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Introduction

Many recent publications on water resources have dealt with topics
such as reservoir operation (Ahmadi et al. 2014; Bolouri-Yazdeli
et al. 2014; Ashofteh et al. 2013a, 2015a), groundwater resources
(Bozorg-Haddad et al. 2013; Fallah-Mehdipour et al. 2013b),
conjunctive use operation (Fallah-Mehdipour et al. 2013a),
design-operation of pumped-storage and hydropower systems
(Bozorg-Haddad et al. 2014), flood management (Bozorg-Haddad
et al. 2015b), water project management (Orouji et al. 2014;
Shokri et al. 2014), hydrology (Ashofteh et al. 2013b), qualitative
management of water resources systems, (Orouji et al. 2013;
Bozorg-Haddad et al. 2015a), water distribution systems (Seifollahi-
Aghmiuni et al. 2013; Soltanjalili et al. 2013; Beygi et al. 2014),
agricultural crops (Ashofteh et al. 2015c), sedimentation (Shokri
et al. 2013), and algorithmic developments (Ashofteh et al.
2015b). Yet, very few water-resources publications have dealt
with the simulations of contaminants [methyl tertiary butyl ether
(MTBE) is a case in point] in river-reservoir systems using support
vector machine (SVM).

The sudden release of toxic chemicals into water bodies poses
unique challenges for emergency response due to their unexpected
occurrence and rapid transport in water bodies (Hou et al. 2014).
There are water-quality models that can be used to simulate the
transport of pollutants released to water bodies, which is one way

to respond to sudden pollutant releases using real-time approaches.
Yet, those models may be computationally burdensome. One ap-
proach to reduce the computational burden associated with the
simulation of pollutant transport in water resources systems is
by resorting to data-mining tools. Data-mining tools have been
used in several studies involving the simulation of hydrologic
phenomena. One powerful data-mining tool, however, the support
vector machine (SVM), has received increasing use in the simula-
tion of quantity and quality phenomena related to water resources.

Concerning the application of data-mining tools to quantify phe-
nomena, Savic et al. (1999) used genetic programming (GP) to
model runoff in the Kirkton basin in Scotland. The latter authors
compared the performance of GP with that of artificial neural net-
works (ANN). Their results showed better accuracy for GP than
ANN. Asefa et al. (2006) used SVM to predict the hourly and sea-
sonal inflow in the Sevier River basin, in Utah in the United States.
Sivapragasam et al. (2007) evaluated the accuracy of inflow predic-
tion in the operation of the Kovilar and Priyar reservoirs in India to
supply agricultural water. They used GP to predict inflows. Behzad
et al. (2009) evaluated the performance of ANN and SVM in pre-
diction of the Bakhtiari River runoff in Iran and showed that SVM
is more accurate in predicting runoff than ANN and ANN-GP
methods. Wang et al. (2009) compared the performance of different
methods of monthly inflow prediction in two rivers in China. They
applied the autoregressive moving average (ARMA), ANN, adap-
tive neural-based fuzzy inference system (ANFIS), GP, and SVM.
Their results indicated that GP, ANFIS, and SVM had better results
(that is, smaller errors) than several other methods. Yoon et al.
(2011) applied ANN and SVM models to predict the groundwater
level in coastal aquifers in Korea. Their results showed better per-
formance for SVM than ANN. Wei (2012) coupled kernel wavelet
function with SVM to predict the water level in a measuring
station of the Tanshui River in China. The wavelet SVM per-
formed better in predictions than the SVM coupled with a Gaussian
kernel. Maity et al. (2013) applied the SVM and auto-regressive
integrated moving average (ARIMA) method to predict monthly
river inflow in the Mahanadi River in India. Their results indicated
that SVM had better predictive accuracy than ARIMA. More com-
prehensive reviews and comments on application of SVM are
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found in Shamshirband et al. (2014), Petkovic et al. (2014),
Mohammadi et al. (2015), and Aboutalebi et al. (2015).

