
UC Berkeley
Research Reports

Title
Cartesius and CTNET Integration and Field Operational Test

Permalink
https://escholarship.org/uc/item/1qn7q6zf

Authors
Rindt, Craig R.
McNally, Michael G.

Publication Date
2009

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1qn7q6zf
https://escholarship.org
http://www.cdlib.org/

ISSN 1055-1425

January 2009

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation, and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Final Report for Task Order 5324

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Cartesius and CTNET Integration and
Field Operational Test

UCB-ITS-PRR-2009-2
California PATH Research Report

Craig R. Rindt, Michael G. McNally
University of California, Irvine

CALIFORNIA PARTNERS FOR ADVANCED TRANSIT AND HIGHWAYS

Cartesius and CTNET
Integration and Field Operational Test

Final Report for PATH TO 5324

Craig R. Rindt and Michael G. McNally

Institute of Transportation Studies
University of California, Irvine

Irvine, CA 92697

December 19, 2008

Cartesius and CTNET

Integration and Field Operational Test

Final Report for PATH TO 5324

Craig R. Rindt and Michael G. McNally

December 19, 2008

Abstract

This report describes the results of PATH Task Order 5324—the first year of a
multi-year project to integrate the Cartesiusincident management system with Cal-
trans CTNET traffic signal management system. The results of this research are a
set of software requirements for reimplementing the Cartesius to interoperate with
CTNET. An analysis of the existing Cartesius prototype explains how the need to
focus the system on deployment and technical shortcomings of the existing system
justifies a reimplementation of the software. From here, we describe the problem
to be solved by the new software implementation, including general use cases, the
expected users, the systems that Cartesius will interoperate with, and the con-
straints that will be placed on the system. The problem statement is followed by a
detailed discussion of the functional requirements, database requirements, the user
interface requirements, and other external interface requirements. The report con-
cludes with a discussion the reimplementation work to be completed under PATH
Task Order 6324. This reimplementation will serve the more general purpose of mak-
ing Cartesius capable of working with existing traffic management subsystems to
provide multi-jurisdictional incident mitigation, thus improving its deployability and
subsequent value for Caltrans.

Keywords: Cartesius, CTNET, traffic control, multi-jurisdictional incident man-
agement

i

Table of Contents

Abstract . i
List of Figures . iv

1 Introduction 1
1.1 Purpose of this document . 1
1.2 Scope of this document . 2
1.3 Overview . 3
1.4 Business Context . 3

2 General Description 5
2.1 Product Functions . 5
2.2 User Characteristics . 6
2.3 User Problem Statement . 7
2.4 User Objectives . 7
2.5 Related System Information . 9

2.5.1 Traffic Management Systems 9
2.5.2 Event Notification . 12
2.5.3 State Estimation and Prediction Systems 13

2.6 General Constraints . 14
2.6.1 Speed of strategy formulation 14
2.6.2 Adherence to industry standards 15
2.6.3 Limited hardware requirements 16
2.6.4 Open software licensing . 16

3 Specific Requirements 17
3.1 Core Functional Requirements . 17

3.1.1 System Monitoring . 18
3.1.2 Event Analysis . 21
3.1.3 Event Response . 23
3.1.4 Model Calibration . 26

3.2 User interface requirements . 26
3.2.1 Heavy GUI client . 27
3.2.2 Thin web client . 29

3.3 External interface requirements . 29
3.3.1 Distributed Problem Solving Interfaces 29
3.3.2 External Data Interfaces . 32

ii

3.4 Logical database requirements . 35

4 Other Non-functional Attributes 37
4.1 Security . 37
4.2 Binary Compatibility . 37
4.3 Reliability . 37

5 Conclusion and Future Work 39
5.1 Cartesius Response Formation and Strategy Translation 39
5.2 Path to Deployment . 40

References 46

iii

List of Figures

2.1 The CTNET client/server architecture. 10
2.2 D12 real-time data intertie . 12

3.1 The requirement categories used in this specification. 18
3.2 The functional requirement categories used in this specification. . . . 19
3.3 The key features of the main user interface. 27

5.1 Simulation data flows . 43
5.2 Real-world data flows . 44

iv

Chapter 1

Introduction

1.1 Purpose of this document

This document describes the results of PATH Task Order 5324, Cartesius and CTNET:

Integration and Field Operational Test, the first year of a multi-year project to mod-

ify the Coordinated Adaptive Real-time Expert System for Incident management in

Urban Systems (Cartesius) to work with the Caltrans Traffic Signal Management

and Surveillance System (CTNET) and run a limited field operational test on the

California ATMS Testbed (Testbed). At the time of this report, the second year of

this project is ongoing under PATH Task Order 6324. The original scope of Task

Order 5324 was modified during the project to improve synergy between a number of

ongoing Caltrans projects. The modifications focused Task Order 5324 on defining

the requirements for modifying Cartesius to meet the needs of Caltrans, in general,

and to integrate the system with the CTNET system, in particular. PATH Task

Order 6324 was re-scoped to implement a new version of Cartesius meeting these

requirements.

To satisfy this modified scope, this document describes requirements for the reim-

plementation of the Cartesius in accordance with the findings of PATH Task Order

5313 (Rindt and McNally, 2007) that detail the challenges of deploying the Carte-

sius prototype developed as a doctoral thesis under Testbed funding (Logi, 1999).

Included in this document are descriptions of the following aspects of the system:

The functionality What is the software supposed to do?

External interfaces How does the software interact with users, hard-

ware, and other software?

Performance How fast must the system perform its functions?

1

Attributes What are the security, compatibility, reliability and other

non-functional requirements for the system?

Design constraints What standards must the system comply with? What

resource limits and operating environments are anticipated? What

implementation restrictions are in effect?

1.2 Scope of this document

This document specifies the requirements for the reimplementation of Cartesius in-

cident management system to overcome various identified shortcomings of the current

Cartesius prototype. It is intended to be used as the input to the software design

and implementation to be carried out under Task Order 6324.

This documentation was produced by the authors using input from three primary

sources.

Existing Cartesius prototype The existing Cartesius prototype was

developed by Dr. Filippo Logi for his doctoral thesis using the G2

expert system shell (Gensym, 1995). Dr. Logi’s thesis (1999) and

the source code for the prototype have both been major information

sources for this document.

Caltrans Caltrans is the primary customer for Cartesius and the sole

developer of CTNET. Input given by Caltrans personnel during tech-

nical meetings has been incorporated into this document.

UCI Researchers UCI researchers, including pre- and post-doctoral re-

searchers and faculty members, are the system engineers and devel-

opers of Cartesius.

The end goal of this reimplementation is to produce a new version of Cartesius that

incorporates the system’s most important core functionality in a manner that

• is technically feasible given reasonable assumptions about the availability of

data and algorithms,

• is institutionally feasible in the face of known policy restrictions and the likeli-

hood of jurisdictional participation,

• minimizes the cost and licensing requirements, and

2

• maximizes the system’s potential to be deployed by Caltrans and municipal

agencies.

To achieve this goal, UCI researchers’ experience with the original prototype was

integrated with input from Caltrans personnel regarding Caltrans needs.

The remainder of this document is structured as follows. Chapter 2 provides

a broad description of the system including its intended functions and typical users.

Chapter 3 defines specific functional requirements for the system. Chapter 4 describes

other non-functional requirements. Chapter 5 concludes by offering a number of

operational scenarios for the system to illustrate its intended use in more detail.

