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Summary

A Volterra-Fréchet functionel expansicn is used to represent the
gtress-strain relation of & general nonlinear viscoelastic material.

A procedure is given for the experimental determination of the material
kernels appearing in the expansion. Application is made to the inves-
tigation of the stability of a mmwﬁumwww loaded nonlinear viscoelastic
column.

By investigating the singularities of the integral equation governing
the deflection of the column subjected to & small perturbation, general
conditions for instantanecus stability are derived. Asymptotic stability
of the column is also investigated, and by the use of a general Tauberian
theorem, conditions which ensure long time stability of the column are
obtained. Results based on a generalized version of the particular
nonlinear viscoelastic stress-strain relations proposed by Leaderman

and Rabotnov are also presented.



I - Introduction

Physical systems whose response depends on the previous history
of the input tc the system are common in various fields of physics and
engineering. Phenomena governed by such systems were called "hereditary
phenomena” by Volterra (1] .* In the study of the mechanics of solilds,
materials which behave in such a manner are termed viscoelastic. The
theory for the case in which the sgtress and strain histories of s
viscoelastic material are related through a linesr functional is now
quite well developed, apparently having been formulated first by
Boltzmann in 1874 [2] .

The classical linear theory of viscoelasticity has proved very
useful and has been employed to explain and predict many phenomena of
interest. But there are fregquent instances in which the linear theory
fails, and in which a nonlinear hereditary theory is clearly required.
Many specific nonlinear constitutive reletions for various visceoelastic
materials have been proposed, and these usually take the form of parti-
cular nonlinesr differential or integral equations relating the stress
with the strain [3,4,5). Often, such relations, although appropriate
for certain specific materials, fail to describe with sufficient accuracy
the behevior of meny important materisls [6].

In such cases, it may prove convenient to deal with a constitutive
equation sufficiently gerneral to represent the behavior of & larger
class of nonlinear viscoelastic materials. Volterrs discussed such

genersl laws, and considered them within the context of the general

* References are listed at the end of the paper.



theory of functionals [1]. 4 convenient representation of general
anzlytical functionals is the Volterra-Fréchet functional power series
{17. By means of this representation, the character of a general non-
linear viscoelastic meterial may be quantitatively described. Interest
has been revived in the applications of such @& representation to the
construction of a general nonlinear theory of viscoelasticity [7], to
the experimental determination of the constitutive relation for non-
lirear viscoelastic materials ﬂmum”w and t¢ the solution of some simple
boundary value problems of nonlinear viscoelasticity mwvwou.

To gain some insight into the practical difficulties or advantages
associated with the use of the Volterra-Fréchet expansion, a specific
epplication is considered here. The general nonlinear viscoelastic
theory menticned sbove includes, besides physically nonlinear wvisco-
elastic behavier, the possibility of large deformstions of a three-
dimensional continuum. Here, attention is restricted to a one-
dimengional problem in which the strains are infinitesimal, but the
viscoelastic material exhibits & general nonlinear relationship bet-
ween stress and strain. Specifically, the stability of & centrally
loaded bar is investigated, under the assumption of quasi-static
behavior.

The behavior of a centrally loaded wviscoelastic bar subjected to
& small disturbance was first studied by Robotnov and Shesterikov f11].
In that paper, an eqguation of state for the material constitutive
relation involving the stress, inelastic strain and inelastic strsin
rate is assumed to exist. Later, Raboctnov ﬁwmuv using a perticular
nonlinear integral representation, studied the possibility of bifur-

cation of the sclutionm of the equation governing the disturbed bar.



In 1962, Onat and Wang mwmu.ﬂwmoﬁmmmm the stability of the bar assuming
a linear, second order, constant coefficient, ordinary differential
equation for the relationship between the increment of stress history
and the induced increment of sirain history.

In this paper, a more general constitutive law is considered. The
first part of the paper deals with various representations of the gen-
eral, one-dimensiornal, nonlinear viscoelastic stress-strain relation.
Since the stability of the column is here tested by observing the be-
havior induced by & small letersl perturbation, then only the linearized
relationship between the small increment of stress and the small increment
of strain caused by the perturbetion is required, asnd it is derived from
the general nonlinear viscoelegtic constitutive relation. This relation-
ship is expressed by means of a linear integral equation whose kernel
embodies the enitire past history of stress or strain, and the entire
complex of time dependent material functions ¢f a generasl, one-
dimensional, nonlinear viscoelastic medium. This indicates that the
incremental response of the bar to a& small perturbation can depend not
only on spontaneous changes of the material properties {e.g., chemical
hardening), but also on spparent changes induced by the previous stress
or strain history. Similar linearized relationships &re then obtained
from less general, but more widely used, nonlinear viscoelastic stress-
strain lsaws.

Based on these relations between the small increments of stress
and strain, and on elementary beam theory, the stability of the cen-
trally loaded bar is investigated. The possibility of an instability
occurring at some finite f{or zero) period of time after the application

of the end load is considered. Finaily, & "critical load" is found for



_the bar, such that the application of any central end load smeller
than the "critical load” will never cause unbounded deflections of

the bar.

II - Repregentation of nonlinear stress-strein relationship

In whaet follows attention will be restricted to classical
infinitesimsl deformation theory. We will be desaling with a non-
linear visceelastic material, in which the strain at any time may
depend on the complete past siress history in a genersl way. It
is customary ﬂwu to express such & dependence by means of a non-

linear functional
T2t
et)=% ﬁ?nd@ (1)
TS~ a0

where attention has been restricted to the one-dimensional case.
In the above equation, & is the (small) strain, ¢ the
stress, +. the time and AMW & nonlinear functionsal.