Regarding the application of data-mining tools to study water-
quality phenomena, Singh et al. (2011) implemented SVM to
manage water quality in the city of Lucknow, India, using support
vector classification (SVC) and support vector regression (SVR).
Their results showed that SVR had better performance than kernel
discriminate analysis (KDA), kernel partial least squares (KPLS),
linear discriminant analysis (DA), and partial least squares (PLS).
Das et al. (2012) evaluated the performance of ANN and SVM in
prediction of the hydraulic conductivity coefficient of clay. The re-
sults showed that the SVR had 10% better accuracy than the ANN
in predicting the hydraulic conductivity. Orouji et al. (2013) used
ANFIS and GP to model water-quality parameters at the Astaheh
station in Sefid Rood, Iran. They showed that GP had better accu-
racy than ANFIS.

This literature review revealed that less attention has been paid
to the performance of data-mining tools in water quality problems.
Moreover, the SVR had consistently better performance in the pre-
diction and simulation of hydrologic phenomena than alternative
methods such as numerical models and other data-mining tools
such as ANFIS, ANN, and GP. This finding suggests that the SVR
may be a good candidate tool for simulating complex processes
such as the concentrations of pollutants at various locations within
a water resources system with accuracy superior to those of tradi-
tional numerical water-quality models. The aim of this study is to
evaluate the performance and accuracy of different data-mining
tools to predict pollutant concentrations in river-reservoir systems.

Methodology

This section briefly summarizes the theoretical underpinnings of
the ANN, GP, GA, and SVM methods.

Data Mining

Data mining is the orderly search for and use of worthy data em-
bedded in large data sets using computers. The two main goals of
data mining are classification and prediction. The most important
tools in data mining are ANN, GP, and SVM, which are mostly
used in prediction problems.

Artificial Neural Network

An ANN is a data-processing system that emulates the animal
brain. It is used for pattern recognition, classification, and predic-
tion problems. ANN has the capability of mapping and intelligence
learning of nonlinear functions through a training process. The abil-
ity of ANN to map a set of input data (independent) to output data
(dependent) with an acceptable margin of error has rendered it as
useful tool for modeling. ANN has been used extensively in the
field of water resources and environmental engineering. Like many
other data-driven models, ANN enjoys the capacity for adaptive
learning.

An ANN is composed of five main components: input data, in-
termediate layers, neurons (parallel processors), the transfer func-
tion, and the output data. Fig. 1 shows nonlinear mapping of an
input data vector to an output data vector with ANN.

As seen in Fig. 1, data inputs are sent to an ANN. During the
optimization problem (with the goal of minimizing error simula-
tion) output values, weight, and bias are calculated and the results
are processed by a nonlinear function. Finally, simulation is per-
formed. The Levenverg-Marquardt (LM) algorithm (Marquardt
1963) is widely used for training ANNs. The LM algorithm is

commonly used for solving optimization problems, such as mini-
mizing the squared error in curve-fitting applications, and specifi-
cally in calculating the optimizing weight of an ANN.

Genetic Programming

GP is a variety of genetic algorithm (GA), and it is a relatively new
evolutionary method (Koza 1992, 1994; Banzaf et al. 1998; Khu
et al. 2001). The GP is inspired by Darwin’s theory of evolution.
In the GA, decision variables (i.e., genes) are entered into the search
process implemented to solve optimization problems. GP introdu-
ces a series of variables and functions used in the search process.
These series are known as the connection series (T) and functions
series (F). For example, the series T ¼ fx; 1; 2;−1;−2; : : : g and
F ¼ f÷;×;þ;−; exp; sin; cos; log; : : : g can be chosen. Then chro-
mosomes are generated by selecting a random initial solution set
from connection and functions series. Fig. 2 shows an example of
two chromosomes in GP.

Next, a corresponding objective function for each chromosome
is calculated. A constraint is applied to each objective function in
the form of a penalty function. In the next stage, the genetic oper-
ators (crossover and mutation) are applied. Figs. 3 and 4 illustrate
how these operators are used.

Fig. 1. Schematic components in a single layer ANN

Fig. 2. Showing the mathematical equations used in GP

Fig. 3. Showing the various stages of crossover in GP
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As shown in Fig. 3, by cutting and crossover on the parent
chromosomes, new children are made and so a new generation
of chromosomes is formed.

Fig. 4 depicts genes containing the number 8 changing to num-
ber 5 through mutation. Then an iterative development process is
carried out on the children. Finally, nearly-optimal objectives func-
tions are reached once they remain almost constant after repeated
optimization iterations.

Support Vector Machine

SVM is a data-driven model that can classify or predict data after
following a learning or training process. The SVM was introduced
by Vapnik et al. (1995). Vapnik et al. (1998) extended the SVM as a
forecasting tool in various branches of science and engineering. In
the following, the regression form of SVM (SVR) is described.

