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In preparation. 1
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Motivated by problems involving diffusion through small gaps, we revisit two-dimensional
eigenvalue problems with localized perturbations to Neumann boundary conditions. We
recover the known result that the gravest eigenvalue is O(| ln ε|−1) where ε is the ratio
of the size of the hole to the length scale of the domain, and provide a simple and
constructive approach for summing the inverse logarithm terms and obtaining further
corrections. Comparisons with numerical solutions obtained for special geometries, both
for the Dirichlet ‘patch problem’ where the perturbation to the boundary consists of
a different boundary condition and for the gap problem, confirm that this approach is
a simple way of obtaining an accurate value for the gravest eigenvalue, and hence the
long-term outcome of the underlying diffusion problem.

1. Introduction
Consider Brownian motion in a two-dimensional domain separated into two halves by

a barrier. The domain and the barrier are impermeable, but the barrier contains a small
hole. (Extensions to multiple barriers and multiple holes are straightforward but lengthy.)
Then the density inside the domain is obtained by solving the diffusion equation

ut = ∇2u (1.1)

with the Neumann condition un = 0 on the boundary. Separation of variables shows that
for a bounded domain the solution can be written as

u =
∞∑

n=0

e−λjtφj(x, y), (1.2)

where the λj are positive decay rates obtained by solving the eigenproblem

(∇2 + λ)φ = 0, (1.3)

again with Neumann boundary conditions. Note that the lowest eigenvalue is always λ0 =
0, corresponding to steady state. The non-trivial large-time behaviour of the solution is
determined by the eigenvalue λ1.

The value of the flux un in the gap is unknown and is obtained as part of the solu-
tion. Physically one can see that if the hole is small enough, the density will become
homogenized inside each subdomain much faster than it diffuses through the gap. Hence
if one starts with the density concentrated in one subdomain and the gap is small, the
slow diffusion process through the gap will take place with near- spatially uniform but
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time-dependent values of u in the gap. This motivates the Dirichlet ‘patch problem’, in
which one considers subdomains in isolation and replaces the gap by a patch of boundary
on which the density satisfies u = C, where C is a constant. Without loss of generality
we can take C = 0 (for multiple gaps things are not so straightforward); this is exact for
symmetrical geometries (see § 5).

Ward & Keller (1993; hereafter WK) obtained, by matched asymptotic expansions, the
leading-order behaviour of perturbed eigenvalue problems when the boundary condition
is changed over a small region of the boundary of size ε. For two-dimensional cases, the
change in the eigenvalue can be O(| ln ε|−1) and the leading-order solution can be a poor
approximation to the actual eigenvalue. Ward, Henshaw & Keller (1993; hereafter WHK)
presented a hybrid technique that sums all the terms in the expansion in (ln ε)−1 and
hence gives much more accurate results.

Similar problems have been considered by a variety of authors. Extensions to the
problem of low Reynolds number flow past a cylinder are given in Kropinski et al.. (1995)
and Keller & Ward (1996), to an oxygen transport problem in Titcombe & Ward (2000),
to optimization of eigenvalues in Kolokolnikov et al.. (2005). These works all draw from
the original WK work. There has been a considerable further amount of more abstract
work, for example the recent results in Denzler (1999). The wide-ranging book of Maz’ya
et al.. (2000) presents a great many results on this and related problems, as well as
further references. The book touches on the current problem in 9.1.3 and 9.1.5, but the
development is essentially formal and no constructive results are given.

For gaps in 2-D we give a new constructive method that is based on known solutions
to fluid flow and wave scattering problems involving bodies with edges. Several explicit
calculations are given and the general procedure deduced. The directness of the method
is evident and we recover some results of WHK, as we must, without requiring any
asymptotic matching. In addition, we show how to develop a small-k approximation to
the Green’s function, for any domain, that furnishes a more straightforward means of
estimating the O(1) terms. We describe the approach by applying it to specific geometries
(half-disc and rectangle for the patch problem in § 2, annulus-disc, disc with barrier and
multiple rectangles for the gap problem in § 3). Then in § 4 we look at a time-dependent
problem involving diffusion through multiple connected rectangles. In § 5, we apply the
direct matched expansions technique to the half-disc problem to derive perturbations in
the higher Fourier modes and show the usefulness of an undetermined scale factor in the
WK method. We conclude in § 6.

2. The patch problem
This is

(∇2 + λ)φ = 0 (2.1)
with Neumann boundary condition φn = 0 over most of the boundary, except for a small
Dirichlet patch with dimension O(ε) where φ = 0. The unperturbed problem always
has the eigenvalue 0, corresponding to the steady-state solution to the original diffusion
equation.

The leading-order value of the lowest eigenvalue obtained using the WK method is the
same for all patch problems: it depends only on the value of the unperturbed eigenfunction
which is essentially the inverse area for the gravest mode, and on the solution of an inner
problem which is the same for all geometries. The result is

λWK =
π

A ln (2/ε)
+O

(
1

(ln (2/ε))2

)
, (2.2)
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where A is the area of the domain. This estimate is handicapped by the very slow
decay of the inverse logarithm. Often the determination of further terms soon becomes
unmanageable, putting an efficient estimate out of reach. Previous experience leads us
to expect an estimate of the form π[A ln (2/ε) + c]−1, where c is a constant that the first
correction term in (2.2) suffices to determine. We present a method that directly gives an
estimate for c that effectively eliminates the need to determine an asymptotic expansion
involving inverse powers of ln(2/ε).

Our approach is to write the problem as an integral equation and expand it close to
the patch. Then we can extract the dependence of the eigenvalue on the patch location
and width by keeping more and more terms in this expansion. The leading-order solution
requires the solution of an associated Poisson problem, as does WHK.

2.1. The half-disc
Suppose that φ(r, θ) satisfies

∇2φ+ k2φ = 0 (0 < r < 1, 0 < θ < π), (2.3)

subject to
∂φ

∂r
= 0 (r = 1, 0 < θ < π), (2.4)

and
∂φ

∂y
= 0 (y = 0, −1 < x < 1, |x− x0| > ε). (2.5)

(We take λ = k2 here for convenience.) The Dirichlet patch corresponds to the region
|x − x0| < ε of the x-axis, on which φ = 0 (the symmetry allows us to take x0 > 0 in
the calculations of this section and, as expected, the results depend only on x2

0). Then
we may write

φ(x, y) =
∫ x0+ε

x0−ε

∂φ

∂y
(x′, 0)G(x, y, x′, k2) dx′ (2.6)

= ε

∫ 1

−1

∂φ

∂y
(x0 + εw, 0)G(x, y, x0 + εw, k2) dw. (2.7)

Here, the Green’s function G(x, y, x′, k2) satisfying

∇2G+ k2G = 0 (0 < r < 1, 0 < θ < π) (2.8)

and
∂G

∂r
= 0 (r = 1, 0 < θ < π),

∂G

∂y
= δ(x− x′) (y = 0, −1 < x < 1) (2.9)

is given by

G =
1
2
Y0(k

√
r2 + x′2 − 2rx′ cos θ)−

∞∑
n=0

εn
Y ′n(k)
2J ′n(k)

Jn(kx′)Jn(kr) cosnθ, (2.10)

where ε0 = 1 and εn = 2 (n ≥ 1) is the Neumann symbol. (The first term in (2.10) is the
Green’s function of the Helmholtz operator in an unbounded domain and Graf’s addition
theorem enables the Neumann boundary condition to be satisfied by adding separated
solutions of the Helmholtz equation.) The appearance of the delta function ensures that
the unit inward flux is confined to the point (x′, 0). It is assumed that J ′n(k) 6= 0 so that
the denominators in G do not vanish.
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The behaviour of G along the patch is then given by