Here, only materisls for which neighbouring stress histories
induce neighbouring strain histories will be considered. In such a
case, the functional mﬁ. will be continuous, and it is assumed that
it may be represented by means of a Fréchet expansion mwmu, Then the

functional relationship given by equation (1) may be written

ed) = W%?ﬁu fesodT +
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where without any loss of generality the generelized functions _ha>
may be considered to be symmetrical with respect to their “vi arguments
ﬂJﬁNﬂ..uﬂﬁ.

An zlternstive representation, which will be useful in the following

developments, is given by

ew= (Tocwe® ki nde +
-kl

25
~ 00 =0
oo o0 o
Tt |J\._U w ﬁ ...m qlm.ﬁue.(ﬁdpu. . .m\ﬁHSu.
e oo 2o I
' mpéh.m.v.m:ﬂpu...v.HSu nw.n.&.mw. e dTy 4 (3)
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where the generalized function O~ is the derivative of o~ in

the distribution sense. It is readily proved that the following

relstionships

LI
|ﬁ|.3 P.Tw aﬁ.,unﬁu\ua - -ulﬁ.J)VIlu PI_UJ_) W = .(annﬁ.w N.._u.N_..NV... .“N.J)v Afv
WNNWH.V. . a w.ﬂj

- P o0 )
€T, T, T || ) A8, g)
T, 2 +

.mm_mmﬁ..mms (5)

o
between the function & o and the generalized function .ﬂS

hold.
It should be noted that for a real physicel system, the response

occurs after an excitation of the system, not prior to the excitation.

This implies that
C P = .
e T Ty, T 2 Fn (B3 TG 0 )= 0

£ any Tixt [ l=12,7005T (6)

Then the upper limits of integration need not extend to oo , but
+
may be set at € in equation (2) and (5), and et T in equa-

tion {3). Moreover, if the system has been quiescent from .._.u m - O



up to & certain instant t, , at which the excitation 0 (1)
is wmgwwmdmau then the lower limit of integration need not extend from
- o0 , but mey be set at £ snd t,  in equations (2) and
(3) respectively.

If the functional is differentiable fto all orders, then the
kernel .m...SF.m ; HC.NNu\ : .bun..sv represents the W functional
derivative of C/hm.mfun.mm with respect io ,mﬁ.mu , evaluated at

r‘m (£)=0 @.ﬁ. Correspondingly, a typical term

e 0P 0
m A e\ LTI T, QH.UH:A,S. = V.P,vo_.m_m T - mdj
T =0 (7)

appearing in equation (2) is then the .Sts veriation of the functional

/
interpreted in the sense of Frechet Drru

IIT - Approximate representation and evaluation of the kernels

Equation (2) or (3) serve to completely define a nonlinear system,
provided zll of the kernels in the expansion are known. In the usual
case, the system is known only through the knowledge of the response
to a finite number of inputs. From the responses to these inputs, one
attempts to construct an approximate representation of the system. A
convenient approximate representation appears to be a regular functional

of degree W given by either of the following expressions:

(k) mq‘ﬁm Q(ndh G137 +

Te-oo -

Sy

m q&.nuolﬁu% (+4T, ﬂuL dT, 4 -
s B
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\Cj\o

(b T Taye T drdz,dz,,

=0 4 ~ A~
where mﬂ. .ﬁS and é ) gre, in general, approxi-

mations of QM. , £., end €Y respectively. It ic noted

oL o
+4|M._ w%%a m,mualﬁ.mu...a..n.niu
: oD —0

that equations (4}, {5), (6) and (7) hold for the approximate functional
and kernels.

Kernels appearing in the approximate representation may be
determined by a program of experiments in which & prescribed collection
of inputs is applied and the resulting responses (outputs) are measured.
A suitable collection of inputs may be represented by the W families

of input histories

- 2 s W
o ﬂolhdru.muu p ruu,uwu. » (10)
where S¢ is a parameter ranging, in general, over the interval
ﬁ\ anuu o u .
Consider now the following differences of the .5..} order system

represented by Q\Mﬂ mqu
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where Dﬁ 2 ) is the .5+§ order difference operator.

It should be noted that the differences are taken about the zero stress
history, and it is assumed that nﬂMwﬂeu (which represents the output
to & zero input) is identically zero. Application of the .5.2) order
difference operator to the representation of w given by equations

(8) and (9) yields the following expressions:

v 2 o8 o0 a0
D.Sc} ) p m A “ e % G- L8, T )0 (8, Tpde s (3, T

-8 —p0 Y
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of .mu outputs based on ﬂ families of input histories is given

by

. -k
Dh,vmv vmu Mhi”v mrﬁuu (13)

P
ke

where

msu o.m.mq.u + hﬂu .. +n\%hﬁu
m@ d.m.lo.l.o:pu +qw.hol +03 ]+ - - -
+m%ﬁ.qup +q:wu+ I

+ Lo u

[ Au A
m% = F Lo +Ta+e o -+ 0p]) (15)

mm& is the sum of the outputs generated by the Aﬂv combinations
of k inputs chosen from the p input families. The actual compu~-
tation of all \mem terms mmuu , and consequently of the mv._.r dif-
H.mewom of Qm , can be performed once the general response
qmﬁ_uqn, +0o 4+ s .Ta:fu is known, for then all the "lower order”
~

responses of the form om.ﬁqc,.f G4+ +qlru , wen , are
known, as they are just special cases of the general response.