Support Vector Regression

The SVR, like other data-driven models, must undergo a training
(or calibration) process. In other words, after achieving weights and
bias based on a training data set (input and output data), the SVR
enters a testing process whereby it must approximate observed val-
ues. Vapnik et al. (1998) defined two functions used by SVR. The
first function in the training process calculates the errors of predic-
tions. The second (linear) function calculates the output values
based on the values of the input data, weights, and bias. The first
function, called error function of epsilon insensitive (e-intensive)
function of SVR, is as follows:

jy − fðxÞj ¼
�
0 if jy − fðxÞj ≤ κ
jy − fðxÞj − κ ¼ ξ otherwise

ð1Þ

in which x = vector of input variables; y = value of observed output;
fðxÞ = value of calculated output by SVR; κ = sensitivity of
prediction error jy − fðxÞj (this is an SVR parameter);

ξ = penalty for the values that are out of range (−κ, þκ); and
j : : : j = absolute sign. Eq. (1) is illustrated in Fig. 5.

It is seen in Fig. 5 that the main feature of this function is that the
e-intensive function does not consider a penalty for the values that
are in the range of (−κ, þκ). The values that are assigned penalties
are outside of the range of (−κ, þκ), which receive a penalty equal
to ξ.

The second function (the computational function) of SVR is
given by Eq. (2)

fðxÞ ¼ wT · xþ b ð2Þ

in which w = value of a vector of weights of the vector of variable x;
b = bias value of wT · x with respect to the observed value; and T =
transpose symbol.

SVR calculates w and b by solving an optimization problem.
The objective of the optimization problem is to minimize the e-
intensive function and vector w. In addition to minimizing these
two objectives, the calculated responses are located with respect to
the range (−κ, þκ) and are appended as a constraints to the opti-
mization model. The SVR optimization model with constraints is
defined as follows:

Minimize
1

2
kwk2 þ C

Xm
i¼1

ðξ−i þ ξþi Þ ð3Þ

Subject to ðwT · xþ bÞ − yi < κþ ξþi ; i ¼ 1; 2; : : : ;m

yi − ðwT · xþ bÞ ≤ κþ ξ−i ; i ¼ 1; 2; : : : ;m ξþi ; ξ
−
i ≥ 0 ð4Þ

in which C = penalty coefficient; m = number of training data;
ξ−i and ξþi = deviations located respectively above and below
the range of (−κ, þκ); and yi = ith output value.

To solve the optimization problem [Eq. (3)] the Lagrange
objective function (L) is formed as follows:

L ¼ 1

2
kwk2 þ C

Xm
i¼1

ðξþi þ ξ−i Þ −
Xm
i¼1

ðηiξþi þ η�i ξ
−
i Þ

−Xm
i¼1

αi½κþ ξþi þ yi − ðfðxÞ� −Xm
i¼1

α�
i ½κþ ξ−i þ yi − ðfðxÞ�

ð5Þ

αi;α�
i ; ηi; η

�
i ≥ 0 ð6Þ

Fig. 4. Showing the various stages of mutation in GP

Fig. 5. Geometry of the e-insensitive function
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in which αi, α�
i , ηi, η

�
i = Lagrange coefficients corresponding to the

training data.
The partial derivatives with respect to variables b and w are set

equal to zero

∂L=∂b ¼
Xm
i¼1

ðαi − α�
i Þ ð7Þ

∂L=∂w ¼ w −Xm
i¼1

ðαi − α�
i Þxi ¼ 0 ð8Þ

After achieving the αi and α�
i , the value of w is calculated as

follows:

w ¼
Xm
i¼1

ðα�
i − αiÞxi ð9Þ

Replacing Eq. (9) into Eq. (2) and solving the ensuing optimi-
zation problem yields e Eqs. (10)–(13) with the final solution as
follows:

α½κþ ξ−i þ yi − ðwT · xi þ bÞ� ¼ 0 i ¼ 1; 2; : : : ;m ð10Þ

α�
i ½κþ ξþi þ yi − ðwT · xi þ bÞ� ¼ 0 i ¼ 1; 2; : : : ;m ð11Þ

ðC − αiÞξi− ¼ 0 i ¼ 1; 2; : : : ;m ð12Þ

ðC − α�
i Þξþi ¼ 0 i ¼ 1; 2; : : : ;m ð13Þ

The values of αi, α�
i , ξþi , and ξ−i are obtained from

Eqs. (10)–(13). The values bi are evaluated with Eq. (14)

bi ¼ yi − ðwT · xiÞ þ κ ∀ i ¼ 1; 2; : : : ;m ð14Þ

After calculating the values of w and bi, replacing them in
Eq. (2), yields the output value of SVR. C and κ are the SVR
parameters. They are determined as explained in the next
subsection.