1.3 Overview

Non-recurrent congestion presents a difficult problem for existing localized automated

traffic control systems such as the CTNET. These systems operate with control pa-

rameters that are fine-tuned to meet the normal demands of recurrent congestion.

Incidents in the system can create disturbances that are beyond the control of such

localized systems, rendering them incapable of mitigating the resulting delays. This

creates a compelling justification for interfacing the CTNET signal control subsys-

tem with a global traffic management subsystem to develop a general corridor traffic

management architecture that can dynamically respond to incidents in the system.

Cartesius is such a tool. This research is part of a two year project to first integrate

these Cartesius and CTNET projects to produce a functioning traffic management

system and then evaluate the integrated system under controlled conditions in a field

operational test.

1.4 Business Context

Development of Cartesius is supported by Caltrans, whose mission in this con-

text is to “optimize transportation system throughput and provide dependable travel

times.” To achieve this mission, Caltrans has funded the Testbed at the University of

California, Irvine. The Testbed has produced a range of research products, including

the existing Cartesius prototype that is the focus of the current effort. Caltrans

seeks to realize the value of its investment in research and has funded this product by

way of the California Partners for Advanced Transit and Highways (PATH) program.

The ultimate goal of this effort is to deploy Cartesius as one component of

the broader traffic management portfolio available to Caltrans. To that end, the

3

next chapter provides a general description of Cartesius as it relates to Caltrans

operations.

4

Chapter 2

General Description

2.1 Product Functions

Cartesius is composed of multiple interacting, real-time decision-support systems

(agents) for transportation management center (TMC) operators that are able to

perform cooperative reasoning and resolve conflicts, for the analysis of non-recurring

congestion and the formulation of suitable integrated control responses. The agents

support incident management operations for various transportation subsystems that

are divided based upon jurisdictional responsibility. In the ideal case, a particular Cal-

trans district would have a single agent to manage its freeway and highway network,

as would each of the municipalities in a region to manage their respective arterial

networks. Each agent interacts with a human operator, is able to receive real-time

traffic and control data, and provides the operator with control recommendations in

response to the occurrence of incidents. Where technically feasible, Cartesius can

directly update controller settings in the field at the direction of the operator by

interfacing with relevant control subsystems.

The multi-agent approach adopted by Cartesius reflects the spatial and admin-

istrative organization of traffic management agencies. The agent collective works to

provide a coordinated solution that attempts to satisfy all parties, preserves their

own levels of authority, and reflects the inherent distribution of the decision-making

power.

The original version of Cartesius placed nearly an exclusive emphasis on analyt-

ical correctness of the system. The needs of the user were a secondary consideration.

The emphasis of the current effort is to maintain analytical correctness while serving

the needs of the end-user more directly—in this case, TMC operators.

The approach to achieving this goal is to reimplement the existing Cartesius

5

prototype. A reimplementation is necessary for two main reasons. First, there is a

general need to refocus its functionality to better meet the needs of the customer.

The existing Cartesius prototype was designed to serve a research end. Namely,

it was developed to demonstrate and evaluate a theoretical approach to managing

traffic in multi-jurisdictional environments. The results of this research were positive

in that Cartesius was shown to be a viable approach to multi-jurisdictional traffic

management that could produce net reductions in travel delays during the onset

of non-recurrent congestion assuming that particular types of control actions are

available to the system (such as information provision to cause traffic diversion and

traffic signal retiming to handle increased demands), and that those control actions

produce measurable effects (such as particular rates of diversion).

Second, there are numerous technical problems with this prototype in the context

of full-scale real-world deployments:

• The Graphical User Interface (GUI) is restrictive, awkward, and fragile.

• The multi-agent aspects are restrictive, hardcoded (2 agents only), and use a

proprietary communications protocol that limits interaction with external traffic

management systems.

• The knowledge base is difficult to update.

• Many of the algorithms are hardcoded or limited to very restrictive cases.

• The architecture used for connecting to external systems (G2’s GSI interface)

lacks the flexibility of modern middleware and has been deprecated by the

vendor.

• The proprietary system (G2) upon which Cartesius is built has costly per

seat licensing.

• G2’s strengths don’t match up well with the algorithmic nature of Cartesius.

2.2 User Characteristics

Anticipated users of Cartesius are operators in Caltrans or municipal TMCs. These

individuals are likely to be technicians or engineers who have some proficiency in the

use of analytical software and conventional traffic analysis techniques.

6

2.3 User Problem Statement

The task of the TMC operator is to manage the impact of events that affect the

performance of the transportation system. In this context, performance is defined in

terms of low-level operational measures such as throughput, average speeds, delay, or

travel time, and not in terms of broader measures such as emissions (though the former

may act as a proxy for the latter). The responsibilities of the operator in particular

situations will vary. Generally, incident response involves coordinating emergency,

operational, and maintenance activities in descending order of importance.

For the purposes of the Cartesius software, the relevant role of the TMC opera-

tor is to coordinate the operational response by applying various traffic management

strategies that include informing drivers through various traffic information systems

and adjusting the parameters of the myriad traffic control devices active in the op-

erator’s jurisdiction. The actions available to an operator for a particular incident

may vary greatly depending on the situation for a number of reasons including the

following.

• Technical limitations: the jurisdiction may have little or no ability to dynam-

ically change traffic control settings or to sense conditions and notify travelers

in real-time. Further, ignorance of other jurisdictions’ actions can lead to lo-

cal responses that are globally incompatible and therefore further degrade the

system’s performance.

• Institutional: the jurisdiction may have policies in effect that restrict available

responses.

• Circumstantial limitations: there may be no effective response to particular

incidents because of the nature of the event and/or the topology of the trans-

portation infrastructure.

Quickly reasoning about this collection of possible actions and constraints to produce

a coherent response strategy is a difficult task and it is unreasonable to expect an

operator to effectively manage one or more incidents in real-time.

2.4 User Objectives

To make Cartesius a useful product it must help TMC operators perform their

primary task as outlined above.

7

• Cartesius will initially be used as a supplemental incident management tool

providing analytical advice about incident response strategies to operators.

• Cartesius could potentially act as the primary incident management interface

if it were properly integrated with TMC processes. Such complete integration

is not, however, a focus of the current effort.

• It must have a GIS-enabled GUI that presents information about the trans-

portation system clearly—similar, perhaps, to Caltrans existing PeMS system.

In some contexts, Cartesius might be viewed as a real-time PeMS system and

a version might be developed that integrates as a plug-in to PeMS—with PeMS

acting as the primary Caltrans interface for traffic management.

• Cartesius must provide the operator with information about the current state

of the system.

• Cartesius must provide the operator with information about current prob-

lems in the system—including high-level characterizations of these problems

displayed in a manner that is both easy to understand and analytically useful.

Information must be displayed using commonly understood techniques that are

possibly enhanced with new methods.

• Cartesius must interact with remote TMCs and other data sources to gather

information both about the state of the system and about actions that may be

taken by other jurisdictions. This interaction may be with another Cartesius

agent, or it may be with an independent traffic management software system.

• Cartesius must interface with available analytical components (such as a sim-

ulation model) to predict potential outcomes of incident responses.

• Cartesius should provide the operator with an interface to estimated and

predicted system states.

• Cartesius should only rely on currently available analytical components to

improve the characterization of the system (in terms of both capacity and de-

mand).

• Cartesius should incorporate knowledge about the capabilities of existing con-

trol subsystems into its response plan formulation.

8

• Cartesius should use existing communications and traffic management sub-

systems to obtain data about the state of the traffic network

• Cartesius should provide an interface for analyzing the predictions of the

models it uses versus actual behavior in the system.