If the computation of the 3+T difference is thought of a&s being

performed for all values of the parameters <} , then equations {12a)

and {12b) represent I multiple integral transformations of the

10



s
{ A L) : . .
kernels v and & respectively. Provided the inverse
transformation exists, equations (122) and (12b) furnish a wey for the
o~
A~
computation of h.s or & V.

4
The {(V1—-1) order kernels may be obtained by means of a

- +iA

similar procedure, considering the (W difference of the

following (v =1) +h order system

~ 0 o0 ol
ulu..hm(ﬁ.muu_ - .ﬂm).l w m NP h o~ LT) LT,y e 00T

—_ol Lo -0

- -~

"~

L (k57 Ta o T AT de, 0 AT, (15)

In general, the following recurrence formula applies for the
determination of the ﬁ.ﬁ) order kernel

A jw K 0 o0
c,.r...

LEprt <=0 0

ohm N.m..ulﬁ__unﬁnu- tunﬁmu hwd_ W.N.N - culﬁm w -

P P o
= % % .- h ™3, ,T) 07 ($2,Ty) - - - 0¥(Sp,Tp)

oD —ald -0
.ﬁu (& T, Ty, TR mﬁ. dr,- - STe (16)
where it chould be kept in mind that the mu.tb difference has to
be performed zround the stress history @~= . Similar eguations
"
can be obtained for the determination of & (P , if required.

From a practical point of view, the inversion of the JJ.:;

multiple integral transformation of the kernels may be considerably

11



simplified when the N  input families are taken to be unit step

functions
sy ) = H E-3y) (a7)

where the parameter mN generating the family of functions Qd ,
now represents the time of the initiation of the step function. (For
second and third order systems, such a family of inputs has been
suggested by Dong ﬂmu.u Congider, for instance, the case of the <J+r
order kernel. When equetion (17) is substituted into equations (12),
they reduce to

o0, o0 <,
DMUMU:;,&Q}%H w -\ £ (k2T 7,50, T) nwﬁ.m.nv...nfﬁﬁ

S Sg L (18&)

aes A/ L
A Y T = EV (9T, T, Ton)

(18b)
where it is emphasized that in this case the left hand members repre-
sent the w)+r difference of the system response based on unit step

V.

function inputs. If the kernel h<, is desired, it may be calculated

taking into account equation (k).

IV - Instantaneous elastic response

In this section, discontinuities in the strain history as induced
by discontinuities in the stress history will be invesgtigated. Only

discontinuities of the first kind, i.e. finite jumps, will be considered.

1z
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Suppose the material is submitied to a siress history O¢h+u
continuocus around a point .__u" . If at ..m. a step function aloI Qu ...ﬁv
is superimposed on the function Q¥{%t) , the following limit

=t
._.u om0

(+ Q(nmf.oaim.n.m.
Bets) = fim F|riorr o (o)) - [

will be defined as the "instantaneous elastic response” induced by the
step functiom.

If the expansion of the nonlinear functional Qm given by equation
(3} is taken into account, it is not difficult to prove that the limit

indicated in equation (19) is given by

Aelt) = M 9@_ man_,Tisaﬁ:..;.ﬁv + (20)

&

“Vi==|

% L]
L 2 . * .
+ Ms-» "l M: () | ] SRy FEal)

T
e™ Qum_,u T, Tyttt .rv.«..;.w_. .;.Ivmﬁnw.ﬁp -t

> oo Mm—

In this equation, the first sum represents the instantaneous
elastic response which would occur in any aging nonlinear elastic
material in the absence of hereditary effects. The second double
sum is the contribution to the immediate elastic response due to
hereditary effects, and in general depends on the complete past stress

history. This type of behavior is not at all exhibited by linear visco-
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elastic materials. Real materials do in fact behave in such a way, to
& certain extent, due to the change in properties induced by the previous
inelastic strain which has occurred., The nonlinear representation con-
sidered here thus offers & variety of ways of anelyticelly including
hereditary dependent instentaneous response.

In particuler, it is possible to define & time dependent tangent

modulus at time +.

ﬂ\mw ey = M.h,\s..vo bmolm.ru (21)
=} 2]

In terms of equation (20), the tangent modulus tekes the form

= ok, b
4)] : i - .
*\m Qn._u ﬂm ﬁ.m.,.Tm.f.;,v .T M ﬂ!& \A ... Q( ﬁ.ﬁ& Q(h-ﬁuvo..

. (ke) +
..«Q(NJ.N.IFJm A#pw lﬂ.pudwv-.vlﬁrv‘m“v Awnﬁ.ﬂwlﬁﬂq-oﬁwﬂr
(22)
Then, for a very small increment of stress, nmnﬁm , occurring

at +m , the following equation holds

Jett) = S0, /E ) (23)

which may be consgidered as the linearized form of equation (20).

V - Special nonlinear stress-strain relationships

In verious studies of nonlinear viscoelastic behavior, other more

well-known stress-strain relationships have been used. In 1043,



Leaderman DD introduced & functional of the type

+
€(4)= WIM@ hmc ﬂmqﬁvu flL-7) Azt (2b)

where _HI represents a prescribed nonlinear function. Afterwards,
Arutiunian used this type of functional in a form more suitable for
the representaiion of the behavior of aging materials mwmuo

Rabotnov, in 1948 (5], introduced the functional

+
w o~ (T) ..ﬁ ﬁ.ml.ﬁvﬂw.ﬂ (25)

o0

A\i..m @] = o) +

where % is a given nonlinear funcition.

A simple generalization of the two preceding laws is

'
olects) = F [t,000] + | Rlzoeo]tt;vde )
-0

where ﬁ s ﬂ, and ﬂN are given functions.
It is obvious, of course, that equations (24), (25) and (26) are
less genersl than the comprehensive form given by Volierra in terms of

equation {2}.