G(x0 + εs, 0, x0 + εw, k2) =
1
2
Y0(kε|s− w|)−

∞∑
n=0

εn
Y ′n(k)
2J ′n(k)

Jn(k(x0 + εw))Jn(k(x0 + εs))

(2.11)

=
1
π

ln ε|s− w|+G∗ + εsG∗1 + εwG∗2 +O(ε2 ln ε), (2.12)

where we must require that k not be too large, to be precise kε = o(1). We have defined
a new function G∗ according to

G∗(x1, x2, k
2) = G(x1, 0, x2, k

2)− 1
π

ln(|x1 − x2|). (2.13)

G∗1 and G∗2 denote derivatives of G∗(x1, x2, k
2) with respect to x1 and x2 respectively

and, like G∗, are evaluated here and below at (x0, x0). We have, on inserting the small-
argument form of Y0 into (2.11),

G∗(x0, x0, k
2) =

1
π

[ln(k/2) + γ]−
∞∑

n=0

εn
Y ′n(k)
2J ′n(k)

Jn(kx0)2, (2.14)

G∗1 = G∗2 = −
∞∑

n=0

εn
Y ′n(k)
2J ′n(k)

J ′n(kx0)Jn(kx0). (2.15)

The new function G∗ (a function of x0 only), also used by WHK, is the key to the
approach and may be obtained numerically from the solution to the following problem,
which is just the previous Helmholtz equation with the logarithmic term removed. Write

G = H +
1
π

log
√
r2 + x′2 − 2rx′ cos θ. (2.16)

Then

∇2H + k2H = −k
2

π
ln
√
r2 + x′2 − 2rx′ cos θ (0 < r < 1, 0 < θ < π) (2.17)

with appropriate Neumann conditions on the boundary. We obtain

G∗ = H(x0, 0, x0, k
2). (2.18)

Another formulation is to write

G = K + 1
2Y0(k

√
r2 + x′2 − 2rx′ cos θ). (2.19)

This leads to
∇2K + k2K = 0 (0 < r < 1, 0 < θ < π) (2.20)

along with appropriate Neumann conditions on the boundary. Then

G∗ = K(x0, 0, x0, k
2) +

1
π

[ln(k/2) + γ]. (2.21)

Returning to the main problem, the square root edge singularity is anticipated by
setting

ε
∂φ

∂y
(x0 + εw, 0) =

1√
1− w2

∞∑
n=0

an(x0, ε)Tn(w), (2.22)

where Tn is a Chebyshev polynomial of the first kind, chosen because the square root
factor is the weight function in the orthogonality property of {Tn : n ≥ 0} (Davis &
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Scharstein, 1993). Substitution in (2.6), with (x, y) = (x0 + εs, 0), i.e. on the patch, then
gives

0 =
∫ 1

−1

dw√
1− w2

∞∑
n=0

anTn(w)G(x0 + εs, 0, x0 + εw, k2) (|s| < 1). (2.23)

We note an additional advantage of the Chebyshev polynomials, namely

ln(2|s− w|) = −
∞∑

m=1

2
m
Tm(s)Tm(w), (2.24)

and substitute (2.12) to obtain

0 =
∫ 1

−1

dw√
1− w2

∞∑
n=0

anTn(w)

[
1
π

ln
ε

2
− 2
π

∞∑
m=1

Tm(s)Tm(w)
m

+G∗

+ ε(sG∗1 + wG∗2) +O(ε2 ln ε)
]
. (2.25)

The orthogonality properties of Chebyshev polynomials yield the equation

0 = a0

[
ln
ε

2
+ πG∗ + πεsG∗1

]
−

∞∑
n=1

an

n
Tn(s) +

π

2
εa1G

∗
2 +O(ε2 ln ε). (2.26)

The left-hand side of (2.26) corresponds to the zero Dirichlet boundary condition in the
patch. More complicated Dirichlet boundary conditions could be considered by expanding
φ(x0 + εs, 0) as a Chebyshev series on the patch. The truncation procedure below would
then have non-zero left-hand sides in the equations.

The T0(s) and T1(s) components of (2.26) give the coupled equations

0 = a0

[
ln
ε

2
+ πG∗

]
+
π

2
εa1G

∗
2 +O(ε2 ln ε). (2.27)

0 = a0πεG
∗
1 − a1 +O(ε2 ln ε). (2.28)

which together yield a1/a0 = O(ε) and lead to the eigenvalue equation

ln
(

2
ε

)
= πG∗+O(ε2 ln ε) = γ+ln(k/2)−πY1(k)

2J1(k)
[J0(kx0)]2−π

∞∑
n=1

Y ′n(k)
J ′n(k)

[Jn(kx0)]2+O(ε2 ln ε).

(2.29)
Keeping two terms in the Chebyshev expansion suffices to obtain (2.29). Clearly this
process can be continued to as many terms as needed in the series (2.22). However, more
terms will be needed in the non-singular parts of the Green’s function (2.11), both from
expanding the Y0 function and from the the series.

Equation (2.29) is valid for all eigenvalues k that are not too large. Neglecting the
order term, we can solve for k numerically using standard root-finding procedures. Al-
ternatively, we can obtain leading-order predictions by expanding for small k:

λ̃ =
2

ln (2/ε)− 3/4 + x2
0 − ln (1− x2

0)
, (2.30)

and for small (k − j1m) (m > 0):

λ̃ = j21m +
2[J0(j1mx0)]2

[J0(j1m)]2
[
ln (2/ε)− ln(j1m/2)− γ + π

∑∞
n=1

Y ′
n(j1m)

J′
n(j1m) [Jn(j1mx0)]2

] (2.31)

These estimates apply to a perturbation of the zeroth azimuthal mode J0(kr), which
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has eigenvalue k = j1m, where j1m is the m’th root of J1(k) = −J ′0(k). Thus J ′1(j1m) =
J0(j1m) and J0(j1m)Y1(j1m) = −2/(πj1m).

To summarize and in order of decreasing accuracy, we now have three predictions
for the lowest eigenvalue: (2.29), which requires numerical root-finding, the small-k and
small-(k − j1m) approximations (2.30) and (2.31), and the basic WK result

ln
(

2
ε

)
=

π

Ak2
. (2.32)

To gain an idea of the accuracy of the different results that have been presented,
Figure 1 shows the eigenvalue λ as a function of ε for the cases x0 = 0 and x0 = 0.3.
The curves show values obtained using the formulas above. The initial guess for the root-
finding procedure was the WK prediction (2.2). Full numerical solutions to (2.3) with
appropriate boundary conditions were used for comparison.

The full solutions were first computed using the MATLAB finite-element toolbox.
Four levels of grid refinement were used. Numerical tests showed that the eigenvalues
had converged to 2 significant figures in the range of ε down to 10−4. The finite-element
toolbox used cannot deal with barriers of zero width. (This may not be a limitation
for physical problems but is awkward when comparing to exact solutions.) A spectral
approach was also used, following closely Weideman & Reddy (2000; see also Trefethen
2000), with 50 Chebyshev functions in r and 50 Fourier modes in θ. The spectral approach
gave plausible results for x0 = 0, but is so poor for x0 = 0.3 that the results are not shown.
The failure of the spectral method is to be expected, since the collocation points on the
boundary grotesquely under-resolve the Dirichlet patch: for example when x0 = 0.3 the
Dirichlet patch corresponds to a single collocation point on the boundary for ε = 10−2.
The step-like structure of the circles is simply a result of the number of collocation points
in the Dirichlet patch being quantized and staying fixed over a range of ε. This is not to
say that an efficient spectral method cannot be found. Rather we see that for an equivalent
amount of programming work (in fact quite a bit less) the asymptotic approach is a fast
and accurate option. In contrast the numerical solution to the Poisson problem (2.17)
both using finite elements and spectral methods was easy, fast, and accurate.

