem that can be solved using value iterations [94]. Further

details about the numerical method can be found in [124] and [125]. In both of these

papers, the controllers have been implemented and tested with ground robots as a part
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of different control problems. Similar controllers have been used for the navigation

of a small UAV in the presence of stochastic winds [8]. A general explanation of the

method for the control of nonholonomic vehicles is given in [38]. The method has also

been used for target tracking problems [12] and flight tested with real UAVs [119].

Once the control is computed, we can use it to compute the solution of the Kol-

mogorov equation (6.18) to obtain expected time V , i.e., its discrete space numerical

representation. Due to the similarity of the Kolmogorov equation (6.18) with (6.17),

the computations are based on the same discretization scheme and value iterations [94],

except that instead of min operator, the value iterations are based on already computed

optimal control.

The units in (6.4)-(6.6), which we used to compute the numerical optimal control

in the example of this paper, are normalized so that all the angles are in radians and the

velocities vB = 0.1 and vR = 0.05. The noise scaling parameter σR = 10π/180 and the

maximum turning rate of the blue umax = 0.5. The tail sector (6.7) to be reached by the

blue is defined by Rmin = 0.05, φm = 10π/180, and αm = 20π/180. The computational

domain is

K = {[Rmin,Rmax]× [−π,π−∆φ ]× [−π,π−∆α]} (6.19)

with Rmax = 2.04, and is discretized with the steps ∆r = (Rmax−Rmin)/99≈ 0.0201 and

∆φ = ∆α = 5π/180 in the direction of r,φ ,α state space variables. Since the angles φ

and α in our problem formulations have full ranges, in the discretized computational
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domain, the pairs of points (rh,−π,αh) and (rh,π −∆φ ,αh), as well as (rh,φ h,−π)

and (rh,φ h,π −∆α) are next to each other, i.e., we use periodic boundary conditions

along the φ and α state space variables. Other boundary conditions of the discrete

approximation based on the locally consistent Markov chain approximation method

take into account (6.15) and the boundary conditions of (6.7) and (6.16).

6.4 Time efficient dynamic assignment

A general formulation of the assignment problem of which B j, j = 1, ...N agent

should inspect Ri, i = 1, ...M should take into account that a single B j may be assigned

to a sequence of multiple Ri agents and that all Ri agents are assigned to at least one B j

agent. This type of a problem can be formulated as an optimization problem on a graph.

In the most general case, the graph nodes would be B and R agents and edges between

them would have an associated time to travel from any B agent to any R agents, as well

as between all R agents, so that the inspection of multiple R agents can be accounted

for. The solution would be a sequence of R agents that should be visited by each B j,

j = 1, ...N. However, in this paper we assume that R agents are moving stochastically

and, consequently, the travel times between all nodes, including those corresponding to

the edges among Ri agents are changing stochastically. These changes create a major

challenge for the solution.

To address the assignment problem, we consider the optimization on a graph in
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Figure 6.2: Assignment graph problem, where Vi, j denotes the expected time of B j
inspecting Ri. The dashed lines denote a possible assignment and the solid lines denote
an assigned agent-task pair.
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which there are no edges among Ri agents. The graph is depicted in Fig. 6.2 and

its edges are associated with the expected times Vj,i(t) = V (r ji(t),ϕ ji(t),α ji(t)) of B j

reaching Ti, i.e., inspecting Ri agent. Note that the expected time V is obtained as the

solution of the one-on-one problem in the previous section and that Vj,i changes in time

due to the change of agents relative positions. Given these expected times, we propose

an assignment that at t = 0 minimizes the expected time to the inspection of the last Ri,

i.e., the longest expected time Vj,i of the assignment which is

C0 =min
A

{
max
j∈N0
{Vj,i(0)z j,i(0)}

}
, z j,i ∈ {0,1} (6.20)

j ∈N0 ⊆ {1,2, ...N}, i ∈M0 ⊆ {1,2, ...M} (6.21)

subject to


∑i∈M0 z j,i(0) = 1, for all i, if |N0| ≤ |M0|

∑ j∈N0 z j,i(0)≥ 1 for all j, if |N0|> |M0|
(6.22)

where the assignment variable z j,i = 1 if B j is assigned to inspect Ri, otherwise, z j,i = 0.

Sets N0 and M0 contain indexes of all B and R agents, respectively, that are included

in the assignment, and |N0|, |M0| denote cardinal numbers of these sets. While the

constraints (6.22) are specific and define that each B agent has to be assigned to at

least one R agent, the definition of sets N0 and M0 allow for a flexibility that will be

used in the text below. The minimization is over a finite set of all possible assignments

A = {A1,A2, ...}, where each assignment Ak is uniquely defined by the assignment

variables z j,i and can be depicted as the graph in Fig. 6.2 with all edges corresponding

to z j,i = 0 removed.
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Let us define the cost Ck(t) of the assignment Ak evaluated at time t

Ck(t) = max
j∈N0
{Vj,i(t)z j,i(t)}, i ∈M0 (6.23)

Since R agents are moving stochastically, it is obvious that the initial configuration with

cost C0 defined by the solution of (6.20) may be inferior to any other configuration Ak

for which Ck(t)<C0. To pursue the idea of optimality at every time instant t, one may

think about solving the optimization (6.20) at every time instant (greedy approach).

However, note that the navigation strategy is based on the minimization of expected

times to the target sets Ti, therefore, there is a non-zero probability for the increase of

times to target sets. Because of that, although there may exist multiple assignments that

result in the inspection of all R agents, once we start switching among them using the

greedy approach, it can result in an infinite sequence of assignment switchings without

ever inspecting any R agent. This is a well-known characteristic of the so-called hybrid

systems.

To resolve the problem of an infinite sequence of switchings, here we propose to

use the switching rule that was presented and analyzed in [120]. The rule is that if at

time t

min{Ck(t),Ck(τ
s)}−Cm(t)

min{Ck(t),Ck(τs)}
≥ p, p ∈ (0,1) (6.24)

then the switching from the assignment Ak to Am takes place. In this rule, k is the index

of the current assignment, τs < t is the time at which the assignment becomes Ak and
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s is the counter of switchings from t = 0, therefore, after the switching τs+1 = t and

s is incremented. If τm
F defines the time to inspect all R agents, then the above rule

guarantees

Pr{τm
F < min{Ck(t),Ck(τ

s)}} ≥ p (6.25)

which means that the switching happens only if it provides that the time τm
F is with

a probability p shorter than the smallest of the current expected time to inspect all R

agents and the expected time to inspect all R immediately after τs, i.e., the last switching

of the assignment.

The above rule is introduced and analyzed in [120] for the case of a single B and

multiple R agents until the first R agent is inspected and relies on the existence of a

threshold C > 0, so that the switching stops once C(τs) ≤ C. The threshold C is the

smallest expected time in the discrete space of our numerical stochastic optimal control

solution. All these assumptions hold in the problem at hand, however, we have to deal

with an additional feature of the problem, which is that at the time instants when a

single B reaches the tail sector of a single R, other Bs are still trying to reach R based

on their assignment. At this point, there are multiple ways the navigation of B can

proceed. For example, B can be excluded from further considerations and be navigated

towards a target at a far distance, or it can be assigned to another R. In the latter case,

it may happen that multiple Bs can be assigned to a single R. All of these possibilities

are covered by expressions (6.21) and (6.22) of the initial optimization. Therefore, at
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Figure 6.3: Assignment algorithm: Set N0 and M0 of available B and R agents, re-
spectively; the number of agents in each set is |N0| and |M0|; Ck is the cost of the
assignment Ak and is defined by (6.23).

the time the first B j reaches the target set Ti that corresponds to Ri, we propose to reset

the time to t = 0, update N0 and M0, solve again (6.20) and proceed with the use of

the switching rule. The rule guarantees that the taget set of the next R will be reached

in a finite expected time. Summing the times until reaching Ti and the target set of the

next R, we can conclude that two Rs are inspected in a finite expected time. Following

this reasoning, it is clear that the proposed approach guarantees the inspection of all Rs

in a finite expected time.

In summary, after every inspection of R we recompute the optimal assignment based

on the current positions of agents (greedy approach). Following this, the assignment is

updated based on the switching rule that guarantees the inspection of the next R agent

in a finite expected time.
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6.5 Example

To illustrate our results, we use an example with two UAVs (blue agents) and three

ground vehicles (red agents). The velocity of UAVs is vB = 0.1 and the velocity of

ground vehicles is vR = 0.05. These and all other problem parameters for the example

are provided in Section 6.3, before and after (6.19), defining the computational domain

of the one-on-one stochastic optimal control solution. Once the numerical solution and

the expected time have been computed, we search over the discrete space of the solution

to find the minimal non-zero expected time for a UAV to inspect a ground vehicle. This

value defines the threshold C = 1.649sec. Once the threshold is reached, we stop the

switching assignments using the rule (6.24). The switching assignment rule parameter

in the example is p = 0.05 and the rule defines switching among possible assignments.

In this example, we can identify six possible assignments that are labeled as Ai

i = 1,2...6 and depicted in Fig 6.4. Beyond these assignments, the only other possi-

ble assignments are those in which a single ground vehicle is assigned to both UAVs,

and we label all of them with the single label A0. Given the small number of possi-

ble assignments, the optimization (6.20) can be performed by the evaluation of each

assignment and the selection of the one with the smallest cost.

After running multiple numerical simulations, we selected one which illustrates

well the approach presented in this paper.

The simulation in Fig.6.5A starts with the two blue UAVs behind the three red
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Figure 6.4: Possible assignments: each assignment is depicted by the lines connecting
the UAVs (B1, B2) with the ground vehicles (R1, R2, R3). Beyond these assignments,
those in which a single ground vehicle is assigned to both UAVs are labeled by the
single label A0.

Figure 6.5: Simulation in which the two UAVs switch inspect the three ground vehicles.
The progress of time is from A to F . The ground vehicles R3, R2, R1 have been inspected
at t = 14.6, t = 23.7, t = 32.8, respectively.
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Figure 6.6: a) The cost of the current assignment Ai (see Fig. 4), which is the longest
expected time of the assignment; b) the current assignment.

ground vehicles, where B1 is assigned to inspect R1 and B2 to inspect R2, i.e., the

current assignment is A1 as shown in Fig. 6.4. In Fig.6.5B, B1 switches its assignment

to R3 and after this, B2 switches to R1 (see Fig. 6.5C). This assignment lasts until R3

has been inspected by B1 at t = 14.6sec (see Fig. 6.5D) and is no longer of interest to

B1 or B2.

At the beginning of time interval D, a new optimal assignment is computed for

B1 and B2. Because of that, we can observe a positive jump in the assignment cost,

which is the longest expected time of the assignment. The new assignment is that B1

inspects R1 with the expected time to inspection of 31.7sec, and B2 inspects R2 with the

expected time to inspection of 28.1sec; therefore, the cost of the assignment is 31.7sec.
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This is the optimal assignment since the alternative assignment has the cost of 37.3sec,

which results from the expected times of 37.3sec for B1 inspecting R2 and 11sec for

B2 inspecting R1. Following the optimal assignment, R2 has been inspected by B2 at

t = 23.7 (see Fig. 6.5E) without any switchings. Following this, the only assignment

is A0 in which both B1 and B2 inspect the remaining ground vehicle R1. Figure 6.6a

shows that R1 has been inspected by B1 at t = 32.8sec at the end of the time interval F.

6.6 Conclusions

In this paper we presented the control design for N UAVs tasked to perform the

time efficient inspection of M ground moving vehicles. The navigation and intent of

each ground vehicle are unknown, therefore, the uncertainty of its navigation has to

be anticipated in the navigation of each UAV. The controller for each UAV to inspect

each ground vehicle is based on the minimum time stochastic optimal control. This

one-on-one vehicle optimal control solution is used to compute the expected time of

the inspection. We further use that expected time to formulate the assignment prob-

lem of deciding what ground vehicle each UAV should inspect. We formulate it as the

optimization problem of minimizing the expected time to inspect all ground vehicles.

Since the ground vehicles have uncertain trajectories, the optimal assignment may need

to be recomputed. However, the recomputing may result in an indefinite sequence of

assignment updates without the UAVs ever inspecting all ground vehicles. To address

88



that, we update assignments with the Markov inequality rule. While the rule prevents

the possibility of indefinite changes of assignments, it also updates an assignment if

it leads to a statistically significant improvement of the expected time of the inspec-

tion. The proposed approach was illustrated by the numerical example with two UAVs

and three ground vehicles. Our future work will try to address the complexity of the

initial assignment optimization (6.20) and distributed implementation of the presented

approach which will be able to deal with limited communication among UAVs.
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Chapter 7

Scalable Markov Chain

Approximation for a Safe Intercept

Navigation in the Presence of Multiple

Vehicles

This chapter is a reprint of the paper

• Munishkin, Alexey A., Araz Hashemi, David W. Casbeer, and Dejan Milutinović.

”Scalable markov chain approximation for a safe intercept navigation in the pres-

ence of multiple vehicles.” Autonomous Robots 43, no. 3 (2019): 575-588.
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7.1 Introduction

In the context of this paper, safe navigation is the one providing that a vehicle that

moves along its path (a) avoids collisions with other vehicles; (b) performs maneuvers

to reach a safe configuration with regard to other vehicles; and (c) navigates while

taking into account uncertainties in the trajectories of other vehicles.

To study the concept of safe navigation and propose a design method, we introduce

in this paper an unmanned aerial vehicle scenario in which a single fixed wing vehicle

is tasked to intercept one of multiple other vehicles, avoid collisions and any unsafe

positions from which other vehicles can enter its regions of vulnerability. This scenario

emphasizes that safety is not only about avoiding collisions, for example, in a car traffic

case, the presence of a vehicle in the car driver’s blind spot does not immediately lead to

a collision, but creates a threat for the car safety, and for the safety reasons, the car driver

would try to avoid such configurations. Our multiple-aerial vehicle scenario is related to

work on collision-free navigation of mobile robots in complex cluttered environments

[77], i.e., collision avoidance in multi-robot and swarm like systems [4, 131, 186], but

it accounts as well for safety consideration that is beyond the risk of collision only.

The study of navigation against threats created by other vehicles is tightly interwo-

ven with the development of game theory [82] and the two-target game problem [15],

[63],[64]. The game includes two vehicles that navigate around each other until one

of the vehicles, the winner of the game, enters its target set. A stochastic variant of

91



such two-target games is considered in [192] and [193]. These and other earlier the-

oretical works have been surveyed in [69]. Other lines of work have been focused on

applications [50], as well as various other approaches to the problem [84], [115], [181].

In all these works, the two vehicles are opponents with the intent to harm the other

vehicle and win the game. Obviously, the safe navigation inspired by the game theory

would essentially mean that every vehicle in the surrounding is considered as an adver-

sary, which is the worst case scenario, and it would result in conservative navigation

strategies. Therefore, in this paper we propose a stochastic approach to safe navigation.

In the proposed stochastic approach, we anticipate that vehicles in the surroundings

of a safely navigated vehicle may, or may not have bad intents. The lack of information

about their navigation is modeled by a stochastic process and safety is addressed by a

computationally defined avoidance set. In the deterministic problems [79] the bound-

aries between reachable and unreachable state space regions are sharp and avoidance

set can be computed using the deterministic optimal control approach. However, in the

stochastic problems, reachable and unreachable regions are defined in terms of proba-

bility and without sharp boundaries. In our preliminary work [125], we introduced the

concept of avoidance set based on expected times. The novelty of the work presented

here is in an iterative algorithm for the avoidance set computations. Then we use the

avoidance set to compute the solution for a safe vehicle navigation in the proximity of

a single vehicle and propose an approach to apply this one-on-one vehicle safe naviga-
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tion to the multiple vehicle case, which scales well with the number of vehicles, and is

therefore suitable for real time applications.

Extending the game theory or optimal control solution to multiple agents is diffi-

cult because of the so-called curse-of-dimensionality, due to the number of agents. In

the discrete domain, there has been extensive work in solving game theory problems on

graphs [2], which are traditionally called cops and robbers, and in [180] a scalable solu-

tion of the game was proposed. For the continuous domain, [143] provides a framework

for combining the kinematic models of various pursuing agents for a real-time imple-

mentation of a chase and search problem. In [45], a hierarchical game extension with

a finite time look ahead to the stochastic setting has been proposed, while in [54], a

game theory problem is partitioned into smaller problems that are then solved sepa-

rately, and the solution of the original problem is determined as the lower bound of the

smaller problems. However, none of these works considered the two target problem in

a multi-vehicle scenario.

Our attempt to deal with multi-agent, two-target problems and safe navigation is

based on the stochastic optimal control solution of the one-on-one vehicle problem,

which is to some extent similar to [131, 186] and other works that use Lyapunov func-

tions to achieve a collision free motion. Instead of guessing a suitable Lyapunov func-

tion, in our approach [6, 12] we numerically compute it as the value function resulting

from the solution of stochastic optimal control, which is tightly connected with the
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nonholonomic kinematics of the vehicles, as well as anticipated uncertainties. In our

preliminary work along this line in [73], we found that the value function of the one-

on-one vehicle problem can be represented as a sum of the expected time and hazard

function components. In the work presented here, the computed components are inte-

grated in the navigation to replicate the performance of the one-on-one vehicle solution

when the safely navigated vehicle is close to its goal and the position of other vehicles

is irrelevant.

The paper is organized as follows. Section 7.2 discusses the problem we are solving

with multiple Dubins vehicles. In Section 7.3 we present the iterative algorithm for

computing the avoidance set and develop an optimal control strategy for the Blue agent

to navigate in the presence of a single Red agent. Then, we extend in Section 7.4

the problem to multiple Red agents and a single faster Blue agent, which navigates to

enter the tail sector of one of the Red agents while avoiding positions from which any

of the Red agents can enter its tail. After our discussion on the optimal control, we

discuss a method of simplifying the computations to provide scalability and preserving

optimality in the limiting case of a single Blue chasing a single Red agent. Our results

are illustrated by a simulation in Section 7.5, and a robot experiment in Section 7.6.

Section 7.7 gives conclusions.
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7.2 Problem Formulation

Consider a scenario with a single blue agent B and N red agents R1, R2, . . . RN , as

depicted in Figure 7.1. Our goal is to design a control policy for B, which will allow

it to navigate into the tail (vulnerable position) of one of the red agents as quickly as

possible while simultaneously avoiding collisions with the red agents.

Agent B has Dubins vehicle kinematics described by

dxB = vB cosθBdt (7.1)

dyB = vB sinθBdt (7.2)

dθB = uBdt (7.3)

where (xB,yB) is the vehicle’s position, vB is the velocity and θB is the heading angle.

The control variable uB ∈U is the heading rate which is bounded and takes the value

in the set U = [−umax,umax].

B is cognizant of its own state (xB,yB,θB), as well as each red agent’s position and

heading angle (xRi,yRi,θRi), i = 1...N. However, the intent of the red agents is unknown

to B. To account for this uncertainty each red agent, Ri, is modeled as a Dubins vehicle

with stochastic heading rate as follows:

dxRi = vR cosθRidt (7.4)

dyRi = vR sinθRidt (7.5)

dθRi = σRdwi (7.6)
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Figure 7.1: Geometry of the multi vehicle tail chase problem. θB,θRi are the heading
angles of the blue (faster) agent B and the red (slower) agents Ri. The relative coor-
dinates are the distance rB

i , the alignment angle αB
i = θRi − θB and the bearing angle

φ B
i = ψB

i −θB.

where vR is the velocity (vR < vB), σR is the scaling parameter, and dwi, i = 1...N,

are standard, unit intensity, mutually independent Wiener processes. Hence, for an

infinitesimal time-step dt, Ri’s change in heading θRi(t + dt)− θRi(t) has a normal

distribution with a mean zero and variance σ2
Rdt. Therefore, the parameter σR describes

the agility of the vehicle.

The objective of B is more easily expressed mathematically using the relative coor-

dinates Xi = (rB
i ,φ

B
i ,α

B
i )

T for each Ri, where rB
i is the distance, φ B

i is the bearing angle

and αB
i is the alignment angle as depicted in Fig 7.1. These relative coordinates are
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given by

rB
i =

√
(xRi− xB)2 +(yRi− yB)2 (7.7)

φ
B
i = ψ

B
i −θB (7.8)

α
B
i = θRi−θB (7.9)

By applying the Itô’s Lemma to the relative coordinates (7.7)-(7.8) and kinematic mod-

els (7.1)-(7.6), we obtain the dynamics of the relative coordinates as

drB
i = bridt; dφ

B
i = bφidt; dα

B
i = bαidt +σRdwi (7.10)

where

bri = vR cos(φ B
i −α

B
i )− vB cosφ

B
i ; bαi =−uB (7.11)

bφi = −uB +
1
rB

i
(vB sinφ

B
i − vR sin(φ B

i −α
B
i )). (7.12)

Using the vector of relative coordinates Xi and b(Xi,uB) = (bri,bφi,bαi)
T , we can re-

write (7.10) in the vector form as

dXi = b(Xi,uB)dt +(0,0,σR)
T dwi. (7.13)

With respect to each agent Ri, the goal of B is to reach the target set

Ti =
{

Xi : Xi = (rB
i ,φ

B
i ,α

B
i )

T ,rB
i ∈ (r, r̄],φ B

i ∈ (−φ̄ , φ̄ ],αB
i ∈ (−ᾱ, ᾱ]

}
, (7.14)

for some r, φ̄ , ᾱ > 0 while avoiding the collision set

Ci = {Xi : Xi = (rB
i ,φ

B
i ,α

B
i )

T ,rB
i ≤ r}. (7.15)
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Figure 7.2: The tail sector of the red vehicle is the target tail sector of B (angular width
φ ). The sector in front of B (angular width α) indicates the range in which B and the
red vehicle should be aligned. (a) A collision occurs when B reaches the proximity of
the red vehicle (thick arc line). (b) An intercept occurs when B is in the tail sector of
the red vehicle and aligned with the red vehicle.

The target set Ti requires not only that B is in the tail sector of Ri at the distance rB
i

between the collision distance r and the “length” of the tail r̄, but also that its heading

θB is aligned in the general direction with Ri’s heading θRi , as described by the relative

heading bounds α and ᾱ . The collision set Ci describes a ball about Ri which B must

avoid. A depiction of these geometries is shown in Fig. 7.2.

Since the intent of Ri is unknown, and it may, or may not have the intent to enter the

tail (vulnerable position) of B, it is also reasonable for B to avoid configurations which

facilitate Ri reaching its tail. Any such configuration would be considered unsafe by B.

We define the set of unsafe configurations S̄i with respect to Ri as the set of relative

coordinates from which the expected time TBi for B to enter the tail of Ri is longer or

equal to the expected time TRi for Ri to enter the tail of B, i.e., S̄i = {Xi : TBi ≥ TRi}.

98



Therefore, with regard to the single Ri, the set that B should avoid, i.e., the avoidance

set, is Ai = Ci∪ S̄i.

Let us define the set Gi ⊂ R3 of B’s relative coordinates to the red agent Ri, which

excludes interiors of the target Ti and avoidance set Ai, i.e., int(Ai) and int(Ti), re-

spectively. In other words,

Gi = (R+× [−π,π)× [−π,π))\ (int(Ai)∪ int(Ti)) (7.16)

Let τi be the time when B first enters the avoidance set Ai or target set Ti. In other

words, τi = inf{t : Xi(t) ∈ ∂Gi} is the time when B reaches the boundary ∂Gi.

For any admissible pure Markov control policy uB and any initial condition Xi(0) ∈

int(Gi), the drift and diffusion terms of (7.13) are Lipschitz for Xi ∈ int(Gi) and thus

(7.13) has a unique solution Xi(t) ∈ int(Gi) (in the sense of distribution) until the time

point τi when we can assume that the process stops; therefore, τi is also called the

stopping time. The generator corresponding to the relative dynamics (7.13) for the

control policy uB is given by the differential operator

L uB f (Xi) = b(Xi,uB)
T (∇Xi f )+

σ2
R

2
∂ 2 f

(∂ [Xi]3)2 (7.17)

where [·]3 denotes the third component of Xi, which is αi, f : Gi→ R and f ∈C2 in its

domain Gi.

The domain G ⊂ R3N of the control policy uB, which takes into account all red

agents, is G = ∏
N
i=1 Gi. The configuration of all agents at a time t is defined by a vector
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X(t) ∈ G as X(t) = (X1(t)T ,X2(t)T , ...XT
N(t))

T , Xi ∈ Gi. If we introduce

b(X,uB) = (b(X1,uB)
T , . . .b(XN ,uB)

T )T (7.18)

then the dynamics of X is

dX = b(X,uB)dt +
N

∑
i=1

(ei⊗ (0,0,σR)
T )dwi (7.19)

where ei = (0,0, ...1, ...0)T is the N-dimensional standard basis vector with zeros every-

where, except 1 in the ith component. The symbol ⊗ represents the Kronecker matrix

product, and the result of the operation in the brackets between the two-column vectors

of the dimensions N×1 and 3×1, respectively, is the column vector of the dimension

3N× 1. The generator corresponding to the dynamics (7.19) and control policy uB is

given by the differential operator

L uB f (X) =
N

∑
i=1

L uB
i f (X) (7.20)

where f : G → R and f ∈C2 in its domain G ⊂ R3N .