VI - First variation of the nonlinear functional

In the analysis of the problem under consideretion, we shall be
concerned with smell variations in the strain history and associated
variastions of the stress history which result from a small perturbation
about an equilibrium stete. In what follows, Mm (+) ena m o (4)

will be uzed to dencte such a small variation of strain and stress

15



history respeciively.
The relationship between Mm..m&v end MOx an is given by

a2 linesr functional which may be represented either by

o0
Qe = m movn.nuﬁtnw.nvmd (27)
-
o
Qe )= |m §o(D Ik (i) AT (28)
—ot 9T

The kernel appesring in equation {(27) may be obtained by performing the

first variation of equation {3). Then, the following expression results

; o P00
rAmf@umCﬁwdu.T,M;W% w_ﬁ SolT)) o= (T - -
L=t T L0 S0

(L)

...ch.m.mb & Qw.ﬁ;.ﬁnb...u Mvdvmd.&dﬂ...&dm (29)

where mm.. ﬁ._uu represents the time derivative of the equilibrium stress
state, about which small perturbations are being taken.
For the more particular form of the nonlinear functional given by
equation (26}, the kernel WK m.m .M ) of equation (28) is given by
3T

JKETY _
ST

wulal FolT, 0] £ (£5T) +

v St [t o) \ Pllew) o

16
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The expressions for K associated with equations (24) and (25) may
ST
be derived from equation {30) by suitsble specializations.
If the material is assumed to be guiescent before a certain time

+ o &and if Q(m.zu O(oI (t I.Wou , ther equations (29) and (30)

reduce %o

oo
{ ¢ 4
xiu.udu" mnvﬁnwcﬁu + M\ |ﬁ.ulll01l & LD wa..wf.mdv...u.moudv (31)

4.
- w...%ww@ﬂ ..ww%a BT, F 5 D) +

k-1, %muo FLEs o] \ Q'e () (32)

VII - Integro~differential eguations of a centrally loaded bar

Congider a straight column of length r subjected to campressive
concentric end loads PLY) » Wwhich in genersl may vary with time.
Moreover, it will be assumed that the bar is submifted to a prescribed
imposed state of stress (e.g., a prestress) independent of the axial
Load ﬂn.m.v . For the sake of simplicity, it is considered here that
the imposed stress m(: an s, although variasble with time, is uniform
over the cross section > of the bar. Under these assumptiocns, the

strain history will be given by the nonlinear functional

T=+t

_ ~ PLT)
em=F[Fo+ X2 (33)
T=—R

1y
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Within the scope of this paper, instantaneous end asympiotic
stapility of the bar will be studied. The bar will be sald to be
instentaneously stable at a time \m. , if when it is subjected to
a small perturbation initiated at that time, it does not instanta-
necusly buckle. If under a stress history o= o~ + .W.I , the bar
is instentaneously siable for all times, and if when subjected 10 &
small perturbation at any time £ in the interval +, £te @ tne
deflection remains bounded forever, then the bar is said to be asymp-
totically stable.

In order to check stability in either of the senses considered
above, it is necessary to construct the egquation of the deflected bar
when it is subjected to a smell perturbation causing lateral deflection.
Consider, for instance, that a small lateral perturbation is injitiated
at time .wu , inducing & small perturbation in the stress, )
with S 0-(4£)% 0. Then, if due account is taken of the singular-

ity of the funection S0~  eround .«.u , equation (27) may be written

S
Sew)= KEE) Sott) + *m%ﬁurfdmm (3)

which, after an integration by parts, yields

0
Selt)= K4 St - S0 t) .wnm K, D3T (3)
|
where the delta function contribution associated with the term ..W.m ¥ m.wuﬁv

has been separated and explicitly included as the first term on the

right nand side of equation {35), so that the term W.M Kh.m u .mv

has at most & step discontinuity at .m =T . From the above equation,



and assuming the usual hypotheses of elementary beam theory, the rela-
tionship between the curvature of the bar and the bending moment, M s

may be derived as

R
Llx DT = MR D - { MDD KDL )
%,
where H is the area moment of inertia of the column cross section

about its centreidal axis. The bending moment >> ig related to the

column deflection VW  and the small perturbing moment M_.So by

Mix®) = SMo (8 + P o (xy 1) (37)

Approximsting the curvature by

o) = - .Wl.“..np w (X,t) (38)

and eliminating \Cr. and >> in equation (36) by using equations

(37) and (38), the following integro-differentiasl equation is obtained

o/

-l L, vam,\m.ﬂ ﬂm@i?w@ K (t .u.mv -
oy
- wnﬁut?.amm KT dT +
t

0 |
+ M, K (45) - M My Cf.nv‘wm KD 3T (3

19



where uuo is & reference moment of inertia defined by

T ﬁK.u,I. Omﬁx.uHU (40)

s0 that the cross-section of the bar is allowed to vary with X

To solve eguation (39), the following expansions are used

=
wix,B= 2 b1 9160 (1)

L=l

o<
SMo (D) = > ar B et (12)

L=t

where ﬂmﬂmxv are the eigenfunctions of the differential equatiocns

P
%ﬂ.ﬂ Rco .M,‘m%r +r.~ AUL HO c@

and associated boundary condiiions at the ends of the bar.