• The model analysis component should include the ability to visualize deviations

between model predictions and actual measurements.

• The model analysis component could provide the ability to calibrate underlying

models based upon measurements.

• Cartesius could interface with emergency response systems to provide routing

guidance to responders.

• Cartesius could interface with maintenance management systems to obtain

information about planned lane closures and account for them automatically.

2.5 Related System Information

Cartesius is not an isolated system. In typical operation it will interact with many

systems to gather information about the current and predicted state of the traffic

system. Each of these are considered in the sections below.

2.5.1 Traffic Management Systems

CTNET

CTNET is a distributed software system for integrated management of traffic signals

that is widely deployed by Caltrans and some municipalities across the state. CTNET

allows operators to remotely manage, view, and log real-time traffic signal field data.

The system uses a modular client/server architecture in which a CTNET CommServer

acts as a proxy server for one or more Traffic responsive field masters (TRFM) (see

figure 2.1). The masters, in turn, control a subset of traffic signals, which can be

managed by either Caltrans C8, version 4 software (on type 170 controllers) or traffic

signal control program (TSCP) version 1.02 software (on type 2070 controllers). The

TRFMs support both synchronized traffic responsive and time of day traffic signal

coordination schemes.

9

Figure 2.1: The CTNET client/server architecture.

10

CTNET clients connect to the CommServer to gain access to monitoring and

management functions provided by the CommServer. Access privileges are controlled

on a per-user basis, allowing the system to limit specific functions to authorized users

only. The existing CTNET client provides a user interface which uses TIGER-line

data to display geographically accurate maps of the managed traffic signals. An open

(non-proprietary) communications protocol is used between CTNET clients and the

CTNET server so that third party clients can be developed to work with the system.

By itself, CTNET does not provide automated, globally coordinated incident re-

sponse. The existing CTNET client software allows TMC operators to manually alter

timing plans to implement control responses determined outside the CTNET archi-

tecture. These responses may come from any source, but are most likely to be derived

on the fly by TMC operators with expert knowledge of the system. Thus, CTNET

could benefit from interaction with the global incident management capabilities that

are fundamental to Cartesius. In this role, CTNET would serve as a traffic man-

agement subsystem that supplies Cartesius agents with real-time traffic data from

arterial system detectors as well as the ability to change signal timing plans as part

of a coordinated incident response strategy.

Caltrans District 12 Real-time Data Intertie

The Testbed maintains a real-time data intertie with Caltrans District 12 (D12) that

will act as the main source of live data for the development of the software. We

anticipate that similar systems will be available for future deployments. The intertie

has been configured based on a system architecture that, to the extent possible,

renders the UCI ATMS Testbed Intertie to function in a dedicated, independent

environment that is functionally isolated from D12’s production environment. Specific

care has been given to adopting a design that will ensure that the UCI ATMS Testbed

Intertie remains operational, with minimal revision, as the D12 ATMS is upgraded

or is otherwise changed. Figure 2.2 shows the current configuration.

Under the current Testbed integration with the D12 ATMS, the Testbed Labs at

UCI receives the same type of data feed from the D12 Caltrans District 12 Front

End Processor (FEP) that the D12 ATMS receives. This data stream is a real-

time data feed of 30-second “poll-data” from all of D12’s SATMS 170 controllers.

The network connection between D12 FEP and the UCI Testbed private network is

restricted by the D12 firewall to permit transmission only from the D12 FEP to the

UCI Testbed Labs; transmissions to the D12 FEP from the UCI Testbed Labs are

strictly prohibited. The real-time data feed from the D12 FEP is received at UCI

11

Figure 2.2: The D12 real-time data Intertie
.

Testbed Labs and stored in a database that is available to Cartesius.

City of Irvine Real-time Data Intertie

The City of Irvine (COI) uses a Siemens ACTRA Central Traffic Control System and

eighteen 2070NL intersection controllers with SE-PAC firmware that was installed

along an 18-intersection adaptive control testbed in the COI that supplies real-time

traffic data to the UCI ATMS Testbed laboratories utilizing single mode fiber optic

communication operating over 4 communication channels. The Eagle ACTRA sys-

tem provides detection and adaptive control capabilities utilizing existing Ethernet

communications.

The communications architecture for the complete system is designed to isolate the

Testbed functions from the City of Irvine’s traffic system, thus allowing Cartesius

to interact with the traffic system without the possibility of disrupting normal city

operations. This is achieved through custom software, the input acquisition software

(IAS), which enables transmission of all detector inputs and signal displays to the UCI

Testbed laboratories. This connection provides Cartesius with live sensor data from

a critical portion of the City of Irvine network that is necessary to support the state

monitoring and estimation critical to Cartesius functions.

2.5.2 Event Notification

Cartesius is an event management system and therefore depends on receiving event

notifications. Two existing data sources are currently available for this purpose.

12

California Highway Patrol Computer-Aided Dispatch System

The California Highway Patrol (CHP) Computer-Aided Dispatch (CAD) system offers

detailed information about on-going incidents throughout the state of California. The

Testbed has access to the XML media feed from the CAD system which broadcasts

the time and location of active incidents as well as detailed free-form logs of the CHP’s

incident response, edited to remove sensitive information.

D12 TMC Activity Log

The D12 TMC maintains an in-house log that details the activity of its personnel.

These entries include coded details of when the TMC begins to manage an incident,

when the incident is verified, when personnel arrive on-scene, and when the inci-

dent is cleared. Additional free-form details are also available regarding the state

of traffic. Log entries cross reference CHP CAD IDs so that the databases can be

integrated. Cartesius will have direction access to the activity log database for its

D12 deployment. We anticipate that similar systems will be available at all Caltrans

TMCs.

2.5.3 State Estimation and Prediction Systems

Demand Estimator

The logic of the analytical algorithms used by Cartesius to compute incident mit-

igation actions depends on detailed, path-specific estimates of the demand in the

system at the onset of the prevailing incident(s). The original prototype relied on

demand estimates developed using a custom implementation of the Dynasmart sim-

ulator, which in turn relied upon demand data obtained from a regional planning

model. This approach was difficult to maintain and update as necessary. Further-

more, it was limited to modeling demand at particular time of the day and was not

sensitive to measurements taken around the time of the incident.

Since the demand estimate is such a fundamental part of the Cartesius algo-

rithm, it is essential that the demand estimate be improved. The requirements for

this estimate are:

• that it produce estimates of the time-varying demands on specific paths through

the network;

• that these estimates are produced on a time-scale consistent with Cartesius

internal representation of demand—on the order of 5 to 30-minutes; and

13

• that these estimates are adjusted in quasi-real-time using available sensor data.

Two candidate path-based demand estimators developed by Nie et al. (2003, 2005)

and Chootinan et al. (2005) should be considered and a generalized interface to such

estimation modules should be developed to allow Cartesius to work with future

developments in the field.

Capacity Estimator

As with the demand estimates above, Cartesius is dependent on estimates of road-

way capacity at critical sections in order to develop mitigation strategies and the

associated control actions. Real-time estimation of capacity is still an open and diffi-

cult problem in the transportation research literature Minderhoud et al. (1997). This

is because the concept of capacity is difficult to define consistently—particularly for

real-time operations.

A good starting point for this problem is the Performance Measurement System

(PeMS) system. Chen (2003) proposed some methods for estimating real-time ca-

pacity using PeMS that could be adapted for use by Cartesius, or used directly by

interfacing Cartesius with PeMS itself.