Nonlinear Support Vector Regression

Vapnik et al. (1995) considered linear regression functions. When
the linear functions do not fit the training data, one can use transfer
or kernel functions. The SVR kernel function is called the transition
function. The kernel functions are processing functions, which
transform nonlinear data into semilinear or linear data. For exam-
ple, applying the logarithmic function on data with exponential dis-
tribution renders them linear. The introduction of the kernel
function in the SVR transforms Eq. (2) into Eq. (15)

fðxÞ ¼
Xm
i¼1

ðα�
i − αiÞKðxi; xÞ þ b ð15Þ

in which K = kernel function. Dibike et al. (2001) used different
kernel functions to model rainfall-runoff by means of SVR. They
showed that the radial basis function (RBF) kernel has better
performance than other functions. Han and Clacki (2004) also con-
cluded that the RBF results in better performance of the regression
process. The RBF equation is as follows:

Kðx; xiÞ ¼ exp

�
− jx − xij2

2γ2

�
i ¼ 1; 2; : : : ;m ð16Þ

in which γ = RBF parameter. As mentioned earlier, the use of
kernel functions transforms the nonlinear behavior of data to
semilinear or linear characteristics.

The SVR does not use all the data in its calculations. In fact,
during the optimization phase, if the Lagrange multipliers equal
zero, then those data are removed from the calculations. But if
the Lagrange multipliers of data do not equal zero, then those
data are called support vector (SV) and their weights and biases
are calculated.

Determination of the SVR Parameters

The parameters of the SVR are C and κ, and the RBF kernel func-
tion’s parameter is γ. Since the performance of SVR largely de-
pends on its parameters, their optimal choice is paramount to
the successful implementation of the algorithm (Samsudin et al.
2011). In the proposed tool refers to SVR-GA, the parameters
are considered decision variables and the objective function max-
imizes the accuracy of the data-mining tool. Therefore, metaheur-
istic algorithms such as the GA find their parameters as part of the
optimization process.

Criteria for Evaluating Results of ANN, GP,
and SVR-GA

Eqs. (17) and (18) are used in this study to assess the performance
of the ANN, GP, and SVR-GA (RMSE stands for root-mean
square; R2 refers to regression coefficient)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðHydobs −HydsimÞ2

n

r
ð17Þ

R2 ¼ 1 −
�Pn

i¼1 ðHydobs −HydsimÞ2P
n
i¼1 ðHydobs − H̄ydobsÞ2

�
ð18Þ

in which n = number of observed data; Hydsim = simulated
MTBE concentration in the outlet valve of the reservoir by the
data-mining tool; Hydobs = simulated concentration in the outlet
valve of the reservoir by CE-QUAL-W2 model; and H̄ydobs = aver-
age of value of simulated concentration in the outlet valve of a
reservoir.

Genetic Algorithm

GAs were introduced by Holland (1975). A GA is a search algo-
rithm inspired by natural biological process of natural selection.
This method is based on Darwin’s theory of evolution. The GA
begins with a set of initial random solutions called populations.
Each population consists of a set of chromosomes, and each
chromosome is a set of genes that are the decision variables of the
problem. The number of populations affects the performance of the
GA. If the number of initial random populations is too low, it may
fail to search the entire solution space, in which case it may not
converge to the optimal answer. If the number is too high, the con-
vergence to the optimal solution could be onerously slow. The se-
lection process is based on the merit of the objective functions
corresponding to each chromosome in each generation. One can
use techniques such as roulette wheel and competitive selection
to select the chromosomes that are transmitted to the next gener-
ation. In the roulette wheel, depending on the fitness function value
of each chromosome, a value of the level of the wheel is assigned.
One of the chromosomes is selected randomly for the next gener-
ation. Chromosomes with the highest level of competence gain a
higher level, which increase their probability of being selected for