i

!
It is simple to prove that nﬁﬂ‘ and nﬁm are orthogonal functions

ir the following sense

L
| ¢ ¢idx=0 ()
o

L
| aw el pidx=0
o) (45)

kL=

20



Then, if the expressions for W and M, given by equations (41)
end (L2) are substituted into equation (39), and equations {(43), (&%)

and (45) are taken intc account, the following integral eguations result

for the coefficients G.r m.wu

fo 8
[K ;0P - Tk by - | Pey i o
g

Ak (kD
S 3z Ailt, k) (46)

where

ai ()= - ﬁDM B K m.mw@i. %Q,...n.mu wﬂyﬁnwdv Az | &7
i T

Tt follows from comparison of equations (22) and (29) that

Kb = Ye_ w (18)

Then equation (46) may be rewritten

£
KU H[PW-PID] i) - | Pl B

. Wﬂm.m..ﬂ.v u “ . ._u.m
o 9T k)

(k9)

where

@MC¢S = ki Er I, (50)
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+
is the tangent modulus buckling load of the column at time &

VIII -~ Conditions of stability

It follows from eguation (41) that the stability of the bar
depends on the behavior of b mm..mv . Hence the problem reduces to
the study of the stability of the integral equations (49). If the
eigen values _Aor of equation (k3) are assumed to be ordered, so

that

) & i)
UJ.. \I._U.ﬂ £ . .m:mu.ﬂ P‘...u

then it will be sufficient to investigate the stability of the function
,U, n.mu . In what follows, the sub-index 1 will be understood, and
not written explicitly.

Assuming conditions of piecewise continuiiy for the functions
KE5t), PE) , Prld)  ena nw Qw.w.u , the function b(+)
will be & piecewise continuous function in the interval .~u_ = .__u b.m&.
provided ~ Pe Po® | 1r at ¥, Puer) = Pe “+*)
then the solution of the integral equation may exhibit a singular
behavior at .m.* . In order to investigate the behavior around .m* R

equation (49) (with 1=1 } will be rewritten in the following form

3

Pl K&
LPLt) - PL)] w%ft wﬂﬂv ywi%m b)dt =

+*

mhn.mw_w + PO 3RO b)dT  (51)
K (354t) K& At -

Il



where the right hanéd member is a well-behaved function.

*
Performing &n expansion of _UA.G around .r of the form

ol .
b= > c1g ; < £-t7 (52)

=0
and considering that the kernel of the integral equation {51) and the
coefficient of fh.mu in the same equation are regular at .m# , the

following indicial equation on ¥  is obtained

PLt*) 1 IK (3D

[+v = . .

P -BED K&t 3

(53)
.Tlﬂ “nw.*
where the superposed dot indicates differentiation and the subscripil at
the right of the vertical bar indicates that the function W K must

5% M.h
be evaluated at .m. =Tm= .m -

Since the axial load is essentislly positive, and ﬂurﬂ.ﬂ for

+ r._...*u then Um‘.m..tv >0 and _”.. Wu G* )~ .W.ﬂ. A.Twi > 0 .

Moreover, if attention is restricted to those cases for which

K &*:4%) > 0 . 9K (4T < O (54)

t=T=+*

then ¥ in equation {53) will be negative, and therefore, as seen
from equation (52), b(t)» 0o as .P...'.W* . This result indicates
that if & time +7 exists such that  PEX) = P &%) then
instability will coccur at that time. It is worthwhile noting that

m.ﬂ E..v , and conseguently M..v._.. Omu , does not depend on the pertur-

bation. This is a natural consequence of having considered only a small
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perturbation, for then higher order powers of vaw in eguation (22)
may be neglected. Hence .m* will not depend on the perturbeticn and,
more gpecifically, on the time .f_ at which it was initisated.

These results establish that when ﬂu¢¢u gpproaches ﬂﬂ.owv .

then the bar reaches a state of instantaneous instablility.

Asymptotic stability

Hereafter the bar will be ssid to be asymptotically stable if-- for
any small perturbation initiated at any itime--the deflecticn remains
bounded for Lulvoo . It is immediately recognized that asymptotic
stability implies instantaneous stability, but the inverse ils not true.
Therefore, the investigation of asymptotic stability reduces to the
investigation of the boundedness of the function mUh+u with
P ¢ PL .

For convenience, consider equation {4g) with t=1 ritter in

the following form

w Q () bty dt = Ownﬁ_nu (55)
t

where

= . - ()
Q) =KD [Pa) - Pr)] S ¢-1) - P2) K &
u uﬂu
(56)
Now, the boundedness of the function muhmu may be studied by means of

a Tauberian theoren ﬁwmu {(for “imperfect" kernels) which affirms that if
L.£)  is bounded and if there exists a function g (£ -T) so
’

that
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8 bﬁ
Dohdvm mﬁ#O ) m@.cvo (57)
—o0

and that approximates the kernel Q (t ».ﬁv in the sense that

then ,UQ.-V is bounded over the whole interval (—o© > 00) . It
should be noted that for the real physical systems under consideration
here, the response does not precede the input, so that Auﬁuu wili be
understood to be identically gzero for .T « O .

It is apparent that once a function DOh.W .l.nv satisfying equation
(58) is found, then equation (57) serves to furnish a sufficient condi-
tion for the boundedness of ©{+) . To find an appropriate function
Om {+-v) fulfilling the requirements of equations (57) and (58), it
is necessary to possess some essential knowledge of the properties of ihe
material. When the behavior of the material is asssumed to be given by
any of the expansions expressed by equations {2) or (3}, then some
restrictions need to be imposed on the kernels mmnmu and the stress
history in order to construct the function nfm.mldv .