Note, however, that PeMS is for freeways and highways only. Estimation of sur-

face street capacities is another problem that is typically dominated by estimation

of intersection capacities. The Cartesius prototype contains detailed algorithms to

estimate intersection capacities and delays based upon prevailing and forecast condi-

tions. Because of their importance to Cartesius reasoning, it makes sense to leave

this estimation process as part of the Cartesius core. Changes should be made to

the architecture, however, to eventually allow these estimates to be modularized and

separated from the algorithmic core.

As a fallback, Cartesius should implement a simple method for estimating ca-

pacity by using the number of lanes and the facility type to establish a baseline

capacity. Fine-tuning of the capacity parameters for particular location can be per-

formed during subsequent calibration steps.

2.6 General Constraints

2.6.1 Speed of strategy formulation

The reimplementation of Cartesius must meet some basic performance require-

ments. Generally, the collective of Cartesius agents must be able to develop and

14

implement incident response strategies with loose “real-time” guarantees on the order

of 5 minutes. This constraint may later loosen or tighten depending on the full set

of response actions implemented in the system. For instance if Cartesius were to

deploy fine-grained control strategies such as re-timing of particular controllers, the

real-time constraints would become more stringent.

2.6.2 Adherence to industry standards

As the National Intelligent Transportation Systems Architecture (NITSA) (Iteris, Inc,

2002) continues to mature, there will be an increasing need to map functionality to

the NITSA’s functional specification and to support its standards where applicable.

Rindt (2005) compared the Cartesius prototype to the NITSA specification and

found that Cartesius partially performed the functions of two different NITSA

market packages. By providing the means for developing “integrated control strategies

that enable integrated interjurisdictional traffic control” Cartesius performs some

functions of a NITSA Regional Traffic Control System (ATMS07). The scope of

ATMS07 is much broader than Cartesius was intended to handle and therefore

Cartesius does not provide a general solution to ATMS07. Furthermore, Cartesius

performs some functions that are not part of ATMS07, namely its primary role as

an incident management system that better matches the NITSA’s Traffic Incident

Management System (ATMS08) market package. Cartesius shortcoming in this

context is that it does not perform some key incident management functions such

as emergency response and maintenance management. On the other hand, because

it coordinates multi-jurisdictional response, Cartesius provides functions that are

beyond the ATMS08 specification.

Despite the somewhat faulty mapping between Cartesius’s functions and the

NITSA specification, Rindt (2005) found that Cartesius is best viewed as a partial

ATMS08 solution that incorporates features of ATMS07. If the system is successfully

deployed, additional functions can be added as they are deemed necessary.

Given these conclusions, an effort should be made to use available NITSA com-

munications standards for flows in the architecture. An example of this is the center

to center communications standard under development.

In addition to the NITSA architecture, California, in general, and Caltrans, in par-

ticular, have internal standards and application deployments that Cartesius should

use, where possible. For instance, Cartesius should interface with Caltrans’ CTNET

arterial to access data and control subnetworks managed by CTNET.

15

2.6.3 Limited hardware requirements

Each Cartesius agent should require only the computing power available on typical

scientific workstation such as a 3-GHz Pentium 4 processor or the equivalent.

2.6.4 Open software licensing

The existing prototype’s dependence on expensive commercial software with a cus-

tom development dialect was identified as one of the major barriers to continued

Cartesius development. As such, the new implementation should meet the follow-

ing requirements.

• Cartesius should rely on open source software as much as possible to limit

licensing restrictions that might increase the cost of deployments.

• Cartesius should be implemented using commonly understood programming

languages and established, well supported software libraries.

• Cartesius should run on multiple architectures and operating systems.

16

Chapter 3

Specific Requirements

This chapter details the specific requirements for the Cartesius software. These

requirements are broken down into four general areas as shown in figure 3.1. The

Functional Requirements describe the characteristics of the core algorithms and pro-

cessing carried out by Cartesius. Generally, these describe what a given Cartesius

agent will do once it is set up to receive information from external sources includ-

ing incident diagnosis and solution formulation. Those external sources are broken

down into two categories, each having its own set of requirements. The User In-

terface Requirements describe how Cartesius must interact with TMC operators.

The External Interface Requirements describe how Cartesius must interact with

components of the transportation system and various models that produce the data

necessary for the Cartesius core to perform its functions. This section is of par-

ticular interest for this project because it details how Cartesius must interact with

CTNET. Finally, the Database Requirements define how Cartesius should store the

data it uses and the outputs of its actions in order to satisfy the other requirements

described.

3.1 Core Functional Requirements

The functional requirements for the system are divided into four primary functions,

whose relationships are shown in figure 3.2. The System Monitoring function is re-

sponsible for tracking the state of the system to identify when disruptions occur that

Cartesius should attempt to manage. The Event Analysis function must produce

a problem characterization that analytically describes the disruptions and serves as

Cartesius’s representation of all the problems in the system. When the active

problem characterization is modified the Problem Response function finds a problem

17

Figure 3.1: The requirement categories used in this specification. The categories are
shown as gray boxes.

response using the control actions available in the knowledge base. The Model Cali-

bration function should compare model predictions to observed outcomes to identify

deviations that should be considered by operators to improve the performance of the

system. We consider the requirements for each of these functions in detail below.

3.1.1 System Monitoring

Cartesius is a real-time control system and therefore requires access to the state of

the system as well as to forecasts of future states of the system. This is divided into

two sub-functions: state measurement and state forecasting. The state measurement

function provides Cartesius with access to state measurements obtained from field

devices. The state forecasting function provides Cartesius with access to estimates

of the future state of the system based upon historical data. The specific requirements

for these two monitoring functions are detailed below.

18

Figure 3.2: The functional requirement categories used in this specification. The
categories are shown as gray boxes.

Measure system state

Cartesius has no direct responsibility for measuring the system state. It does,

however, require access to real-time and historical measurements obtained from the

system in order to support modeling the system. To the extent that the support-

ing services require this information to perform their tasks, such as external state

estimation processes (see section 3.1.1), Cartesius should have access to the same

measurement data, where possible, to provide a consistent view of the data used in

strategy formation.

Through this function, Cartesius must have access to speed and flow in- FR 1

formation for all parts of the network as well as active control settings for

all control devices in the system. Recognizing that this information may not be

available in all systems, Cartesius should be able to operate using historical FR 2

data or planned (assumed) control settings.

19

Estimate/Forecast system state

Cartesius has no direct responsibility for estimating or forecasting the system state

at the most fundamental levels: link-level capacities and path-level demands. It does,

however, require access to estimates and forecasts made by external systems. The ex-

istence of such systems are a prerequisite for the successful operation of Cartesius.

Minimally, Cartesius must interface with external systems that can predict FR 3

the demand on all paths through the managed system as well as the avail-

able capacity on all sections of the network. These functions were part of the

core of the original Cartesius implementation, but they are better handled by task-

specific services that are dedicated to providing those functions (see also section 3.3.2

for the requirements for this external interface). Cartesius’s core functions must FR 4

use these externally obtained capacity and demand estimates to predict

the impact of an event on traffic operations as described in section 3.1.2.

Event tracking

Cartesius must implement a function that can identify the onset of an FR 5

event in the system. An event is characterized as something that impacts one of

the parameters that could affect system performance:

1. System capacity: e.g., freeway lane closure, debris in a lane, etc.

2. System demand: a shift from one demand pattern to another, e.g., a special

event.