Using the relative dynamics (7.19), we proceed to define a stochastic optimal con-

trol problem as in [57], [94], for any admissible, pure Markov control policy uB and

any initial condition X ∈ G . The time at which B enters for the first time any avoid-

ance Ai or target set Ti, i = 1, ...N, i.e., when it reaches the boundary ∂G of G , is

τ = min(τ1, ...,τN) = inf{t : X(t) ∈ ∂G }. Therefore, our goal is to define the control

policy uB(X) : G → [−umax,umax] that minimizes the cost function

W (X,uB) = EuB
X

{
g(X(τ))+

∫
τ

0
dt
}

(7.21)
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where EuB
X {·} is the expectation operator with respect to the probability distribution of

the realization of the trajectory X(t) which starts at X(0) = X ∈ int(G ) and terminates

in X(τ) ∈ ∂G under the control uB, and the terminal cost

g(X) =


M, if X is such that any of Xi ∈Ai

0, otherwise
(7.22)

where M ≫ 0 is a large constant which applies a penalty for entering the boundary

∂G with any of Xi in the avoidance set Ai, i.e., outside the target set Ti. The optimal

control policy uB, which minimizes (7.21) for any initial condition X ∈ int(G ), results

in the optimal cost-to-go function V (X) = infuB W (X,uB), which is the solution of the

dynamic programming (HJB) equation
infuB{L uBV (X)+1 = 0}, X ∈ int(G )

V (X) = g(X), X ∈ ∂G

(7.23)

While the HJB solution defines theoretically the optimal control uB, finding its solu-

tion is practically difficult and we need to resort to approximate computational methods

[94]. The approach we propose here is inspired by the form of (7.20), whose structure

is a sum of L uB
i . Therefore, we propose to solve a one-on-one problem involving B and

a single red agent (N = 1), and use the solution to approximate the solution of (7.23)

for multiple red vehicles (N > 1).
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7.3 Intercept of a Single Vehicle with Avoidance of Un-

safe Configurations (one-on-one solution)

In this section N = 1; therefore, without loosing generality, we set i = 1. To nu-

merically solve the single-target stochastic tail chase problem, we utilize the locally

consistent Markov chain approximation method [94]. In the first part of this section,

we briefly describe this method.

7.3.1 Locally Consistent Markov Chain Approximation Method

We discretize the continuous domain Gi ⊂R3 with small discrete steps ∆r, ∆φ , ∆α

for each component of Xi ∈ Gi. With this we obtain a discrete state space, denoted by

G h
i , which defines the states of the discrete time Markov chain approximation Xh

i (n),

where n is the index of discrete steps. The locally consistent Markov chain approxima-

tion Xh
i (n) of Xi(t) requires that increments ∆Xh

i (n) = Xh
i (n+1)−Xh

i (n) satisfy

E
{

∆Xh
i (n)

}
= b(Xh

i ,uB)∆th +o(∆th) (7.24)

Cov
{

∆Xh
i (n)

}
= a(Xh

i )∆th +o(∆th) (7.25)

where the discrete steps are separated by interpolation times ∆th, E{·} represents the

conditional expectation given the discretization steps, control action uB and state Xh
i ,

Cov{X}= E{XXT}, and the matrix a(Xh
i ) = diag(0,0,σ2

R).

By defining the transition probabilities, ph(Xh
i (n+1)|Xh

i (n),uB,∆th), in such a way
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that the discrete chain Xh
i (n) is locally consistent [13, Sec. 4.1] with the original process

Xi(t), it can be shown that the optimal cost and control of the discrete problem, which

satisfy the discrete dynamic programming equation,

V h
i (X

h
i ) = min

uB∈U

 ∑
Yh

i ∈N (Xh
i )

ph(Yh
i |Xh

i ,uB)V h
i (Y

h
i )+∆th

 (7.26)

with boundary condition

Vi(Xh
i ) = g(Xh

i ), Xh
i ∈ ∂G h

i (7.27)

converge, as ∆r,∆φ ,∆α → 0, with the known rate of convergence [164] to the optimal

cost and control of the continuous optimal control problem, given from the solution of

(7.23).

In expression (7.26), N h(Xh
i ) denotes the set of six neighbor states N h(Xh

i ) =

{(Xh
i ± (∆r,0,0)T ),(Xh

i ± (0,∆φ ,0))T ,(Xh
i ± (0,0,∆α))T} which are the only possible

transition states. To abbreviate notation, we write the two transition probabilities along

the ri component as p±r (Xi,uB) = ph(Xh
i ± (∆r,0,0)T |Xh

i ,uB) and we do it similarly for

p±
φ
(Xh

i ,uB) and p±α (Xh
i ,uB). Based on the locally consistent Markov chain approxima-

tion, the transition probabilities are

p±r (X
h
i ,uB) = th(Xi,uB)b±r (Xi)/∆r (7.28)

p±
φ
(Xh

i ,uB) = th(Xi,uB)b±φ (Xi,uB)/∆φ (7.29)

p±α (X
h
i ,uB) = th(Xi,uB)b±α (uB)/∆α +σ

2
R/(∆α)2 (7.30)
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where b±r (Xi) = max{0,±br(Xi)} is used with the ‘+’ sign for the step ∆r and with

the ‘−’ sign for the step −∆r. The values b±
φ
(Xi,uB) and b±α (uB) are defined in the

same way. The transition probabilities are based on the state and control dependent

interpolation time

∆th(Xi,uB) =

(
|bri(Xi)|

∆r
+
|bφi(Xi,uB)|

∆φ
+
|bαi(uB)|

∆α
+

σ2
R

(∆α)2

)−1

(7.31)

Note that the discretization scheme is based on fixed steps ∆r, ∆φ , ∆α , while the in-

terpolation interval is defined by the problem parameters; therefore, this type of dis-

cretization is called time implicit discretization [94].

Using the discrete approximation (7.26)-(7.27) and (7.28)-(7.31), and the so-called

value iterations, we can obtain an approximate solution of (7.23) for a single target. For

brevity, we will denote this numerical method as

(uh
B,V

h
i )← HJBSolution(vB,vR,σR,T1,Ai,M) (7.32)

where the superscript h indicates that the results of the computation are in the form of a

lookup table corresponding to the discrete computational domain and the problem input

parameters are listed in the brackets.

The expected time to reach the target, Ti, can be computed [61] from the backwards

Kolmogorov equation,
L uBTBi(Xi)+1 = 0}, Xi ∈ int(Gi)

TBi(Xi) = 0, Xi ∈Ti

(7.33)
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Comparing the above with (7.23), we see that once the optimal uB is fixed (is com-

puted), the cost-to-go function Vi(Xi) and expected time TBi(Xi) solve the same PDE

with different boundary conditions. Therefore, once we numerically solve (7.26) to

find the optimal cost and policy, we can apply the same discretization and compute the

expected time as

T h
Bi
(Xh

i ) = min
uB∈U

 ∑
Yh

i ∈N (Xh
i )

ph(Yh
i |Xh

i ,uB)T h
Bi
(Yh

i )+∆th

 (7.34)

TBi(X
h
i ) = 0, Xh

i ∈ ∂T h
i (7.35)

We denote the numerical method of computing the expected time as

T h
Bi
← BKGSolution(vB,vR,σR,Ti,Ai,uB) (7.36)

7.3.2 Avoidance of Unsafe Configurations

Under our problem formulation, the red agent may, or may not have the goal to enter

the tail of B, which is defined in the same way as the tail of the red agent. The threat

from the red agent entering the tail of B should be anticipated by the navigation of B.

We account for this threat by assuming that if Ri has the goal to enter the tail of B, then

it wants to achieve it without colliding with B and in the shortest possible time. Since

Ri does not know the navigation strategy of B, the problem of defining its navigation

is similar to the one posed in Section 7.3.1, with the roles of Ri and B reversed. In

this case, the relative coordinates of B relative to Ri, (rR,φ R,αR), are the distance, the
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bearing angle and alignment angle, respectively, defined from the perspective of R. At

any time point, their relation to (rB
Ri
,φ B

Ri
,αB

Ri
) is

rR = rB
Ri

; φ
R = π +φ

B
Ri
−α

B
Ri

; α
R =−α

B
Ri
. (7.37)

For the purpose of computing the control uR, the dynamics of these relative coor-

dinates have to account that uR is the control variable, i.e., dθR = uR, and that control

uB is unknown, i.e., dθB = σBdwB. Based on the fact that these “reversed role” relative

dynamics are similar to (7.10), we can compute the control uR using the same tech-

nique described in Section 7.3. However, we set σB = σR stating that the amount of

uncertainty that B and R have about each other’s control is the same. With the tail of B

defined in the same way as the tail of R, the optimal control policy uR can be computed

as

(uh
R,V

h
i )← HJBSolution(vR,vB,σR,Ti,Ci,M) (7.38)

which is different from (7.32) only because of the switched order of vR and vB. We can

also evaluate the expected time to reach the target

T h
R ← BKGSolution(vR,vB,σR,Ti,Ci,uR) (7.39)

which is the information we need to compute the avoidance set Ai.

The iterative procedure for computing B’s avoidance set, which takes into account

the threat of hostile red agents, is provided in Figure 7.3. The first line computes the

initial optimal control uB taking into account only the collision set Ci; therefore, initially
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the avoidance set Ai =Ci. The expressions (7.38) and (7.39) are included as the second

and the third lines of the algorithm. Inside the repeat loop we evaluate the expected time

of reaching the tail of R, and any point with T h
R < T h

Bi
is included in the unsafe set S̄i,

which is then included in the avoidance set A k
i . The avoidance set is updated in each

iteration and, after each update, the optimal control is re-computed. The iterations stop

once the set of unsafe configurations is empty and the last updated avoidance set is

returned as the result.

Let us denote with Card(·) the number of elements in a set. Therefore, the itera-

tions stop when Card(S̄i) = 0 and through the iterations Card(A k
i ) =Card(A k−1

i )+

Card(S̄i), which implies

0≤Card(A k−1
i )≤Card(A k

i )≤Card(Gi) (7.40)

The sequence Card(A k
i ) is monotically increasing and limited from above. Therefore,

only two outcomes are possible. First, the iterations stop for A k
i corresponding to the

whole space, in which case, we conclude that the control uB does not exist since B has

to avoid the whole space, i.e., Gi. Second, A k
i ⊆Card(Gi).

In the second case, the control can be computed using (7.32) and the corresponding

expected time can be evaluated by (7.34).
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Algorithm AvoidanceSet (vB,vR,σR,Ti,Ci)
(u0

B,Vi)← HJBSolution(vB,vR,σR,Ti,Ci,M)
(uR,Vi)← HJBSolution(vR,vB,σR,Ti,Ci,M)
TR← BKGSolution(vR,vB,σR,Ti,uR)
A 0

i = Ci, k = 0
repeat:

k = k+1, S̄i = /0
T k−1

B ← BKGSolution(vB,vR,σR,Ti,uk−1
B )

f or all: (rh,αh,φ h)
αh

R =−αh

φ h
R = π +φ h−αh

i f T R(rh,αh
R,φ

h
R)< T k−1

B (rh,αh,φ h) then
S̄i = S̄i∪ (rh,αh,φ h)

end i f
end f or
A k

i = A k−1
i ∪ S̄i

(uk
B,V1)← HJBSolution(vB,vR,σR,T1,A

k
i ,M)

until S̄i == /0
Ai = A k

i
return Ai

Figure 7.3: Pseudocode for computing the avoidance set Ai, which is a union of the
collision Ci and unsafe configuration S̄i sets. The optimal control uk

B and the avoidance
set A k

i are updated in each iteration until the set of unsafe configurations S̄i is empty.
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7.3.3 Hazard and Expected Time

Let us denote the optimal control defined by (7.23) as u∗Bi
. Therefore, when uB = u∗Bi

,

the two partial differential equations (7.23) and (7.33) are the same, except for their

difference in the boundary conditions. Since the differential operator L uB
i is linear, we

can define the hazard H(Xi) as

V (Xi) = H(Xi)+TBi(Xi) (7.41)

where both V (Xi) and TBi(Xi) are the solutions of (7.23) and (7.33), respectively, corre-

sponding to the optimal control, i.e., uBi = u∗Bi
. If we substitute V (Xi) from (7.41) into

(7.23), we obtain that H(Xi) satisfies the same partial differential equation as (7.23),

i.e., (7.33) with the boundary condition H(Xi) = M for Xi ∈ ∂Gi. The state Xi depen-

dent probability PuBi (Xi) of reaching the boundary under the feedback control uBi can

be computed as PuBi (Xi) =
1
M H(Xi). This can be verified by the fact that PuBi also sat-

isfies (7.33) with the boundary condition PuB(Xi) = 1 for Xi ∈ ∂Gi. This short analysis

also indicates that the effect of a large M is to reduce the probability of reaching the

boundary Gi.

7.4 Scalable Navigation Strategy

Theoretically, one can apply the same discretized value iteration scheme used in the

previous section to the optimal control with multiple red vehicles (N > 1). However,
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the dimension of the state space G ⊂ R3N is large in the sense that if we discretize

each dimension with Ds discrete steps, the number of grid cells over which we have to

compute the value iterations is D3N
s . Furthermore, the control computed that way would

not be able to address the change in the number of red vehicles. To circumvent this

challenge in this section, we propose a control based on the one-on-one solution (see

Section 7.3.2) which requires the value iteration computations with only D3
s grid cells.

To achieve that, we introduce an auxiliary Markov decision problem which is locally

consistent with the original problem and derive the form of its value function. Then we

use its one-step look-ahead approximation which approximates its value function via

lookup tables for the expected time and the hazard of the one-on-one solution. These

lookup tables have to be computed only once and stored in the memory, and allow the

computation of a scalable navigation strategy.

7.4.1 Auxiliary Markov Decision Problem

Instead of dealing with the discretized state space G h of G ⊂ R3N and the corre-

sponding locally consistent Markov chain Xh(n) we could obtain by the discretization

from (7.23), here we deal with the discrete state space G̃ h = ∏
N
i=1 G h

i , where i = 1, ...N.

The state space is illustrated in Fig. 7.4 in which each plane represents G h
i . Let us

denote with ph(X̃h(n + 1)|X̃h(n),uB) the transition probability of the Markov chain

X̃(n) over the discretized space G̃ h. Since our model of Ri for the control B design is
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(7.4)-(7.6), i.e., the motion of the red agents Ri is independent, we conclude that

ph(X̃h(n+1)|X̃h(n),uB) =
N

∏
i=1

ph(Xh
i (n+1)|Xh

i (n),uB) (7.42)

where X̃(n) = (Xh
1(n), ...X

h
N(n))

T with component evolutions resulting from the dis-

cretization scheme based on (7.26) and applied for each i = 1, ...N. Note that every

state of a Markov chain Xh(n) resulting from (7.23) would have 6N adjacent states, 2

along each of 3N dimensions of the state space G h. However, in our case, each state of

the auxiliary Markov chain X̃(n) has 6N , 2 along each of 3 relative dimensions in each

subspace G h
i . The reason for constructing the auxiliary chain is that, given a control,

the transitions in each subspace are independent of each other. Now, one may ques-

tion whether the auxiliary Markov chain X̃(n) is locally consistent with the original

continuous process X(t). The following theorem resolves this issue.

Theorem 1. For X̃h = (Xh
1,X

h
2, . . .X

h
N) and uB, define the multi-target interpolation

interval ∆̃t
h

as

∆̃t
h
(X̃,uB) = min

i=1,...,N
∆th(Xh

i ,uB) (7.43)

where ∆th(Xh
i ,uB) is defined by (7.31). Then X̃h(n) is locally consistent with the process

X(t) in (7.19) so that

E
{

∆X̃h(n)
}
= b(X̃h(n),uB)∆̃t

h
+o(∆̃t

h
)

Cov
{

∆X̃h(n),∆X̃h(n)
}
= ã∆̃t

h
+o(∆̃t

h
)

(7.44)

where ∆X̃(n) = X̃(n)− X̃(n−1), b is defined by (7.18), ã = diag(1N⊗ (0,0,σR)
T and

1N is the column vector of 1.
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Proof. Let 1̂i ∈ R3N×3 be the block-stacked matrix with the 3× 3 identity matrix in

block i and zeros elsewhere. Then E
{

∆X̃h(n)
}
=E

{
∑

N
i=1 1̂ j∆Xh

i (n)
}
=∑

N
i=1 1̂iE

{
∆Xh

i (n)
}

since, by construction, the subchain Xh
i (n) is independent of Xh

j(n) for i ̸= j.

Based on Lemma X from Sec. 5.3 of [94], we have that E{∆Xi(n)} = b(Xi,u)

∆th(Xi,u) where ∆th(Xi,u) is as in (7.31). Without losing generality, we will as in

[94] assume that discretization steps are expressed based on a mesh size h, e.g., ∆r,

∆φ and ∆α are expressed as mkh, k = 1,2,3, respectively. With mesh-size h, and

b{1,2,3}(X j,uB) which corresponds to b{r j,φ j,α j}(X j,uB) we have Qh(Xi,uB) = σ2
R +

h∑
3
k=1 mk|bk(X j,uB)|, where therefore, ∆th(Xi,uB) = m2

3h2/Qh(Xi,uB) is

∆th(Xi,uB) =
m2

3h2/σ2
R

1+ h
σ2

R
∑

3
k=1 mk|bk(Xi,uB)|

and

∆̃t
h
(X̃,uB) =

m2
3h2/σ2

R

1+ h
σ2

R
max j{∑3

k=1 mk|bk(X j,uB)|}

We can now exploit a general inequality | 1
1+x −

1
1+y | ≤ |x− y|, x,y > 0 and by the

boundedness of b(·) on the domain G h
i obtain

|∆th(Xi,uB)− ∆̃t
h
(X̃,uB)| ≤ K

m2
3h3

σ4
R

(7.45)

with K ≥ |
3

∑
k=1

mk|bk(Xi,uB)|−max
j
{

3

∑
k=1

mk|bk(X j,uB)|}| (7.46)

It follows that |∆th(Xi,uB)− ∆̃t
h
(X̃,uB)|/∆̃t

h
(X̃,uB) = O(h), so the difference (7.45) is

o(∆̃t
h
(X̃,uB)) for all i.
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Putting the above together, we have

E{∆X̃h(n)}=
N

∑
i=1

1̂ jb(X j,uB)∆th(X j,uB) =
N

∑
i=1

1̂ j

{
b(X j,uB)

[
∆̃t

h
(X̃,uB)+

(
∆th(X j,uB)− ∆̃t

h
(X̃,uB)

)]}
= b(X̃,uB)∆̃t

h
(X̃,uB)+o

(
∆̃t

h
(X̃,uB)

)
.

The covariance follows in a similar manner. Writing ∆X̃h(n) = ∆X̃h(n)−E{∆X̃h(n)}

for the (zero-mean) centered increment, the covariance from the theorem statement is

E{∆X̃h(n)∆X̃h(n)T}= E

{
N

∑
i=1

N

∑
j=1

1̂i[∆X̃i][∆X̃ j]
T 1̂T

j

}

=
N

∑
j=1

1̂ j

[
a(X j)∆th(X j,uB)+o(∆th(X j,uB))

]
1̂′j

= ã(X̃)∆̃t
h
(X̃,uB)+o

(
∆̃t

h
(X̃,uB)

)
.

From Theorem 1, one can apply the results of [94] to show the convergence of the

auxiliary MDP to the original continuous-time problem associated with (7.18)-(7.21).

Consequently, the original problem can be solved in the discrete space G̃ h using

Ṽ h(X̃h) = min
uB∈U

 ∑
Ỹh∈N (X̃h)

p̃h(Ỹh; X̃h,uB)Ṽ h(Ỹh)+ ∆̃t
h

 (7.47)

for X̃ ∈ G̃ h and Ṽ h(X̃) = g(X̃) on ∂ G̃ h.
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7.4.2 One-Step Look-Ahead Cost Approximation

While the transition probabilities (7.42) define a locally consistent chain, solving

the discrete HJB (7.47) for Ṽ h(X̃) (and the corresponding optimal control uB via value

iteration still explodes in computation time as the number of targets increases.

Instead, we approximate these values via a one-step look-ahead cost approximation

V̂ = min
uB

{
min

i
{TBi(Xi,uB)}+

N

∑
j=1

H (X j,uB)

}
(7.48)

composed of the total expected risk with respect to all red vehicles

H (Xi,uB) = ∑
Yh∈N (Xi)

ph(Yh|Xi,uB)H(Yh,uB) (7.49)

and the minimum expected time to the target i

TBi(Xi,uB) = ∆th
i + ∑
Yh∈N (Xi)

ph(Yh|Xi,uB)TBi(Y
h,uB)

where ∆th
i = ∆th(Xi,uB) and N (Xi) are the 6N neighbor states of Xi. Based on this

approximation, the control uB minimizes the expression in the braces of (7.48). The

approximation is scalable because all the values used in the approximations can be

pre-computed and stored as lookup tables, and the number of computations linearly in-

creases with the number of agents. Another important property of the approximation is

that for N = 1, it is not an approximation, but an exact match to the optimal control so-

lution. This method can be thought of as a form of approximate dynamic programming

[138].
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Figure 7.4: The discretized auxiliary Markov decision problem state space. Each plane
represents a (simplified, φ ≡ 0 ) domain for the relative dynamics with respect to each
boundary ∂G h

i with the target set states colored green and the states to be avoided
colored red. The relative position between B and Ri is represented in the ith plane and
colored blue. The neighbor states in which the relative position can be in the next step
are colored light blue.

For multiple red vehicles, the approximation includes the sum of expected risks as

H (Xi,uB). If the second part of the expression were the sum of the expected times,

then our approximation could be written in terms of the value functions V h
i (Xi,uB), i =

1, ...N. However, the sum would include the expected times to the tails of all red agents

and farther agents would contribute more to the sum. This is clearly unacceptable; at

the state in which B is close to the tail sector of a specific red vehicle, the control should

mainly depend on the expected time proximity to the tail sector and not on the expected

times to the tails of distant vehicles. Consequently, in our approximation, we use the

min operator for the expected times.
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7.5 Results

The numerical simulation results of this section are based on the Dubins vehicle

models (7.1)-(7.6) with the velocities vB = 0.1 and vR = 0.05 for B and R, respec-

tively. The navigation uncertainties of R in (7.6) and of B in (7.38) are modeled with

σR = σB =
√

10π/180 resulting in a standard deviation of the heading angle change

of 10deg/sec. The target set Ti in (7.14) and the collision set Ci in (7.15) are based

on the parameters r = 0.05, r̄ = 0.15, φ̄ = 10deg and ᾱ = 20deg. The discretization

steps in our computations are ∆r = (r− r̄)/100, ∆φ = ∆α = 5deg. The M value, which

is used in the iterative algorithm (see Fig. 7.4) for computing the avoidance set, is

M = 104. Since the heading angle of B is the integral of uB, i.e., dθB = uBdt, in our

computations of optimal control for one-on-one solutions, we used the discrete values

uBi ∈ {−0.5,0,0.5}, i = 1,2,3,4 to speed up the computations. In the computation of

uB based on our algorithm, we allowed for values between -0.5 and 0.5 with the step of

0.1.

To illustrate the avoidance set, we created a 2D map depicted in Fig. 7.5. The map

coordinates are the x and y coordinates of B, relative to R, which is in the center of the

map and pointed to the right as depicted in the figure together with the radius r and the

tail sector in the B’s target set. For every point (x,y) and for any heading angle of B at

that point, i.e., the closest discrete point, we check if the value function V k
i = M. If it

is, then we know that the relative position is in the avoidance set and we mark that x−y
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Figure 7.5: The avoidance set for vB = 0.1 and vR = 0.05 is depicted by gray points.
The center of the map depicts the red agent, its tail sector (green) and circular collision
set (red).

coordinate with gray color. Although the map is a projection of the avoidance set, it is

likely that most of the positions to be avoided by B are in front of R and that the safest

positions for B are behind R.

The avoidance set in Fig. 7.5 is computed after two iterations of the algorithm in

Fig. 7.3. For the purpose of testing, we also computed the avoidance set for the velocity

ratio between vB and vR that is closer to 1 (vB = 0.1 and vR = 0.075), and found that

it required four iterations. That confirmed our expectation that the more competitive

agents are, the more iterations it takes to compute the avoidance set. Once we reduced

the discretization steps to ∆φ = ∆α = 2deg, the algorithm took six iterations until the

convergence, which suggests that the size of the discrete space also impacts the number
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of iterations.

In Fig. 7.6, we present an example of the simulation resulting from our navigation

control. Figure 7.7 depicts the expected time toward each R agent and the corresponding

hazard values. At the beginning, depicted in Fig. 7.6a, the B agent is in the position

in which one of the red agents (R4, gray) is the one towards which B has the smallest

expected time, but it faces the other three red agents and the risk of collision. Therefore,

the hazard values for R1, R2, R3 are high in the time interval corresponding to the shaded

segment A (see Fig. 7.7). To reduce the hazard values, the B agent maneuvers around

the three R agents (see Fig. 7.6b), which results in the drop of the hazard values by

the end of the time interval covered by the segment A. In the time interval between

the shaded segments A and B, the expected time is reduced while the hazard to R1

moderately increases (see Fig. 7.7). The position around which the hazard peaks is in

Fig. 7.6b. Now B maneuvers to reduce the hazard, but at the cost of the steep increase

of the expected times, which corresponds to the time covered by the shaded segment

B. After the segment B, the expected time towards R2 (green) is the smallest for the

first time. It is the moment at which B starts cutting in front of R1 and R3. During the

time interval covered by the shaded interval C, the expected time to R2 is the shortest

simultaneously with the highest hazard since B has already passed R3 and is started

cutting in front of R2 as depicted in Fig. 7.6c. Shortly after the segment C time interval,

the agent R4 is out of range, the expected time for R4 (gray) is too large to be plotted
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Figure 7.6: Simulation result. Each panel corresponds to the following simulation
times: (a) 1.32s; (b) 9.32s; (c) 25.00s ; (d) 34.00s; (e) 45.29s; and (f) 47.73s, which is
also the time at which B enters the tail sector of R2. The B agent trajectory is colored
blue and the R1 to R4 trajectories are colored red, green, magenta and gray, respectively
(see Fig. C.1 in Appendix C).
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and the corresponding hazard drops to 0. At that point, the shortest expected time does

not correspond to R2 and it remains like that until the time point towards the middle

between the segments C and D, i.e., the position depicted Fig. 7.6d. In the time interval

covered by the segment D, the expected time towards R2 continues to decrease, but

there is also a steep decrease in the corresponding hazard value (see Fig. 7.6e). At

the time point of the intercept depicted in Fig. 7.6 f , both the hazard, as well as the

expected time are 0.