In what follows, & case will be considered in which rather general
behevior (likely to occur in practical applications) of the material
functions, mﬁ.C ,» and the stress history, OY(E) , is assumed. The
possibility of investigation of asymptotic stability using still less

restirictive conditions is not excluded.
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AL
The imposed stress history Q(n.mv and the applied load ﬂuCnv
'
will be assumed to converge asympiotically towards finite limits (%

and muoo as t -0 » 80 that

Z_Jb D(Qnu ..u T.«S _..“@(( m,+v +. m.mmlu.u ........ o(ob Amwv
Cnly materials exhibiting bounded creep will be considered. This

impiies

. ) . .
rg [ m.m.auﬁ T..os» T L o0 ! Mﬁﬂu«,mv.‘ y N
.Wuv .H.N 00 J TeyTed b! JDV b A ﬂPuMu.os AQOV

Moreover, it will be essumed that the material sges asymptotically --
that is, after & long period of time the materisl properties will be
time invariant. This implies that for large values of the variables
.m . ny .

and .HM , the function € will tend asymptotically to =

limit function

Cn . .ew (n)
€M T, Ty " Ty —> € (kT Ty)
(61)
for large wvalves of + =and Ts.

When conditions expressed by equations (59), (60) and (61) are
fulfilled, then equation (58) will be satisfied by constructing the

function & h.mi.ﬁu as follows

G LALINETSC BT
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where

P =TI,k ke (64)

Substituting the value of & Qu a.nv given by equation (62) in

equation (57), the following equation is obtained

mggosum-ﬁo,ﬁ = K [P = Pyl +

-0
= nikds Re v>0
+ ns% K, (oe dt * 0 € (65)
. ~o0
where (< o0 is the derivative of Xob

Now, since conditions mxm.w.mmm.mm by equation (54%) ere assumed to be
fulfilled, then _Aoo mov and Koo hHu will be positive. Moreover,
recalling that Pe vd , then ﬁvoo < U4Do . Hence equation (63) will
be satisfied if

R -P,

e
m K&nﬁuud = Kaﬁoov —Ko(0) < Koon&
Ig ﬂoo
using the fact that K * (+)= O in the intervel ~ o0 et < O..

This equation may be written in the more convenient form
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KgCo0)

It musti be observed that the boundedness of K o0 nov » K oo Dobu

(66)

Uook. H.or_\xoomoou = Uﬂn.o

and consequerntly of UA.OO , follow from eguations (60), (61) and
(63).

The above resulit establishes the fact that--when conditions

expressed by equations (54}, {(59), (60} and {61} are fulfilled--the

bar will be asymptotically siable provided egquation (66) is satisfied.

Recalling the definition of the tangent modulus given in section
IV, and taking into account equations (29) and (48), a convenient phys-
ical meaning may be given to equation (66). In fact P\ K Qen.Gv
represents the tangent modulus of the indefinitely aged material sub-
mitted to a previcus stress history OLQ.& . On the other hand, ono hOov
is the total asymptotic increment of strain per unit of increment of
stress obtained when a constant increment of stress (small compared with
the value of Q(Quu ) is applied to the indefinitely aged material
which was submitted to a previous stress history O A.mu . Both
quantities may then be obtained experimentally by submiiiing a specimen
of the material to the stress history QLQUV and--after a large period
of time--the initial and "relaxed" modulus is measured by applying a
small increment of stress. From the previous discussion it follows that
the initisl modulug obtained from the test will be H \ Y Qcm.ov while
the relaxed modulus will be ».\_.Agho_ov.

This result establishes the fact that complete knowledge of the
kernels mnmv is not per se necessary in order to determine Xnoﬁou

and KOOAOQ . Thus, if a specified stress history is given, only one



experiment is necessary in order to establish the physical parameters
required in egquation (66) for the determination of the asymptotic sta-
pility of the bar under consideration.

At this stage it should be noted that--as would be expected-~the
condition for asymptotic stability is independent of the kind of lateral
perturbation applied to the bar. The application of the general
Tauberian theorem menticned above did not introduce any restriction
{except boundedness} on the lateral perturbation, but from a more
physical point of view it should be kept in mind that the perturbation
has to be chosen small enough so as to induce small deflections compat-
ible with the linearization of the corresponding equations. A complete
discussion of the determinatiocn of the asympitotic lateral deflections
induced by a small given perturbation is beyond the scope of this paper.
However, 1t is ncted that if only noraging materiels are considered,
then the asymptotic deflection will depend on the asymptotic value of
the perturbing force, and not on the previous history of that force,
Hence it can be concliuded that if the perturbing force ceases for all
times after any finite time, the deflection will tend asymptotically to
zero, provided the condition for asymptotic stebility is fulfilied. This
is not the case for an aging material for which, in general, a certain
deflection of the bar will remain even if the perturbation ceases at a
finite time. The evaluation of the finel deflection for a certain
given perturbation may be performed by using equation (49). An upper
egtimstion of the asymptotic behavior of & similar integral equation may
be found in reference ﬁwﬂu.

4 practical guestion which can arise is the determinaticn of the

maximun constant load below which asymptotic stability is assured. This
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problem reduces to finding the critical load, @nm s, Which satisfies

the following equation

K (O

P = 67)
e = Pr o (
K oo (D
obtained from the inequality given by eguation (66).
It is apparent that since UA. o "4 oo ﬁOv and ’AOOAOOV will

depend in general on UQN s then equation {67) will be a nonlinear
equation in Unﬂ . In most cases, a trial and error procedure is a
suitable method to be used for the evaluation of ﬂuhﬂ , particularly
when analytical expressions for T.\,oo CO) and rAaonoou are not
available. It would then be necessary to experimentally determine the
dependence of TAoeﬁou and Kaahoou on the stress level. In order
to do this recall, as pointed out above, that for eny stress history,
only one experiment is necegsary to measure K o0 ¢ OV and fA oah obu .
Then, performing & series of such experiments for various constant
axiel end loads it is possible to determine the dependence of < QGOOV
Koe (0) and @4 o P the value of the axial end load. On the basis
of such data the value of @Dm mey be obtained from egquation {67) by

a trial and error procedure.