This functionality is effectively an event detection system akin to the Automated

Incident Detection (AID) algorithms researched heavily in the 1990’s. Here, however,

the identification is expected to rely on direct sources of information—e.g., the CHP’s

CAD system and various Caltrans systems as opposed to AID—to note the onset of

an event that could have an impact on system performance.

At the system monitoring level, this event identification may be limited to finding

a deviation from “normal operating conditions” defined by expected capacities and

expected demands. We define expected capacities as the mean capacity of a facility

in the absence of capacity reducing events (e.g., a lane closure). Ideally, capacities

will be independent of time-of-day but, in practice, due to the nature of traffic flow,

multiple capacities for a facility might exist depending on the evolution of traffic. As

such, a peak-period capacity (after breakdown flow) might be less than an off peak

capacity.

20

We define expected origin-destination (O-D) demands as the mean flow rate be-

tween all pairs of zones in the network representation of the transportation system.

This produces a origin-destination (O-D) matrix representing demand. Because flow

rates are known to vary by time-of-day, multiple O-D matrices are necessary to repre-

sent the dynamics of demand. A secondary representation of expected demand is also

used by Cartesius to describe traffic demand in terms of path demand. We defined

expected path demands as the mean flow rate on all used paths between all pairs of

zones in the network representation of the transportation system. The use of paths

simplifies the estimation of event impacts as well as the reasoning about alternative

responses. Use of path demands requires computation and enumeration of all path

flows, which can generally only be achieved via simulation.

A deviation may be considered an event when capacity and/or demand estimates

exceed certain thresholds. These may be defined system-wide, or they may apply to

specific facilities (in the case of capacities) or specific demand flow components (in

the case of O-D and/or path demands).

Generally, an event will either be associated with a known cause or its cause will

be unknown. In any case, the system monitoring function must send any FR 6

identified event to components that have asked for notification—including

the event analysis module (section 3.1.2).

3.1.2 Event Analysis

The primary task of the event analysis function is to update the problem character-

ization based upon analysis of prevailing events. The event analysis function in the

Cartesius core involves two main steps: event characterization and event diagnosis,

whose requirements are described below.

Event characterization

This event characterization function in Cartesius must identify the cause of the FR 7

problem in order for Cartesius to determine a course of action. The reason

for this is that Cartesius relies upon domain-specific knowledge that is conditioned

on the cause of a disruption to the system.

The specifics of this reasoning process are outlined in (Logi, 1999). Generally,

the determination of the cause relies heavily on operator input, which includes the

operator providing information regarding the severity and expected duration of the

disruption. For the purpose of this specification, the outcome of the event char- FR 8

21

acterization process must produce one of two results: it will either identify

a cause or it will not.

Cause known

The Cartesius agent must continue processing to diagnose the event if FR 9

the characterization process successfully determines a cause and its char-

acteristics (see section 3.1.2).

No event presence

If the characterization process fails to determine a cause and its characteristics,

this implies a shortcoming in the characterization process whereby the system cannot

determine a course of action for a given valid input. The possible reasons for this

are either that the external event notification system is over-reporting possible events

or that Cartesius’s knowledge base is insufficient to handle all inputs. In either

case, a failure to identify an event’s cause should be logged along with the FR 10

associated inputs so that the system can be analyzed and improved to

handle a similar case in the future.

Event diagnosis

The event diagnosis function must generate for a given event characteriza- FR 11

tion the final data object that will be used by the event response functions

(see section 3.1.3). The diagnostic function is another core Cartesius feature whose

logic is described in Logi (1999). The resulting diagnosis contains the following in-

formation regarding the event’s impact on traffic operations:

• the type of the incident (serves as a key into the knowledge base)

• the change in system capacity caused by the event

• the change in path-level demands caused by the event

In performing this function, Cartesius may need access to information from Carte-

sius agents representing neighboring jurisdictions whose operational status and con-

trol decisions may impact the local jurisdiction’s operations. In particular, the ex-

istence of a problem in a neighboring jurisdiction can lead to traffic spillback that

crosses jurisdictional boundaries. In this case, Cartesius needs to recognize that

22

the cause of the problem in the first jurisdiction is due to an event in the neighbor-

ing jurisdiction. Thus, the Cartesius diagnostic function must consider the FR 12

possibility of spillback from the neighboring jurisdictions (this is dependent

on the existence of distributed problem solving interfaces for Cartesius agents, see

section 3.3.1).

Once the diagnosis is completed, Cartesius must pass its event diagnosis as FR 13

a problem characterization to neighboring jurisdictions so that they can

take action if necessary (cooperatively or unilaterally). Then, Cartesius FR 14

must update its active problem characterization reflecting the new event

diagnosis;

3.1.3 Event Response

The event response function is triggered when there is a change to the system’s prob-

lem characterization, which comes from the event analysis function (section 3.1.2). A

change may be the addition or deletion of an event from the active event set, or it

may be a change in the characteristics of a particular event in that set—for instance a

modification in the expected duration of a lane closure that is input by the operator.

Determine response set

Problem solving in the multi-agent Cartesius system is a multi-stage process struc-

tured around the partitioning of global problems into sub-problems local to each ju-

risdiction, which are solved independently. These “partial solutions” are then shared

with neighboring jurisdictions as constraints associated with each possible local solu-

tion. All agents exhaustively search the combinations of partial solutions to determine

globally consistent solutions. This set of globally consistent solutions is then used as

the basis for an automated or manual selection process across all jurisdictions. Again,

the details of the algorithms involved are described in Logi (1999) and Rindt and Mc-

Nally (2007). Each of the related sub-functions is discussed in more detail below.

Identify local response set

Cartesius must identify the local response set by consulting jurisdic- FR 15

tion-specific knowledge that defines available control actions that can be

used to mitigate the operational problems caused by active events in the

system. As such, Cartesius must access a knowledge database of control FR 16

actions for the jurisdiction. The requirements for this knowledge database are

23

defined in section 3.4. Given this information the response algorithm performs a best

first search using a heuristic that converts each control action into a set of operational

impacts. Again, the estimated impacts for each control action must be part FR 17

of the jurisdiction-specific knowledge base. The result of this process is a set of

leaf nodes in the search tree that define a feasible local response set for the identified

conditions.

Cartesius must communicate the feasible local response set to any FR 18

neighboring jurisdictions to incorporate as constraints into their local de-

cision processes. This communication must be performed in a way that FR 19

does not render the local Cartesius unresponsive to the operator.

Incorporate global response constraints

Similarly, Cartesius must incorporate any constraints broadcast by re- FR 20

mote agents based upon their local response sets. This functionality re-

quires the existence of a distributed problem solving information sharing interface

for Cartesius agents (see section 3.3.1). In order to achieve synchronization be-

tween agents responding to a given problem, the agent collective may implement a

messaging dialect to formally establish conditions under which data will be shared,

including time limits for sharing that information. This dialect is a replacement for

the protocol in the existing prototype that was built using G2’s GSI infrastructure.

The Cartesius agent must wait for any remote constraints until any syn- FR 21

chronization conditions are met, after which it will modify its response

search tree as described in Logi (1999).

Identify final response set

Cartesius must determine the complete set of feasible global responses FR 22

by exhaustively searching the modified tree until all constraints are incor-

porated. These represent a globally consistent set of possible alternative responses

according to all participating jurisdictions.

Select response set

The set of globally feasible responses must be presented to the operator. FR 23

Additional processing may be necessary for the operator to make an informed decision.