The optimal control of B towards each R, which results from the solution of the

one-on-one problem, as well as the optimal control uB used in the navigation in our

scenario are plotted in Fig. 7.8. The values of the control are in the range of minimal

and maximal values of the turning rate. As we can see from the diagram, there are time

instances when the control uB looks like as if it were obtained by the control that is

optimal towards the majority of R agents. The best examples are time intervals covered

by the shaded segments, E and H. In both of these segments uB1 = uB2 = uB3; therefore,

independently of the value uB4 , the value uB is defined by the previous values. Note that

in the segment H, all individual uBi , i = 1,2,3,4, are equal and it would be very strange

to have uB with a different value.

In the shaded segment F, we find uB1 = uB2 and uB3 = uB4 . Since there is no majority

of control values that are the same, the value uB switches between these two values, or

takes some value in between as may be expected by a majority rule. A clear example
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Figure 7.7: a) Expected time b) Hazard values on the log scale c) Hazard values on the
linear scale. The diagrams corresponding to R1-R4 are colored red, green, magenta and
gray, respectively.
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Figure 7.8: The control uB and control variables uBi , i = 1,2,3,4 resulting from the
solution of the one-on-one problem and relative positions between B and Ri at every
time point of the simulation. All values are in the range [−0.5,0.5].
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that our control does not yield such a rule is the control in the time interval covered by

the shaded segment G. In the segment, uB1 = uB2 = uB4 and the control uB still switches

and takes some value in between the uB1 and uB3 values.

7.6 Robot Experiment Results

The experimental setup included five e-puck robots with infrared markers which

were tracked by a motion capturing system composed of four Bonita 10 Vicon cameras.

For each e-puck robot, we implemented proportional-integral (PI) controllers for the

velocity and turning rate of the robot. These low-level control loops, software and

hardware architecture supporting the experiment have been presented in [125].

Out of five e-puck robots, one had the role of B and four had the roles of R1-R4. The

velocity of B was set to a constant 10cm/s. The control for B used motion capturing

system measurements to compute relative positions between B and each Ri, i= 1,2, ...4.

The relative positions were used to read lookup tables for the expected time, hazard and

optimal control uBi , and compute the turning rate uB. This turning rate was sent to the

low-level PI controller that controlled the motion of B.

The four R1-R4 robots were controlled to follow trajectories that were similar to

those from the simulation. However, in dealing with the experimental setup, we had

to adjust the trajectories to avoid collisions among R1-R4 due to their size and fit them

within the confined space of the experiment, see Fig. 7.9. As a result, the velocities of
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Figure 7.9: Robot experiment setup with five e-puck robots. Each robot has a unique
configuration of infrared reflecting markers (green rings with silver spheres) tracked by
a motion capturing system with four Bonita 10 Vicon cameras. The robots are at their
initial position (see Fig. C.2 in Appendix C).

Ri, i = 1,2, ...4, were set to vR = 3.25cm/s. Although, this velocity was smaller then

the one used in our stochastic control design (vR = 5m/s), we did not update the design

with this value. Our experience in the experiments [125] and flight tests [119] is that

the type of stochastic optimal control we use does not require a perfect matching of

parameters with the reality.

The initial configuration of B and Ri robots, i = 1,2, ...4, in the experiment was

similar to the one used in the simulation and encircled in Fig. 7.10. The figure shows

the complete trajectories until B enters the tail of R3. This outcome is different from

the simulation and can be explained by a higher hazard with respect to R2(green) than

to R3(magenta) towards the end of the experiment around the time point 40s. The
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trajectories that are confined to the dimensions of the experimental setup also result

into smaller expected times than in the simulation, specially for R4 (gray) in Fig. 7.11.

Fig. 7.12 depicts the optimal control ui computed with respect to each Ri, i =

1,2, ...4, as well as the control uB which results from the one-step look-ahead cost

approximation (7.48). This control, just like in the simulation, accounts both for the

hazard and expected times to the tail of Ri, i = 1,2...4, which are defined by the one-

on-one solution and plotted in Fig. 7.11. Any time uBi , i = 1,2...4, are the same for all

i, the control uB = uBi . For the time intervals in which at least one of uBi is different

from the others, we can observe that uB alternates its value. Since the vehicle’s heading

angle is the integral of uB, the impact of fast alterations of uB to the heading angle is

smoothed out. The PI controller that controls the turning rate of the vehicle additionally

contributes to the smoothing. Towards the end of the experiment, uB = uB3 since B is

close to the tail of R3 and has to navigate optimally to it.

7.7 Conclusions

In this paper, we presented an approach to the safe navigation of the nonholonomic

fixed wing unmanned aerial vehicle surrounded by multiple other vehicles. The ap-

proach is based on the stochastic optimal control which better addresses the uncer-

tainty of the other vehicles’ trajectories without assuming a worst case scenario, which

is classically considered by the game theory approaches to similar problems. The sce-
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Figure 7.10: Robot experiment trajectories. The initial condition and the trajectories of
R1-R4 are similar to those in the simulation. The B robot trajectory is colored blue and
the R1-R4 trajectories are colored red, green, magenta and gray, respectively.
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Figure 7.11: Robot experiment expected times and hazards. a) Expected time b) Hazard
values on the log scale c) Hazard values on the linear scale. The diagrams correspond-
ing to R1-R4 are colored red, green, magenta and gray, respectively.
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Figure 7.12: Robot experiment control. The control uB and control variables uBi , i =
1,2,3,4, resulting from the solution of the one-on-one problem and relative positions
between B and Ri at every time point of the simulation. All values are in the range
[−0.5,0.5] (see the supplementary video).
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nario that is used in our paper was selected to illustrate that safety is not only about

collision avoidance.

The problem of the safe navigation in the presence of multiple vehicles is addressed

based on the solution of the one-on-one vehicle problem. Therefore, we first explained

the stochastic optimal control for that case and introduced the iterative algorithm for

computing the avoidance set. The distinguishing property of our approach is that the

avoidance set is computed taking into account the vehicle kinematics.

For the multiple vehicles, we derived the result based on the locally consistent

Markov chain approximation. This result serves well to illustrate the complexity of

the problem and as the basis for proposing the scalable method for computing the con-

trol. The scalable method is based on the expected times and hazards resulting from the

one-on-one vehicle stochastic optimal control solution. Our scalable approach to the

navigation in the multiple vehicle scenario was illustrated by the numerical simulation.

We compared the trajectories of the vehicles with the expected times and hazards from

our simulation. In addition, we compared the control action of computed solutions with

the control actions resulting from the one-on-one solution.

The presented approach is suitable for real-time implementations, therefore, we

presented the results from the experiment with small-scale laboratory e-puck robots.

The navigation relies on the measurements of relative positions between B and red

vehicles (R1−R4) to be intercepted. While the measurements were corrupted by the
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noise and robot motion model could be more complex, we did not face any significant

problem in the implementation.

The approach addresses the uncertainty in the relative positions through the kine-

matic uncertainty in the motion of red vehicles. The presence of any additional uncer-

tainty would likely require the introduction of an additional stochastic process in the

problem formulation. Unless the additional uncertainty in the problem cannot be ad-

dressed by an increased intensity of stochasticity in the kinematic model of red vehicles,

the problem may be significantly different from the one presented in this paper.
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Chapter 8

Stochastic Optimal Control Approach

to Navigation with Multi-Obstacle

Avoidance

This chapter is a reprint of the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Navigation

with Multi-obstacle Avoidance Composed of Stochastic Optimal Controllers.” In

2019 American Control Conference (ACC), pp. 2239-2244. IEEE, 2019.
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8.1 Introduction

Obstacle avoidance is one of the fundamental problems in robotics [16]. Here we

study a particular obstacle avoidance approach to navigation towards a desired way-

point in a obstacle cluttered dynamically moving environment. In the proposed design

we anticipate uncertainty in motion of the obstacles and use stochastic control to reach

a waypoint in a time efficient manner.

Obstacle avoidance methods can be roughly grouped into those that are based on

path-planning schemes [100], and those that are based on sense and avoid schemes

[13]. Our proposed approach is closer to the latter, and examples of other approaches

in that group are based on game theory [190, 52], barrier functions [30], reachable sets

[1, 122], and potential functions [178, 110].

In this paper we consider the navigation of a fixed velocity UAV flying at a constant

altitude, which can be modeled as Dubins vehicle [133]. The UAV navigates towards

a waypoint and is subject to a possible collision with unpredictable moving circular

obstacles as shown in Fig. 8.1. The optimal control solution to this problem is compu-

tationally challenging.

To overcome the computationally challenging optimal control problem, we use the

same idea as in a previous work [126] by decomposing the problem into separate

smaller state space computable stochastic optimal control problems. Where now in this

paper we develop a scalable control strategy for avoiding multiple Brownian moving
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Figure 8.1: Geometry of the UAV navigating towards a waypoint while avoiding ob-
stacles. θ is the heading angles of the UAV. φoi and φw are bearing angles of the UAV
towards ith obstacle and waypoint, respectfully. roi and rw are distances from UAV to
ith obstacle and waypoint, respectfully.
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obstacles. We provide statistical analysis that shows the controller reduces the expected

probability of collision in this dynamic obstacle environment while navigating towards

a waypoint.

The rest of this paper is organized as follows: First we formulate the optimal control

problem for the full state-space of reaching the waypoint while avoiding N obstacles.

Then to cope with the computationally demanding optimal control solution for multiple

moving obstacles, we show that the multi-obstacle avoidance problem can be simplified

to reaching a safe configuration from which the UAV naturally avoids collision with a

stationary obstacle. From this we see that we need to solve two fundamental problems

that is navigating to a waypoint with no obstacles and second reaching a safe configu-

ration from an obstacle. These two sub-problem solutions are combined via their value

functions, and the work of the resulting controller is illustrated through numerical sim-

ulations.

8.2 Problem Formulation

Consider the scenario in Fig. 8.1, depicting the UAV navigating in a cluttered obsta-

cle environment towards a waypoint fixed at position (xw,yw). The UAV has to navigate

to the waypoint while avoiding collision with all obstacles. The UAV flies at constant

altitude and is subject to a stochastic wind [8] which can be modeled as Dubins vehicle
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with a stochastic wind disturbance

dx = vcosθdt +σwdwxw (8.1)

dy = vsinθdt +σwdwyw (8.2)

dθ = udt (8.3)

where the triple (x,y,θ) denotes the UAV’s position and heading angle. The Wiener

process increments dwxw and dwyw are along the x- and y-axis directions, respectfully.

The UAV’s velocity, v > 0, is a known constant, and the control variable is a bounded

heading rate u ∈ [−umax,umax]. The parameter σw > 0 is the intensity of the wind

disturbance.

Since the UAV has no knowledge of the obstacles’ motion, the UAV navigation has

to anticipate that uncertainty, thereby the kinematics of each ith obstacle for i = 1..N is

modeled as 2D Brownian motion, i.e.

dxi
o = σodwxi

o
(8.4)

dyi
o = σodwyi

o
(8.5)

where each ith obstacle’s position is given by xi
o, yi

o, and dwxi
o

and dwyi
o

denote the

Wiener process increments along the x- and y-axis directions. The scaling parameter

σo > 0 is identical for all obstacles.
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8.3 Optimal Control Problem Formulation

The relative position between the UAV and each ith obstacle and waypoint is uniquely

defined based on the coordinates (rw,φw,ri
o,φ

i
o) as shown in Fig. 8.1, and to find the

relative kinematics between the UAV, waypoint and N obstacles we use Îto calculus

similarly as shown in the Appendix of [125] to obtain

drw =

(
−vcos(φw)+

σ2
w

2rw

)
dt +σdwrw =brwdt +nrwdwrw (8.6)

dφw =

(
v
rw

sin(φw)−u
)

dt +
σw

rw
dw(φw+θ) =bφwdt +nφwdw(φw+θ) (8.7)

dri
o =

(
−vcos(φ i

o)+
σ2

ow
2ri

o

)
dt +σowdwri

o
=bri

o
dt +nri

o
dwri

o
(8.8)

dφ
i
o =

(
v
ri

o
sin(φ i

o)−u
)

dt +
σow

ri
o

dw(φ i
o+θ) =bφ i

o
dt +nφ i

o
dw(φ i

o+θ) (8.9)

where σow = σo +σw.

Reaching the waypoint (xw,yw) for the UAV is defined by reaching the set

T = {(rw,φw)|rw ≤ Rmin} (8.10)

and collision with an obstacle is defined as the UAV reaching any of the sets

A i = {(ri
o,φ

i
o)|ri

o ≤ d} (8.11)

that overlap with each ith obstacle. Now we can define the control u as the solution of

the optimal control problem with the cost function

J(x̃,u) = min
u

E
{

g(x̃(τ))+
∫

τ

0
dt
}

(8.12)
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where x̃ = (rw,φw,ri
o,φ

i
o)

T for i = 1..N is the 2(N + 1) dimensional state that fully

describes the relative positions among the UAV, waypoint and each ith obstacle. The

terminal time τ corresponds to the time instant the vehicle reaches either the waypoint

or any of the ith obstacles. Notice that τ is the optimal time corresponding for the UAV

following the optimal path to reach the waypoint while avoiding all the obstacles. Later

we will discuss an approximate optimal control scheme which results in the UAV not

necessarily following the optimal path to the waypoint while avoiding collision with all

obstacles.

The terminal cost for hitting an obstacle is defined as

g(x̃(τ)) =


M if (ri

o,φ
i
o) ∈A i

0 if (rw,φw) ∈T

(8.13)

where M≫ 0 is a large positive constant to penalize reaching the set A i for any of the

ith obstacles.

Notice that the optimal control solution is 2(N+1) dimensional, which is computa-

tionally challenging [138] for large N, i.e. very cluttered obstacles environments. Thus

to reduce the computational complexity of solving the optimal control solution for large

number of obstacles, we instead reduce the problem into two sub-problems. The first

sub-problem is a two-dimensional stochastic optimal control problem for reaching the

waypoint without any obstacles. The second is a two-dimensional stochastic optimal

control problem for avoiding collision with an obstacle by reaching the configuration
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from which the UAV can safely ignore that obstacle. These two sub-problems can be

solved independently of each other and then combined together to achieve an approx-

imate optimal control solution for the collision-free navigation problem with multiple

obstacles.

The first sub-problem of navigating to the waypoint (xw,yw) without any obstacles

is given by the control uw which solves the minimum time optimal control

J(x̃w,uw) = min
uw

E
{∫

τw

0
dt
}

(8.14)

where x̃w = (rw,φw)
T is the two-dimensional state that describes the relative positions

among the UAV and waypoint, and τw is the terminal time which corresponds to the

time instant when the UAV reaches the waypoint.

The second sub-problem solution of avoiding collision with the ith obstacle by

reaching the configuration from which the UAV can safely ignore that ith obstacle can

be defined as the control ui
o which solves the minimum time optimal control

J(x̃i
o,u

i
o) = min

ui
o

E

{
g(x̃i

o(τ
i
o))+

∫
τ i

o

0
dt

}
(8.15)

where x̃i
o = (ri

o,φ
i
o)

T is the two-dimensional state that describes the relative positions

among the UAV and the ith obstacle. The terminal time τ i
o corresponds to the time

instant when the UAV reaches configuration from which the UAV can safely ignore

that ith obstacle, and g(x̃i
o) = g(x̃) is expressed in expression (8.13). In the original

problem (8.12) τ is the lower bound time that can be achieved compared to solving the

combined result of these two sub-problems, i.e. τ ≤ τw +∑
N
i=1 τ i

o.
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8.4 Reaching Waypoint under Brownian Wind Distur-

bance

This sub-problem is based on the stochastic kinematic model given by expressions

(8.6) and (8.7). The model’s state variables are the distance rw and bearing angle φw,

defined as

r2
w = (xw− x)2 +(yw− y)2 (8.16)

φw = arctan
(

yw− y
xw− x

)
−θ (8.17)

where (x,y,θ) and (xw,yw) define the UAV’s position and heading angle and waypoint’s

position, respectively (see Fig. 8.1). The optimal control solution u∗w that achieves the

minimum cost in (8.14) can be defined as the same control that finds the steady state

solution to the Hamilton-Jacobi-Bellman (HJB) partial differential equation [94] in

0 = min
uw
{L w

uw
Vw(x̃w)+1} (8.18)

with boundary condition Vw(x̃w) = 0 for x̃w ∈ T , and Vw can be interpreted as the

expected time to reach the waypoint defined by reaching the set (8.10), and L w
uw

is the

differential operator

L w
uw

= brw

∂

∂ rw
+

1
2
(nrwnφw +n2

rw
)

∂ 2

∂ r2
w
+bφw

∂

∂φw
+

1
2
(nrwnφw +n2

φw
)

∂ 2

∂φ 2
w

(8.19)

where brw , nrw , bφw and nφw are defined by (8.6) and (8.7), respectively. The solution

of (8.18) can be computed using a locally consistent Markov chain discretization of the
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HJB equation [94]. The discretization yields a Markov chain with control dependent

transition probabilities and converts (8.18) into a dynamic programming problem which

can be solved over a discrete space using so-called value iterations [175]. The value

iterations result in a discrete approximation of the value function V h
w and optimal control

u∗w
h, where both are in the form of a two-dimensional lookup table. The superscript h

indicates that the value function and control are computed for the discretized problem.

To discretize (8.18) in the state space, we use discrete steps ∆rw and ∆φw for the

discretization of rw and φw, respectively, and the following upwind discrete approxima-

tions of derivatives in (8.18)

∂Vw

∂ rw
≈

b+rh
w

∆rw

(
Vw(x̃h

w +∆rw)−Vw(x̃h
w)
)
−

b−rh
w

∆rw

(
Vw(x̃h

w)−Vw(x̃h
w−∆rw)

)
(8.20)

∂ 2Vw

∂ r2
w
≈ nr

2∆r2
w

(
Vw(x̃h

w +∆rw)−Vw(x̃h
w)
)
− nr

2∆r2
w

(
Vw(x̃h

w)−Vw(x̃h
w−∆rw)

)
(8.21)

∂Vw

∂φw
≈

b+
φ h

w

∆φw

(
Vw(x̃h

w +∆φw)−Vw(x̃h
w)
)
−

b−
φ h

w

∆φw

(
Vw(x̃h

w)−Vw(x̃h
w−∆φw)

)
(8.22)

∂ 2Vw

∂φ 2
w
≈

nφ

2∆φ 2
w

(
Vw(x̃h

w +∆φw)−Vw(x̃h
w)
)
−

nφ

2∆φ 2
w

(
Vw(x̃h

w)−Vw(x̃h
w−∆φw)

)
(8.23)

where nr = |nrwnφw +n2
rw
| and nφ = |nrwnφw +n2

φw
|. b+rh

w
=max[0,brh

w
], b−rh

w
=max[0,−brh

w
]

and b+
φ h

w
, b−

φ h
w

are defined in the same way. The superscript h indicate terms that are eval-

uated at the points of the discretized state space rh+1
w − rh

w = ∆rw and φ h+1
w −φ h

w = ∆φw.

After the substitution of (8.19)-(8.23) in (8.18), we move all the terms that include
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Vw(rh
w,φ

h
w) to the left side of the expression (8.18) to obtain

V h
w = min

uw

{
∆th

uw
+ p+

∆rw,uw
V h

w(x̃w +∆rw) + p−
∆rw,uw

V h
w(x̃w−∆r) (8.24)

+p+
∆φw,uw

V h
w(x̃w +∆φw) +p−

∆φw,uw
V h

w(x̃w−∆φw)
}

where

p±
∆rw,uw

= ∆th
uw

(
b±rw

∆rw
+

nr

(2∆r2
w)

)
(8.25)

p±
∆φw,uw

= ∆th
uw

(
b±

φw

∆φw
+

nφ

(2∆φ 2
w)

)
(8.26)

can be interpreted as discrete Markov-chain transition probabilities from the points

(rh
w±∆rw,φ

h
w±∆φw) of the discrete space to the point (rh

w,φ
h
w), and

∆th
uw

=

(
|bh

rw
|

∆rw
+
|nrw nφw |
(∆rw)2 +

(nrw)
2

(∆rw)2+
|bh

φw
|

∆φw
+
|nrw nφw |
(∆φw)2 +

(nφw)
2

(∆φw)2

)−1

(8.27)

where |bh
rw
| = b+rw

+ b−rw
, |bh

φw
| = b+

φw
+ b−

φw
, and ∆th

uw
is the implicit time interpolation

interval [94].

Expression (8.24) is the discrete version of (8.18) and the discrete approximation V h
w

of the value function Vw can be solved numerically using value iterations [175] starting

from an initial guess for the V h
w(rw,φw) values.

For the computational domain K of the solution

K = {[Rmin,Rmax]× [−π,π−∆φw]} (8.28)

which is the set bounded by the minimal Rmin and maximal Rmax distances. Since, in

our problem formulation, the angles φw have a full 2π range, the computational domain
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Figure 8.2: The value function for reaching the waypoint shown for various UAVs
pointing towards the right. The three UAVs to the left of the waypoint location (0,0) are
able to reach the waypoint faster than the UAV that starts to the right of the waypoint.

is periodic, i.e., the pairs of points (rh
w,−π) and (rh

w,π −∆φw) are next to each other.

Fig. 8.2 presents a projection of the value function on the x- and y-axis computed with

the parameters listed in the results section. In Fig. 8.2, the waypoint is placed in the

center (0,0) and the UAV has reached the waypoint once it has reached the minimal

distance allowed in our computational domain.
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Figure 8.3: The value function for avoiding the obstacle shown for various UAVs point-
ing towards the right. The three UAVs to the left of the obstacle location (0,0) are in a
worse position than the UAV that starts to the right of the obstacle since the rightmost
UAV just needs to continue to move towards the right.

8.5 Reaching Avoidance Configuration for a Brownian

Moving Obstacle

This sub-problem is based on the stochastic kinematic model given by expressions

(8.8) and (8.9). The model’s state variables are the distance ri
o and bearing angle φ i

o for
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the ith obstacle which we denote as ro and φo for simplicity

r2
o = (xo− x)2 +(yo− y)2 (8.29)

φo = arctan
(

yo− y
xo− x

)
−θ (8.30)

where (x,y,θ) and (xo,yo) define the UAV’s position and heading angle and obstacle’s

position, respectively (see Fig. 8.1). The optimal control solution u∗o that achieves the

minimum cost in (8.15) can be defined as the same control that finds the steady state

solution to the HJB partial differential equation [94] in

0 = min
uo
{L o

uo
Vo(x̃o)+1} (8.31)

with boundary conditions Vo(x̃w) = g(x̃w) defined in (8.13) and Vo(x̃w) = 0 for x̃w ∈To,

which is the set

To = {(ro,φo)|φo /∈ (−π/2,π/2)} (8.32)

where the value function Vo can be interpreted as the expected cost to reach that set,

which is configuration from which the UAV can safely ignore that obstacle while avoid-

ing collision with the obstacle, which is the set defined in (8.11). The differential oper-

ator is

L o
uo
= bro

∂

∂ ro
+

1
2
(nronφo +n2

ro
)

∂ 2

∂ r2
o
+bφo

∂

∂φo
+

1
2
(nronφo +n2

φo
)

∂ 2

∂φ 2
o

(8.33)

where bri
o
, nri

o
, bφ i

o
and nφ i

o
are defined by (8.8) and (8.9), respectively, for the ith ob-

stacle. In the same way as the previous section, the solution of (8.31) can be computed
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using a locally consistent Markov chain discretization of the HJB equation [94], where

we will obtain

p±
∆ro,uo

= ∆th
uo

(
b±ro

∆ro
+

nr

(2∆r2
o)

)
(8.34)

p±
∆φo,uo

= ∆th
uo

(
b±

φo

∆φo
+

nφ

(2∆φ 2
o )

)
(8.35)

as the discrete Markov-chain transition probabilities from the points (rh
o ±∆ro,φ

h
o ±

∆φo) of the discrete space to the point (rh
o,φ

h
o ), and time interval as

∆th
uo
=

(
|bh

ro
|

∆ro
+
|nro nφo |
(∆ro)2 +

(nro)
2

(∆ro)2+
|bh

φo
|

∆φo
+
|nro nφo|
(∆φo)2 +

(nφo)
2

(∆φo)2

)−1

(8.36)

where |bh
ro
|= b+ro

+b−ro
and |bh

φo
|= b+

φo
+b−

φo
.

Fig. 8.3 presents a projection of the value function for avoiding collision with Brow-

nian moving obstacle by reaching safe configuration from that obstacle on the x- and

y-axis. The obstacle has radius d = 0.1 m and is placed in the center (0,0). The UAV

has reached the safe configuration when it is at the set (8.32).