IX - Stability for special nonlinear materials

It is of interest to investigate the possibilities of instantaneous
and asymptotic instability when the material constitutive equation is
represented by the particular law given by equation (26).

In the previous discussion for the general law, it was concluded

that instantanecus instability occurs when

30
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8
-

P -P_H=0 (68)

RYW
where - is the minimum tangent modulus buckliing locad
defined by equation {50). Taking into account eguations {30} and (48},

Ay
end after some calculations, the following expression is found for ﬂw. Qw

o = &TIo | dF,cw] / 3¢Lledd
>

S oD Sed (69)

It is noticed that the function ﬂuﬂ involved in the constitutive
equation (26) does not appear in equation (69). This means that the
function ﬂM , which completely embodies the nonlinear properties for
a pure Leaderman material {equation (24)), is not responsible for any
change in the tangent modulus, and consequently it will not have any
influence on instantaneous instability.

It is spparent that instantaneous instebility can occur if, and
only if, equation {68) possesses a real, positive bounded solutiom.

In order to discuss the possibilities of such a solution for different--
rather simple--materials, the following cases sre discussed:

4}
w. Wﬂ mbm. ,.me wﬂmoosmﬂmbﬁm._?mu U4 Mmmoo?.
m

o

stant, and a solution of equation (68) will exist only if P)

increases so as to reach the velue ﬂﬁmo . Otherwise, if P
D] .

is constant, and less than ﬂw , instantaneous instability

cannot occur.,
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This is the case of a pure Leaderman material for which
the instantaneous modulus of elasticity ( E in equation (24))
remains constant.

m. .Wm@ Hmwwmm@mm@mwﬁowmumﬁm .Wm.
m

m( is independent

of (~ but time-dependent. Then a solution of equation (68)
may exist, even when ¥ 1is constant. This is the case of a
Leadermean material with nonlinear elastic response whose
instentaneous modulus B varies with time. If the change

in the instantaneous modulus is due only to chemical hardening--
& behavior exhibited by many real materials submitted to moderate
levels of stress--then the instantaneous modulus will increase
with time, and instantaneous instability may occur only if ﬂuﬁ.wv
increases sufficiently rapidly.

O,

3. P and l&l are constants. Then, a solution may exist, if
.WQM wso&mmmwm so that p n.“.u ) given by equation (£69)
decreases to the value of & . This case was previously
discussed in the litersture mwmuv implicitly assuming WMM\W
constant. As was already mentioned, the function ﬂw does not
have any effect on instantaneous instability.

In order to investigate asympiotic stability, some assumption
regarding the behavior, for large values cf .m , of the material
functions appearing in equation Ammv will be made. It will be assumed
that the functionms ﬁn._ and ﬂ.m , &8 well as their derivatives %

end Wﬂ.& , are bounded and tend asymptotically towards finite limits

0~



._rﬂ@.v . F, m+uocn.mvu = ﬂ& (G) &£ o {70a)
Mw\w Fa £, o0@)] = P2 o (62) ¢ P (700)
im FoFlloy) e ® (700)
ms.“,a oo F gy (704)

in which it is implicitly assumed that the 1limit odwo given by equation
(59) exists.
Similar to the case of general nonlinear behavior previously

treated, only materials with bounded creep will be considered, so that

+

s %.ﬂiu..nu AT ¢ o© — 0 & 500 (72)
. : !

As in the general case, it is further assumed that

eyt —f,(¢-7) (72)

for large values of + end T . When all these requirements are
fulfilled, it is not difficult to esteblish, by means of & similar
mathematical treatment as was performed for the general case, that the

condition for assymptotic stability is given by

P < Hor,\mmoou = ms Waomou (73)
0 (=0

N
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where

U._.& = T, r.\moonou (74)

Equation {73} is similar to equation (66) but .Aoo«Ov and

FQG mOou are now obtained from the asymptotic wvalue of K Qn..v.mv

given by
+
R 0= [ B 00) + B0 | Su3t| [@lced) )
o

so that

K_ (o) = ~H_,00 (0%e) \%“mmoov (76)

— i ] 8
2 o te9= | Fil %) + mgsﬁﬁuTaEi /o'

o

It should be nmoted that the derivative of n@ eppearing in equations

(75), (76) and (77) must be performed st €4 = _mni elt) | e
e

is to seay at the asymptotic value of the strain which occurred in the
bar under the considered stress history. The value of & o0 is given
by

t
€= nm.» ™ mm hﬁ?@fmnpmﬁi&hﬁ.vamm (78)

+ >0 e

-1
where @  is the inverse function of ﬂ . In eguations (73), (74},

(76) and {77), as should be expected, the quantities ,AQOAOV and

x o0 mo& have the same physical interpretation as was pointed out for
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K o_on.ou and Ko.oﬁaou respectively in the discussion following
equation {66},

A more suitable form of equation {(73) may be obtained by utilizing

—— b

the values of _Aqoh& and K R ﬁo_ou given by equation (7€) and

(77). Then, the condition for asymptotic stability mey be written

1.. ;_ Oo
@gAp.g\@.}w@hgzid @
moomomo o
It is seen--contrary to what was found for the case of instantaneous
stability--that the function ﬂ..m {or more precisely its derivative)
appears in the condition of asymptotic stability.