Representative timings are given in Table 1: the main conclusion to be drawn is that the
time in the asymptotic method is independent of ε. The FE method gets more expensive
as more and more grid refinement is required (the refinement is done automatically by
MATLAB).

We have not compared the lowest asymptotic eigenvalues for the half-disc to exact
results for ε down to 10−8, but they are clearly getting more accurate as ε decreases,
since this is an asymptotic expansion. We also note that similar asymptotic expansions
in cases where an exact solution exists were shown by WK to be very accurate.

2.2. The general case

The methods of the previous subsection are evidently independent, except for the con-
struction of the Green’s function, of the half-disc geometry. Suppose that φ(x, y) satisfies
∇2φ+k2φ = 0 in a domainD subject to the homogeneous Neumann condition ∂φ/∂n = 0
on the piecewise smooth boundary C except on a small arc Cp where φ = 0. The latter is
assumed to be not close to a corner, which case needs separate discussion, as illustrated by
the example in § 3.2. Dimensionless parameterization of the small arc is achieved by using
a length scale L associated with D to denote distance along the arc by L(s0 +εs); |s| < 1.
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x0 ε Spectral FE (2.29); explicit G∗ (2.29); numerical G∗ WK
0 10−1 8 10 0.01 6 10−4

- 10−2 8 36 0.01 5 -
- 10−3 160 0.01 6 -
- 10−4 337 0.01 6 -

0.3 10−1 10 0.1 6 -
- 10−2 38 0.1 5 -
- 10−3 150 0.1 5 -
- 10−4 320 0.1 6 -

Table 1. Timings for the half-disc problem on a two-processor 2.7 GHz PowerPC G5 machine
using MATLAB. Each number comes from a single typical calculation and has been rounded to
the near second (or below); no attempt has been made to obtain statistics. The last column is
probably subject to granularity in the MATLAB tic and toc commands.

Using the customary outward normal direction, we generalise (2.6) as

φ(x, y) = −ε
∫ 1

−1

(
∂φ

∂n

)
Cp

(s0 + εw)G(x, y, s0 + εw, k2) dw, (2.33)

in which the source point that generates G is on Cp (in an abuse of notation we replace
the second vector argument of G by the corresponding value of arc length). We observe
that, if r, r′ are two points separated by a distance εL(s− w) along an arc of curvature
ρ, then ln(|r − r′|ρ) = ln(2 sin[ 12εL|s − w|ρ]) = ln(ε|s − w|Lρ) + O(ε2), and deduce that
(2.12) remains valid, after replacing x0 by s0. A similar error term arises from curvature
variations, assumed to occur on the scale L. Use of the outward normal requires us to
replace (2.22) by

ε

(
∂φ

∂n

)
Cp

(s0 + εw) = − 1√
1− w2

∞∑
n=0

an(s0, ε)Tn(w), (2.34)

after which the earlier manipulations establish the general form of the eigenvalue equation
(2.29):

ln
(

2
ε

)
= πG∗ +O(ε2 ln ε). (2.35)

Here the function G∗ is now defined by (more abuse of notation)

G∗(s1, s2, k2) = G(s1, s2, k2)− 1
π

ln(|s1− s2|), G(s1, s2, k2) = G(r1p, r2p, k
2) (2.36)

where rip denote points on Cp with positions given by dimensionless arc length values as
defined above.

We can recover the basic WK result by finding a crude approximation for G∗. We note
that integrating (2.8) over the domain, using the divergence theorem for the first term
and then substituting the point source in the boundary term gives the exact relation
k2
∫

D
G d2r = 1. Hence the leading term in G∗ is A−1k−2, and not an O(1) term, as is

well known (cf. e.g. Kolokolnikov et al. 2005). Substituting this into (2.29) gives (2.32),
which is the same as (2.2). Hence the basic WK estimate is dangerous because, while it
comes from the dominant term in G∗, the eigenvalue relation (2.29) is approximated by
neglecting O(1) terms compared to logarithmic terms.

With interest focussed on the eigenvalue perturbed from zero, we aim to solve the
problem for G as a series in k2. The form of the Helmholtz operator suggests that we
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write

G = 1
2Y0(k|r− r′|) +

1
Ak2

−K0 + k2K1 +O(k4| ln k|), (2.37)

where A is the area of D and the regular functions K0,K1 satisfy

∇2K0 =
1
A
, ∇2K1 = K0. (2.38)

The boundary conditions, derived from the low order terms in the expansion of Y0, are(
∂K0

∂n

)
C

=
1
π

(
∂

∂n
ln |r− r′|

)
C

(r 6= r′), (2.39)

(
∂K1

∂n

)
C

=
|r− r′|2

4π

(
∂

∂n
ln |r− r′|

)
C

+
1
4π

[ln(k/2)+γ−1+ln |r−r′|]
(
∂

∂n
|r− r′|2

)
C

.

(2.40)
In the first instance, these conditions are applied on C − Cp; their extension to C as
shown completes the definitions of K0,K1. Evidently K0 is determined by a Poisson
problem to within an arbitrary constant, whose value is given by the identity∫

D

K0 d2r =
∫

C

∂K1

∂n
ds, (2.41)

obtained by applying the divergence theorem to the second of equations (2.38).
In the half-disc example, equations (2.39) and (2.40) yield(

∂K0

∂r

)
r=1

=
1
π

[
1 +

∞∑
n=1

(x′)n cosnθ

]
, (2.42)

(
∂K1

∂r

)
r=1,y>0

=
1
2π

[
ln(k/2) + γ − 1− (x′)2

2

]
+

∞∑
n=1

an cosnθ, (2.43)

∂K0

∂y
=
∂K1

∂y
= 0 (y = 0, |x| < 1), (2.44)

with an immaterial, whence

K0 =
1
π

[
r2

2
+

∞∑
n=1

(rx′)n

n
cosnθ

]
+ C0, (2.45)

and (2.41) yields

πC0 = ln(k/2) + γ − 3− 2(x′)2

4
. (2.46)

Substitution in (2.35) then gives

ln
(

2
ε

)
∼ ln(k/2) + γ +

π

Ak2
− πK0(x0, 0, x0) =

2
k2

+ ln(1− x2
0) +

3
4
− x2

0, (2.47)

and (2.30) is recovered.