8.6 Solution Composition

The composition of these value functions is inspired by how the effect of harmonic

functions [88] add together to create another harmonic potential function without any

local minimum. Thus to create a similar effect, we saw our obstacle avoidance value

functions Voi “naturally” forces the UAV to move around the obstacles with the addition
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of the waypoint reaching value function Vw, thus we can combine them as

Vw +
N

∑
i=1

Voi (8.37)

and by applying a one-step look ahead approach [73] to (8.37, we obtain

uc = argmin
u

{
V̂w +

N

∑
i=1

V̂oi

}
(8.38)

subject to V̂oi ≤ m < M for i = 1..N (8.39)

where uc is the one-step look ahead control and 0 < m < M is small buffer area from

each obstacle such that the UAV does not approach an obstacle arbitrary close. The

respective one-step look ahead V̂w and V̂o to the value functions Vw and Voi are expressed

as

V̂w = ∆tw +∑
yw

pw(yw|x̃w,u)V h
w(yw) (8.40)

V̂oi = ∆t i
o +∑

yi
o

pi
o(y

i
o|x̃i

o,u)V
h
oi(yo) (8.41)

for all the values functions V h
oi associated with each obstacle i = 1..N and the value

function associated with reaching the waypoint V h
w . Both yw and yi

o are the neighboring

states of current state location x̃w and x̃i
o, respectively. The probability transitions pw

and pi
o are defined in (8.25)-(8.26) and (8.34)-(8.35), respectfully. The time interpola-

tion intervals ∆tw and ∆t i
o are defined in (8.27), (8.36), respectfully.
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8.7 Results

The numerical simulation results of this section are based on the Dubins vehicle

model (8.1)-(8.3) and obstacle model (8.5) with Dubin’s velocity v = 0.1 m/s and max-

imum turning rate umax = 0.5 rad/s. The noise intensity for the Brownian moving obsta-

cle is σo = 0.038
√

m/s, and the noise intensity for the stochastic wind is σw = 0.001√
m/s. Because of the discrete space approximations used in computing the control,

we stop the simulation once the Dubins vehicle has reached the minimal distance al-

lowed in our computational domain of Rmin = 0.05 m to the waypoint (xw,yw), or has

collided with any of the circular obstacles centered at (xi
o,y

i
o) with radius d = 0.1 m for

i = 1..N. The sample time is ∆T = 0.5 seconds.

The parameters used for computing the computational domain are expressed in

(8.28) for both the waypoint and obstacle sub-problems, which are Rmax = 2.04 m

and Rmin = 0.05 m. The discrete step sizes are ∆rw = ∆ro = (Rmax−Rmin)/100 m and

∆φw = ∆φo = 5π/180. The penalty is M = 104 when the Dubins has collided with an

obstacle defined in (8.13).

Example: Fig. 8.4 shows an example simulation run for the scenario depicted in

Fig. 8.1, where there are 6 obstacles between the UAV and waypoint in Fig. 8.4A.

The UAV continues to fly towards the right in Fig 8.4B while avoiding the nearest 3

obstacles and reaches the waypoint in Fig. 8.4C.

Statistical Analysis: From the Rayleigh distribution, the 2D Brownian moving ob-
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stacle with kinematics (8.5) and noise intensity σo along both the x- and y-axis can be

used to find the expected velocity of the obstacle as

αv∆T = σo
√

∆T

√
π

2
(8.42)

α = σo

√
π

v
√

2∆T
(8.43)

where α is the ratio of the 2D Brownian moving obstacle’s expected velocity compared

to the UAV’s velocity v. Thus for our parameters σo = 0.038
√

m/s, v = 0.1 m/s

and ∆T = 0.5 s, we get that the obstacle’s expected velocity ratio is α ≈ 0.7, thus the

obstacle’s expected velocity is 0.07 m/s.

For a N obstacle scenario within a 20× 20 m2 planar region. The probability of

collision [67] in this environment assuming that our UAV moves as another circular

obstacle without control is

δAcoil/A = Nπ
((Rmin +d)+ v12∆T )2

A
(8.44)

where the total area is A = 400 m2 and the relative velocity between an obstacle and

UAV is v12 = 0.17 m/s. For different N shown in Fig. 8.5 we get the expected proba-

bility of collision for each obstacle amount.

To compare how well our controller performs against the expected probability of

collision in a 20×20 m2 planar region, we run 1000 simulations for the three different

obstacle scenarios shown in Fig. 8.5A-C where the UAV is initially placed in the center

of the region with heading angle θ = 0. The Brownian moving waypoint and obstacles
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Figure 8.4: Simulation for a 6 obstacle avoidance scenario. Time progresses from A
to C, where A) the initial placement of the UAV, waypoint and obstacles and C) UAV
reaches the waypoint.

are randomly initialized within the environment such that the UAV is not initially in

either of the avoidance sets A i
o defined in (8.11) or the target set T defined in (8.10).

Scenarios for the 100, 200 and 400 obstacle cluttered environments is shown in Fig.

8.5A, B and C. Also is shown on the bottom right of Fig. 8.5 is a table that shows

the empirical collision probability where the UAV actively avoids collision with the

obstacles and the theoretical collision probability without control.

8.8 Conclusions

In this paper, we presented the controller for a Dubins UAV which has the goal

to reach a waypoint while simultaneously avoiding collision with multiple randomly

moving circular obstacles. Since the UAV does not know each obstacle’s trajectory,
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Figure 8.5: Parts A, B and C are one instance of random initial placement of obstacles
and waypoint in a 20×20 (m2) area where the UAV is located in the center. Results for
1000 simulations for each scenario in A, B and C are summarized in a table at bottom
right.
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this uncertainty has to be anticipated during the navigation. While the minimum time

control problem to reach the waypoint while avoiding all the obstacles can be posed,

solving this optimal control problem is hindered by the number of state variables that

should be considered. Therefore, we focus on reducing the complexity of the problem

by solving two sub-problems. The first is the minimum time optimal control problem to

reach a waypoint and the second is the minimum time optimal control problem to reach

a safe configuration from the obstacle. Then combining the value functions associated

with the solution of each sub-problem is done by solving a multi-objective optimization

problem at each control update step. The resulting scalable navigation algorithm is able

to reduce the expected probability of collision while navigating towards the waypoint

and avoiding collision with Brownian moving obstacles.
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Chapter 9

Min-Max Time Efficient Inspection of

Ground Vehicles by a UAV Team

This chapter is a reprint of the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Min–max

time efficient inspection of ground vehicles by a UAV team.” Robotics and Au-

tonomous Systems 125 (2020): 103370.

9.1 Introduction

This paper is the result of an exploration to formulate the control of stochastic multi-

agent systems by an integration of stochastic optimal control strategies that are designed

for a pair of agents. Each pair for our inspection problem is defined as one UAV and one
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ground vehicle, and to study such an integration of these control strategies, we consider

a scenario with a team of N unmanned air vehicles (UAVs) that are tasked to inspect

efficiently with respect to time a group of M ground vehicles. Though the location and

orientation angles of the ground vehicles is known to the UAVs, the navigation strategy

of ground vehicles is unknown. To anticipate this uncertainty, the headings of ground

vehicles are described as stochastic processes, and as a result, the UAV navigation has

to be a solution of a feedback stochastic control problem.

A solution of the feedback stochastic optimal control problem for the N UAVs and

M ground vehicles has to depend on the relative state-space positions between any pair

of UAVs and ground vehicles. This number of state-space variables quickly increases

due to the number of combinations in which N UAVs can inspect M ground vehicles,

and as such the number should also account for solutions of allowing a single UAV to

inspect multiple ground vehicles. In principle, we can formulate the minimum time

stochastic optimal control using the Hamilton-Jacobi-Bellman (HJB) equation, but it

is a well known result of the so-called curse-of-dimensionality [136] that the computa-

tional complexity needed to solve the optimal solution goes quickly beyond the com-

putational power of modern computers because of the combinatorial increase of the

number of state-space variables. Consequently, we propose an approach in which we

first solve for the stochastic optimal control of one UAV inspecting one ground vehicle

(one-on-one) and use this to formulate a solution for the problem of N UAVs inspecting
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M ground vehicles.

The minimum time stochastic optimal control of a single UAV entering the tail

sector of another vehicle while safely navigating around it is presented in [125]. The

computational method for this type of one-on-one agent problem has been improved

and used with a scalable value approximation [73] in a complex scenario of a single

UAV safely intercepting a group of vehicles [124]. Here we consider a scenario of

having multiple UAVs inspecting multiple ground vehicles and we assume that the

UAVs are able to avoid each other, or more realistically, they are able to fly at different

altitudes. Consequently, collision avoidance is not considered and the main problem

lies in how to assign [34, 166] each UAV to ground vehicles, so that the inspection time

for all ground vehicles is time efficient. Other authors have studied a related assignment

problem [24, 26], but in terms of path-planning [100].

Non path-planning, i.e., feedback-based navigations are frequently found in a line

of work called sense and avoid [13], and game theoretic approaches to safe navigation

[122]. They also appear in the context of pursuit-evasion games [81], including two

car-like vehicles investigated in [64]. Scalable algorithms for multiple-pursuers/single-

evader games have been considered in [54, 182]. Game theoretic problems for multi-

pursuit and multi-evasion strategies using a hierarchical or decomposition algorithmic

approach [62, 102] are more similar to the multi-agent problem in this paper.

In this work, we approach the problem of N UAVs inspecting M ground vehicles
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Figure 9.1: Geometry of the multi-agent/multi-target problem: θBi and θR j are the
heading angles of the ith blue and jth red, respectfully. α ji = θRi−θB j is the difference
between the headings, and φ ji is the bearing angle of the jth blue to ith red. r ji is the
distance between jth blue to ith red.

as a Markov inequality-based switching problem which is inspired by the result [120]

for one UAV inspecting multiple ground vehicles. Dealing here with N UAVs, the

switching is among possible inspection assignments of UAVs to the ground vehicles

to be inspected. No knowledge of the ground vehicles navigation strategy or intent is

known by UAVs, therefore, each of the ground vehicles heading angles is anticipated

to be a Brownian random walk. The contribution of this paper is that it solves the

stochastic multi-agent problem using one-on-one stochastic optimal control solutions

and their composition with the promise of time-efficient navigation. The presented

approach scales well with the number of agents and allows for real-time computations

of control actions.
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The paper is organized as follows. Section 9.2 discusses the problem, which stating

succinctly is controlling a team of UAVs to inspect all ground vehicles in minimum

time. The stochastic optimal control of a single UAV to inspect a single ground vehicle

in minimum time is presented in Section 9.3. The time optimal assignment and dynamic

re-assignment are discussed in Section 9.4 and Section 9.5, respectively. Section 9.6

shows results of our numerical simulations, and Section 9.7 provides conclusions.

9.2 Problem Formulation

Let us consider a scenario with five agents depicted in Figure 9.1. Three of the

agents, labeled with Ri, i = 1,2,3, are ground vehicles with equal speeds vRi = vR, and

we refer to them as red agents. The other two agents, B j, j = 1,2, are fixed-wing aerial

vehicles flying at different altitudes at equal speeds vB j = vB, and we refer to them as

blue agents. The constant speed assumption approximates that the UAVs cannot stop

and that without energy constraints, the UAVs will fly at maximum speeds to cover

larger areas of interest. We will also assume that the speed of blue (aerial) agents is

larger than the speed of red (ground) agents, vB > vR. The kinematics of the jth blue
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agent is described using the deterministic kinematics of a Dubins vehicle given as

dxB j = vB cos(θB j)dt (9.1)

dyB j = vB sin(θB j)dt (9.2)

dθB j = uB jdt (9.3)

where the couple (xB j ,yB j) and θB j describe the 2D blue agent’s position and heading

angle, respectively. The control input for each blue is a bounded turning rate uB j ∈

[−1,+1].

We will assume that each blue agent knows the location of each red agent’s position

and orientation, which corresponds to knowing the full relative states between each jth

blue agent and ith red agent described by

r ji =
√

(xRi− xB j)
2 +(yRi− yB j)

2, (9.4)

φ ji = arctan
(

yRi− yB j

xRi− xB j

)
−θB j ,φ ∈ [−π,π) (9.5)

α ji = θRi−θB j ,α ∈ [−π,π) (9.6)

where r ji is the distance between B j and Ri, φi j is the bearing angle from B j to Ri, and

α ji is the difference between the Ri and B j heading angles. The definitions of these

coordinates are illustrated in Figure 9.1. Based on these relative coordinates, we define

157



Figure 9.2: Tail sector of red agent Ri described by (9.7) where the blue agent B j has to
enter to inspect the red agent.

the tail sector Ti(t) for each ith red agent as

Ti(t) =


(r,φ ,α) :

r ≤ rmax

|φ | ≤ φm

|α| ≤ αm


(9.7)

where αm and φm are the angles defining the tail sector width and alignments of the

blue agents’ heading angles, and rmax defines the length of the tail sector. A successful

inspection is defined using (9.7) as (r ji,ϕ ji,α ji) ∈ Ti, i.e., it occurs when B j is in this

sector of Ri, and its heading is aligned with that of Ri. An illustration of the tail sector

is given in Fig. 9.2.

The control problem in this paper is to find the control for the blue agent team

providing that the time of inspection of all reds is minimal, i.e., that the blue team visit

all tail sectors of red agents in minimum time. However, blue agents have no knowledge

of the red ground vehicles’ navigation strategy, i.e., the motion of the corresponding tail
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sectors. To anticipate that uncertainty, the kinematics of each red Ri, i = 1, ...M agent

is modeled by the stochastic kinematics

dxRi = vR cos(θRi)dt (9.8)

dyRi = vR sin(θRi)dt (9.9)

dθRi = σRdwi (9.10)

where the position of Ri is given by xRi , yRi and the heading angle is θRi =
∫ t

0 σRdwi.

The latter describes that the heading angles of red agents are random walks since dwi

denotes the Wiener process increments. The scaling parameter σR is identical for all

red agents.

A solution of the minimum time feedback optimal control problem for N blue and

M red agents depends on the number of variables that increases quickly due to the

number of combinations in which N blue agents can visit M tail sectors of red agents.

This number should also account for solutions allowing that a single blue agent may

need to visit multiple red agent tail sectors. While in principle we can formulate the

stochastic optimal control using the Hamilton-Jacobi-Bellman (HJB) equation and all

necessary coordinates describing relative positions of blues and reds, the computational

complexity of such a solution goes quickly beyond the computational power of modern

computers because of the number of relative coordinates, as well as due to the so-called

curse-of-dimensionality [136].

We approach the problem by dividing it into (1) the minimum time stochastic op-
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timal control problem of one blue inspecting one red agent (one-on-one), and (2) the

problem of computing optimal inspection assignments for the N blue agents to time

efficiently inspect M reds. This approach allows us to formulate the solution for the

navigation strategy of N blues that scales well with the number of agents and guaran-

tees that all M red agents are inspected efficiently with respect to time. This guaranteed

property and time efficiency are achieved by the optimality of the one-on-one problem

and assignment updates when the assignment leads to a probabilistic chance for the

decrease of inspection time for all red agents by the blues.

9.3 Minimum Time Stochastic Optimal Control

In this section, we deal with the scenario of a single blue B j that enters the tail

sector Ti of a single red Ri in the minimum expected time, thus i = j = 1. To simplify

the notation, in this section we will drop the subscripts i and j from B j, Ri and Ti.

Using Itô calculus, the kinematic model of B (9.1)-(9.3), the kinematic model of R

(9.8)-(9.10) and the definitions of relative coordinates between B and R (9.4)-(9.6), we

can derive the following stochastic differential equations describing the evolutions of
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relative positions between B and R

dr = (vR cos(φ −α)− vB cos(φ))dt = brdt (9.11)

dφ =

(
−uB +

−vR sin(φ −α)+ vB sin(φ)
r

)
dt = bφ dt (9.12)

dα =−uBdt +σRdw = bαdt +σRdw (9.13)

The minimum expected time control uB for B to reach the target set T (t) of R is

the control that minimizes the cost

J (uB) = E
{

g(τ)+
∫

τ

0
1dt
}

(9.14)

where g(τ) = g(r(τ),φ(τ),α(τ)) is the terminal cost defined as

g(τ) =


0 if (r(τ),φ(τ),α(τ)) ∈T

M if (r(τ),φ(τ),α(τ)) ∈P

 (9.15)

and the set P is defined as

P(t) =


(r,φ ,α) :

r ≤ rmax

|φ |> φm

|α|> αm


(9.16)

The cost function J is constructed to yield the optimal control uB that minimizes

the time for B to reach the target set T and avoids configurations in which B is in

the proximity of R, but not in the target set T . This is expressed by the definition of

terminal cost g(τ) in which there is a large positive penalty M≫ 0 for the set P and

no penalty for reaching the set T .
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The cost function J (uB) gives rise to the stochastic HJB equation defining the

evolution of the cost-to-go function U =U(r,φ ,α) for the optimal control

0 = min
uB

{
br

∂U
∂ r

+bφ

∂U
∂φ

+bα

∂U
∂α

+σ
2 ∂ 2U

∂α2 +1
}

(9.17)

with the two boundary conditions U = 0 for all (r,φ ,α) ∈ T and U = M for all

(r,φ ,α) ∈P . The solution of the HJB equation yields the cost-to-go function U and

the corresponding optimal state feedback control uB = uB(r,φ ,α). Once the optimal

control is computed, it can be used to compute the expected time V = V (r,φ ,α) to

reach the target under the optimal control by computing the steady-state solution of the

backward Kolmogorov equation

0 = br
∂V
∂ r

+bφ

∂V
∂φ

+bα

∂V
∂α

+σ
2 ∂ 2V

∂α2 +1 (9.18)

with the boundary condition V = 0 for all (r,φ ,α) ∈T and reflective boundary condi-

tion elsewhere on the boundary of the solution domain.

The solution of the optimal control problem used in this paper is based on the so-

called locally consistent Markov chain discretization of the HJB equation [56]. The

discretization yields a Markov chain with control uB-dependent transition probabilities

while the problem of solving the HJB equation is converted into a discrete state space

dynamic programming problem that can be solved using value iterations [94]. Further

details about the numerical method can be found in [124] and [125]. In both of these

papers, the controllers have been implemented and tested with ground robots as a part
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of different control problems. Similar controllers have been used for the navigation

of a small UAV in the presence of stochastic winds [8]. A general explanation of the

method for the control of nonholonomic vehicles is given in [38]. The method has also

been used for target tracking problems [12] and flight tested with real UAVs [119].

Once the control is computed, we can use it to compute the solution of the Kol-

mogorov equation (9.18) to obtain expected time V , i.e. its discrete space numerical

representation. Due to the similarity of the Kolmogorov equation (9.18) with (9.17),

the computations are based on the same discretization scheme and value iterations [94],

except that instead of min operator, the value iterations are based on already computed

optimal control.

The units in (9.4)-(9.6), which we used to compute the numerical optimal control

in the example of this paper, are normalized so that all the angles are in radians and

the velocities are vB = 0.1 and vR = 0.05. The noise scaling parameter σR = 10π/180

and the maximum turning rate of each blue is umax = 0.5. The tail sector (9.7) to

be reached by the blue is defined by rmax = rmin = 0.05, φm = 10π/180, and αm =

20π/180, where rmax is length of the tail sector and rmin is the smallest distance allowed

in our computational domain given as

K = {[rmin,Rmax]× [−π,π−∆φ ]× [−π,π−∆α]} (9.19)

with Rmax = 2.04, i.e. the largest distance allowed in our computational domain. The

domain (9.19) is discretized with the steps ∆r = (Rmax− rmin)/99≈ 0.0201 and ∆φ =
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∆α = 5π/180 in the direction of r,φ ,α state space variables. Since the angles φ and

α in our problem formulations have full ranges, in the discretized computational do-

main, the pairs of points (rh,−π,αh) and (rh,π−∆φ ,αh), as well as (rh,φ h,−π) and

(rh,φ h,π−∆α) are next to each other, i.e., we use periodic boundary conditions along

the φ and α state space variables. Other boundary conditions of the discrete approxi-

mation based on the locally consistent Markov chain approximation method take into

account (9.15) which contains the boundary conditions for the tail sector (9.7) and

(9.16).

9.4 Time Optimal Inspection Assignment

A general formulation of the assignment problem in which B j, j = 1, ...N agent

should inspect Ri, i = 1, ...M should take into account that a single B j may be assigned

to a sequence of Ri agents and that all Ri agents are assigned to at least one B j agent.

This type of problem can be formulated as an optimization problem on a graph. In

the most general case, the graph nodes would be blue and red agents, and the edges

between them would have an associated time to travel from any blue agent to any red

agent. The solution would be a sequence of red agents that should be visited by each

blue. However, in this paper we assume that the red agents are moving stochastically,

which creates a major challenge for an optimal assignment solution. On the other hand,

we can rely on the results obtained from the stochastic optimal control one-on-one
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Figure 9.3: Assignment graph problem, where Vi, j denotes the expected time of B j
inspecting Ri. The dashed lines denote a possible assignment and the solid lines denote
an assigned blue-red pair.

solution presented in the previous section for easily obtaining the edge costs associated

with the graph assignment problem.

To address the assignment problem, we consider the optimization on a graph in

which there are no edges among the Ri agents. The graph is depicted in Fig. 9.3 and

its edges are associated with the expected times Vj,i(t) = V (r ji(t),φ ji(t),α ji(t)) of B j

reaching Ti, i.e., jth blue inspecting the ith red agent. Given these expected times Vj,i,

we propose an assignment that at t = 0 minimizes the expected time of inspection to the
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last red, which corresponds to the longest expected time Vj,i. This can be formulated as

Co =min
A

{
max
j∈N0
{Vj,i(0)z j,i(0)}

}
, z j,i ∈ {0,1} (9.20)

j ∈N0 ⊆ {1,2, ...N}, i ∈M0 ⊆ {1,2, ...M} (9.21)

subject to


∑i∈M0 z j,i(0) = 1, for all j

∑ j∈N0 z j,i(0)≥ 1, for all i, if |N0| ≥ |M0|

∑ j∈N0 z j,i(0)≤ 1, for all i, if |N0|< |M0|

(9.22)

where Co is the initial optimal cost corresponding to the initial optimal assignment Ao.

The minimization is over a finite set of all possible assignments A = {A1,A2, ...}, and

each assignment Ak is uniquely defined by the assignment variables z j,i that can be

depicted by the graph in Fig. 9.3. The assignment variable z j,i = 1 if B j is assigned

to inspect Ri, otherwise, z j,i = 0. The sets N0 and M0 contain indexes of all blue and

red agents, respectively, that are included in the assignment, and |N0|, |M0| denote

cardinal numbers of these sets.

The first constraint in (9.22) states that the assignment has to have each B j assigned

to one Ri. The second one states that if the number of blues is greater than or equal to

the number of reds, then each Ri must be assigned to at least one blue. Finally, the third

constraint covers the case when the number of reds is greater than the number of blues,

which states that then each red must be assigned to at most one blue. Hence there will

be reds that are left unassigned for the third constraint case.

By introducing a new decision variable µ , we can rewrite the optimization problem
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(9.21)-(9.22) as a mixed integer linear programming (MILP) problem

Co =min µ (9.23)

z j,i ∈ {0,1}, j ∈N0 ⊆ {1,2, ...N}, i ∈M0 ⊆ {1,2, ...M} (9.24)

subject to



Vj,i(0)z j,i ≤ µ, for all i, j

µ ≥ 0,

∑i∈M0 z j,i(0) = 1, for all j

∑ j∈N0 z j,i(0)≥ 1, for all i, if |N0| ≥ |M0|

∑ j∈N0 z j,i(0)≤ 1, for all i, if |N0|< |M0|

(9.25)

The MILP minimizes the variable µ , and max{·} in the objective function (9.20)

is replaced by the inequality constraints Vj,i(0)z j,i ≤ µ for all j ∈ N0 and i ∈M0. The

second constraint µ ≥ 0 is not necessary, but it clarifies that µ has to be positive since

it is a time variable.

9.4.1 More or equal number of blues than reds

When the number of available blues is equal or greater than the number of reds to

be inspected, i.e. |N0| ≥ |M0|, the initial optimal assignment (9.20) will always return

the absolute maximum time required to inspect the last red.

The proof is straightforward as since |N0| ≥ |M0| the initial optimization problem

(9.20) second constraint gets activated. The second constraint guarantees that each

red is assigned a blue, hence the max j{Vj,i(0)z j,i(0)} is over all pairs of blues to reds
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(which is not true if there are less blues than reds). Since each red is assigned, it indi-

cates that every expected inspection time is being minimized. Since every inspection

time is minimized then the absolute maximum time required to inspect the last red is

minimized. Therefore the initial optimal assignment returned the absolute maximum

time required to inspect the last red.

9.4.2 Less number of blues than reds

When the number of available blues is less than the number of reds to be inspected,

i.e. |N0| < |M0|, the initial optimal assignment (9.20) may not necessarily return the

absolute maximum time required to inspect the last red.

Consider the scenario where there are two reds and one blue positioned as shown in

Fig. 9.4, which falls under the case of less blues than reds. The positions and heading

angles of each red is such that they are initially separated by a distance d > 0 and will

move in opposite directions thus further increasing the distance between them. The

blue is positioned such that its inspection time to R1 and R2 is initially the same, i.e.

V11 =V12. As a result, the maximum is ambiguous since the initial optimal assignment

returned from (9.20) can either be V11 or V12 corresponding to first inspecting R1 or

R2. Let us assume that V11 is chosen as the maximum time (the same proceeding logic

would apply to V12). Therefore blue goes to inspect R1. If we assume that both reds

continue to move forward in a straight line, then once the blue inspected R1 at expected
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Figure 9.4: Counterexample with two reds and one blue showing when the initial opti-
mal assignment (9.20) will fail to return the absolute maximum time to minimize.

time V11, R2 is at a nonzero distance away from R1 and the blue. Hence the blue

must travel an additional distance which requires additional nonzero time to inspect the

other red. This additional time needed indicates that V11, the returned maximum time

required to inspect the last red, is not the absolute maximum time.

9.5 Dynamic Switching for Re-Assignment

In this section, we will summarize the Markov inequality switching rule [120] per-

taining to assignment switchings. In order to determine how we can switch between

assignments, we define the cost Ck(t) of the assignment Ak evaluated at time t as

Ck(t) = max
j∈N0
{Vj,i(t)z j,i(t)}, i ∈M0 (9.26)

where Ck(t) is current cost of assignment Ak. Notice that we had Co in the previous

section which is Co = mink{Ck(0)} in expression (9.26).
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Since red agents are moving stochastically, it is obvious that the initial configura-

tion with cost Co defined by the solution of (9.20) may be inferior to any other con-

figuration Ak for which Ck(t) < Co. To pursue the idea of optimality of assignment

at every time instant t, one may think about solving the optimization (9.20) at every

time instant (greedy approach). However, note that the navigation strategy is based on

the minimization of expected times to the target sets Ti, therefore, there is a non-zero

probability for the increase of times to target sets. Because of that, although there may

exist multiple assignments that result in the inspection of all red agents, once we start

switching among them using the greedy approach, it can result in an infinite sequence

of assignment switchings without ever inspecting any red agent. This is a well-known

characteristic of the so-called hybrid systems.