© ASCE 04016015-4 J. Irrig. Drain Eng.
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Fig. 6. Location map of Karaj reservoir within the Karaj watershed

Fig. 7. Defining the discrete form of the Karaj river-reservoir system

© ASCE 04016015-5 J. Irrig. Drain Eng.
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the next generation. In the competitive method, after the classifi-
cation of chromosomes, subsidiaries are randomly created, and
from each subsidiary the chromosomes that have the best objective
function are selected. Thus, the selection criteria of chromosomes
are based on their merits. To create the next generation, whose
members are called children, one can proceed in two ways:
1. The combination of two chromosomes, using the crossover

operator; and
2. Correction of chromosomes, using the mutation operator.

One of the factors affecting the performance of the GA is the
rate of crossover. This rate is equal to the number of offspring pro-
duced by each generation divided by the number of people in the
present generation. The larger the rate of crossover, the larger the
search space. But if this ratio is too large, the search becomes pro-
hibitively slow.

In addition, mutation is another operator that is used to
create diversity of chromosomes in next populations. This oper-
ation is similar to biological process and replaces one or several
genes and creates new genes for new populations. The larger the
rate of mutation, the larger diversity in the populations, and
vice versa.

Case Study

The Karaj dam is a source of drinking water for the cities of Tehran,
Iran, and provides water needed for agriculture, and provides flood
control and hydroelectric power generation. Its construction began
in 1957 and was completed in 1961. Fig. 6 has a location map of the
Karaj dam. This case study considers the sudden release of MTBE

Fig. 8. Thirty-six scenarios to create a database

© ASCE 04016015-6 J. Irrig. Drain Eng.
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in the amounts of 14,000 30,000 and 60,000 L at three locations
[beginning (Section 4), middle (Section 12), and end (Section 17)]
of the Karaj river-reservoir system, Iran, at the beginning of
summer, autumn, winter, and spring, giving rise to 3ðsectionsÞ × 3
ðamounts of releaseÞ × 4ðseasonsÞ ¼ 36 pollution scenarios. The
three methods (ANN, GP, and SVR-GA) are used to assess the
MTBE contamination at selected cells for each pollution scenario,
and their results are compared at selected monitoring cells.

Preparation of Simulation Model of Contaminant
Transport in the Reservoir

The CE-QUAL-W2 water-quality model (Shokri et al. 2014) was
used to generate MTBE concentrations in the Karaj river-reservoir
system for each of the 36 pollution scenarios. The geometry of
the reservoir must be defined as a discrete network in the
CE-QUAL-W2 model. The geometry data was extracted from a
1:5,000-scale topographic map. This file contains information such
as the number of segments, length, width, depth, and positions of
reservoir features. The river-reservoir system contains 21 segments
(including 2 boundary segments), and 46 layers (including 2
boundary layers) with thicknesses of 1, 3, 5, and 10 m as shown
in Fig. 7. The concentration of MTBE was simulated with CE-
QUAL-W2 for a period 1,385 days, which is the length of the
period for which hydrometric and meteorological data were
available. Fig. 7 shows that Cells 1 through 8 are places with con-
centration data provided by the CE-QUAL-W2 model. Cells 1
through 5 were considered the dependent or output variables
and Cells 6–8 considered the independent or input variables for
the data driven tools. Cell 5 is the location of the outlet valve
of the reservoir.

Simulating Water Quality in the River-Reservoir
System with a Data-Mining Tool

The first database for the training and testing phases of the data-
mining tool was produced. The coefficients of the data-mining
tools were determined based on the training phase. Finally,
databases of MTBE concentrations were created with the CE-
QUAL-W2 model for different modes of occurrence of pollutants
(36 scenarios). In other words, the CE-QUAL-W2 model runs in
each of the 36 scenarios and the MTBE concentrations were
calculated in the eight cells (numbered 1 through 8) shown
in Fig. 7.