2.3. The rectangle
We now apply this technique to the rectangle 0 < y < a, 0 < x < b with a Dirichlet patch
at x = 0, |y− y0| < ε. We need the Green’s function to the problem with a source within
the patch as above. We then need to isolate the logarithmic singularity of the Green’s
function and the linear correction to it, which will not have a simple closed form as in
(2.14).
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Let G(x, y, y′, k2) be the Green’s function such that

∇2G+ k2G = 0 (0 < x < b, 0 < y < a), (2.48)

subject to the Neumann boundary conditions

∂G

∂y
= 0 (y = 0, a) (2.49)

∂G

∂x
= δ(y − y′) (x = 0) (2.50)

∂G

∂x
= 0 (x = b) (2.51)

It is assumed that k2 does not coincide with an eigenvalue and noted that (2.50) requires
a source of strength 2 at (0, y′). Thus, by construction,

G =
1
2

∞∑
n=−∞

∞∑
m=−∞

{Y0[k
√

(x− 2nb)2 + (y − y′ − 2ma)2]

+Y0[k
√

(x− 2nb)2 + (y + y′ + 2ma)2]− 2Y0[k
√

(2nb)2 + (y′ + 2ma)2]},(2.52)

with the constants included to ensure convergence.
Then, evidently,

φ(x, y) =
∫ y0+ε

y0−ε

∂φ

∂x
(0, y′)G(x, y, y′, k2) dy′,

= ε

∫ 1

−1

∂φ

∂x
(0, y0 + εw)G(x, y, y0 + εw, k2) dw. (2.53)

Substitution of

ε
∂φ

∂x
(0, y0 + εw) =

1√
1− w2

∞∑
n=0

an(y0, ε)Tn(w). (2.54)

and the definition,

G∗(y, y′, k2) = G(0, y, y′, k2)− 1
π

ln
|y − y′|
a

, (2.55)

in (2.53) then yields, as described above,

φ(0, y0 + εs) = a0

[
ln
( ε

2

)
+ πG∗(y0, y0, k2) + πεsG∗1(y0, y0, k

2) + · · ·
]

−
∞∑

n=1

an

n
Tn(s) +

π

2
εa1G

∗
2(y0, y0, k

2) + · · · (|s| < 1), (2.56)

where the subscripts 1 and 2 denote differentiation with respect to y and y′ respectively.
For the Dirichlet patch we set φ(0, y0 + εs) = 0 in (2.56) and deduce that

G∗(y0, y0, k2)− 1
π

ln
(

2
ε

)
= O(ε2 ln ε), (2.57)

because a1/a0 = O(ε) in general. The WK result (2.2) gives (π/ab)[ln (2/ε)]−1.
The only part of the above procedure that is not entirely straightforward is the calcu-

lation of G∗ and its various derivatives. This is analogous to the associated problem of
WHK. The function G∗(y0, y0, k2) is defined by (2.55) and can be obtained by solving
a Poisson equation analogous to that in the previous section. Once G∗ is known, (2.57)
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can then be solved by a root-finding procedure, since in general the dependence of G∗

on k is known only numerically.
One procedure that can be used for the rectangle is a resummation of the series for

G and then judicious use of the Ewald sum procedure. This is outlined in Appendix
A. By contrast, the small-k approximation method described by Eqs. (2.37)-(2.41) is
remarkably successful. The problem forK0 is first reduced to the elementary construction
of a harmonic function that has zero normal derivatives on the three sides x = 0, y =
0, y = a. The logarithmic terms with n = 0 in (2.52) yield

1
π

∞∑
m=−∞

{ln
√
x2 + (y − y′ − 2ma)2 + ln

√
x2 + (y + y′ + 2ma)2 − 2 ln

√
|y′ + 2ma|},

which can be summed by evaluating its x- and y-derivatives. The additional function of
x′, determined so that the sum is zero at the origin, is immaterial here since K0 contains
an arbitrary constant. Thus we have

K0(x, y, y′)− 1
π

ln[k
√
x2 + (y − y′)2] =

x2

2ab
−x
a

+
2
π

∞∑
n=1

1
n
e−nπx/a cos

nπy

a
cos

nπy′

a
+K0

1 ,

(2.58)
in which the log term appears on the left hand side because the same unwanted term is
included in the series, x2/2ab is a particular solution of ∇2K0 = (ab)−1 in (2.38) and
∇2K0

1 = 0, subject to ∂K0
1/∂x = 0 at x = 0 and ∂K0

1/∂y = 0 at y = 0, a. Hence, since
the left hand side of (2.58) must have zero x-derivative at x = b,

K0
1 (x, y, y′) =

2
π

∞∑
n=1

e−nπb/a

n

cosh nπx
a

sinh nπb
a

cos
nπy

a
cos

nπy′

a
+ C0. (2.59)

The boundary conditions (2.40) on K1 yield the required jumps[
∂K1

∂x

]x=b

x=0

=
b

2π
[ln(k/2) + γ − 1

2 + ln
√
b2 + (y − y′)2], (2.60)

[
∂K1

∂y

]y=a

y=0

=
a

2π
[ln(k/2) + γ − 1

2 ] +
1
2π

[(a− y′) ln
√
x2 + (a− y′)2 + y′ ln

√
x2 + (y′)2],

(2.61)
and subsequent substitution of these and (2.56), (2.59) into (2.41) gives, after lengthy
algebra,

C0 =
b

3a
+

1
π

(ln 1
2 + γ). (2.62)

With G∗ defined by (2.55), substitution in (2.56) then gives

ln
(

2
ε

)
= πG∗(y0, y0, k2) +O(ε2 ln ε)

∼ π

abk2
− πb

3a
+ ln(2π sin

πy0
a

)− 2
∞∑

n=1

e−nπb/a

n sinh nπb
a

cos2
nπy0
a

,

since the ln singularities in K0 have to cancel. Thus is revealed the simple result

λ̃ ∼

[
b2

3
+
ab

π

{
ln
(

1
επ sin πy0

a

)
+ 2

∞∑
n=1

e−nπb/a

n sinh nπb
a

cos2
nπy0
a

}]−1

. (2.63)
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ε Spectral FE (2.35); numerical G∗ WK
10−1 9 14 2 10−4

10−2 9 39 10 -
10−3 171 1 -
10−4 372 11 -

Table 2. Timings for the rectangle problem on a two-processor 2.7 GHz PowerPC G5 machine
using MATLAB. Each number comes from a single typical calculation and has been rounded to
the near second (or below); no attempt has been made to obtain statistics. The last column is
probably subject to granularity in the MATLAB tic and toc commands.

Note that, as in (2.30), the algebraic form of the estimate provides warning of the
method’s failure when the patch approaches a corner.

Figure 2 compares the different results. The naive spectral method, which is entirely
analogous to that in § 2.1, performs poorly yet again, while the finite element method
and the asymptotic result are close again. Once again the WK result is clearly the
correct asymptotic limit, but has slow inverse logarithmic decay. Computation times
are summarized in Table 2; they have the same characteristics as before.

3. The gap problem
We now consider problems with gaps between domains. The relevant geometries are

shown in Fig. 3 for § 3.1, § 3.2 and § 4.

3.1. Disc and annulus
Suppose that the disk 0 ≤ r < R1 is connected to the annulus R1 < r < R2 by the small
gap r = R1, |θ| < ε � 1. The interior Green’s function Gi(r, θ − θ0, k

2) and the annular
Green’s function Ga(r, θ − θ0, k

2) satisfying

∇2Gi + k2Gi = 0 (0 < r < R1), (3.1)

∇2Ga + k2Ga = 0 (R1 < r < R2), (3.2)
and such that

∂Ga

∂r
=

1
R1

δ(θ − θ0) = −∂Gi

∂r
(r = R1), (3.3)

∂Ga

∂r
= 0 (r = R2), (3.4)

are given by

Gi =
1

2πkR1

∞∑
n=0

εn
J ′n(kR1)

Jn(kr) cosn(θ − θ0), (3.5)

Ga =
1

2πkR1

∞∑
n=0

εn cosn(θ − θ0)
{
Yn(kr)
Y ′n(kR1)

+
[
1− J ′n(kR2)

J ′n(kR1)
Y ′n(kR1)
Y ′n(kR2)

]−1 [
Jn(kr)
J ′n(kR1)

− Yn(kr)
Y ′n(kR1)

]}
. (3.6)

The appearance of the periodic delta function ensures that the unit inward (disk or an-
nulus) flux is confined to the point r = R1, θ = θ0. The associated logarithmic singularity
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can be displayed by rewriting (3.5) and the first line of (3.6) in the forms

Gi =
1

2πkR1

J0(kr)
J1(kR1)

− 1
π

lnR1 +
1
π

ln
√
r2 +R2

1 − 2rR1 cos(θ − θ0)

− 1
π

∞∑
n=1

[
Jn(kr)

kR1J ′n(kR1)
− 1
n

(
r

R1

)n]
cosn(θ − θ0), (3.7)

Ga = − 1
2πkR1

Y0(kr)
Y1(kR1)

− 1
π

ln r +
1
π

ln
√
r2 +R2

1 − 2rR1 cosn(θ − θ0)

+
1
π

∞∑
n=1

[
Yn(kr)

kR1Y ′n(kR1)
+

1
n

(
R1

r

)n]
cosn(θ − θ0),

in which

Jn(kr)
kR1J ′n(kR1)

∼ 1
n

(
r

R1

)n

,
Yn(kr)

kR1Y ′n(kR1)
∼ − 1

n

(
R1

r

)n

as k → 0.