To resolve the problem of an infinite sequence of switchings, here we propose to

use the switching rule that was presented and analyzed in [120]. The rule is that if at

time t

min{Ck(t),Ck(τ
s)}−Cm(t)

min{Ck(t),Ck(τs)}
≥ p, p ∈ (0,1) (9.27)

then the switching from the assignment Ak to Am takes place (notice that initially

Ck(0) = Co, the initial optimal assigment). In this rule, k is the index of the current

assignment and m is the index of the next assignment, which is not necessarily k+ 1,

τs < t is the time at which the assignment becomes Ak and s is the number of total

switchings from t = 0. Hence after the switching at time τs+1 = t, s is incremented by
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one.

If τF defines the time to inspect all red agents, then the above rule guarantees

Pr{τF < min{Ck(t),Ck(τ
s)}} ≥ p (9.28)

which means that the switching happens only if it provides that the time τF is with

a probability p shorter than the smallest of the current expected time to inspect all

red agents and the expected time to inspect all red immediately after τs, i.e., the last

switching of the assignment. Here we should acknowledge that switching probabilisti-

cally shortening the time to inspect the last red, but it does not explicitly minimize the

time to capture any specific red. For example, a certain blue can come close to inspect

a particular red but can change its assignment as long as the re-assignment reduces the

expected time of inspection to the last red.

The above rule is introduced and analyzed in [120] for the case of a single blue

and multiple red agents until the first red agent is inspected. The switching rule also

relied on the existence of a threshold C > 0, so that the switching stops once C(τs)≤C.

As in our current problem, the threshold C is the smallest nonzero expected time in

the discrete state-space of the numerical stochastic optimal control solution, i.e. the

neighboring state-space cells surrounding the discretized tail sector. We also have to

deal with an additional level of complexity in our problem such as the time instants

when a blue reaches the tail sector of a red, as other blues might be still trying to

reach their respective reds. At this point, there are multiple ways to resolve this issue.
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For example, the blue that has currently inspected a red can be excluded from further

considerations, hence |N0| will decrease in size, and that blue will rendezvous back to

base to await further instructions, or it can be assigned to inspect another red. In the

latter case, it may happen that multiple blues can be assigned to a single red. All of

these possibilities are covered by expressions (9.21) and (9.22). Therefore, at the time

the first B j reaches the target set Ti that corresponds to Ri, we propose to reset the time

to t = 0, update N0 (if a blue was excluded) and M0, and proceed with one of two

options. The first is if |N0| ≥ |M0| then we proceed with the use of the switching rule

until all reds are captured. The second is if |N0| < |M0| then we solve again (9.20)

until |N0| ≥ |M0| at which point we proceed with the first option.

Perhaps, the most beneficial aspect of the switching rule is that not only does it

guarantees that after every switch, the maximum expected time to inspect the last red

is decreased, but that the target set of the next red will be reached in a finite expected

time. Hence, by summing all the times of reaching Ti for each respective red, we can

conclude that all reds are inspected in a finite expected time.

In summary, after every inspection of a red by a blue we recompute the optimal

assignment for the current positions of all agents (greedy approach), and then proceed

with switching among different assignments with the switching rule that guarantees that

the expected inspection time of the next red agent is finite.

172



Figure 9.5: Dynamic re-assignment algorithm: Sets N0 and M0 of available blue and
red agents, respectively. The number of agents in each set is |N0| and |M0|; Ck is the
cost of the assignment Ak and is defined by (9.26).

9.6 Results

In this section, we first present an illustrative example with 2 blue and 3 red agents.

The example deals with a smaller number of agents and allows us to describe the time

progress of the presented scenario. Then we show results of a larger number of numer-

ical simulations with 3 blue and 3 red agents, and another with 3 blue and 6 red agents.

The two larger number of numerical simulations are used to illustrate the two cases in

Section 9.4: an equal or less number of reds compared to number of blues, and a larger

number of reds compared to number of blues.
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9.6.1 Illustrative Example

To illustrate our results, we use an example with two UAVs (blue agents) and three

ground vehicles (red agents). The velocity of UAVs is vB = 0.1 and the velocity of

ground vehicles is vR = 0.05. These and all other problem parameters for the example

are provided in Section 9.3, before and after (9.19), defining the computational domain

of the one-on-one stochastic optimal control solution. Once the numerical solution and

the expected time have been computed, we search over the discrete space of the solution

to find the minimal non-zero expected time for a UAV to inspect a ground vehicle. This

value defines the threshold C = 1.649sec. Once the threshold is reached, we stop the

switching assignments using the rule (9.27). The switching assignment rule parameter

in the example is p = 0.05 and the rule defines switching among possible assignments.

In this example, we can identify six possible assignments that are labeled as Ai

i = 1,2...6 and depicted in Fig 9.6. Beyond these assignments, the only other possi-

ble assignments are those in which a single ground vehicle is assigned to both UAVs,

and we label all of them with the single label A0. Given the small number of possible

assignments, the optimization (9.20) can be performed by the evaluation of each assign-

ment and the selection of the one with the smallest cost. However, the identification of

all possible assignments and their enumeration would be a very complex process in a

situation with more blue and red agents, and to avoid it we truly benefit from the MILP

formulation of the optimal assignment.
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For example, in the case of 2 blue and 3 red agents, we define a vector z as

z = [z1,1 z1,2 z1,3 z2,1 z2,2 z2,3 µ]T , z ∈ {0,1}6×R (9.29)

which is composed of 6 binary and one real number components, and introduce the

vector f = [0 0 0 0 0 0 1]T to formulate the MILP from the previous section as

Co =min fT z (9.30)

Az≤ b (9.31)

Bz = 12×1 (9.32)
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where

A =



V1,1 0 0 0 0 0 −1

0 V1,2 0 0 0 0 −1

0 0 V1,3 0 0 0 −1

0 0 0 V2,1 0 0 −1

0 0 0 0 V2,2 0 −1

0 0 0 0 0 V2,3 −1

0 0 0 0 0 0 −1

1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0



, b =



0

0

0

0

0

0

0

1

1

1



,

B =

 1 1 1 0 0 0 0

0 0 0 1 1 1 0

 (9.33)

While the presented formulation is specific to the case of 2 blues and 3 reds, the

matrices A, B and vectors on the right side of inequality and equality constraints can

be generated and updated automatically in the numerical simulations to address any

possible number of blue and red agents. Solving the MILP can be done using any

optimization package and we use intlinprog from MATLAB 2016b in our simulations,

which for the 2 blue and 3 reds problem takes less than a second to compute on an Intel

Core i5 processor with 8GB of RAM.
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Figure 9.6: Possible assignments: each assignment is depicted by the lines connecting
the UAVs (B1, B2) with the ground vehicles (R1, R2, R3). Beyond these assignments,
those in which a single ground vehicle is assigned to both UAVs are labeled by the
single label A0.

Proceeding is an example numerical simulation, which nicely illustrates the ap-

proach presented in this paper. Later, we present the statistics of running multiple

numerical simulations for 3 blue on 3 red, and 3 blue on 6 red scenarios.

The simulation in Fig.9.7A starts with the two blue UAVs behind the three red

ground vehicles, where B1 is assigned to inspect R1 and B2 to inspect R2, i.e., the

current assignment is A1 as shown in Fig. 9.6. In Fig. 9.7B, B1 switches its assignment

to R3 and after this, B2 switches to R1 (see Fig. 9.7C). This assignment lasts until R3

has been inspected by B1 at t = 14.6sec (see Fig. 9.7D) and is no longer of interest to

B1 or B2.
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Figure 9.7: Simulation in which the two UAVs switch inspect the three ground vehicles.
The progress of time is from A to F . The ground vehicles R3, R2, R1 have been inspected
at t = 14.6, t = 23.7, t = 32.8, respectively.
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Figure 9.8: a) The cost of the current assignment Ai (see Fig. 4), which is the longest
expected time of the assignment; b) the current assignment.
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At the beginning of time interval D, a new optimal assignment is computed for

B1 and B2. Because of that, we can observe a positive jump in the assignment cost,

which is the longest expected time of the assignment. The new assignment is that B1

inspects R1 with the expected time to inspection of 31.7sec, and B2 inspects R2 with the

expected time to inspection of 28.1sec; therefore, the cost of the assignment is 31.7sec.

This is the optimal assignment since the alternative assignment has the cost of 37.3sec,

which results from the expected times of 37.3sec for B1 inspecting R2 and 11sec for

B2 inspecting R1. Following the optimal assignment, R2 has been inspected by B2 at

t = 23.7 (see Fig. 9.7E) without any switchings. Following this, the only assignment

is A0 in which both B1 and B2 inspect the remaining ground vehicle R1. Figure 9.8a

shows that R1 has been inspected by B1 at t = 32.8sec at the end of the time interval F.

9.6.2 Numerical Simulation with Three Blue and Three Red Agents

Here we consider an example in which three blue and three red agents are initially

positioned as depicted in Fig. 9.10a). We generated 1000 possible stochastic trajecto-

ries for each red agent. We used those trajectories to run numerical simulations with

three blue agents for 1000 times and two types of re-assignments. The first type of

the re-assignments is the one in which the assignment is computed only at the begin-

ning of the simulation, and after the inspection of each red. We call that type of the

re-assignment sequential since we do not allow for dynamic re-assignments using the
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Figure 9.9: Results of 1000 simulations: (left panel) the histograms of the times to
the inspection of the last red; (right panel) the histograms of the expected times to the
inspection of the last red immediately following the inspection of the 2nd red. The
thick line corresponds to the dynamic re-assignment algorithm and the thin line to the
sequential one. The dashed line around 800s is portion of sequential runs that took
longer than 700s.

rule (9.27) between the inspections of two reds. The second type of the re-assignments

is fully dynamic re-assignment as described in Fig. 9.5.

From 1000 simulation runs for the sequential and dynamic re-assignments, we

recorded times for the team of blues to inspect all six red agents. The data are sum-

marized in Fig. 9.9 which shows that the distribution of times is very similar for both

assignment, except for eight runs for the sequential as shown in Fig. 9.9a2. If we ig-

nore those eight runs of the sequential, we obtain Fig. 9.9b, which shows the similarly

of distribution for both algorithms with average time of 92.5556s (std=16.3641s) for

sequential and average time of 92.8141s (std=15.9089s) for dynamic. However if we

don’t ignore those eight runs we obtain average time of 98.0303s (std=63.1493s) for
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the sequential, therefore we can see that the same dynamic runs for those sequential

runs drastically reduced the maximum time to inspect the reds.

9.6.3 Numerical Simulation with Three Blue and Six Red Agents

Here we consider an example in which three blue and six red agents are initially

positioned as depicted in Fig. 9.10b). We generated 1000 possible stochastic trajecto-

ries for each red agent. As in the three blue and three red agent scenario, we run two

re-assignments; the sequential and dynamic. For an illustration of the simulations, we

provide two examples for the dynamic re- assignments. (Please follow the links:

https://drive.google.com/open?id=1dKZb5MbYztexNmB-FhVNZgf-Z7VcrcuM

https://drive.google.com/open?id=1R38dYum-lsKJ0dLP3NGAZ7IL7LKQAnte - see Ap-

pendix D for snapshots of movies)

From 1000 simulation runs for the sequential and dynamic re-assignments, we

recorded times for the team of blues to inspect all six red agents. The data are sum-

marized in Fig. 9.11(left panel) which shows that the distribution of times is very

similar for both assignments. We find that the average time in the case of the sequen-

tial re-assignment is 102.66s (std=41.76s) and is slightly shorter than the one resulting

from the implementation of the dynamic re-assignment which is 104.55s (std=37.34s).

The similarity could be due to the outcome that in 24% of the runs, the dynamic re-

assignment algorithm does not have any re-assignment between inspections of two
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Figure 9.10: The initial configurations of blue and red agents: the blue agents are
presented with arrow-like symbols depicting aircraft and the red agents with rectangular
symbols depicting ground vehicles, i.e., cars. a) 3 blues and 3 reds. b) 3 blues and 6
reds.

reds, i.e., it behaves exactly as the sequential re-assignment algorithm. When we ex-

clude from our analysis those runs, we find that the histograms obtained by the two

assignments are still similar and the average time for the dynamic re-assignment is

105.26s (std=31.34s). Based on the histograms and the difference of average values

being about 10% of the standard deviation of the distributions, we conclude that there

is no significant improvement of the dynamic re-assignment over the simpler sequential

re-assignment.

A further analysis of collected data shows that similarly as the sequential re-assignment

has a slightly shorter time of inspection, the dynamic re-assignment has a slightly bet-

ter positioning of blues after the inspection of each red. To illustrate this, we present
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Figure 9.11: Results of 1000 simulations: (left panel) the histograms of the times to
the inspection of the last red; (right panel) the histograms of the expected times to the
inspection of the last red immediately following the inspection of the 5th red. The
thick line corresponds to the dynamic re-assignment algorithm and the thin line to the
sequential one.

in Fig. 9.11(right panel) histograms of the maximum expected time to inspect the last

(6th) red after the 5th inspection. The histograms are only based on those 76% simula-

tion runs in which the re-assignment between inspections happened. The average value

associated with the histogram for the sequential re-assignment is 38.22s (std=8.59s)

and the average value associated with the one for the dynamic re-assignment is 37.87s

(std=8.64s).

9.7 Conclusions

In this paper we presented the control design for N UAVs tasked to perform the

time efficient inspection of M ground moving vehicles. The navigation and intent of

each ground vehicle are unknown, therefore, the uncertainty of its navigation has to
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be anticipated in the navigation of each UAV. The controller for each UAV to inspect

each ground vehicle is based on the minimum time stochastic optimal control. This

one-on-one vehicle optimal control solution is used to compute the expected time of

the inspection. We further use that expected time to formulate the assignment prob-

lem of deciding what ground vehicle each UAV should inspect. We formulate it as the

optimization problem of minimizing the expected time to inspect all ground vehicles.

Since the ground vehicles have uncertain trajectories, the optimal assignment may need

to be recomputed. However, the recomputing may result in an indefinite sequence of

assignment updates without the UAVs ever inspecting all ground vehicles. To address

that, we update assignments with the Markov inequality rule. While the rule prevents

the possibility of indefinite changes of assignments, it also updates an assignment if it

leads to a statistically significant improvement of the expected time of the inspection.

The proposed approach was illustrated by the numerical example with two UAVs and

three ground vehicles. Furthermore, we ran a large number of numerical simulations

for three UAVs and three ground vehicles, and another for three UAVs and six ground

vehicles. The results show that if the number of UAVs (N) is greater or equal to the

number of ground vehicles (M), then the dynamic algorithm does better than the se-

quential. This is due to the Markov inequality rule updates that correctly reduce the

absolute global maximum time of inspection to the last red when N ≥M.
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Chapter 10

Scalable Navigation for Tracking a

Cooperative Unpredictably Moving

Target in an Urban Environment

This chapter is a preprint to the paper

• Munishkin, Alexey A., Dejan Milutinović, and David W. Casbeer. ”Scalable

Navigation for Tracking a Cooperative Unpredictably Moving Target in an Urban

Environment.” In 2022 control conference on control technology and applications

(CCTA)
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10.1 Introduction

One common application of small fixed-wing unmanned aerial vehicles (UAVs)

[25] is tracking and surveillance. Some specific examples include agriculture, forest

fire and plume tracking, traffic monitoring, search and rescue, and convoy protection

applications [130, 160, 179].

In this paper, we consider a scenario in which a search and rescue, or convoy protec-

tion mission involves a cooperative target which sends out its position to a UAV flying

at a constant altitude, see Fig. 10.1. The UAV is tasked to orbit around the target at a

distance and keep the line of sight (LOS) towards the target, so that the target and its

surrounding area can be observed by a UAV mounted camera. The cooperative target

is in an urban environment with tall buildings and we assume that it can move freely,

i.e., it does not have a pre-planned trajectory which is communicated to the UAV. This

uncertainty is an important part of the scenario. It implies that the cooperative target,

either a human or a vehicle, is free to move around, worrying only about its own mis-

sion. The UAV must then be able to handle trajectory anomalies that occur with the

cooperative target.

Dealing with the unpredictable motion of the target naturally leads to a feedback

control-based navigation for target tracking. Examples of various approaches that have

been used for the design of a feedback control-based navigation strategy are model-

predictive control [86], non-linear Lyapunov function based control [32], Lyapunov
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Figure 10.1: The UAV orbits around the target and above the buildings at a fixed altitude
h. The parts of the operating regions (green), i.e., the shadows in which the target is
occluded by Building 1 and Building 2, are denoted by S1 and S2, respectively. From
position A, the UAV has the line of sight towards the target, which is depicted by the
solid line. From position B, the UAV does not have the line of sight, which is depicted
by the dashed line.

vector fields [101], stochastic control [121] and game theory [142]. The navigation

problem is significantly more complex when the UAV has to avoid certain parts of the

operating space to maintain the GPS signal [187], or prefers certain relative positions

to the target [198]. To address that complexity in [27], the authors used a deep rein-

forcement learning method for target tracking and avoiding static areas of the operating

space. To account for no-fly zones and operating regions in which the target is occluded

from the UAV, the authors in [173] proposed to use a control based on predictions of

future target positions. The use of predictions has also been a topic for target track-

ing in an urban environment in [196], which includes an excellent survey on various

approaches to target tracking.
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In this work, we are particularly interested in having the UAV’s target tracking

take into account the realistic shapes that arise in the operating region as the target

is occluded from the UAV by buildings. We refer to these operating region parts as

shadows (see Fig. 10.1). A similar type of shadows has been considered for search

[65] and path planning in [158], [128], as well as for tracking [159], in which the

authors used a known target trajectory and a genetic algorithm. It should be noted

that as the target moves, it also changes its relative position to surrounding buildings.

Consequently, the shadows created by the buildings (see Fig. 10.1) are not static, but

change with the motion of the target. Because of that, in this paper we propose a

feedback control policy for orbiting above the freely moving target and accounting for

the moving shadows.

Since the building shadows move, can overlap and collectively result in complex

shapes, we describe here shadow moving boundaries by arrays of obstacles. In the light

of this, the UAV must orbit the freely moving target while avoiding a large number

(array) of obstacles. As the target moves, the obstacles, as well as their number can

vary, therefore, we propose a scalable navigation strategy which is based on stochastic

control. Our approach is to solve stochastic optimal control for keeping a randomly

moving target at a constant distance and avoiding a single randomly moving obstacle.

We solve this single-target single-obstacle control problem using numerical stochastic

optimal control [94] from which we obtain the optimal control, as well as the corre-
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Figure 10.2: A top down view of the UAV navigation while avoiding occlusions: the
shadow boundaries are defined using an array of circular obstacles of the radius D (gray
circles). These are depicted for two shadows, Si and S j. The desired circumnavigation
distance is d, the distance and the bearing angle to the target are rT and φT , respectively,
and the distance and the bearing angle to an obstacle are ro and φo, respectively.

sponding value function. Then, we use the computed value function and evaluate it

with respect to each obstacle to obtain the scalable navigation strategy. This approach

can be thought of as a form of approximate dynamic programming [137], and a variant

of it has been successfully applied in a UAV intercept problem [124].

Contribution: To the best of the authors’ knowledge, this is the first paper that de-

velops a scalable fixed-wing UAV feedback control strategy for orbiting a freely moving

target at a distance while avoiding moving shadows, created by buildings, from which

the target is not visible.

The paper is organized as follows. In section 10.2, we formulate an optimal control

problem associated with the scenario and explain the reason for proposing the scalable
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approach to the solution. This is followed by Section 10.3 on the computation of the

shadow describing obstacles and Section 10.4 on single-target single-obstacle feedback

control, which navigates the UAV to orbit around a single target in the presence of a

single obstacle in the operating space. Section 10.5 gives the proposed scalable strat-

egy based on the feedback control and value functions computed for the single-target

single-obstacle feedback control. Section 10.6 includes illustrative numerical simu-

lation results for the scalable strategy and shows its performance, and Section 10.7

presents concluding remarks.

10.2 Problem Formulation

We consider a UAV that flies at a constant altitude h > 0 and at a fixed speed v > 0.

We model it as a Dubins vehicle kinematic model

dx = vcosθdt (10.1)

dy = vsinθdt (10.2)

dθ = udt (10.3)

where x and y are the coordinates of the UAV position and θ is the heading angle. The

UAV control variable is the bounded turning rate u∈ [−umax,umax], umax > 0. Similarly

as in [11], the UAV is tasked with maintaining a desired distance d > 0 from the target

while the target motion is unpredictable, therefore, we model it as a 2D Brownian
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motion, i.e.,

dxT = σT dwxT (10.4)

dyT = σT dwyT (10.5)

where (xT ,yT ) is the target position, and the variables dwxT and dwyT denote the unit in-

tensity Wiener process increments along the x and y coordinate directions. The Wiener

process scaling parameter is σT > 0.

In our problem formulation, the UAV has to avoid building shadows. They move as

the result of the target movement and they can also overlap with each other. In summary,

the shadow regions move and change their shape, which can be geometrically complex.

To address this dynamic nature of the shadows, we propose that the shadow region

boundaries are described by arrays of circular moving obstacles, see Fig. 10.2. The

obstacles of radius D are positioned at (xi,yi), i = 1,2, ... along the boundary lines of

the shadows. Since the UAV has no knowledge of the shadow boundary motions, the

kinematics of each obstacle is modeled as a 2D Brownian motion

dxi = σodwxi (10.6)

dyi = σodwyi (10.7)

where (xi,yi) is the i-th obstacle position, dwxi and dwyi denote the Wiener process

increments along the x- and y coordinate directions, and σo > 0 is a constant scaling

parameter.
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The relative position between the UAV and the target can be described by the dis-

tance rT and the bearing angle φT , see Fig. 10.2, which are

rT =
√
(xT − x)2 +(yT − y)2 (10.8)

φT = arctan
(

yT − y
xT − x

)
−θ . (10.9)

Similarly, the relative position between the UAV and the i-th obstacle can be described

by the distance ri and the bearing angle φi, which are

ri =
√
(xi− x)2 +(yi− y)2 (10.10)

φi = arctan
(

yi− y
xi− x

)
−θ . (10.11)

Therefore, we formulate our tracking problem as a stochastic optimal control problem

of finding the feedback controlled turning rate u that minimizes the cost

J(x̃,u) = E
{

gN(x̃)+
∫

τ

0
e−β t (rT −d)2 dt

}
, (10.12)

where d is the desired distance to the target, τ is a terminal time at which the UAV

enters a shadow described by the array of obstacles at relative positions (ri,φi), i.e.,

there is i such that ri < D, and gN(x̃) is the terminal cost for when that happens, which

is

gN(x̃) = M (10.13)

In this expression, M ≫ 0 is a high penalty for the UAV entering a shadow and x̃ =

(rT ,φT ,r1,φ1, ...,rN ,φN) is a 2N + 2 vector which stores all relative positions for one

target and N obstacles.
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The tracking problem formulated by (10.12) is a complex problem. The first part

of that complexity stems from a potentially large number of obstacles N, i.e., the large

state space to deal with. This can be a very difficult problem to solve, but in principle,

we can write the Hamilton-Jacobi-Bellman (HJB) equation defining the solution. The

second and even bigger part of the problem complexity is that as shadows dynamically

change their shape, they overlap each other, or separate from each other, which means

that the solution has to account for a variable number of obstacles N. In other words,

we cannot count on the fact that the vector of relative positions x̃, i.e., the state vector

for our problem is of a fixed constant length. Therefore, we propose a scalable solution

to the problem.

The proposed scalable solution to the problem is based on the stochastic optimal

control solution for orbiting the target while avoiding a single randomly moving obsta-

cle. Under the assumption that the UAV is outside of any shadow, we use the single-

target single-obstacle solution to synthesize the scalable solution to avoid all shadow

defining obstacles. Finally, to account for a possibility that the UAV starts its trajectory

within a shadow, or that it happens to enter a shadow, we define a rule for the UAV to

escape the shadow.
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Figure 10.3: The process of computing shadow defining obstacles: (a) computing
points vb

k in the plane P at the height h which are on the lines going through the T
target and building b edge points; (b) computing the convex hull Sb of all points vb

k in
the plane P; (c) the shadow defining obstacles are depicted with circles centered at the
vertices of the convex hull and equidistant points along the convex hull boundaries.
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10.3 Shadow Describing Obstacles

Below we describe computations of shadow describing obstacles. The whole pro-

cess of computing the shadows follows from the fact that buildings are convex objects

and that the perspective projection preserves convexity [31]. In practice, the same al-

gorithm can be used if a 3D map of an urban area, or its estimation, is provided.

Figure 10.3 illustrates the process of computing shadow describing obstacles for a

single building b. The target T is located on the ground G at the position (xT ,yT ). The

plane P for which we compute the shadow of the building b is at the height h above G .

The building is described by a sequence of 3D coordinates [xb
k ,y

b
k ,h

b
k ]

T sampled along

the building edges and at its corners, where “T ” is the vector transpose and k = 1,2, ...

is a unique index identifying the point, see Fig. 10.3a. The vector connecting the target

[xT ,yT ,0]T and [xb
k ,y

b
k ,h

b
k ]

T points is

sk = [xb
k ,y

b
k ,h

b
k ]

T − [xT ,yT ,0]T , (10.14)

therefore, the line of vector sk intersects the plane P at the point

vk =
h
hb

k
sk +[xT ,yT ,0]T . (10.15)

Since any building point that is close to the ground would have a corresponding vk

that is far away, we use the building points that are above a certain height. Therefore,

hb
k > hmin > 0 for all k. Once we compute vk for all k, we compute the convex hull

of the points Sk, i.e., the shadows. These computations return the vertices of Sb as
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depicted in Fig. 10.3b. Finally, we generate obstacles at the vertices of Sb, as well as

at the equidistant points (separated by the diameter of the obstacles) along the edges of

Sb up to a certain large distance from the operating region as depicted in Fig. 10.3c.