24

Filter candidates

Each remaining feasible global response is scored using Cartesius’s domain-

specific heuristics to imply an ordering of responses to the operator. Cartesius FR 24

should support a filtering function that can remove certain response op-

tions based upon attributes of the responses (see requirement 3.2.1. For

instance, it may be unacceptable to change the settings of a particular traffic signal

on a particular day, or to route traffic onto particular streets.

Evaluate candidates

The operator may need to further evaluate all remaining feasible responses in

more detail. Cartesius should be able to send any potential response to an FR 25

external simulation evaluator to produce detailed measure of effectiveness

(MOE) forecasts.

Choose candidates

Once all filtering and evaluation is complete, the final response must FR 26

be chosen by Cartesius. Cartesius should provide support for the specifi- FR 27

cation of policies that allow the system to automatically choose an action

in the absence of operator input. An example of a default policy would be to

not take any action.

Local choice

Though Cartesius is designed to be a cooperative system, Cartesius should FR 28

allow the operator to unilaterally select any globally consistent response

via the GUI (see section 3.2). The interface should order the list based upon

any evaluations made and allow the operator to immediately select a response and

implement it via connected control subsystems. Locally made choices should be

broadcast to the Cartesius agents of all neighboring jurisdictions.

Global agreement

The local choice interface presented for the operator to make a local FR 29

choice must also make possible for the operator to broadcast suggested

response choices to neighboring jurisdictions. Similarly, the local choice FR 30

interface should receive and display any suggested response choice sent

25

by neighboring agents. In particular, the interface should show whether

all agents have agreed upon the same suggested response strategy, which

is dependent on the mechanisms for distributed problem solving information sharing

discussed in section 3.3.1. This information supports choice of a globally efficient

solution to a given problem state.

Implement response

Cartesius must be able to implement any collection of control actions FR 31

that are available in a given response, but the actual mechanics of set-

ting that control must be performed by external control subsystems, such

as CTNET. The Cartesius core algorithms should be shielded from imple- FR 32

mentation details as much as possible. For instance, all control actions should

be characterized via common interfaces that return characterizations of the effects

of implementing particular control actions, but hide implementation details from the

core algorithm.

3.1.4 Model Calibration

Cartesius could include functionality to simplify model calibration by pro- FR 33

viding an interface for after-the-fact comparisons of model predictions to

observations of the system. While this is a low priority feature, the possibility of

such functionality should be considered during design and implementation.

3.2 User interface requirements

This section describes how a single Cartesius agent is required to interact with the

operator. To overcome a significant design problem with the original prototype the IR 1

Cartesius agent must separate user interface functions from the analytical

code. The user-interface will therefore be provided by a separate module or process

that interacts with the core analytical code. The nature of the operator’s tasks mean

that the primary user interface must be implemented as a GUI. The GUI IR 2

will provide a means for the operator to rapidly assess the state of the system and

reason about possible mitigation strategies. The following sections detail the specific

requirements for this interface.

26

Figure 3.3: The key features of the main user interface.

3.2.1 Heavy GUI client

A heavy client must be provided that mimics the majority original func- IR 3

tions of the Cartesius prototype. The core features are detailed below.

Map display

The map display must provide high-level contextual information regarding IR 4

the state of the transportation system. It consists of a layered mapping system

that allows the operator to interact with various map features related to the system

to obtain information.

The information provided by the various layers will be linked to the analysis

display (see requirement 3.2.1) of the GUI that specifies the active dataset to be

displayed.

Map interface

The map interface should display detailed map data that provides useful IR 5

contextual information to the operator. This is GIS data that probably isn’t

useful for analyzing the system, but aids the operator in identifying the locations of

various problems in the transportation system.

The map interface could display low level vector data, or may come in the form

of preprocessed images as used by Google maps.

Network interface

The map interface should include a network layer that visually displays IR 6

the underlying active state of the analytical network model by changing

the colors of the links in the network based upon user-selected parameters.

A minimal implementation should include speed, some measure of density, and flow

rates or volumes. Additionally, the network interface should be capable of showing

historical and/or predicted flow rates for components of the network. The user IR 7

should be able to click on individual components of the network to obtain

additional contextual information. Supplemental information might include a

summary of all data available for that link or node.

27

Device interface

The map interface must include a device layer that visually displays IR 8

the known devices in the infrastructure including loop detectors, traffic

signals, ramp meters, and changeable message signs. Generally, data about

specific devices should be limited to only those devices managed by the agent’s juris-

diction. Clicking individual device icons should provide additional informa- IR 9

tion specific to that device. For instance, a loop detector might display current

traffic state information and also provide an interface to get historical information for

the loop.

Analysis interface

The analysis interface should provide the operator with a view of the IR 10

combined problem and solution space being considered by the system.

This interface must be consistent with the Cartesius approach to rep- IR 11

resenting the problem space as a hierarchical tree where nodes represent

problem states and edges represent control actions that lead to new esti-

mated problem states.

The characteristics of the analysis interface will depend on the implementation of

the underlying analytical model(s).

Solution selection

Cartesius should allow the user to interact with analysis interface to IR 12

view all candidate solutions developed by the system, possibly the ability

to filter out candidate solutions based upon particular criteria (see require-

ment 3.2.1). The analysis interface should also allow the user to activate IR 13

a particular solution for exploration. This activated solution will determine

the contextual content shown in the map display. The most likely approach to this

interface will be a clickable tree graph that allows the user to select a given node

(representing a problem) and to view the estimated network conditions associated

with that problem state. The state estimate will come from any number of sources

that should minimally include:

• Direct measurement of the current state (this is only applicable to the root node

that represents the current problem state).

28

• Internal CARTESIUS state estimation routines relying on historical demand

patterns and macroscopic network performance models.

• External state estimation modules, such a traffic simulation (e.g., Paramics),

that can provide time varying estimates given an initial snapshot and antici-

pated control actions.

This functionality will make Cartesius a unique TMC application that provides a

single interface to all analysis and estimation models available at the TMC.

Solution display

Selection of a problem node in the analysis pane should affect the map IR 14

display. The effects should be reflected in the network display on the

map by changing the underlying network and device display datasets used

by the map display. Additionally, the interface must provide a map-based IR 15

representation of the problem characterization associated with the solution

node.

The display of the problem characterization should be capable of rep- IR 16

resenting critical sections and the demand/supply imbalance estimated by

Cartesius.

3.2.2 Thin web client

Cartesius may be integrated with existing traffic management and analysis sys-

tems. Such systems include PeMS and other web-based technologies. To support this

possibility, A basic Cartesius web client could be developed that shows the IR 17

status of a jurisdiction’s Cartesius agent. While this is a feature considered for

later development, it is a likely evolutionary path for Cartesius. The requirements

for a thin web client are similar to those for the heavy client. This possible evolution

should be considered during the design and implementation of Cartesius in Task

Order 6324, but not as a binding requirement.

3.3 External interface requirements

3.3.1 Distributed Problem Solving Interfaces

Cartesius partitions traffic management on a jurisdictional basis to isolate the man-

agement of problems to a single jurisdiction in the system as long the effects of those

29

problems are contained in one jurisdiction. The existence of spillback effects across

jurisdictional boundaries, and the fact that some control strategies (such as diversion)

can place operational burdens on portions of the network outside the jurisdiction of

the diverting agency, require a means for sharing information between jurisdictions

regarding such effects. It is here that Cartesius distributed problem solving (DPS)

philosophy provides benefits by defining the specific types of information that need

to be shared across jurisdictions in order to ensure that the collective of local re-

sponses to a given problem state produce a global solution that is acceptable to all

jurisdictions.