For the particular case in which nﬁmmv , m Tnvocm..wﬁ and
_..M _“.Wua(ﬁ.mv.n._ are linear functions of € and @ respectively,

it is not difficult to show that equation (79) reduces %o

B <P, / AT+ E, .asﬁsm.&mdw (80)

where mUm o is the Euler load of the bar based@ on the instantaneous
modulus of elasticity, & , , of the completely aged material. This

result was previously obtained in reference ﬁwﬂu .

X - Copcluding Remsrks

It has been shown that a functional power series of the Volterra-
Fréchet type may be a useful phencmenclogical approach to represent the
behavior of general nonlinear viscoelastic materials. The kernels

(material properties) occurring in the series may be obtained from a
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program of experiments which measures the response of the material to
certein families of inputs. The order of the functional polynomial ard
the selection of the type of inputs to be used, depends to & large
extent on the degree of accuracy desired and on the possibility of
devising an effective procedure for inverting the integral transfor-
mations given by equation {12}.

The analysis presented in this paper was based on the creep-type
constitutive equations (2] and {3} which give the strain as a functional
of the stress. If certasin conditions are imposed on the kernels of
first order appearing in equations {2) and {(3), and if the kernels of
higher order are bounded, then it could be shown that inverses of
equations {2) and {3) exist. These inverses, which give the stress as
a functional of strain, would represent the constitutive relastion in
the form of a relaxation law and would have the same form &s equations
{2} and (3). Thus, to determine directly the kernels appearing in the
functional expansion of the relaxation form of the stiress-strain relation,
g8 set of experiments, similar to those previously discussed in conjunction
with the creep form of the constitutive relation, could be programmed
using N families of strain inputs rather than stress inputs.

The snalysis of some of the problems considered here did not
reguire having complete knowledge of the kermels for sll values of
their arguments. For example, asymptotic stability was found to depend
on the asympiotic form of the nonlinear functicnal relating stress and
strain. The experimental determination of this asymptotic form is con-
siderably simpler than the experimental determination of the kernels for

all values of their arguments.



However, it should be pointed out that if interest is centered on
the calculation of the transient response of a general nonlinear visco-
elastic meterial subjected to arbitrary excitation, then the use of
functional expansions could prove very complicated and tedious. As
scon as the number of terms required in the series representation of
the functional exceeds three or sc, then the testing program required
to obtain a numerical eveluetion of the kernels obviously becomes
quite extensive. Furthermore, when such & representation of the con-
stitutive law is incorporated into theories for the determination of
trensient stress and deformation of deformable solids, then the boundary
value problems which result wili, in general, be extremely difficult
to solve.

To overcome difficulties of this nature, other kinds of represent-
ations of the nonlinear viscoelastic constitutive relation may prove
more convenient. Different approaches are being investigated in fields
where nonlinear hereditery phenomena occur. In the field of systems
theory, & method which is still undergoing investigationm, end which in
the future may prove useful in applications to the mechanics of defor-
mable solids, is the "state space" approach (18], To a large extent,
interest in that method is motivated by a conscious effort {0 avoid the
difficulties associated with the use of series representations of non-
linear functionals.

The specific application treated in this paper was an investigetion
of the stability of & centrally loaded column. The column was assumed
to be made of & general nonlinear visccelastic material, and the consti-
tutive relstion of the materiasl was represented by means of a Volterra-

Fréchet expansion of & general mcnlinear snalytic functional. A small
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lateral perturbation of the bar was introduced in order to check stability.
Subsequent boundedness of the deflection of the slightly disturbed bar

was used as the basic criterion of stability. Attention was restricted

to small disturbances in order that suitable linearizations could be

made. A more general investigation which allowed for the introduction

of large perturbations would be considerably more complicated and dif-
ficult than the analysis presented hLere.

The equation governing the bar subjected tc a smail lateral per-
turbetion is derived from an appropriate linearization of the curvature
expression and of the nonlinear constitutive egquation, resulting in a
lineer integral equation whose kernel, in general, depends not only on
the material functions (kernels of the nonlinear expansion) but also
on the complete stress history of the bar. The stress history is
assumed to be known, depending in general on the time behavior of the
externally applied axial end loed and a possible state of initial
imposed stress as may occur due to an exial restraint of the bar.

The condition for instantaneous instability was derived from the
singular behavior exhibited by the integral equation of the slightly
disturbed bar, in the neighborhood of the critical time. It was shown
that instantaneous instability occurs if the applied load reaches the
value of the tangent modulus buckling load based on the tangent modulus
defined in Sectiomn IV.

In the investigation of asymptotic stability, & very powerful and
general wmsdmwwmu theorem established by Pitt was used. To shorten the
analysis presented here, some relatively mild requirements were imposed

on the asymptotic behavior of the stress history and material functions;



namely, that these quantities possess finite asymptotic limits. If this
requirement is changed to the still weaker reguirement that the stress
history and materiai functions have a suitably bounded behsvior for all
times, then it is possible to extend the criterion of asymptotic stabil-
ity to cover this case,

Finally, a nonlinear stress-strain law more restricted in nature
than the genersl nconlinear viscoelastic relation, and which incliudes as
special cases, Leaderman’s and Rabotnov's laws of nonlinear viscoelastic
behavior, was considered in the stability investigation. This particular
form of the constitutive equation contains--even if in a limited manner--
many of the important and interesting properties exhibited by a lerge

variety of real materials.
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