Finally, after we compute all shadows Sb, b = 1,2, ... for multiple buildings and

corresponding obstacles defining each of them, we exclude any obstacle if the position

of the obstacle happens to be in the interior of any shadow, or too far from the oper-

ating region. With this, we can deal with the fact that shadows overlap each other or

separate from each other. Consequently, as expected the number of shadow describ-

ing obstacles changes in time. This is illustrated in Fig. 10.4 in which the position of

the target T and shadows in Fig. 10.4b corresponds to the position in Fig. 10.4a. As

the target continuously changes its position, the shadows continuously change as well.

Figure 10.4c shows the shadows for the target position which is closer to the center of

the environment.

10.4 Feedback Control for Tracking a Single Target while

Avoiding a Single Obstacle

In this section, we consider the stochastic target that moves as described in (10.4)-

(10.5) and a single stochastic obstacle that moves as described in (10.6)- (10.7). In

contrast to the problem described in Section II, the problem here is tractable because it
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Figure 10.4: An example of 11 buildings with their shadows and a target that moves: (a)
a 3D figure showing the target T (crossed circle) at the initial position and 11 buildings
of various sizes. The shadows are computed for the operating space at height 80 m.
(b) a 2D projection of the target T , buildings (red rectangles) and shadows (green) all
associated with the initial position from the panel (a). (c) a 2D projection of the target
T , buildings and shadows after the target moves to another position.
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only deals with one obstacle. In Section V, we show how to develop a scalable solution

to the problem using the single target controller developed here. Since we deal with a

single obstacle, we will use i = 0, i.e, the position of the obstacle is given by (x0,y0),

and the distance and the bearing angle from the UAV to the obstacle are r0 and φ0,

respectively.

For the feedback control u that tracks the target at a constant distance d, we solve

the stochastic optimal control problem

J0(x̃0,u) = E
{

g(x̃(τ))+
∫

τ

0
e−β t (rT −d)2 dt

}
, (10.16)

where x̃ = (rT ,φT ,r0,φ0) and x̃0 is initial state, τ is the terminal time at which r0 < D

and the terminal cost g is

g(x̃(τ)) = M (10.17)

where M≫ 0 is a high penalty cost of the UAV getting in the proximity of obstacles.

To solve the problem, we use (10.3-(10.5), (10.7) with i = 0, (10.8)-(10.11), and Itô
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calculus to derive the stochastic differential equations for rT , φT , r0, φ0, which are

drT =
(
−vcos(φT )+

σ2
T

2rT

)
dt +σT dwrT (10.18)

= brT dt +nrT dwrT ,

dφT =
(

v
rT

sin(φT )−u
)

dt + σT
rT

dwφT (10.19)

= bφT dt +nφT dwφT ,

dr0 =
(
−vcos(φ0)+

σ2
o

2r0

)
dt +σodwr0 (10.20)

= brodt +nr0dwro,

dφ0 =
(

v
r0

sin(φo)−u
)

dt + σo
r0

dwφ0 (10.21)

= bφ0dt +nφ0dwφo.

Then, we formulate the solution using the HJB equation

0 = min
u
{LuV (x̃)−βV (x̃)+(r−d)2}, (10.22)

where Lu is the differential operator

Lu = bro

∂

∂ r0
+

n2
ro

2
∂ 2

∂ r2
0
+bφo

∂

∂φ0
+

n2
φo

2
∂ 2

∂φ 2
0

+brT

∂

∂ rT
+

n2
rT

2
∂ 2

∂ r2
T
+bφT

∂

∂φT
+

n2
φT

2
∂ 2

∂φ 2
0

(10.23)

with the terms bro , nro , bφo , nφo and brT , nrT , bφT , nφT defined as in (10.18)-(10.21). The

HJB satisfies the boundary condition V (x̃0) = M for all x̃0 with the component r0 ≤ D,

which is due to the terminal cost g(x̃(τ)).
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The solution of (10.22) can be computed using a locally consistent Markov chain

discretization of the HJB equation [94]. The discretization allows us to compute an

approximate solution of the HJB equation using

V h(x̃h
0) = min

u

{
∆tx̃h

0,u
e
−β∆t

x̃h
0,u
(

rh
T −d

)2
+

∑
for all x̃0+∆x̃0∈Nx̃h

0

p±
∆x̃0,u
·V h(x̃0±∆x̃h

0)

 (10.24)

where V h denotes the discretized version of V , x̃h
0 coordinates of the discretized state

space, ∆x̃h
0 are discrete increments along one of the four coordinate directions, i.e., ∆x̃h

0

∈ {(∆rT ,0,0,0),(0,∆φT ,0,0), (0,0,∆r0,0), (0,0,0,∆φ0)}, and Nx̃h
0

is the set of the

discretized coordinates in the neighborhood of x̃h
0. We compute the solution of (10.24)

using the value iterations and the discretization [94] defined transition probabilities

p±
∆x̃0,u

and interpolation times ∆tx̃h
0,u

.

Due to the limited space available, we skip the details on computing these values

and point the reader to [94], as well as [39] for illustrative examples. The same dis-

cretization has been previously used to compute the controllers in [12, 124] and for the

controller in [121], which was flight tested with a small UAV.
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10.5 Tracking the Brownian Moving Target and Avoid-

ing Shadows

Now we tackle the case in which there are multiple shadows S j, j = 1, ..NB and

corresponding N shadow defining obstacles indexed by i, i = 1, ...N. The relative po-

sition of the UAV with respect to each obstacle and the target is x̃i = (rT ,φT ,ri,φi). In

the previous section, we explained the process of obtaining the optimal control for the

navigation of the UAV in the presence of a single obstacle and here we use that solution

for the navigation in the case of multiple obstacles.

Let us define an array V h composed of the computed value function V h (10.24)

evaluated for x̃i, i = 1,2, ..N, i.e.,

V h = {V h(x̃1), ...V h(x̃N)}. (10.25)

Under the assumption that the UAV is not in a shadow and that it has to avoid all shadow

defining obstacles, we use the following UAV control

u = uh(x̃i), i = argmax
i

V h = argmax
i
{V h(x̃i)}. (10.26)

In words, we use the optimal control u for the obstacle i, which corresponds to the obsta-

cle with the largest value V h(x̃i). Since the optimal control is based on the minimization

of the value function, this control implements minu maxiV h, where the operator “max”

is over the index i and “min” is inherited from the optimal control computations for uh,
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and accounts for all possible control actions. The advantage of the control in (10.26)

is that it can be applied for a varying number of obstacles which can also be large.

Therefore, the proposed control (10.26) is scalable.

In the computations of the optimal control uh, we use the penalty M to obtain the

optimal control providing that ri > D, i.e., that the UAV avoids shadow defining ob-

stacles. We can also check if UAV loses the line of sight to the target by checking if

the UAV is within a convex hull of a shadow. Therefore, to make our control strategy

complete, we use the following control

u =



uh(x̃i),
maxi{V h(x̃i)}< M

i = argmaxi{V h(x̃i)}

uesc,
maxi{V h(x̃i)}= M or

(x,y) ∈ ∪ jS j

(10.27)

where S j is the set of points that belongs to a shadow resulting from a building j,

j = 1,2, ...NB, and the control uesc is the control to escape the shadow

uesc =


umax, φT ∈ (0,π)

−umax, φT ∈ [−π,0)

0, φT = 0

(10.28)

The control uesc is based on the fact that the shadow cannot appear at the position of

the target, i.e., when the UAV is directly above the target. For this reason, uesc is the

so-called pure-pursuit controller which navigates the UAV with the heading pointing
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Figure 10.5: Navigation in the case of a stationary target T , single building, UAV A
which orbits around the target and does not avoid the shadow and UAV B which does:
(a) a 3D view of the environment with both UAVs at the same initial position; (b) from
the initial position, UAV A goes clockwise and enters the shadow, while UAV B goes
counter-clockwise and then turns to avoid the shadow; (c) UAV B makes the second
turn to avoid the shadow while UAV A continues on its orbit.

towards the target. Once the UAV is out of the shadows and distant from any of the

shadow defining obstacles, i.e., maxi{V h(x̃i)} < M, the control resumes to be uh(x̃i),

i = argmaxi{V h(x̃i)}.
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10.6 Results

The numerical simulation results of this section use the kinematic model (10.1)-

(10.3) with a UAV velocity of v = 10 m/s. The UAV has a maximum turning rate of

umax = 0.3 rad/s. The sample time used in the simulations is ∆t = 0.1 seconds.

The computational domain for computing the discrete approximation of the 4-

dimensional HJB solution is bounded with rmin
T = 10, rmax

T = 90, and rmin
o = 0.05,

rmax
0 = 2.04, with respect to rT and ro variables, respectively. The discretization steps

for rT and ro variables are ∆rT = (rmax
T − rmin

T )/199 and ∆ro = (rmax
o − rmin

o )/99, re-

spectively. The other two variables φT and φo are both within the range (−π,π] and are

discretized with ∆φT = π/180 and ∆φ o = 0.05 steps.

In the computation of the HJB solution, we use σT = 0.05 and σo = 0.039 to de-

scribe unpredictable motions of the target and a single shadow defining obstacle, re-

spectively, where the diameter of the obstacle is set to D = 0.1m. For the boundary

condition that accounts for ro ≤ D, we use the penalty M = 104.

Figure 10.5 shows an example with a single building and stationary target. The

figure depicts trajectories of two UAVs, A and B. They both start from the same initial

position as depicted in Fig. 10.5a. UAV A implements the circumnavigation controller

from [6], which does not avoid shadows, while UAV B implements the circumnavi-

gation controller (10.27), which avoids them. With this example, we show the basic

functionality of the proposed navigation (10.27). Figure 10.6 shows the result of the
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controller (10.27) for a moving target along the trajectory depicted by the yellow line.

The environment has 8 buildings and it the same one presented in Fig. 10.4 from which

we removed 3 buildings, which slightly reduces the number of shadows. The figure

shows the current shadows and the UAV position at the times indicted in the panels

(a)-(d), as well as the trajectory traversed by the UAV up to that time. While the fig-

ure illustrates the complexity of the UAV motion, it does not completely illustrate the

efficiency of the navigation controller (10.27) to avoid shadows.

In order to get a grasp of how well the proposed controller (10.27) works, we com-

pare it again with the circumnavigation controller from [6]. The performance is mea-

sured as a percentage of time that the UAV spends in the shadows in the environment

from Fig. 10.4. For a comparison with NB buildings 1≤ NB ≤ 8, we performed 50 sim-

ulation runs in which we randomly removed 11−NB buildings, randomly set the initial

position of the UAV in the operating space and used the fixed target trajectory depicted

in Fig. 10.6. While we could change all parameters of the problem, we reasoned that

fixing the target trajectory made sense since the target motion in an urban environment

is usually constrained to a street layout. The percentages of time recorded from our

simulation runs are plotted in Fig. 10.7. The diagrams show that for the UAV that cir-

cumnavigates around the target without avoiding shadows, the percentage of time in

the shadows increases with the number of buildings. When the UAV uses the controller

(10.27), in the case of 1 and 2 buildings, there is a slight performance improvement
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relative to the other controller. However, as the number of building increases, the per-

formance difference increases as well in favor of the controller from (10.27). Overall,

across all runs, one standard deviation band for the performance of the proposed con-

Figure 10.6: Environment with 8 buildings (red rectangles): the target is denoted
by a circle and moves along the path (yellow line). The UAV orbits around the
target and avoids moving shadows (green). The trajectory traversed by the UAV
is depicted in red. Panels (a)-(d) are snapshots of the numerical simulation at t =
0.1sec,23.9sec,106.1sec,147.2sec, respectively.
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Figure 10.7: Percent of time that the UAV spent in shadows from 50 simulation runs: in
each run, the initial position and selection of buildings from the Fig. 10.4 environment
are random. The plot for the controller that does not avoid shadows is in blue and
the one for the controller from (10.27) that avoids shadows is in red. The standard
deviations are depicted as vertical dashed lines.

troller never exceeds 4%.

10.7 Conclusions

In this paper, we presented the controller for a UAV to orbit above a cooperative

target and avoid positions at which it loses the line of sight towards the target. The

target is cooperative because it constantly relays its location to the UAV. However, since

the target moves in an urban environment with buildings of various sizes, the line of

sight can be easily lost since building-induced shadows move as well. Both the motions

of the target and shadows are considered unpredictable and, furthermore, the shadows
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have complex shapes.

For the UAV to be able to orbit above the target and avoid shadows, we proposed

the stochastic control approach. We described the shadows as an array of randomly

moving obstacles and proposed the scalable strategy for their avoidance while orbiting

above the target. The strategy is based on the solution of the stochastic optimal control

problem of orbiting around the target while avoiding a single random obstacle. As

illustrated in our numerical simulations, the proposed control strategy is shown to be

successful in orbiting above the target and avoiding shadows.

For future work, it would be interesting to consider alternative scalable control de-

signs, as well as their use for the same type of target tracking with multiple UAVs.
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Chapter 11

A Safe Stochastic Optimal Feedback

Control Approach to Autonomous

Navigation with a Large Number of

Obstacles

This chapter is a preprint to the paper

• Dejan Milutinović, Munishkin, Alexey A., and David W. Casbeer. ”A Safe

Stochastic Optimal Feedback Control Approach to Autonomous Navigation with

a Large Number of Obstacles.” Journal of Intelligent & Robotic Systems (sub-

mitted in 2022)
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Figure 11.1: UAV navigation toward a waypoint (W) in the presence of obstacles
(O1,O2,O3,O4). The heading angle θ of the UAV is measured counter-clockwise from
the x-axis, and φo2 and φw are bearing angles of the UAV toward the 2nd obstacle and
waypoint, respectively. The relative distances ro2 and rw from the UAV to the 2nd ob-
stacle and waypoint are shown as well. The bearing angles and relative distances to the
other obstacles are defined in a similar manner.

11.1 Introduction

This work is inspired by the autonomous navigation of small fixed-wing unmanned

aerial vehicles (UAVs) for search and rescue, disaster response, environmental monitor-

ing, and package delivery. These example scenarios require that the UAV autonomous

navigation is safe and scalable [43, 71] to avoid multiple moving obstacles while nav-

igating toward a waypoint as shown in Fig. 11.1. In the context of this paper, safety

is related to a collision-free navigation, and scalability is related to the navigation’s

real-time ability to deal with a large number of obstacles. Due to the UAV navigation,

we assume that the vehicle cannot stop to avoid obstacles, which makes the navigation

problem even more interesting and difficult to solve.

Autonomous vehicle navigation intrinsically includes two time scales. The long-
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time scale relates to the navigation between two geographical locations and is mostly

developed around path-planning algorithms [100, 176]. The short-time scale addresses

changes of the environment in the proximity of the vehicle that can be resolved using

feedback control [85, 114]. Since both of the scales are relevant for safe navigation, an

often used approach is to exploit planning algorithms (long-time scale) and re-compute

the plans frequently at the rates (short-time scale) that allow for accounting changes in

the proximity of the vehicle. Here, we propose an approach to the navigation in which

the sequence in which we compose the navigation is reversed. We use stochastic opti-

mal feedback control (short-time scale) for a vehicle to reach a target while avoiding a

single randomly moving obstacle. Then, we use the feedback controller and its corre-

sponding value function to search over a sequence of control actions (long-time scale)

while navigating in the presence of multiple obstacles.

Related Works: Long- and short-time scale navigation strategies have been used in

various robotic systems such as robotic arm movement [92, 106], autonomous car nav-

igation [161, 66], robot-human interactions and motion planning [20], and UAV navi-

gation [13, 71, 44]. Usually, the short-time scale navigation is in use to incrementally

modify the long-time scale’s collision-free paths rather than to re-plan whole paths to-

ward the goal [44]. This modification removes unnecessary re-computations associated

with long-time, i.e., global path planning methods, therefore, it can save computational

time [66].
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The short-time scale navigation in a rapidly changing uncertain environment has

various proposed solution methods [154, 13, 90, 36, 51] and hierarchical methods seem

to be the most promising [36], in particular, those methods that use feedback control.

Feedback-based approaches for the short-time scale navigation use Model Predictive

Control (MPC) [3, 98], rapidly-exploring random trees (RRTs) [91, 145], game theory

[190, 52], barrier functions [30], reachability sets [1, 122], potential functions [178,

110], harmonic functions [112], artificial intelligence [95] and reinforcement learning

[28] methods. Previous works on a scalable feedback controller that constructs a plan

for future navigation in a multi-step, or repeating iteration scheme, are [195, 174],

which most closely align with our work. Others include scalable frameworks for robot-

human teams [20], using Voronoi cells [201], and using velocity obstacles [55] with

reachable sets [188] for robot navigation.

Contributions: The first contribution of this paper is (1) the proof that a stochastic

optimal feedback controller for the UAV to reach a waypoint while avoiding a single

obstacle provides an upper bound for collision probability. The second contribution is

(2) the proof that for the feedback controller, we can compute the probability exactly.

The third contribution is (3) the proposed approach to navigation, in which we use the

stochastic optimal feedback controller and its associated value function to navigate the

UAV in the presence of multiple randomly moving obstacles.

Outline: The rest of this paper is organized as follows. In Section 2, we formulate
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the control problem for the full state-space of reaching the waypoint while avoiding N

obstacles. Then, in Section 3, we discuss the UAV-waypoint stochastic feedback opti-

mal control problem with a single obstacle. There we introduce the feedback controller

and its value function, and prove the controller properties. The use of the controller and

the value function for the navigation in the presence of multiple obstacles is described

in Section 4. There we introduce three search-based variants of the navigation. The

three variants are compared in numerical simulations in Section 5. Concluding remarks

are provided in Section 6.

11.2 Problem Formulation

Figure 11.1 depicts a small unmanned fixed-wing aerial vehicle (UAV) which nav-

igates toward a waypoint W and avoids collisions with an unknown number of poten-

tially moving obstacles Oi in its vicinity, i = 1,2, ... We assume that the UAV flies at a

constant altitude and speed, and that it cannot stop. We describe the UAV kinematics

using a deterministic Dubins vehicle [37], which is

dx = vcosθdt (11.1)

dy = vsinθdt (11.2)

dθ = udt, (11.3)
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where (x,y) ∈ R2 is the UAV position, θ ∈ [−π,π) is the heading angle and v > 0

is a known positive constant speed. The control variable is the bounded turning rate

u ∈ [−umax,umax], where umax is the maximal turning rate.

The UAV is tasked to fly towards the fixed waypoint (xw,yw) ∈ R2 and there is

a number of circular obstacles of the radius d > 0 that can move in a free manner.

Therefore, we describe their motion using the random Brownian walk [46] as

dxoi = σodwxoi (11.4)

dyoi = σodwyoi , (11.5)

where (xoi,yoi) ∈ R2, i = 1,2, ... are obstacle positions, and dwxoi and dwyoi denote

the Wiener process increments [94]. The constant parameter σo > 0 is assumed to be

identical for all obstacles.

Let us define the distance between the UAV and waypoint W, and the distance be-

tween the UAV and the ith obstacle Oi, rw and ri
o, respectively, as

rw =
√
(x− xw)2 +(y− yw)2 (11.6)

roi =
√
(x− xoi)2 +(y− yoi)2. (11.7)

Furthermore, let us introduce a target set Xt around the waypoint W and an unsafe set

X i
unsa f e around the ith obstacle Oi as

Xt = {(x,y) | rw ≤ Rmin} (11.8)

X i
unsa f e = {(x,y) | roi ≤ d}, i = 1,2, ..., (11.9)
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where Rmin > 0 and d > 0 are predefined distances from the waypoint and obstacles,

respectively.

Problem (P): The problem we study here is a navigation strategy u such that the

UAV safely navigates to reach the target set Xt and that the vehicle avoids all obstacles,

i.e, that for t > 0 and Xunsa f e = ∪N
i=1X

i
unsa f e

(x(0),y(0)) /∈Xunsa f e⇒


∃τ > 0,(x(τ),y(τ)) ∈Xt , and

(x(t),y(t)) /∈Xunsa f e, 0 < t ≤ τ.

(11.10)

In this paper, we address the problem using the relative position between the UAV

and the waypoint as (rw,φw) and between the UAV and each ith obstacle as (roi,φoi).

The relative position coordinates are distances rw and roi given by (11.6) and (11.7),

respectively, and the bearing angles φw and φoi from Fig. 11.1 given by

φw = arctan
(

y− yw

x− xw

)
−θ (11.11)

φoi = arctan
(

y− yoi

x− xoi

)
−θ . (11.12)

Using the relative position coordinates and Îto calculus [94], we can rewrite the stochas-

tic kinematics (11.1)-(11.5) as

drw =

(
−vcos(φw)+

σ2
w

2rw

)
dt = brwdt (11.13)

dφw =

(
v
rw

sin(φw)−u
)

dt = bφwdt (11.14)

droi =

(
−vcos(φoi)+

σ2
o

2roi

)
dt +σodwroi = broi dt +nroi dwroi (11.15)

dφoi =

(
v

roi
sin(φoi)−u

)
dt +

σo

ri
o

dw(φoi+θ) = bφoi dt +nφoi dw(φoi+θ), (11.16)
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where dwroi and dw(φoi+θ) denote the Wiener process increments [94] along the roi and

φoi state-space variables. However, with this, we have to re-state the problem formula-

tion term of the state vector

x̃ = [x̃w, x̃o1, ...x̃oN ]T , (11.17)

which keeps the information about all relative positions between the vehicle and way-

point with x̃w = [rw,φw]
T , and the vehicle and obstacles with x̃oi = [roi,φoi]T , i = 1..N,

where N ≥ 1 corresponds to the number of obstacles. With this, we can easily re-state

the target and unsafe sets, as well as condition (11.10) as

Xt = {x̃ | rw ≤ Rmin} (11.18)

X i
unsa f e = {x̃ | roi ≤ d} (11.19)

x̃(0) /∈Xunsa f e⇒


∃τ > 0, x̃(τ) ∈Xt , and

x̃(t) /∈Xunsa f e, 0 < t ≤ τ,

(11.20)

while we can keep the rest of problem formulation (P) the same.

11.3 Safe Navigation for a Single Obstacle

The starting point of our analysis is to consider the case in which the vehicle nav-

igates toward the waypoint in the presence of a single obstacle i. In that case, the
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stochastic kinematic equations (11.13)-(11.16) are

dx̃i =

 bw(x̃w,u)

boi(x̃oi,u)

dt +

 0

noi(x̃oi)

dW = b(x̃i,u)dt +n(x̃i)dWi, (11.21)

where bw(·) = [brw ,bφw]
T , ni

o(·) = [nri
o
,nφ i

o
]T and boi are defined by (11.13)-(11.16), the

Wiener process increment dWi = [0,0,dwroi ,dw(φoi+θ)]
T has components defined by

(11.15)-(11.16) and x̃i ∈ R4.

Let us assume that the state x̃i(t) in (11.21) is controlled by a feedback control

strategy u = u(x̃i). Therefore, with bu(x̃i) = b(x̃i,u(x̃i)), we can conclude that

dx̃i = bu(x̃i)dt +n(x̃i)dWi. (11.22)

This nonlinear stochastic differential equation was analyzed in [141] with regard to the

probability P of reaching the unsafe set from a state x̃i(s) at the time point s, i.e.,

P
{

x̃i(τ) ∈X i
unsa f e for some τ ≥ s | x̃i(s)

}
= P(x̃i(s))≤ γ, (11.23)

where τ is the first time point at which a trajectory x̃i(t), s ≤ t ≤ τ enters the unsafe

set X i
unsa f e, and γ is the upper bound of that probability. Specifically, the result in

[141](Theorem 15), when applied to (11.22), states that (11.23) holds if there exists the
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so-called barrier function B which has continuous second derivatives and satisfies

B(x̃i) ≤ γ, γ ∈ [0,1], ∀x̃i ∈X0 ⊆ R4 \{Xt ∪X i
unsa f e} (11.24)

B(x̃i) ≥ 1, ∀x̃i ∈X i
unsa f e (11.25)

B(x̃i) ≥ 0, ∀x̃i ∈X0 ⊆ R4 \{Xt ∪X i
unsa f e} (11.26)

L uB(x̃i) ≤ 0 , ∀x̃i ∈X0 ⊆ R4 \{Xt ∪X i
unsa f e}, (11.27)

where L u is the differential operator

L u =
∂ (·)
∂ x̃

bu(x̃i)+
1
2

Tr
(

nT (x̃i)
∂ 2(·)
∂ x̃2 n(x̃i)

)
. (11.28)

In the following, we show that conditions (11.24)-(11.27) hold for the solution of

the Hamilton-Jacobi-Bellman (HJB) partial differential equation [94] associated with

a stochastic optimal control problem.

Let us consider a control u = u(x̃i) which minimizes the following cost function

J(x̃i(s),u) = E
{

g(x̃i(τs))+
∫

τs

t
dt
}
, x̃i(s) ∈ R4 \{Xt ∪X i

unsa f e}, (11.29)

where E is the expectation with respect to stochastic trajectories of x̃i(t) and s ≤ t ≤

τs < ∞ is the first time of entry of x̃i(t) to the closed set terminal set {X i
unsa f e ∪Xt}

from an initial state x̃i(s) ∈ R4 \ {Xt ∪X i
unsa f e}. The part of cost under the integral

accounts for the time to reach the terminal set, while the terminal cost part g(x̃i(τs)) is

g(x̃i(τ)) =


M if x̃i(τs) ∈X i

unsa f e

0 if x̃i(τs) ∈Xt ,

(11.30)
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where M ≫ 0 is a large positive constant to denote a large penalty for hitting an ob-

stacle, i.e., entering the set X i
unsa f e. The optimal control solution u∗ that achieves the

minimum cost in (11.29) results in the value function

V (x̃i) = min
u

E{J(x̃i,u)}. (11.31)

The value function satisfies the HJB partial differential equation [94]

0 = min
u
{L uV (x̃i)+1} , x̃i ∈ R4 \{Xt ∪X i

unsa f e}. (11.32)

The HJB equation is defined by the same differential operator L u as in (11.28) and

boundary condition

V (x̃i) =


M, x̃i ∈X i

unsa f e

0, x̃i ∈Xt .