The Cartesius adaptation of Functionally Accurate/Cooperative (FA/C) meth-

ods (Lesser and Corkill, 1981) to this problem defines two distinct stages during prob-

lem solving when distributed agents should exchange information: problem diagnosis

and problem solution. The Cartesius approach also defines what type of high-level

information should be exchanged at those points. In each case, the general approach

is to locally perform detailed analysis, then to create and post an abstraction of that

analysis that can be used by other agents that then leverage the abstraction to refine

their analysis. The process can be iterative and each instance must be carefully an-

alyzed to ensure tractability and the avoidance of race conditions in the distributed

system.

Diagnostic Information Sharing

The characterization of traffic problems is complicated in a distributed system be-

cause of the potential relationship between problems as discussed above. Since such

propagation can cross jurisdictional boundaries, the local problem characterization

process described above must be augmented to handle information regarding the

possible relationship between problems across jurisdictional boundaries.

Cartesius handles this problem by identifying all spillback effects and posting

their characteristics to other agents for them to identify possible links between them.

This information sharing allows agents whose jurisdictions are involved to compute

derives from relationships between problems that cross these boundaries and to share

those determinations with the agent collective.

An external interface for diagnostic information sharing must be pro- ER 1

vided. This interface must allow for diagnostic information sharing that

allows for non-blocking information propagation between agents regarding

conditions that could potentially produce spillback effects across jurisdic-

tions.

30

Problem Solving Information Sharing

The nature of partially decoupled DPS for complex, large-scale systems invariably

leads to uncertainty and imperfect knowledge that makes the use of heuristic algo-

rithms the only tractable approach. Any exact or heuristic optimization algorithm

requires specification of an objective that can be evaluated in reasonable time (as

dictated by the constraints of the algorithm and available computing power). Fur-

thermore, the algorithm needs a means for determining how to reach the objective

(i.e., a search direction).

Cartesius uses a problem solving heuristic that seeks to both avoid the spread

of congestion that may lead to oversaturation and secondarily, to achieve a balanced

ratio between network capacity and traffic demand. The Cartesius traffic manage-

ment agent uses problem solving algorithm that incrementally searches a space of

problem mitigation strategies, each of which can be translated by a corresponding

control action or set of control actions. Thus, a strategy to reduce critical section

demand through diversion might be realized by setting a collection of changable mes-

sage sign (CMS) to reroute traffic around the problem. The expansion of the solution

search tree through strategy and control actions generates new nodes representing an

estimate of the state of the system if the control actions on the path from the root

node to the target node are applied.

The selection of given strategy or the specific control actions that translate that

strategy may require the satisfaction of particular conditions that define dynamic

constraints that must be met for those strategies or actions to achieve their anticipated

effects. These constraints may only apply to the local jurisdiction, but often, as in the

case of diversion strategies requiring sufficient network capacity, they may propagate

to remote jurisdictions.

Cartesius propagates such constraints as conditions that the remote agent must

meet. The remote agent translates these conditions into strategies that have the goal

of meeting the condition. These strategies are used to expand the search tree by

branching from existing nodes to generate new portions of the search tree that will

satisfy the conditions broadcast by other agents.

The process continues until no more conditional strategies are being broadcast by

any agents. This indicates that the global search has been exhausted and the exist-

ing candidate solutions in the tree represent global collective of candidate solutions

under consideration, including the extent to which each solution meets any broad-

cast constraints. The task of selecting a single global solution from among the set

of candidates is one of removing solutions that are inconsistent with local or remote

31

constraints. Since each agent has the same list of the available feasible solutions, it is

now possible for the agent collective to jointly select a single global solution consisting

of a combination of locally acceptable control actions.

An external interface consistent with Cartesius core logic for DPS ER 2

must be provided. The DPS information sharing interface must offer non- ER 3

blocking operation. Furthermore, The DPS information sharing interface ER 4
must support a protocol for information sharing that allows the agent col-

lective to determine whether or not all agents have exhausted their feasi-

ble search space, and therefore will not be propagating further constraints

across jurisdictions.

3.3.2 External Data Interfaces

As discussed in section 3.1, The Cartesius core interface with external systems

to obtain various data about the state of the system over time. For Cartesius

to effectively perform its functions, these data must be available on demand or be

streamed to Cartesius in near-real time.

The specific data required by Cartesius from these subsystems is described by

the core functional requirements in section 3.1. They include data from:

• Event/incident notification systems

• Measurement subsystems

– Current flow, occupancy, and possibly speeds

• Control subsystems

– Traffic signals

– Ramp meters

– CMSs

In addition to these direct interactions with components of the system, Cartesius

relies on support from external models of the system as well as having access to

historical information regarding the state of the system.

The requirements for each of these external interface classes are described in the

following subsections.

32

Event/incident notification systems

Cartesius core behavior is triggered by the identification of events in the managed

traffic network. Therefore, Cartesius must interface with available event noti- ER 5

fication systems to obtain information regarding new and evolving events

in the system. For this project, Cartesius must interface with the CHP CAD ER 6

system (see section 2.5.2). Cartesius can also make use of jurisdiction-specific

event notification systems. For instance, The D12 agent should also interface ER 7

with the D12 TMC activity log (see section 2.5.2) to get more detailed

information regarding incidents in that jurisdiction.

Control and Measurement Subsystems

In modern traffic control infrastructure, control and measurement functions are typ-

ically provided by integrated systems that are specific to the jurisdiction. Generally,

Cartesius must interface with all traffic control subsystems used by a par- ER 8

ticular jurisdiction to measure and control traffic. To the extent possible,

the Cartesius control and measurement interfaces must import external ER 9

information into data objects used to implement the core Cartesius logic.

Similarly, the Cartesius control interfaces must be able to translate control ER 10

settings from data objects used to implement the core Cartesius logic.

For this project, two agents will be built reflecting the Caltrans D12 jurisdiction

and the City of Irvine jurisdiction.

D12 agent external interfaces

The Cartesius D12 agent must interface with all measurement and ER 11

control functions provided by the Caltrans D12 Real-time data intertie

(see section 2.5.1).

City of Irvine agent external interfaces

The Cartesius Caltrans City of Irvine agent must interface with all ER 12

measurement and control functions provided by the CTNET traffic signal

management system (see section 2.5.1). Note that the CTNET system for the City

of Irvine will operate by interfacing with the City of Irvine Real-time Data Intertie

(section 2.5.1).

33

System Modeling

Fundamentally, a Cartesius incident response is based upon finding a collection of

response strategies with associated control actions that will balance prevailing de-

mands with the available capacities. This requires that Cartesius has estimates

of current (and future) demand and capacities in the system. The following subsec-

tions detail the external interface requirements for such estimates, and by proxy, the

requirements of the external modules that provide those estimates.

Demand Estimates and Predictions

Cartesius must obtain time-varying estimates of the traffic demand ER 13

on all paths through the managed network. These estimates should be made

on time scales that are consistent with Cartesius core analytical models (e.g., 15-

minute periods). The path-based demand estimates must refer to (or be convertable

to) links in Cartesius’s representation of the traffic network. The demand should ER 14

be represented as the total number of vehicle-trips using each path per

time period.

Demand estimates should be provided to Cartesius whenever new es- ER 15

timates are available.

Cartesius should also be able to request that a new demand calculation ER 16

be performed.