The second and last terms in (3.7) cancel with the third term to leave (3.5), but the
sum is now well behaved near the singular point. Similar comments apply to Ga. The
assumption that k2 is not an eigenvalue of either the disk or the annulus ensures that
the denominators in Gi and Ga are non-zero.

Suppose that φ(r, θ) satisfies (3.1,3.2,3.4) and

∂φ

∂r
= 0 (r = R1, |θ| > ε). (3.8)

Then, evidently,

φ(r, θ) = −
∫ ε

−ε

∂φ

∂r
(R1, θ0)Gi(r, θ − θ0, k

2)R1 dθ0 (r < R1) (3.9)

so that

φ(R1, εs) = −εR1

∫ 1

−1

∂φ

∂r
(R1, εs

′)Gi(R1, εs− εs′, k2) ds′, (3.10)

and

φ(r, θ) =
∫ ε

−ε

∂φ

∂r
(R1, θ0)Ga(r, θ − θ0, k

2)R1 dθ0 (R1 < r < R2) (3.11)

so that

φ(R1, εs) = εR1

∫ 1

−1

∂φ

∂r
(R1, εs

′)Ga(R1, εs− εs′, k2) ds′. (3.12)

Matching of (3.10) and (3.12) yields

0 = εR1

∫ 1

−1

∂φ

∂r
(R1, εs

′)[Gi(R1, εs− εs′, k2) +Ga(R1, εs− εs′, k2)] ds′, (3.13)

where, from (3.7) and (3.6),

Gi(R1, εs− εs′, k2) =
1

2πkR1

J0(kR1)
J1(kR1)

+
1
π

ln(ε|s− s′|)− 1
π

∞∑
n=1

[
Jn(kR1)

kR1J ′n(kR1)
− 1
n

]
+O(ε2 ln ε), (3.14)
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Ga(R1, εs− εs′, k2) = − 1
2πkR1

Y0(kR1)
Y1(kR1)

+
1
π

ln(ε|s− s′|) +
1
π

∞∑
n=1

[
Yn(kR1)

kR1Y ′n(kR1)
+

1
n

]

+
1

(πkR1)2

∞∑
n=0

εn
J ′n(kR1)Y ′n(kR1)

[
1− J ′n(kR2)

J ′n(kR1)
Y ′n(kR1)
Y ′n(kR2)

]−1

+O(ε2 ln ε), (3.15)

since ln[2 sin(ε|s − s′|/2)] = ln[ε|s − s′|] + O(ε2). The square root edge singularity is
anticipated by setting

εR1
∂φ

∂r
(R1, εs) =

1√
1− s2

∞∑
n=0

an(ε)Tn(s), (3.16)

and assuming that a0 6= 0. Then the eigenvalue equation, to leading order in ε and
obtained by substitution in (3.13), is

π ln
(

2
ε

)
= − 1

2(kR1)2J1(kR1)Y1(kR1)

[
1− Y1(kR2)

Y1(kR1)
J1(kR1)
J1(kR2)

]−1

+
1

(kR1)2

∞∑
n=1

εn
J ′n(kR1)Y ′n(kR1)

[
1− J ′n(kR2)

J ′n(kR1)
Y ′n(kR1)
Y ′n(kR2)

]−1

−
∞∑

n=1

[
1

(kR1)2J ′n(kR1)Y ′n(kR1)
− π

n

]
+O(ε2 ln ε), (3.17)

This method may be readily extended to nested annuli with arbitrarily placed gaps
in a manner analogous to that given above for the rectangles. The extension to non-
circular boundaries follows that for the single domain in § 2.2 and the general form of
the eigenvalue equation (2.35) is then replaced by

ln
(

2
ε

)
= π(G∗i +G∗a)/2 +O(ε2 ln ε), (3.18)

consistent with (3.17).
For the small-k approximation in the circular geometry considered above, the applica-

tion of (2.37)-(2.41) to both Green’s functions yields Ai = πR2
1, Aa = π(R2

2 −R2
1),(

∂K0
i

∂r

)
r=R1

=
1
π

[
∂

∂r
ln
√
r2 +R2

1 − 2rR1 cos(θ − εw)
]

r=R1,θ 6=εw

=
1

2πR1
,

K0
i =

r2

4πR2
1

+ C0
i ,

∫
Di

K0
i d2r =

R2
1

8
+ πR2

1C
0
i ,

(
∂K1

i

∂r

)
r=R1

=
R1

2π
[1− cos(θ − εw)]

[
ln(kR1/2) + γ − 1

2 −
∞∑

n=1

1
n

cosn(θ − εw)

]

=
R1

2π
[ln(kR1/2) + γ] + Fourier cosine series ,

1
8

+ πC0
i = ln(kR1/2) + γ,

πG∗i (R1, R1) ∼ ln(kR1/2) + γ +
1

k2R2
1

− πK0
i (R1, R1) =

1
k2R2

1

− 1
8
,
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∂K0

a

∂r

)
r=R1

=
1

2πR1
,

(
∂K0

a

∂r

)
r=R2

=
1

πR2

[
1 +

∞∑
n=1

(
R1

R2

)n

cosn(θ − εw)

]
,

K0
a =

r2

4π(R2
2 −R2

1)
+

1
2π

[
1− R2

1

R2
2 −R2

1

]
ln
(
r

R1

)
+ C0

a

+
1
π

∞∑
n=1

1
n

[(
R2

R1

)2n

− 1

]−1 [(
r

R1

)n

+
(
R1

r

)n]
cosn(θ − εw),

∫
Da

K0
a d2r =

R2
2

4
− 3

8
(R2

2 −R2
1) +

[
1− R2

1

R2
2 −R2

1

]
R2

2

2
ln
(
R2

R1

)
+ π(R2

2 −R2
1)C

0
a +

R2
1

4
,(

∂K1
a

∂r

)
r=R1

=
R1

2π
[ln(kR1/2) + γ] + Fourier cosine series ,

(
∂K1

a

∂r

)
r=R2

=
R2

2π
[ln(kR2/2) + γ]− R2

2 −R2
1

4πR2
+ Fourier cosine series ,

πC0
a +

R2
1

4(R2
2 −R2

1)
= ln(kR1/2) + γ − 1

8
− R2

2

4(R2
2 −R2

1)
+

R4
2

2(R2
2 −R2

1)2
ln
(
R2

R1

)
,

πG∗a(R1, R1) ∼ ln(kR1/2) + γ +
1

k2(R2
2 −R2

1)
− πK0

a(R1, R1),

ln
(

2
ε

)
∼ π

2
[G∗i (R1, R1) +G∗a(R1, R1)]

∼ R2
2

2(R2
2 −R2

1)

 1
k2R2

1

+
1
4
−
R2

2 ln
(

R2
R1

)
2(R2

2 −R2
1)

− ∞∑
n=1

1
n

[(
R2

R1

)2n

− 1

]−1

,

which can be deduced from (3.17).