(11.33)

The solution of the HJB equation and the following theorem establish the relation

between V and the barrier function B. In the following, we will assume that V ∈C2(x̃i),

i.e., that it is a function with continuous second derivatives, which means that the HJB

equation has a classical solution. This is a suitable assumption given that the same as-

sumption is used in the definition of the barrier function B. In the next theorem, we use

the following assumptions:

(A1) State x̃i obeys (11.22);
(A2) V (x̃i) is the solution of the HJB equation (11.32) for the optimal control

problem that minimizes the cost (11.29) and has continuous
second derivatives;

(A3) V (x̃i)< M, x̃i ∈ R4 \{X i
unsa f e∪Xt}, where M is the penalty from

the terminal costs (11.30), which is the same value used in
the boundary condition (11.33).

220



Theorem 1: If all the assumptions (A1), (A2) and (A3) are satisfied, then the func-

tion Y (x̃i) =
1
MV (x̃i) is a barrier function.

Proof : Our proof is based on checking conditions (11.24)-(11.27). The costs, as

well as the terminal costs are non-negative, therefore, V (x̃i)≥ 0 for all x̃i ∈ R4 \{Xt ∪

X i
unsa f e}, which implies that Y (x̃i)≥ 0 and confirms that Y (x̃i) satisfies (11.26). Also,

since M = V (x̃i) for all x̃i ∈X i
unsa f e, we conclude that Y (x̃i) = 1 and confirm Y (x̃i)

satisfies (11.25).

Next, for the optimal control u = u∗, we have that

0 = L u∗V (x̃i)+1, (11.34)

for x̃i ∈ R4 \ {Xt ∪X i
unsa f e}, which after the substitution V (x̃i) = MY (x̃i) can be re-

written as

L u∗Y (x̃i) =−
1
M

< 0, (11.35)

confirming that Y (x̃i) satisfies (11.27).

Finally, from the assumption that V (x̃i) < M for all x̃i ∈ R4 \ {Xt ∪X i
unsa f e} and

V (x̃i) = M for x̃i ∈X i
unsa f e, we can conclude that for any x̃i ∈X0, X0 ⊆ R4 \ {Xt ∪

X i
unsa f e}, we also have V (x̃i) < M, i.e., that Y (x̃i) < γ , γ ∈ [0,1), which implies that

(11.24) is satisfied by Y (x̃i). Since we have verified that Y (x̃i) satisfies all conditions

(11.24)-(11.27), we conclude that the function Y (x̃i) is a barrier function and finish the

proof.
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There are two reasons for presenting Theorem 1. The first and main reason is to

illustrate the relation between the recently proposed concept of barrier function and

the use of stochastic optimal control, i.e., its corresponding HJB solution. The second

one is because Theorem 1 is applicable for the general stochastic differential equation.

However, the continuity of second derivatives of the solution V (x̃i) is not guaranteed

and there is a certain condition that has to be satisfied, e.g., that the HJB is uniformly

parabolic (see [58], page 156). This may give an impression that the HJB approach

for the specification of the barrier function is more restrictive than the one from [141],

but it is quite the opposite. When the HJB solution V (x̃i) does not have continuous

second derivatives, the HJB solution for the value function V (x̃i) can still exist in a

weaker sense, which is a viscosity solution. Viscosity solutions represent a wider class

of solutions for V (x̃i) and solutions with continuous second derivatives, i.e., classical

solutions also belong to the class of viscosity solutions.

The definition of viscosity solution is provided in [58], and we use it to define a

hazard function H(x̃i). To introduce the definition, we use the HJB equation (11.32),

from which we obtain the optimal control u∗. Furthermore, based on the optimal control

u∗, we define the steady-state solution of the backward Kolmogorov (BK) [46] equation

0 = L u∗T (x̃i)+1, x̃i ∈ R4 \{Xt ∪X i
unsa f e}, (11.36)

with the boundary condition T = 0 for all x̃i ∈ {Xt ∪X i
unsa f e}. The BK equation solu-

tion is the expected time T to reach either the target set Xt or the unsafe set X i
unsa f e.
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Finally, instead of the assumption (A2), we use the following one:

(A2’) V (x̃i) is the viscosity solution of the HJB equation (11.32) for
the optimal control problem that minimizes the cost (11.29),
u∗ is the optimal control and T (x̃i) is the viscosity solution of
the BK equation (11.36).

Definition 1: Under assumptions (A1), (A2’) and (A3), the hazard function H(x̃i) is

H(x̃i) =V (x̃i)−T (x̃i), x̃i ∈ R4 \{Xt ∪X i
unsa f e}. (11.37)

Theorem 2: The hazard function H(x̃i) satisfies the partial differential equation

(a) : 0 = L u∗H(x̃i), x̃i ∈ R4 \{Xt ∪X i
unsa f e}, (11.38)

with the boundary condition H(x̃i) = M, for all x̃i ∈X i
unsa f e and M is from (A3). Also,

(b) : x̃i ∈Xt ⇒
1
M

H(x̃i) = 0 and x̃i ∈X i
unsa f e⇒

1
M

H(x̃i) = 1, (11.39)

and the probability P(x̃i(s)) of reaching the unsafe set X i
unsa f e from (11.23) evaluated

for x̃i(s) = x̃i is

(c) : P(x̃i) =
1
M

H(x̃i), (11.40)

where x̃i ∈ R4 \{Xt ∪X i
unsa f e}.

Proof : To prove (a), we start from (11.32) written for the optimal control u = u∗

and the hazard definition H(x̃i) =V (x̃i)−T (x̃i) to obtain

0 = L u∗V (x̃i)+1 = L u∗ (H(x̃i)+T (x̃i))+1 = L u∗H(x̃i)+L u∗T (x̃i)+1︸ ︷︷ ︸
0

, (11.41)
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where the last part of the expression is 0 since T (x̃i) is the solution of the BK equation

(11.36). Therefore, we conclude that 0 = L u∗H(x̃i). To show (b), we should note that

x̃i ∈Xt ⇒V (x̃i) = T (x̃i) = 0⇒ 1
M

H(x̃i) =
1
M

(V (x̃i)−T (x̃i)) = 0 (11.42)

and

x̃i ∈X i
unsa f e⇒V (x̃i) = M,T (x̃i) = 0⇒ 1

M
H(x̃i) =

1
M

(V (x̃i)−T (x̃i)) = 1, (11.43)

and with this we have proved (b).

To prove part (c), let us write P(x̃i(s)) using the conditional probability density

function (pdf) π(x̃i(τ)|x̃i(s)) of x̃i(τ) ∈X i
unsa f e, given x̃i(s), i.e.,

P(x̃i(s)) =
∫

R4

1
M

g(x̃i(τ))π(x̃i(τ)|x̃i(s))dx̃i(τ). (11.44)

The term 1
M g(x̃i(τ)) accounts for the probability mass in the unsafe set X i

unsa f e since

according to (11.30), the term 1
M g(x̃i(τ)) = 1 for x̃i(τ) ∈X i

unsa f e and 1
M g(x̃i(τ)) = 0,

otherwise. Similarly, we can express the probability P(x̃i(s+ds)), where ds > 0 is an

infinitesimally small increment of time as

P(x̃i(s+ds)) =
∫

R4

1
M

g(x̃i(τ))π(x̃i(τ)|x̃i(s+ds))dx̃i(τ). (11.45)

Since the joint conditional pdf of (x̃i(τ), x̃i(s+ds)), given x̃i(s), is

π(x̃i(τ), x̃i(s+ds)|x̃i(s)) = π(x̃i(τ)|x̃i(s+ds), x̃i(s))π(x̃i(s+ds)|x̃i(s)) (11.46)
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and due to the Markov property π(x̃i(τ)|x̃i(s+ds), x̃i(s)) = π(x̃i(τ)|x̃i(s+ds), we ob-

tain

π(x̃i(τ)|x̃i(s)) =
∫

R4
π(x̃i(τ)|x̃i(s+ds))π(x̃i(s+ds)|x̃i(s))dx̃i(s+ds), (11.47)

which after the substitution in (11.44) yields

P(x̃i(s)) =
∫

R4

∫
R4

1
M

g(x̃i(τ)) π(x̃i(τ)|x̃i(s+ds))× (11.48)

π(x̃i(s+ds)|x̃i(s))dx̃i(s+ds)dx̃i(τ), (11.49)

and after accounting for (11.45) results in

P(x̃i(s)) =
∫

R4
P(x̃i(s+ds))π(x̃i(s+ds)|x̃i(s))dx̃i(s+ds). (11.50)

The last expression can be rewritten as

P(x̃i(s)) = E {P(x̃i(s+ds))} , (11.51)

where the expectation operator is conditional accounting for the pdf of x̃i(s+ds), given

x̃i(s). Finally, using the definition of infinitesimal generator for stochastic processes,

we obtain

L u∗P(x̃i) = lim
ds→0

E {P(x̃i(s+ds)}−P(x̃i(s))
ds

(11.52)

= lim
ds→0

P(x̃i(s))−P(x̃i(s))
ds

= 0. (11.53)

To conclude, the probability P(x̃i) satisfies

0 = L u∗P(x̃i), x̃ ∈ R4 \{Xt ∪X i
unsa f e} (11.54)
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and due to its definition, P(x̃i) = 1 for x̃i ∈X i
unsa f e and P(x̃i) = 0 for x̃i ∈Xt . These

two boundary values match the boundary conditions for 1
M H(x̃i) (see part (b) of the

theorem), which also satisfies L u∗
(

H(x̃i)
M

)
= 0 due to L u∗H(x̃i) = 0 (see part (a) of

the theorem) and the linearity of the operator L u∗ . Therefore, under the assumption

(A2’), i.e, the viscosity solution for H(x̃i), i.e., 1
M H(x̃i), there is also a solution of

(11.54) for P(x̃i) which is P(x̃i) =
1
M H(x̃i), which concludes our proof.

11.4 Multi-step Optimization for a Safe Navigation around

Multiple Obstacles

In principle, one can formulate an optimal control similar to (11.29) for the whole

state vector x̃ = [x̃w, x̃o1, ...x̃oN ]T which accounts for the UAV-target, all UAV-obstacle

relative positions, and corresponding target Xt and unsafe sets X i
unsa f e. This formu-

lation would result in an HJB equation for V (x̃) that can be used to obtain the optimal

control u∗. However, in that case, the HJB equation has to be solved in 2(N + 1) di-

mensions, which is computationally challenging [135], even for a small number of

obstacles, e.g., N = 5. Therefore, we take an approach in which we utilize the solution

for a single obstacle from the previous section.

Instead of the single vector x̃, here we deal with multiple vectors x̃i, i = 1,2, ...N.

Note that the general solution from the previous section for navigation to W avoiding
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one obstacle i applies for any i = 1,2, . . .N, in other words,

x̃i = x̃ j⇒ u(x̃i) = u(x̃ j),V (x̃i) =V (x̃ j),T (x̃i) = T (x̃ j),H(x̃i) = H(x̃ j). (11.55)

This similarity gives us a reason to consider the single controller

u = u(ximax), imax = argmax
i
{H(x̃1),H(x̃2), ...}. (11.56)

In this case, the control accounts only for the target and the obstacle with the highest

hazard. This may be an interesting solution, but in general it is myopic and can fail in

the case of a cluttered environment since the control reacts only to the single and usually

the closest obstacle. An alternative to this approach is to adopt the one-step look-

ahead optimal controller proposed in [124] which defines the control by minimizing

an approximation of the value function. However, the single step minimization may

not be sufficient in the case of a set of obstacles blocking the path toward the target

from multiple directions. For this reason, here we propose a control defined from an

algorithm that accounts not for a single, but for multiple steps ahead.

To formulate the approach, let us define V upper, which is the largest value of the

array of value functions V (x̃i), i = 1,2...N, i.e.,

V upper(X(t)) = max
i
{V (x̃1(t)),V (x̃2(t)), ...}, (11.57)

where on the right side we have introduced the vector X(t) = [x̃1(t), x̃2(t)...x̃N(t)] and t

denotes the time. Below we explain the computation for the control uk.
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Multi-step Optimization: Let us assume that we know V upper(X(tk)). In the first

step, we predict X(tk+1) from X(tk), assign s0 = tk and perform the minimization

(Step 1) : V upper(X(s1)) = min
c0

V upper(X(s1)|X(s0),c0), (11.58)

where X(s1)|X(s0),c0 denotes that the prediction of X(s1), s1 > s0 depends on X(s0)

and control c0. If we can confirm that

V upper(X(s1))<V upper(X(s0)), (11.59)

then the control for the step tk is uk = c0. Otherwise, we go to the second step, in which

we search over c0 and c1 control values to perform the minimization

(Step 2) : V upper(X(s2)) = min
c1,c0

V upper(X(s2)|X(s1),c1|X(s0),c0), (11.60)

where the notation in the term on the right side explains that X(s2) depends on the

previous predictions and the corresponding controls. If we can confirm that

V upper(X(s2))<V upper(X(s0)), (11.61)

then the control for the step tk is uk = c0. Otherwise, we proceed with an attempt to

compute V upper(X(s3)). In general, if we cannot verify V upper(X(s j))<V upper(X(s0))

in any of the steps up to the nth step, j = 1, ...n−1, where Step n is

(Step n) : V upper(X(sn)) = min
cn,...c1,c0

V upper(X(sn)|...|X(s1),c1|X(s0),c0), (11.62)

in which we check if

V upper(X(sn))<V upper(X(s0)). (11.63)
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Figure 11.2: Illustration of the multi-step UAV navigation approach using BFS. In the
first step (n = 1), we search over a single control action (see (11.58)). For simplicity, in
the illustration we assume that there are only three available control actions, go straight,
i.e., turning rate 0, turn-left, i.e., a positive turning rate, and turn-right, i.e., a negative
turning rate. As we progress through the steps n ∈ {2,3,4, . . .}, we search over longer
sequences of the three control actions as illustrated in the panels (b)-(d).

If the answer is positive (true or yes), then uk = c0. Otherwise, we continue to the

next step. We continue with this process of checking condition (11.63) and if positive,

assigning uk = c0, or until we reach some maximal value for n = nmax. In the first case,

we apply the control uk and we repeat the same process in the next time step. In the

second case, we state that we cannot find the solution for the control uk. In a larger

navigation system, this is the time point when the UAV can request help from a planner

that has a more holistic view of the UAV mission and environment.

Navigation search algorithms (BFS, DFS, BFSC): The process of finding the V upper

minimizing sequence of controls ci, i≤ n−1, for each step n in (11.58)-(11.63), can be

seen as a tree search traversal problem [167, 35] if ci takes discrete values from the set

[−umax,umax]. The root of the tree corresponds to the UAV initial position, the depth

of the tree corresponds to the step n, and each node of the tree graph at the depth n
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corresponds to a single sequence {c0,c1, ...cn}. During the search, the algorithm first

goes over the nodes at the same depth, and if the search is not concluded, then it goes

to the next depth n+ 1. This search process goes on until the solution is found or the

depth n= nmax is reached. This is the the so-called Breadth-first search (BFS) [167, 35].

However, the search can be organized by going in the depth. If at the certain node with

the sequence A : {c0,c1, ...cn} at the depth n the condition (11.63) is not satisfied, the

search can go immediately to the node B : {c0,c1, ...cn,cn+1} obtained by adding cn+1

to the sequence A. This search process goes on until the solution is found or the depth

n = nmax is reached. In the latter case, the search returns to the node at a lower depth

that has not been explored. This type of search is the so-called Depth-first search (DFS)

[167, 35]. The algorithms describing BFS and DFS are provided in Appendix B.

In addition to the BFS and DFS search, in this work we also use the search process

in which the search at the depth n goes only over nodes in which ci = ci−1, i= 1, ...n−1,

therefore, over the sequences that keep the control constant, e.g., keep turning left or

right, or keep going straight. Since we have implemented this search as the BFS, we

call it BFSC, where the last ’C’ stands for the word constant. The algorithm is also

described in Appendix B and we introduce it in the paper only as a benchmark.
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11.5 Results

In this section, we present three different simulation scenarios for a UAV reaching

a waypoint while avoiding collision with obstacles. The first two are scenarios with the

UAV navigation through a corridor of obstacles and around a circular wall of obstacles.

The third is a scenario in which the UAV avoids a randomly-generated collection of

moving random obstacles. We conclude this section with a comparison among BFS,

DFS and BFSC search-based navigations.

In the simulations, the UAV model is expressed by the Dubins kinematics (11.1)-

(11.3) and the model for each stochastic moving obstacle is expressed in (11.4)-(11.5).

To compute the discrete approximation V h of the value function V from Sections 3 and

4, we use the discrete step sizes (see Appendix B) of ∆rw = ∆ro = (Rmax−Rmin)/100

(m), ∆φw = ∆φo = 5π/180 (rad), where Rmax = 2.04 (m) and Rmin = 0.05 (m) are the

maximum and minimum distances to either the waypoint or obstacle in the discretized

state-space x̃h. For the BFS, DFS and BFSC search methods, we use the maximum

depth (step) nmax = 5 and discrete time steps of 0.1 seconds. The maximum turning

rate umax = 1 rad/s and we use discrete control steps ∆u = 0.5 rad/s, therefore, all

control actions uk are from the set {−1,−0.5,0,0.5,1}. Since Rmin > 0, we stop the

simulation when the UAV has reached the Rmin distance from the waypoint or when the

UAV has collided with an obstacle of the radius d = 0.1 (m).

Out of the three search algorithms, i.e., BFS, DFS and BFSC, the last one is ex-
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Figure 11.3: Corridor of stationary obstacles. The UAV starts (a) at (0,0.75) and navi-
gates to reach the waypoint at (3,0.75) (black circle). During the navigation, the UAV
avoids the obstacles (magenta circles) as illustrated in ther panels (a)-(d).

pected to be the worst one since it searches only over a subset of nodes, i.e., control

sequences. Therefore, for the stationary set of obstacles in Fig. 11.3 and Fig. 11.4, we

show results for the BFSC, which represent the worst case scenario. Fig. 11.3 shows

the navigation obtained by the BFSC. Fig. 11.3(a) shows the initial UAV location with

the heading angle θ = 0 (rad), the waypoint and location of all twenty-four obstacles

forming the corridor. Figs. 11.3 shows that the UAV navigated the obstacle corridor

towards the waypoint which was reached as shown in Fig. 11.3(d).

Fig. 11.4 shows a scenario with twelve obstacles forming a semi-circular wall. The

UAV is facing the wall with the heading angle θ = 0 (rad) and navigates using the

BFSC. Fig. 11.4(a) shows the initial UAV location and heading. Figs. 11.4(b) and (c)

show the navigation of the UAV as it transitioned from the inner to the outer side of

the wall and moved toward the waypoint. Fig. 11.4(d) shows that the UAV reached the
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Figure 11.4: Semi-circular wall of stationary obstacles. The UAV starts (a) at (-0.75,0)
and navigates to reach the waypoint at (1,0) (black circle). During the navigation, the
UAV avoids the obstacles (magenta circles) as illustrated in the panels (a)-(d).

waypoint.

Finally, Fig. 11.5 illustrates a scenario with twenty-four obstacles, showing that the

BFSC search-based navigation can handle unstructured and random scenarios where

the obstacles move randomly. Initially, given the unfavorable starting condition in

Fig. 11.5a where the UAV faces close-by obstacles, the UAV makes a hard right to

avoid collision and then has to maneuver to the left to avoid collision as shown in

Fig. 11.5(b) and (c). Once the UAV has reached a clear region, the UAV was in the

position to reach the waypoint as depicted in Figure 11.5(d).

Comparison of BFS, DFS and BFSC search-based navigations: For the comparison,

we use all the same parameters as in the other simulations from this section. However,
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Figure 11.5: Randomly moving obstacles. The UAV starts (a) at (-0.5,0.75) and navi-
gates to reach the waypoint at (2.5,0.75) (black circle). During the navigation, the UAV
avoids the obstacles (magenta circles) as illustrated in the panels (a)-(d).
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when it comes to nmax = 5, as well as 5 available values for control actions, the tree

that we need to explore has 3905 nodes (see Appendix B). To reduce the search time,

we use nmax = 3, only three actions from the set {−1,0,1} and only 39 tree nodes,

i.e., sequences that we need to explore. With this, we gain a speed-up which allows us

to run 200 simulation runs for the UAV starting at (−1.5,0) with the heading θ = 0,

the waypoint at (0,0), and a varying number of randomly placed, randomly moving

obstacles from 2 to 50. To compare the use of BFS, DFS, and BFSC search algorithms

in the navigation, out of 200 simulations for each obstacle scenario, we count how many

simulation runs end with the collision between the UAV and an obstacle.

Figure 11.6 illustrates the results from a simulation with the obstacle noise parame-

ter σ = 0.039 which is the same as the σo value used to compute the stochastic control

in Section 11.3, and corresponds to the obstacle mean speed of 0.07 m/s, which is 70%

of the UAV speed of v = 0.1 m/s. The figure shows that with 50 obstacles, the DFS

search-based navigation reaches the range of 70% of collisions. While the BFS-based

navigation performs slightly better than the BFSC one, they are consistently better than

the DFS-based navigation. Next, we set σo = 0.0273 corresponding to the obstacle

mean speed, which is 49% of the UAV speed of v = 0.1 m/s, and repeat the whole

simulation to compute the results in Fig. 11.7. The results show that the collision rates

across all approaches decrease, but that their relative performances remain the same,

i.e., that the BFS-based navigation is slightly better than the BFSC one and that both
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Figure 11.6: Percent of collisions vs. number of obstacles from 200 simulations with
σo = 0.039. The data points are for DFS- (red), BFS- (blue) and BFSC- (cyan) based
navigation.

are consistently better than the DFS-search based navigation. This is also confirmed

with the results in Fig. 11.8, which are computed for σo = 0.0039. This σo value cor-

responds to the obstacle mean speed of 0.007 m/s, which is 7% of the UAV speed of

v = 0.1 m/s.

Overall, we can conclude that the BFS-based navigation described in Algorithm 1

is the safest controller in reaching the waypoint based on Fig. 11.6-11.8 compared to

its counterpart DFS Algorithm 2 and BFSC Algorithm 3. However, our results show

that the BFS is only slightly better than the BFSC one and that both are significantly

better than the DFS-based navigation. The weak performance of the DSF-based navi-

gation can be explained by its searching for the farthest nodes and computing a longer

sequence of actions, which in the presence of randomly moving obstacles have little

chance to play out completely.
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Figure 11.7: Percent of collisions vs. number of obstacles from 200 simulations with
σo = 0.0273. The data points are for DFS- (red), BFS- (blue) and BFSC- (cyan) based
navigation.

Figure 11.8: Percent of collisions vs. number of obstacles from 200 simulations with
σo = 0.0039. The data points are for DFS- (red), BFS- (blue) and BFSC- (cyan) based
navigation.
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11.6 Conclusions

In this paper, we presented the feedback control approach to navigate a UAV, which

is modeled as the turning rate-bounded Dubins vehicle, toward a waypoint while avoid-

ing collision with multiple randomly moving obstacles. The approach is based on the

stochastic optimal control for the vehicle, waypoint and a single obstacle with an as-

sociated value function, which is the solution of the Hamilton-Jacobi-Bellman (HJB)

equation. We used the value function, evaluated it with respect to multiple obstacles

and searched over available control actions to navigate the UAV.

For the feedback control that accounts for a single obstacle, we showed that it pro-

vides safety guarantees, i.e., the upper bound for the probability of collision. Moreover,

we proved that we can compute that probability exactly. For the navigation around

multiple obstacles, we proposed to search over sequences of control actions account-

ing for the largest value of the value function evaluated for the obstacles. We consid-

ered the following three types of searches over the action sequences: Depth-first-search

(DFS), Breadth-first-search (BFS), and Breadth-first-search with constant control ac-

tions (BFSC). We compared the navigation based on the three types using stochastic

simulations with multiple obstacles to conclude that the BFS and its variant BFSC

provide a consistently better performance than DFS. While the BFS-based navigation

performs slightly better than the BFSC one, the latter one can be preferred for the sake

of using a simpler algorithm which can be computed more efficiently.
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With this work, we presented the approach to synthesize the control for safe naviga-

tion among a large number of randomly moving obstacles. The approach uses the value

function of the stochastic optimal controller for avoiding a single obstacle and search-

ing over a sequence of actions to navigate around the obstacles. While our approach is

useful in the area of UAV navigation, it may prove to be fruitful in other applications

as well, including those in which a vehicle, or a robotic mechanism navigates toward a

target set and has to avoid obstacles in its way.
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Chapter 12

Concluding Remarks and Future

Work

While each of the preceding papers contained conclusions on a specific problem or

area of research, we provide here some brief overall remarks on the dissertation and

directions for future work.