Fig. 8 presents the details of the 36 pollution scenarios. For ex-
ample, in the spring, there are three sections where pollution occurs
(Sections 4, 12, and 17). In each of these sections, the amount of
spilled MTBE can be 15,000, 30,000, or 60,000 L, originating three
scenarios for each section, and nine scenarios for the three sections
in the spring. This same number of scenarios is repeated in the
Summer, autumn, and winter, for a total of 36 scenarios. After cre-
ating the database, a portion of the database is used as training
data and the other as testing data. In order for all the data values
to have the same chance of being selected in each phase (training or
testing), they must be chosen randomly. In this study, training and
testing data were selected in this manner. The values of the GA
parameters (percentage of crossover, percentage of mutations,
number of iterations, and number of initial populations), were set
at 70 and 15%, and 50 and 1,000, respectively. The RBF function is
used with the SVR-GA and 75% of the randomly selected data are
considered as training data, and the remainder data are considered
as testing data. The MATLAB software was used for implementing
of the ANN, GP, and SVR-GA. For the implementation of the

ANN, a three-layer MLP network was used. The implementation
of the GP involved trigonometric, exponential, logarithmic, and
polynomial functions. The number of neurons of the ANN was
found by trial and error.

Results and Discussion

The results with the data mining tools are presented in Table 1.
It is seen in Table 1 that in all five cells (Cells 1, 2, 3, 4, and 5) of

the Karaj river-reservoir system shown in Fig. 7, the coupled SVR-
GA dominates the ANN and GP from the viewpoint of superior
performance. Also, the ANN had better performance compared
to GP. One important finding is that the concentrations obtained
with ANN, GP, and SVR-GA at Cell 5 were better than those
for the other cells. In other words, the MTBE concentrations at
the release gate (on Cell 5) of reservoir were smaller than those
at the other four testing cells. Table 1 indicates that the accuracies
of ANN, GP, and SVR-GA were 93, 87, and 96% respectively,
based on the value of R2.

Fig. 9 presents a graphical evaluation of the accuracy of MTBE
concentrations simulated with ANN, GP, and SVR-GAwith respect
to the observed concentrations on Cells 1 through 5. According to
Fig. 9 all three data-mining tools simulated the pollutant MTBE
concentration at the five testing cells (Cells 1 through 5) with
an acceptable accuracy. The minimum accuracy equals 82% in
Table 1 for R2 corresponding to GP in testing process. Table 2
shows the optimized values of the SVR-GA tool, and the number
of hidden layers of neurons of the ANN, which were derived by
trial and error.

Concluding Remarks

The aim of this study was to simulate MTBE concentrations at dif-
ferent locations of the Karaj river-reservoir system using a coupled
SVR-GA tool, and to evaluate the performance of this tool com-
pared with the ANN and GP methods. First, a database was pre-
pared using CE-QUAL-W2 model. This data base contains the
MTBE concentrations at different locations of the Karaj river-
reservoir system corresponding to 36 scenarios pollutant release
into reservoir system. Thereafter, by considering the MTBE con-
centrations at three locations of pollutant entry into the reservoir,
the MTBE concentrations at five other points were simulated. The

Table 1. Evaluation Criteria for ANN, GP, and SVR-GA

Cell
number Tool

RMSE R2

Training Testing Total Training Testing Total

1 ANN 3.25 4.34 3.98 0.94 0.92 0.93
GP 5.75 6.96 6.16 0.87 0.85 0.86

SVR-GA 2.80 3.35 3.10 0.96 0.94 0.95
2 ANN 3.75 4.89 4.20 0.92 0.90 0.91

GP 5.98 7.30 6.40 0.86 0.84 0.94
SVR-GA 3.12 3.57 3.21 0.95 0.92 0.93

3 ANN 3.10 4.12 3.47 0.95 0.93 0.94
GP 5.24 6.18 5.50 0.89 0.87 0.88

SVR-GA 2.57 3.05 2.72 0.97 0.95 0.96
4 ANN 3.90 5.10 4.30 0.92 0.89 0.91

GP 6.94 7.80 7.21 0.85 0.82 0.84
SVR-GA 3.40 4.30 3.73 0.95 0.92 0.93

5 ANN 2.90 3.25 3.03 0.97 0.95 0.96
GP 4.96 6.10 5.30 0.90 0.88 0.89

SVR-GA 2.19 2.83 2.45 0.98 0.96 0.97
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Fig. 9. Simulated MTBE concentrations with the ANN, GP, and SVR-GA and the observed concentrations at (a) testing Cell 1; (b) testing Cell 2;
(c) testing Cell 3; (d) testing Cell 4; (e) testing Cell 5
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results indicated that the SVR-GA had 3 and 9% better predictive
accuracy than the ANN and GP, respectively, based on the value
of R2.
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