3.2. Circle with barrier
We now consider a circle of radius 1 with a barrier extending across its diameter from −1
to 1−2ε. Because of the symmetry of this problem, the lowest eigenvalue of this problem
is the same as that for the Dirichlet patch problem above. However, putting x0 = 1 − ε
into (2.30) indicates a breakdown in the approximation procedure. To overcome this
problem, we use the following approach.

Since x0 = 1− ε, the singularity in G is close to the boundary r = 1. So we exploit the
identity, {

∂

∂r

[
ln
√
r2 + x′2 − 2rx′ cos θ + ln

√
r2 +

1
x′2

− 2
r

x′
cos θ

]}
r=1

= 1,

by replacing (2.10) by

G(r, θ, x′, k2) =
1
2
Y0(k

√
r2 + x′2 − 2rx′ cos θ)−

∞∑
n=0

εnY
′
n(k)

2J ′n(k)
Jn(kx′)Jn(kr) cosnθ

+
1
2
Y0

(
k

√
r2 +

1
x′2

− 2
r

x′
cos θ

)
−

∞∑
n=0

εn
2
Yn(k/x′)Jn(kr) cosnθ,

(3.19)
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in which the additional terms sum to zero. Then

G(1− ε+ εs, 0, 1− ε+ εw, k2) =
1
2
Y0(kε|s− w|) +

1
2
Y0[kε(2− s− w) + kε2(1− w)2 + ...]

−
∞∑

n=0

εn
2

[
Y ′n(k)
J ′n(k)

Jn(k) + Yn(k) +O(ε2)
]
Jn[k(1− ε+ εs)]

∼ 2
π

[γ + ln(k/2)] +
1
π

ln(ε|s− w|) +
1
π

ln[ε(2− s− w)]

−
∞∑

n=0

εn
2

[
Y ′n(k)
J ′n(k)

Jn(k) + Yn(k)
]
Jn(k) +O(ε). (3.20)

Thus, at small k,

πG(1− ε+ εs, 0, 1− ε+ εw, k2) ∼ ln(ε|s−w|) + ln[ε(2− s−w)] +
2
k2
− 1

4
+O(ε), (3.21)

because Y ′n(k)Jn(k) + Yn(k)J ′n(k) = [Yn(k)Jn(k)]′ = O(k)(n > 0). Substitution of (3.21)
into (2.23), namely

0 =
∫ 1

−1

dw√
1− w2

∞∑
n=0

anTn(w)G(1− ε+ εs, 0, 1− ε+ εw, k2) (|s| < 1), (3.22)

now yields, at leading order,

− ln
(

2
ε2

)
+

2
k2
− 1

4
+

1
π2

∫ 1

−1

∫ 1

−1

dw√
1− w2

ds√
1− s2

ln(2− s− w) ∼ 0. (3.23)

The double integral is

1
π2

∫ π

0

∫ π

0

ln(2−cosα−cosβ) dα dβ =
1
π

∫ π

0

ln

[
2− cosα+

√
(1− cosα)(3− cosα)

2

]
dα,

because ∫ π

0

ln(λ− cosβ) dβ = π ln

(
λ+

√
λ2 − 1
2

)
(λ > 1).

The remaining integral is

− ln 2 +
2
π

∫ π

0

ln
[
sin

α

2
+
√

1 + sin2 α

2

]
dα = − ln 2 +

4
π
I(1),

where

I(x) =
∫ π/2

0

ln[x sinψ +
√

1 + x2 sin2 ψ] dψ. (3.24)

Since I ′(x) = (arctanx)/x and I(0) = 0, it follows that

I(1) =
∫ 1

0

arctanx
x

dx =
∫ π/2

0

u du
2 sinu

= CG, (3.25)

where CG = 0.915 . . . is Catalan’s constant. Hence (3.23) yields the estimate

λ̃ ∼ 1
ln
(

2
ε

)
+ 1

8 −
2CG

π

. (3.26)

Unfortunately, simple finite-element methods, such as the MATLAB toolbox, cannot
handle domains that are divided into two by a barrier with zero width as in Fig. 3(a,b). A
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barrier with small but non-zero width could be used, but then one would not strictly be
comparing the same values. More sophisticated software such as PLTMG (Bank 1994)
can do this but we did not pursue this approach. Another option is to use the ex-
tension to the method of particular solutions due to Betcke & Trefethen (2005). This
approach represents the solution by a sum of Fourier–Bessel terms that have the appro-
priate inverse-square root behaviour at the tip of the barrier, and enforces the correct
Neumann condition on the rest of the boundary. To ensure numerical well-posedness,
additional points in the interior of the domain are used to force the solution away from
zero in the interior. However the number of points on the boundary close to the gap,
which is obviously crucial to the success of the method, depends on the total number of
points used. Smaller gaps require more points to resolve the geometry of the boundary
close to the gap. In practice the method is beset by the same problems as the naive
spectral approach mentioned above.

3.3. Multiple rectangles
Suppose that the N + 1 rectangles {Ri; 0 ≤ i ≤ N} lie at ib ≤ x ≤ (i + 1)b, 0 ≤ y ≤ a
and are connected by gaps at x = ib, Yi − ε < y < Yi + ε(1 ≤ i ≤ N). Then, as in (2.53),

φ(x, y) = −ε
∫ 1

−1

∂φ

∂x
(b, Y1 + εw)G(b− x, y, Y1 + εw, k2) dw (0 < x < b), (3.27)

φ(x, y) = ε

∫ 1

−1

∂φ

∂x
(ib, Yi + εw)G(x− ib, y, Yi + εw, k2) dw

−ε
∫ 1

−1

∂φ

∂x
(ib+ b, Yi+1 + εw)G(ib+ b− x, y, Yi+1 + εw, k2) dw

(0 < x− bi < b) (0 < i < N), (3.28)

φ(x, y) = ε

∫ 1

−1

∂φ

∂x
(Nb, YN + εw)G(x−Nb, y, YN + εw, k2) dw

(0 < x−Nb < b). (3.29)

The square root edge singularity is again anticipated by setting

ε
∂φ

∂x
(ib, Yi + εw) ∼ ai0√

1− w2
(1 ≤ i ≤ N), (3.30)

for the leading term, and then matching in the gaps yields the asymptotic eigenvalue
problem in the form of a tridiagonal system of N homogeneous equations for {ai0; 1 ≤
i ≤ N}, namely

2ai0

[
G∗(Yi, Yi, k

2)− 1
π

ln
(

2
ε

)]
− ai−1,0G(b, Yi, Yi−1, k

2)

−ai+1,0G(b, Yi, Yi+1, k
2) ∼ 0 (1 ≤ i ≤ N) (a00 = 0 = aN+1,0). (3.31)

Note that for N = 1, (3.31) just recovers the small-k result (2.63) for the Dirich-
let patch, as discussed in § 1, because x = b is then a line of symmetry. Hence, since
G∗(Yi, Yi, k

2) and G(b, Yi, Yi±1, k
2) have the term (abk2)−1, the leading-order behaviour

for small k of the N eigenvalues is λWK times the eigenvalues of the tridiagonal ma-
trix with diagonal elements unity and super/subdiagonal elements 1

2 . By setting up a
recurrence relation, this matrix is found to have characteristic polynomial

∆N =
1

2N
UN (1− λ), (3.32)
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where UN (cosψ) = sin(N + 1)ψ/ sinψ is a Chebyshev polynomial of the second kind.
Thus the leading order eigenvalues are just 1 − cos(jπ/(N + 1)(1 ≤ j ≤ N) times the
basic WK result (2.32) for the Dirichlet patch problems, for any Yi not close to 0 or a.
Evidently, these depend on area but not on Yi. However, inclusion of the O(1) terms
in all elements of (3.31) gives N approximate eigenvalues that are split off from the set
λWK [1 − cos(jπ/(N + 1)](1 ≤ j ≤ N). Figure 4 shows typical eigenvalues for multiple
rectangles. Extensions to rectangles of different widths and heights are straightforward.