The work in this thesis started with one-on-one stochastic optimal control prob-

lems, including vehicle-to-vehicle and vehicle-to-goal (or waypoint) problems. Chap-

ter 4 covered the topic of a single UAV entering the tail sector of another UAV whose

navigation is unknown, and chapter 5 covered the topic of a single UAV avoiding to

collide with an unpredictably moving obstacle while navigating towards a waypoint

in minimum time. These two one-on-one problems serve as the building blocks and
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inspiration for the work presented in the later chapters. The complexity of the underlin-

ing stochastic optimal control problem increased as we added more vehicles such as in

chapters 6, 7 and 11, or added more obstacles, such as in chapters 8, 9 and 10. As the

result of adding more vehicles or obstacles to the studied problem, we ended up with

complex control problems due to the large number of states arising in the underlining

stochastic optimal control problem that we have to deal with. Solving an optimal con-

trol problem with a large number of states might not be possible due to the so-called

curse of dimensionality [137]. Moreover, we also had to account for the fact that the

number of states in the problems could vary with time since the number of vehicles

and obstacles could vary with time as well. In order to solve these complex stochastic

optimal control problems, we decomposed the original stochastic optimal control prob-

lem into one-on-one vehicle-to-vehicle and vehicle-to-goal parts, and composed their

solutions to solve the original complex problem. We used two types of compositions, a

one-step or multi-step lookahead optimization and a Markov inequality switching ap-

proach. Though we did not provide guarantees for our heuristic methods to work in all

possible scenarios, we provided guidelines and algorithms for checking if the method

fails to find a solution. Many of these methods such as the Markov inequality switching

have a solid mathematical analysis and proofs that provide guarantees for the method

to work for the scenarios that are studied in this work.

At the end of the work in this thesis, we found that some of the studied questions
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can be explored in more depth and that some of them opened new directions for future

work. Some potential directions for future theoretical research include dealing with

Markov Jumps and Levy Processes [42], as well as incorporating some decentralized

control for multi-agent cooperative agent teams [19, 23]. On the implementation side,

work towards developing specialized hardware and software for using the presented

scalable control methods in UAV applications [163, 51, 36, 90, 156] would be likely

fruitful research directions as well.
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Appendix A

Two-Target Stochastic Kinematics

Derivations

A.1 Derivation of dr

We start with the 2nd order Taylor expansion for r2

2rdr = 2(xR− xB)d(xR− xB)+
1
2

2d(xR− xB)
2

+2(yR− yB)d(yR− yB)+
1
2

2d(yR− yB)
2
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and substitute dxB, dxR, dyB and dyR with the right-hand sides of (4.1)-(4.2) and (4.4)-

(4.5) to obtain

2rdr = 2r cos(θB +φ)[vR cosθR− vB cosθB]dt

+dx2
R−2dxRdxB +dx2

B

+2r sin(θB +φ)[vRsinθR− vBsinθB]dt

+dy2
R−2dyRdyB +dy2

B

Then, by the Îto calculus rule, we ignore any term with the order greater than dt, which

results in

2rdr = 2r cos(θB +φ)[vR cosθR− vB cosθB]dt

+2r sin(θB +φ)[vR sinθR− vB sinθB]dt

Dividing the last expression with r yields

dr = cos(θB +φ)[vR cosθR− vB cosθB]dt

+sin(θB +φ)[vR sinθR− vB sinθB]dt

= [ve cos(θB +φ −θR)− vB cos(θB +φ −θB)]dt

and we finally obtain dr as

dr = [vR cos(φ −α)− vB cos(φ)]dt (A.1)
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A.2 Derivation of dα

The difference of the heading angles is α = θR−θB, therefore,

dα = dθR−dθB

which after the substitution from the right-hand side of (4.3) and (4.6) results in

dα = −uBdt +σRdw (A.2)

A.3 Derivation of dφ

To derive dφ , we start with

d(θB +φ) =
∂

∂yR

[
arctan

(
yR− yB

xR− xB

)]
dyR

+
∂

∂yB

[
arctan

(
yR− yB

xR− xB

)]
dyB

+
∂

∂xR

[
arctan

(
yR− yB

xR− xB

)]
dxR

+
∂

∂xB

[
arctan

(
yR− yB

xR− xB

)]
dxB

+O(dt2)
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Then, by the Îto calculus rule, we ignore any term with the order greater than dt, there-

fore,

dθB +dφ = −

(
yR− yB

(yR− yB)
2 +(xR− xB)

2

)
dxR

+

(
yR− yB

(yR− yB)
2 +(xR− xB)

2

)
dxB

+

(
xR− xB

(yR− yB)
2 +(xR− xB)

2

)
dyR

−

(
xR− xB

(yR− yB)
2 +(xR− xB)

2

)
dyB

and the substitution of the right-hand side of expressions (4.1)-(4.2) and (4.4)-(4.5)

results in

dθB +dφ =
1
r
[−vR cosθR sin(θB +φ)

+vB cosθB sin(θB +φ)

+vR sinθR cos(θB +φ)

−vB sinθB cos(θB +φ)]dt

Now we exploit trigonometric identities and α = θR−θB to obtain

dθB +dφ =
1
r
[vR sin(α−φ)+ vB sinφ ]dt

and, since dθB = uBdt, we finally obtain

dφ =

[
−uB +

1
r
[−vR sin(φ −α)+ vB sinφ ]

]
dt

246



Appendix B

Single Obstacle Stochastic Kinematics

Derivations

B.1 Derivation of dro

Starting with (5.22) and applying the 2nd order Taylor series expansion for r2
o

2rodro = 2(xo− x)dxo +
1
2

2(dxo)
2−2(xo− x)dx+

1
2

2(dx)2

+2(yo− y)dyo +
1
2

2(dyo)
2−2(yo− y)dy+

1
2

2(dy)2

− 1
2

2dxdxo−
1
2

2dydyo
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Then we substitute dx, dy, dxo and dyo with the right-hand sides of (5.1), (5.2), (5.4),

(5.5), and by the Itô calculus rule, we ignore terms with orders greater than dt to obtain

2rodro = 2ro cos(φo +θ)σdwx +
1
2

σ
2 cos2(φo +θ)dt

2ro cos(φo +θ)(−vcosθ)dt

2ro sin(φo +θ)σdwy +
1
2

σ
2 sin2(φo +θ)dt

2ro sin(φo +θ)(−vsinθ)dt

Substituting the sum and difference formula for the cos and grouping terms, we obtain

(5.6), i.e.,

dro =

(
−vcosφo +

σ2

2ro

)
dt +σdwro

B.2 Derivation of dφo

To derive φo, we start with

d(φo +θ) =
∂

∂yo
arctan

(
yo− y
xo− x

)
dyo

+
∂

∂y
arctan

(
yo− y
xo− x

)
dy

+
∂

∂xo
arctan

(
yo− y
xo− x

)
dxo

+
∂

∂x
arctan

(
yo− y
xo− x

)
dx

+O(dt2)
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Then, by the Itô calculus rule, we ignore any term with the order greater than dt, there-

fore,

dφo +dθ =
xo− x

(xo− x)2 +(yo− y)2 dyo

− xo− x
(xo− x)2 +(yo− y)2 dy

− yo− y
(xo− x)2 +(yo− y)2 dxo

+
yo− y

(xo− x)2 +(yo− y)2 dx

The substitution of the right-hand side of expressions (5.1), (5.2), (5.4) and (5.5) results

in

dφo +dθ =
ro cos(φo +θ)σ

r2
o

dwy

− ro cos(φo +θ)vsinθ

r2
o

dt

− ro sin(φo +θ)σ

r2
o

dwx

+
ro sin(φo +θ)vcosθ

r2
o

dt

Now, we exploit trigonometric identities to obtain

dφo +dθ =
v
ro

sinφodt +
σ

ro
dwφo

and since dθ = udt, we finally obtain (5.7), which is

dφo =

(
v
ro

sinφo−u
)

dt +
(

σ

ro

)
dwφo
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Appendix C

Supplementary Video Snapshots for

Chapter 7
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Figure C.1: Simulation result of Fig. 7.6. The B agent trajectory is colored blue and
the R1 to R4 trajectories are colored red, green, magenta and gray, respectively.
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Figure C.2: Robot experiment result of Fig. 7.9 with five e-puck robots. Each robot has
a unique configuration of infrared reflecting markers (green rings with silver spheres)
tracked by a motion capturing system with four Bonita 10 Vicon cameras. The robots
move from frames a-j.
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Appendix D

Supplementary Video Snapshots for

Chapter 9
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Figure D.1: The initial configurations of blue and red agents: the blue agents are pre-
sented with arrow-like symbols depicting aircraft and the red agents with rectangular
symbols depicting ground vehicles, i.e., cars. For 3 blues and 3 reds
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Figure D.2: The initial configurations of blue and red agents: the blue agents are pre-
sented with arrow-like symbols depicting aircraft and the red agents with rectangular
symbols depicting ground vehicles, i.e., cars. For 3 blues and 6 reds
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Appendix E

Supplementary Material for Chapter

11

Numerical approximation method for stochastic control

The solution of (11.32) can be computed using a locally consistent Markov-chain

discretization of the HJB equation [94]. The discretization yields a Markov-chain with

control dependent transition probabilities and converts (11.32) into a dynamic program-

ming problem which can be solved over a discrete space using so-called value iterations

[175]. The value iterations result in a discrete approximation of the value function V h

and optimal control u∗h, where both are in the form of a four-dimensional lookup table.

The superscript h indicates that the value function and control are computed for the
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discretized problem.

To discretize (11.32) in the state-space [94], we use discrete steps ∆rw, ∆φw, ∆ro,

and ∆φo for the discretization of rw, φw, ro, and φo, respectively. The upwind discrete

approximations of derivatives in (11.32) are

∂V
∂ x̃i
≈

b+
x̃h

i

∆x̃i

(
V (x̃h

i +∆x̃i)−V (x̃h
i )
)
−

b−
x̃h

i

∆x̃i

(
V (x̃h

i )−V (x̃h
i −∆x̃i)

)
(.1)

∂ 2V
∂ x̃2

i
≈

n2
x̃i

2∆x̃2
i

(
V (x̃h

i +∆x̃i)−V (x̃h
i )
)
−

n2
x̃i

2∆x̃2
i

(
V (x̃h

i )−V (x̃h
i −∆x̃i)

)
, (.2)

where b±
x̃h

i
= max[0,±bx̃h

i
] and nx̃i can be one of expressions nro,nφo defined in (11.15)-

(11.16). The discrete step ∆x̃i can be of one of the discrete state-space steps ∆rw,∆ro,∆φw,∆φo.

The superscript h indicates terms that are evaluated at the points of the discretized state-

space rh+1
w − rh

w = ∆rw, φ h+1
w −φ h

w = ∆φw, rh+1
o − rh

o = ∆ro, and φ h+1
o −φ h

o = ∆φo. Af-

ter the substitution of (11.28), (.2)-(.2) in (11.32), we move all the terms that include

V (rh
w,φ

h
w,r

h
o,φ

h
o ) to the left side of expression (11.32) to obtain the dynamic program-

ming expression

V h(x̃i) = min
u

{
∆th

x̃i,u +∑
∆x̃i

p±
∆x̃i,uV h(x̃i +∆x̃i)

}
, (.3)

where

p±
∆x̃i,u = ∆th

u

(
b±x̃i

∆x̃i
+

nx̃i

(2∆x̃2
i )

)
(.4)

are the discrete Markov-chain transition probabilities p±
∆x̃i,u

(.4) from the points x̃i±

∆x̃i = (rh
w±∆rw,φ

h
w±∆φw,ro±∆ro,φ

h
o ±∆φo) of the discrete state-space to the point
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x̃i = (rh
w,φ

h
w,r

h
o,φ

h
o ) and contain the implicit time interpolation interval [94] as

∆th
x̃i,u = 1

/(
∑
∆x̃i

|bx̃|
∆x̃i

+
(nx̃i)

2

(∆x̃i)2

)
, (.5)

where |bh
x̃i
|= b+x̃i

+b−x̃i
.

Expression (.3) is the discrete version of (11.32) and the discrete approximation V h

of the value function V can be solved numerically using value iterations [175] starting

from an initial guess for the V h(x̃i) values.

Our discrete solution V h is solved on a discrete state-space domain X h as

X h = {[Rmin,Rmax]
2× [−π,π−∆φo]}× [−π,π−∆φw]}, (.6)

which is the set bounded by the minimal Rmin and maximal Rmax distances. The discrete

state-space X h is an approximation to the original state-space given in (11.17) for the

single obstacle scenario, i.e., N = 1. Since in our problem formulation, the angles φw

and φo have a full 2π range, the computational domain is periodic, i.e., the pairs of

points (rh
w,−π,rh

o,φ
h
o ), (r

h
w,π−∆φw,rh

o,φ
h
o ) for φ h

w are next to each other and similarly

for the points (rh
w,φ

h
w,r

h
o,−π), (rh

w,φ
h
w,r

h
o,π−∆φo) for φ h

o .

Search Algorithms

Algorithm 1. BFS MultiStep(X0,nmax):

1: initialize Q be an empty queue

2: initialize Useq := an empty sequence
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3: Q.enqueue([X0,Useq])

4: ▷ Main loop

5: for Each step n ∈ [1 : nmax] do

6: [Xn,Useq] := Q.dequeue()

7: for Each discrete control uh ∈ [−umax : ∆u : umax] do

8: Xn := ∑∀ỹh neighbors of Xn
{p±

∆x̃h,uh ỹh}

9: Useq := {Useq,uh} ▷ prepend operation

10: Q.enqueue([Xn,Useq])

11: ▷ Check if feasible solution

12: if V upper(Xn)<V upper(X0) then

13: return Utmp ▷ Found solution

14: end if

15: end for

16: end for

17: return empty sequence ▷ Fail condition

Algorithm 2. DFS MultiStep(X0,nmax):

1: initialize S be an empty stack

2: initialize Useq := an empty sequence

3: S.push([X0,Useq])

4: ▷ Main loop
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5: for Each step n ∈ [1 : nmax] do

6: [Xn,Useq] := S.pop()

7: for Each discrete control uh ∈ [−umax : ∆u : umax] do

8: Xn := ∑∀ỹh neighbors of Xn
{p±

∆x̃h,uh ỹh}

9: Useq := {Useq,uh} ▷ prepend operation

10: S.push([Xn,Useq])

11: ▷ Check if feasible solution

12: if V upper(Xn)<V upper(X0) then

13: return Utmp ▷ Found solution

14: end if

15: end for

16: end for

17: return empty sequence ▷ Fail condition

Algorithm 3. BFSC MultiStep(X0,nmax):

1: initialize Useq := an empty sequence

2: ▷ Main loop

3: for Each step n ∈ [1 : nmax] do

4: set flag := true

5: for Each discrete control uh ∈ [−umax : ∆u : umax] do

6: Xn := ∑∀ỹh n step neighbors of X0
{p±

∆x̃h,uh ỹh}
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7: if flag is true then

8: set Vmin :=V upper(Xn)

9: set unext := uh

10: set flag := false

11: else

12: if Vmin >V upper(Xn) then

13: set Vmin :=V upper(Xn)

14: set unext := uh

15: end if

16: end if

17: end for

18: ▷ Check if feasible solution

19: if Vmin <V upper(X0) then

20: for n times do

21: Useq := {Useq,unext} ▷ prepend operation

22: end for

23: return Useq ▷ Found solution

24: end if

25: end for

26: return empty sequence ▷ Fail condition
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Remark: The maximum number of nodes to search at the step level n for p possible

control actions is pn. For the search up to the nth step, it is

n

∑
j=1

p j = p+ p2 + p3 + . . .+ pn = p
(1− pn)

(1− p)
(.7)

where the step level is n ∈ {1,2,3, . . .} and is bounded by the max step level, i.e.,

n≤ nmax < ∞.
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[121] Dejan Milutinović, David W. Casbeer, Derek Kingston, and Steven Rasmussen.

A stochastic approach to small UAV feedback control for target tracking and

blind spot avoidance. In Proceedins of 2017 IEEE Conference on Control Tech-

nology and Applications (CCTA), pages 1031–1037, 2017.

[122] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A Time-Dependent Hamilton-

Jacobi Formulation of Reachable Sets for Continuous Dynamic Games. IEEE

Transactions on Automatic Control, 50(7):947–957, July 2005.

[123] F. Mondada and M. Bonani. e-puck education robot. http://www.e-puck.

org/.

[124] A. A Munishkin, A. Hashemi, D. W Casbeer, and D. Milutinović. Scalable
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[158] Eduard Semsch, Michal Jakob, Dušan Pavlicek, and Michal Pechoucek. Au-

tonomous UAV surveillance in complex urban environments. In Proceedings of

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology, volume 2, pages 82–85, 2009.

[159] Vitaly Shaferman and Tal Shima. Unmanned aerial vehicles cooperative tracking

of moving ground target in urban environments. Journal of guidance, control,

and dynamics, 31(5):1360–1371, 2008.

[160] Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad

Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen

Guizani. Unmanned aerial vehicles (UAVs): A survey on civil applications and

key research challenges. IEEE Access, 7:48572–48634, 2019.

[161] Shai Shalev-Shwartz, Nir Ben-Zrihem, Aviad Cohen, and Amnon Shashua.

Long-term planning by short-term prediction. arXiv preprint arXiv:1602.01580,

2016.

[162] M. Shanmugavel. Path Planning of Multiple Autonomous Vehicles. PhD thesis,

Cranfield University, 2007.

[163] Tal Shima, Steven J Rasmussen, and Phillip Chandler. Uav team decision and

control using efficient collaborative estimation. Journal of Dynamic Systems,

Measurement, and Control, pages 609–619, September 2007.

287



[164] Qingshuo Song and Gang George Yin. Convergence rates of Markov chain ap-

proximation methods for controlled diffusions with stopping. Journal of Systems

Science and Complexity, 23(3):600–621, jul 2010.

[165] Q.S. Song and G. Yin. Existence of Saddle Points in Discrete Markov Games

and Its Application in Numerical Methods for Stochastic Differential Games. In

2006 45th IEEE Conference on Decision and Control, pages 6325–6330, dec

2006.

[166] M. Z. Spivey and W. B. Powell. Dynamic Assignment Problem. Transportation

Science, 38(4):399–419, 2004.

[167] Sriraman Sridharan and Rangaswami Balakrishnan. Discrete Mathematics:

Graph Algorithms, Algebraic Structures, Coding Theory, and Cryptography.

CRC Press, 2019.

[168] I. M. Stamova. Vector Lyapunov functions for practical stability of nonlinear

impulsive functional differential equations. Journal of Mathematical Analysis

and Applications, 325:612–623, March 2006.

[169] L. E. Sucar. Parallel Markov Decision Processes, volume 214. Springer, 2007.

[170] S. Summers and J. Lygeros. Verification of discrete time stochastic hybrid sys-

tems: A stochastic reach-avoid decision problem . Automatica, 46(12):1951–

1961, December 2010.

288



[171] Sean Summers, Maryam Kamgarpour, Claire Tomlin, and John Lygeros.

Stochastic system controller synthesis for reachability specifications encoded by

random sets. Automatica, 49(9):2906–2910, 2013.
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Evader by Multiple Pursuers. Proceedings of the 2018 International Conference

on Unmanned Aircraft Systems (ICUAS), 2018.

[183] Alexander Von Moll, Eloy Garcia, David Casbeer, M Suresh, and Sufal Chandra

Swar. Multiple-pursuer, single-evader border defense differential game. Journal

of Aerospace Information Systems, 17(8):407–416, 2020.

[184] Guofang Wang, Ziming Li, Wang Yao, and Sikai Xia. A multi-population mean-

field game approach for large-scale agents cooperative attack-defense evolution

in high-dimensional environments. Mathematics, 10(21):4075, 2022.

290



[185] L. Wang, A. Ames, and M. Egerstedt. Safety barrier certificates for heteroge-

neous multi-robot systems. In 2016 American Control Conference (ACC), pages

5213–5218, July 2016.

[186] L. Wang, A. D. Ames, and M. Egerstedt. Safety barrier certificates for collisions-

free multirobot systems. IEEE Transactions on Robotics, 33(3):661–674, June

2017.

[187] Yoko Watanabe and Patrick Fabiani. Optimal guidance design for uav visual

target tracking in an urban environment. IFAC Proceedings Volumes, 43(15):69–

74, 2010. 18th IFAC Symposium on Automatic Control in Aerospace.

[188] Albert Wu and Jonathan P How. Guaranteed infinite horizon avoidance of un-

predictable, dynamically constrained obstacles. Autonomous robots, 32(3):227–

242, 2012.

[189] Yu Wu and Kin Huat Low. An adaptive path replanning method for coordinated

operations of drone in dynamic urban environments. IEEE Systems Journal,

2020.

[190] Ji Xiaohui, Zhang Xuejun, and Guan Xiangmin. A collision avoidance method

based on satisfying game theory. In 2012 4th international conference on intel-

ligent human-machine systems and cybernetics, volume 2, pages 96–99. IEEE,

2012.

291



[191] Yang Yang, Xiaorui Xi, Songtao Miao, and Jinran Wu. Event-triggered out-

put feedback containment control for a class of stochastic nonlinear multi-agent

systems. Applied Mathematics and Computation, 418:126817, 2022.

[192] Y. Yavin. Stochastic Two-Target Pursuit-Evasion Differential Games in the

Plane. Journal of Optimization Theory and Applications, 56(3):325–343, Febru-

ary 1988.

[193] Y. Yavin and R. De Villers. Stochastic Pursuit-Evasion Differential Games in

3D. Journal of Optimization Theory and Applications, 56(3):345–357, February

1988.

[194] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry. Model-predictive active

steering and obstacle avoidance for autonomous ground vehicles. Control Engi-

neering Practice, 17:741–750, 2009.

[195] Huili Yu, Kevin Meier, Matthew Argyle, and Randal W Beard. Cooperative

path planning for target tracking in urban environments using unmanned air and

ground vehicles. IEEE/ASME Transactions on Mechatronics, 20(2):541–552,

2014.

[196] Huili Yu, Kevin Meier, Matthew Argyle, and Randal W. Beard. Cooperative

path planning for target tracking in urban environments using unmanned air and

292



ground vehicles. IEEE/ASME Transactions on Mechatronics, 20(2):541–552,

2015.

[197] X. Yu, X. Zhou, and Y. Zhang. Collision-Free Trajectory Generation and Track-

ing for UAVs Using Markov Decision Process in a Cluttered Environment. In-

telligent & Robotic Systems, March 2018.

[198] Ugur Zengin and Atilla Dogan. Real-time target tracking for autonomous UAVs

in adversarial environments: A gradient search algorithm. IEEE Transactions on

Robotics, 23(2):294–307, 2007.

[199] Yihao Zhang, Zhaojie Chai, and George Lykotrafitis. Deep reinforcement learn-

ing with a particle dynamics environment applied to emergency evacuation of

a room with obstacles. Physica A: Statistical Mechanics and its Applications,

571:125845, 2021.

[200] Jiajun Zhao, Yifan Wang, and Qiangde Wang. Event-triggered formation-

containment control for multiple euler-lagrange systems with input saturation.

Journal of the Chinese Institute of Engineers, 45(4):313–323, 2022.

[201] Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager.

Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi

cells. IEEE Robotics and Automation Letters, 2(2):1047–1054, 2017.

293


	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Thesis Contributions
	Outline

	Related works
	Technical Preliminaries
	Stochastic Optimal Control Navigation with the Avoidance of Unsafe Configurations
	Introduction
	Problem Formulation
	Minimum Time Optimal Control for B
	Minimum Time Optimal Control for R
	Minimum Time Optimal Control that Avoids Unsafe Configurations
	Results
	Robot Experiments

	Conclusions

	Safe Navigation with Collision Avoidance of a Brownian Motion Obstacle
	Introduction
	Problem Formulation
	Deterministic Optimal Control to Reach a Waypoint
	Stochastic Optimal Control to Avoid Collision with the Obstacle
	Safe Navigation Towards a Waypoint
	Results
	Conclusions

	Time Efficient Inspection of Ground Vehicles by a UAV Team Using a Markov Inequality Based Rule
	Introduction
	Problem Formulation
	Minimum Time Stochastic Optimal Control
	Time efficient dynamic assignment
	Example
	Conclusions

	Scalable Markov Chain Approximation for a Safe Intercept Navigation in the Presence of Multiple Vehicles
	Introduction
	Problem Formulation
	Intercept of a Single Vehicle with Avoidance of Unsafe Configurations (one-on-one solution)
	Locally Consistent Markov Chain Approximation Method
	Avoidance of Unsafe Configurations
	Hazard and Expected Time

	Scalable Navigation Strategy
	Auxiliary Markov Decision Problem
	One-Step Look-Ahead Cost Approximation

	Results
	Robot Experiment Results
	Conclusions

	Stochastic Optimal Control Approach to Navigation with Multi-Obstacle Avoidance
	Introduction
	Problem Formulation
	Optimal Control Problem Formulation
	Reaching Waypoint under Brownian Wind Disturbance
	Reaching Avoidance Configuration for a Brownian Moving Obstacle
	Solution Composition
	Results
	Conclusions

	Min-Max Time Efficient Inspection of Ground Vehicles by a UAV Team
	Introduction
	Problem Formulation
	Minimum Time Stochastic Optimal Control
	Time Optimal Inspection Assignment
	More or equal number of blues than reds
	Less number of blues than reds

	Dynamic Switching for Re-Assignment
	Results
	Illustrative Example
	Numerical Simulation with Three Blue and Three Red Agents
	Numerical Simulation with Three Blue and Six Red Agents

	Conclusions

	Scalable Navigation for Tracking a Cooperative Unpredictably Moving Target in an Urban Environment
	Introduction
	Problem Formulation
	Shadow Describing Obstacles
	Feedback Control for Tracking a Single Target while Avoiding a Single Obstacle
	Tracking the Brownian Moving Target and Avoiding Shadows
	Results
	Conclusions

	A Safe Stochastic Optimal Feedback Control Approach to Autonomous Navigation with a Large Number of Obstacles
	Introduction
	Problem Formulation
	Safe Navigation for a Single Obstacle
	Multi-step Optimization for a Safe Navigation around Multiple Obstacles
	Results
	Conclusions

	Concluding Remarks and Future Work
	Two-Target Stochastic Kinematics Derivations
	Derivation of dr
	Derivation of d
	Derivation of d

	Single Obstacle Stochastic Kinematics Derivations
	Derivation of dro
	Derivation of do

	Supplementary Video Snapshots for Chapter 7
	Supplementary Video Snapshots for Chapter 9
	Supplementary Material for Chapter 11
	Bibliography