4. Diffusion through multiple rectangles
If we revert to the initial-value problem

∂u

∂t
= ∇2u, u(x, y, 0) =

{
N + 1 (0 < x < b, 0 < y < a)

0 (b < x < Nb+ b, 0 < y < a) (4.1)

and apply the Laplace transform

ū(x, y) =
∫ ∞

0

ue−pt dt, (4.2)

then

∇2ū− pū =
{
−(N + 1) (0 < x < b, 0 < y < a)

0 (b < x < Nb+ b, 0 < y < a) (4.3)

The solution is given by (3.27)-(3.29), with ū and −p instead of φ and k2 respectively
and the additional term (N +1)/p on the right-hand-side of the first equation. If we then
mimic (3.30) with Ai0(p) instead of ai0, the matching conditions analogous to (3.31) are

2Ai0(p)
[
G∗(Yi, Yi,−p)−

1
π

ln
(

2
ε

)]
−Ai−1,0(p)G(b, Yi, Yi−1,−p)

−Ai+1,0(p)G(b, Yi, Yi+1,−p) ∼
N + 1
pπ

δi1 (1 ≤ i ≤ N) (A00 = 0 = AN+1,0).(4.4)

and the determination of the poles is the above eigenvalue problem. Since, either from
(A 1) or its definition, G has the term −1/pab, the functions {Ai0(p); 1 ≤ i ≤ N} are
regular at p = 0 and hence the flux through each gap eventually vanishes. The matching
conditions yield difference equations whose solution is such that

Ai0(0) = −ab
π

(N + 1− i) (1 ≤ i ≤ N) (4.5)

and subsequent substitution in the integrals for ū verifies that

lim
t→∞

u(x, y, t) = 1 (0 < x < Nb+ b, 0 < y < a), (4.6)

as expected.
The truncated system (4.4) was solved to produce the Laplace-transformed variables

Ai0(p). These Laplace transforms were subsequently inverted by following the method of
Talbot (1979), yielding the time evolution of the leading order flux values in the i-th gap
as πai0(t), in the notation of § 3.3.

5. Matched asymptotic expansions for the half-disk with x0 = 0
Here we consider the lowest three Fourier modes and match more directly and infor-

mally than WK. On defining inner coordinates by

(x, y) = ε(X,Y ) = ε(cosh ξ cos η, sinh ξ sin η), (5.1)
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the leading order inner field is Laplacian and, to be zero at ξ = 0 (the gap) and have
zero flux across the neighbouring boundary (η = 0, π), must be of the form

φinner = c0ξ +
∞∑

n=1

cn sinhnξ cosnη, (5.2)

To satisfy (2.3) with Neumann boundary conditions, the zeroth mode outer field is

φ = J0(kr)− Y0(kr)
J1(k)
Y1(k)

∼ 1− (kr/2)2 − 2J1(k)
πY1(k)

[ln(kr/2) + γ] as r → 0,

since J1(k) = −J ′0(k) is small. But (5.1) yields

ξ ∼ ln(2r/ε), (5.3)

and so matching is achieved with only c0 6= 0 in (5.2), whence the x0 = 0 versions of
(2.29) and hence (2.30–2.31) are recovered. These estimates are, for k2 � 1,

k2 ∼ 2
[
ln
(

2
ε

)
− 3

4

]−1

,

and, for k ' j′0m = j1m,

k ∼ j1m +
1

j1m[J0(j1m)]2
[
ln
(

2
ε

)
− γ − ln(j1m/2)

] . (5.4)

This result is obtained by the WK method with

φ0 + λ1φ1 ∼ µ(ε)[ln r + ln(2/ε)], (5.5)

∇2φ1 + j21mφ1 = −φ0 = −J0(j1mr), k2 = λ = j21m + λ1, (5.6)

where µ(ε) is a scale factor to be determined. The right-hand side of (5.5) is the limit of
the Laplacian field (5.2) away from the patch. Thus

φ1 = −rJ1(j1mr)
2j1m

+B1Y0(j1mr), (5.7)

because inclusion of J0(j1mr) is a redundant rescaling of φ0. Condition (2.4) determines
B1 = π[J0(j1m)]2/4 and subsequent matching of the ln r terms and the constants in (5.5)
and (5.7) yields

1
2 [J0(j1m)]2λ1 = µ(ε) =

1
ln
(

2
ε

)
− γ − ln(j1m/2)

and hence (5.4). The use of µ(ε) is advantageous and the method is evidently equivalent
to the more structured matched asymptotic expansions approach.

Reverting to the direct method, the first mode outer field that satisfies (2.3) with
Neumann boundary conditions, is

φ =
[
J1(kr)− Y1(kr)

J ′1(k)
Y ′1(k)

]
cos θ ∼ x

[
k

2
+

2J ′1(k)
πkY ′1(k)r2

+O(k − j′1m)
]

as r → 0,

where j′1m is the m-th zero of J ′1 and J ′1(k) is small. But (5.1) yields

ε sinh ξ cos η = x tanh ξ ∼ x

(
1− ε2

2r2

)
as r →∞, (5.8)
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and so matching is achieved with only c1 6= 0 in (5.2), whence

ε2

2
∼ − 4J ′1(k)

πk2Y ′1(k)
.

If k ' j′1m, the estimate reduces to

k ∼ j′1m +
ε2j′1m

4[J1(j′1m)]2
(
1− 1

j′2
1m

) , (5.9)

which is an O(ε2) correction, consistent with the term −Y ′
1 (k)

J′
1(k)J1(kεw)J1(kεs) in (2.11).

This pattern is continued in higher modes but less simply. The second mode outer field
is approximated by

φ =
[
J2(kr)− Y2(kr)

J ′2(k)
Y ′2(k)

]
cos 2θ ∼

[
k2r2

8
+

4J ′2(k)
πk2Y ′2(k)r2

+O(k − j′2m)
]

cos 2θ as r → 0,

since J ′2(k) is small. Thus the expansion

ε2 sinh 2ξ cos 2η ∼ (x2 − y2)
(

2− ε4

4r4

)
− ε2 as r →∞,

shows that matching with the inner field requires that

4J ′2(k)
πk2Y ′2(k)

∼ −k
2ε4

64
,

whence the eigenvalue estimate is

k ∼ j′2m +
ε4j′32m

128[J2(j′2m)]2
(
1− 4

j′2
2m

) , (5.10)

which is an O(ε4) correction, consistent with the term −Y ′
2 (k)

J′
2(k)J2(kεw)J2(kεs) in (2.11).

Moreover, the restriction in (5.2) to odd functions of ξ mandates additional terms

k2ε2

16
µ(ε)

{
ξ,
π

2

[
Y0(j′2mr)− J0(j′2mr)

Y1(j′2m)
J1(j′2m)

]}
in {φinner, φ} respectively, where

µ(ε) =
1

ln
(

2
ε

)
− γ − ln(j′2m/2) + πY1(j′

2m)
2J1(j′

2m)

.

Thus the eigenvalue correction is O(ε4) but the inner field generates an O[ε2/ ln(2/ε)]
correction to the outer field. Higher order terms in φinner involve Mathieu functions.

6. Conclusion
Our method gives a dominant role to G∗, which can be computed more easily than

the eigenfunctions, for any piecewise smooth boundary. In particular, we have solved for
G∗ numerically for the rectangle. Moreover, we give a straightforward construction for
small-k, which furnishes the desired estimate of the lowest eigenvalue, that is, the one
that is a perturbation from 0.

The numerical solution of the full patch problem is computationally demanding. For
values of ε smaller than can be attained for the patch problem, we can be reassured by
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the fact that exact solutions that exist for related problems such as that in Titcombe
& Ward (2000) show excellent agreement between the exact solution and the eigenvalue
obtained from resummed series corresponding to (2.29) here.

Bigg & Tuck (1982) use a matched-asymptotic expansion approach to calculate Helmholtz
resonances in cavities with small openings. Our approach could be applied to that prob-
lem.

The authors gratefully acknowledge helpful discussions with Professor William R.
Young of the Scripps Institution of Oceanography and with Professor Joseph B. Keller.

Appendix A. Ewald sum
The Bloch expansion is obtained from the image array in (2.52) by solving

∇2G+ k2G = 2
∞∑

n=−∞

∞∑
m=−∞

δ(x− 2nb)[δ(y − y0 − 2ma) + δ(y + y0 + 2ma)]

=
1

2ab

∞∑
n=−∞

∞∑
m=−∞

einπx/b[eimπ(y−y0)/a + eimπ(y+y0)/a]

in the plane, whence

G(x, y, y0, k2) =
1

2ab

∞∑
n=−∞

∞∑
m=−∞

einπx/b[eimπ(y−y0)/a + eimπ(y+y0)/a]
k2 − π2(m2/a2 + n2/b2)

(A 1)

The n = 0 = m term is 1/abk2 and, for k < π/max(a, b), the Ewald transformation
technique (Hasimoto 1959) is followed by writing

1
k2 − π2(m2/a2 + n2/b2)

= −
∫ ∞

0

e[k
2−π2(m2/a2+n2/b2)]α dα

in the remaining terms and splitting the range of integration at α0, an arbitrary constant
(cf. Davis & James 1996). For the lower range, convergence is enhanced by using the
Fourier transform, ∫ ∞

−∞
e−β2/αe−2πinβ/bdβ =

√
παe−(πn/b)2α,

to achieve the rearrangement

− 1
2ab

∫ α0

0

ek2α

{ ∞∑
n=−∞

∞∑
m=−∞

eiπ(nx/b+my/a)e−π2(m2/a2+n2/b2)α − 1

}
dα

=
1

2ab

(
ek2α0 − 1

k2

)
− 1

2π

∫ ∞

1

ek2α0/ξ exp[−(x2 + y2)
ξ

4α0
]
dξ
ξ

− 1
2π

∫ ∞

1

ek2α0/ξ
∑

(m,n)

∑
6=(0,0)

exp{−[(x− 2bn)2 + (y − 2am)2]
ξ

4α0
}dξ
ξ
,

in which the first integral has the same singular term, (2π)−1 ln(x2+y2), as (1/2)Y0[k
√
x2 + y2].

Substitution in (A 1) then yields

G(x, y, y0, k2) =
ek2α0

abk2
− 1

2π
E1

[
x2 + (y − y0)2

4α0

]
− 1

2π

∫ ∞

1

[ek2α0/ξ − 1] exp[−(x2 + y2)
ξ

4α0
]
dξ
ξ
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− 1
2π

∫ ∞

1

ek2α0/ξ
∑

(m,n)

∑
6=(0,0)

exp{−[(x− 2bn)2 + (y − y0 − 2am)2]
ξ

4α0
}dξ
ξ
,

− 1
2π

∫ ∞

1

ek2α0/ξ
∞∑

n=−∞

∞∑
m=−∞

exp{−[(x− 2bn)2 + (y + y0 + 2am)2]
ξ

4α0
}dξ
ξ

+
1

2ab

∑
(m,n)

∑
6=(0,0)

einπx/b[eimπ(y−y0)/a + eimπ(y+y0)/a]
e[k

2−π2(m2/a2+n2/b2)]α0

k2 − π2(m2/a2 + n2/b2)
.

(A 2)

If k2 is close to a higher eigenvalue, say (m,n) = (M,N), then the Ewald transformation
is applied to only those terms for which m2/a2 + n2/b2 > M2/a2 +N2/b2, which again
yields (A 2). A clue to this is obtained by noting that the first term in (A 2) can be
absorbed in the final series.

When (A 2) is substituted into (2.55), the removal of the logarithmic singularity is
achieved by the identity

lim
ε→0

[
− 1

2π
E1

(
ε2(s− w)2

4α0

)
− 1
π

ln(ε|s− w|)
]

=
γ − ln(4α0)

2π
,

obtained by integration by parts of

E1(X) =
∫ ∞

X

e−u

u
du = −Ei(−X) (X > 0),

prior to evaluating the limit. Thus G∗(y0, y0, k2) is deduced from (A2) by replacing the
second term by [γ − ln(4α0)]/2π and setting (x, y) = (0, y0) in the remaining terms.
Verification of no dependence on α0 provides a computational check.
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Figure 1. Lowest eigenvalue λ for the half-disc as a function of ε for x0 = 0 (left panel) and
x0 = 0.3 (right panel). Solid curves: computed by solving for k in (2.29), using the explicit form
of G∗ as well as G∗ from (2.18) and (2.21) computed using finite elements - the three curves are
indistinguishable. Dots: leading-order approximation (2.30), horizontal/vertical crosses: lead-
ing-order approximation (2.30) neglecting the infinite series. Dashed curves: numerical solution
to the original eigenvalue problem (2.3) using finite elements. Circles (x0 = 0 only): numerical
solution to the original eigenvalue problem using a naive spectral method to solve (2.3). Diagonal
crosses: leading-order WK prediction (2.2).
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Figure 2. Lowest eigenvalue λ for the rectangle with a = 2, b = 1 and y0 = 0.3. Solid curve:
computed by solving for k in (2.57), using G∗ computed numerically using finite elements. Dots:
leading-order approximation (2.63). Dashed curves: numerical solution to the original eigenvalue
problem using finite elements. Circles: numerical solution to the original eigenvalue problem
using a naive spectral method. Crosses: leading-order WK prediction (2.2).
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Figure 3. Geometry for (a) § 3.1, (b) § 3.2 and (c) § 4.
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Figure 4. Lowest eigenvalue λ for rectangles with a = 2, b = 1. Left panel: three rect-
angles (N = 2) with (Y1, Y2) = (0.3, 0.9); right panel: four rectangles (N = 3) with
(Y1, Y2, Y3) = (0.3, 0.9, 0.2). Solid curve: computed by solving for k in (3.31) using G∗ from
(2.55) computed using finite elements. Crosses: leading-order WK prediction (2.2).
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Figure 5. Coefficients ai0(t) for rectangles with a = 2, b = 1. Left four panels: three rect-
angles (N = 2) with (Y1, Y2) = (0.3, 0.9); right four panels: four rectangles (N = 3) with
(Y1, Y2, Y3) = (0.3, 0.9, 0.2).