Estimated Freeway Capacities

Cartesius must estimate the capacity of freeway sections, including those that

have been affected by an incident. These can be provided by the operator as part of

the incident reporting process. However, Cartesius might obtain estimates of ER 17

roadway capacity from external models or databases that have performed

such estimates. For instance, the PeMS database provides capacity analysis that

may be of use to Cartesius.

Estimated Intersection Capacities

Cartesius must also estimate the capacity of intersection approaches in the man-

aged network. These estimates are complicated by the fact that approach capacities

are dependent on the flow rates and control settings of all approaches at an inter-

section. Since Cartesius may consider signal timings as a possible control action,

Cartesius must be capable of estimating intersection capacities internally. In some

34

cases, however, Cartesius may rely on external control systems to adapt to vari-

ations in demand. In such cases, Cartesius may need to communicate with ER 18

external control or model systems in order to estimate available capacities.

Historical Data

While not critical for Cartesius functions, Cartesius should have access to the ER 19

historical data from the system for all inputs required by Cartesius in real-

time operation. These data should include historical sensor, demand, and event

data. In most cases, these historical data will be maintained by external systems.

Where such data are not maintained by external systems, Cartesius should archive

the data it uses in its own data store (see section 3.4 for related logical database

requirements).

3.4 Logical database requirements

Cartesius must use a database to store all possible data related to its DR 1

operation. This includes all configuration, user details, domain knowledge, and the

results of any analytical processing.

All information stored must be kept until it is explicitly removed from DR 2

the database. The data must also remain consistent throughout its lifetime DR 3

such that removal of particular entities from the database, such as a user,

will also remove any static and dynamic information that is exclusively

associated with that entity. Such a removal may be linked to data that is not

exclusive to a particular entity—such as a user being associated with particular actions

taken by Cartesius. Deletions of linked data should not be allowed and DR 4

the system should report an error condition rather than carry out the

operation so that consistency can be maintained.

The details of the data model will be finalized during the design and implementa-

tion stages. However, the following are some general requirements for particular data

objects that will be fundamental to the Cartesius implementation.

Cartesius must maintain an internal data model for representing traffic DR 5

networks. To ensure that the resolution of this network model is consistent with

available analytical tools, Cartesius network data model should be compatible DR 6

with analytical representations of current microsimulation models. This will

simplify network transformations from and to external data sources.

Cartesius must maintain an internal data model for representing traffic DR 7

35

signal timing plans on the 2070 controllers. Similarly, Cartesius must main- DR 8

tain an internal data model for representing ramp meter control settings

consistent with those used in D12 operations. This will allow Cartesius to

implement control actions on the controllers used in the Testbed.

36

Chapter 4

Other Non-functional Attributes

Specifies any other particular non-functional attributes required by the system. Ex-

amples are provided below.

4.1 Security

Because of the sensitive nature of traffic management for both the general safety of

the population and for more strategic questions of homeland security, Cartesius

must include robust security measures at all levels. This minimally include:

• User authentication for any access to live system data.

• Layered security using a role-based system that limits access to sensitive data

or control functions to sub classes of users.

• Full logging of all actions taken to support security auditing.

4.2 Binary Compatibility

There are no binary compatibility requirements for the Cartesius reimplementation.

4.3 Reliability

The system should be at least as reliable in all functions as the existing Carte-

sius prototype. This includes replicating the functional completeness of the original

prototype as outlined in Logi and Ritchie (1997) and Logi et al. (2001). The user

interfaces of the system must be sufficiently stable to allow for production use in

37

limited field operational test settings. This level of reliability should be the first step

toward production-quality reliability of the system, the establishment of which will

require later testing in production settings.

38

Chapter 5

Conclusion and Future Work

PATH Task Order 5324 is the first year of a multi-year effort to integrate the Carte-

sius incident management system with Caltrans CTNET traffic signal management

system to produce a functioning traffic management system for arterial signals that

can interoperate with the traffic control systems of adjacent jurisdictions to imple-

ment coordinated response strategies to incidents. Research to date has extensively

studied both Cartesius and CTNET, and produced this requirements document

for reimplementing Cartesius in order to alleviate the most significant barriers to

deploying the original Cartesius implementation in conjunction with CTNET.

The re-implementation of Cartesius and related CTNET integration is being

carried out under Task Order 6324. Based on feedback from the Caltrans customers

for the product of this research, the work plan for Task Order 6324 has been revised

from the originally planned full field operational test that served as the basis for both

Task Orders 5324 and 6324. This new work plan includes development and testing of

the new Cartesius software with a specific focus producing a deployable integration

with CTNET. The following sections describe the plans for linking using CTNET as

a control action provider for the Cartesius response algorithm and summarize the

overall integration and evaluation plan for the remaining research.

5.1 Cartesius Response Formation and Strategy

Translation

Cartesius response formation is the product of a heuristic search through the prob-

lem space defined by estimated traffic conditions and estimated incident impacts in

terms of demand and capacity disruptions. The search is driven by an agency-specific

39

set of response strategies and related control actions that can be used to implement

those strategies. These agency-specific configurations comprise a knowledge base that

constrains the possible solution space to solutions that are consistent with local traffic

control policies. Any evaluation of the Cartesius/CTNET system will be governed

by this knowledge base and the particular set of possible strategies and control ac-

tions available in the knowledge base. For the remaining research under Task Order

6324, two types of control actions will be added to the knowledge base for use in

the I-405 Corridor. The first will use predetermined timing patterns accessible from

the controllers using CTNET to provide coordinated signalization strategies to the

search algorithm. This will permit Cartesius to interoperate effectively with typical

installations currently in use. We will also consider adding a control action to the

knowledge base that uses the adaptive control system being developed in PATH Task

Order 6323, Optimal Control for Corridor Networks: A Mathematical Logic-Based

Modeling and Solution. This control subsystem solves the corridor ramp-metering

and traffic signal control problem using a multi-objective formulation that produces

solutions for optimal control that specify the set of non-dominated corridor control

options. Cartesius can explore this set using its search algorithm to find the solution

that is acceptable to all participating agencies.

5.2 Path to Deployment

The integration of Cartesius and CTNET offers a significant step toward deploying

true corridor control of non-recurrent congestion. The use of existing timing pat-

terns provided by CTNET improves the deployability of Cartesius by using control

actions that have already been vetted by traffic engineers rather than trying to dy-

namically determine new strategies. Consequently, a completion of the final year

of this project will move Cartesius significantly closer to potential real-world de-

ployment. Toward this ultimate end, the Cartesius/CTNET evaluation is being

conducted on the I-405 corridor network in the City of Irvine. This location has

been chosen because we have at least limited authority to conduct tests involving

closed-loop control. On the arterial, we have installed a system of Type 2070 con-

trollers at all signalized intersections that operate independently from the local COI

system. Research already completed as part of this project has connected these con-

trollers to CTNET; a secondary system based on state-of-the-art Siemens ACTRA

Central Traffic Control System with custom-designed Input Acquisition Software is

in place as a backup, should the CTNET configuration prove problematic. Software

40

has been developed, and laboratory tested, that permits real-time adaptive control of

Caltrans D12 ramp meters in the study area (a feature not currently possible under

Caltrans D12 ATMS). We have established real-time communication with these con-

trol devices and also receive real-time raw data streams from loop detectors within the

study area. We have memoranda of understanding with both the COI and Caltrans

D12 that permit the research team to conduct closed-loop control experiments in the

study area.

As part of Task Order 6324, we will first evaluate this joint deployment of Carte-

sius and CTNET using our Paramics simulation of the corridor using custom plugins

already written as part of this research to allow the simulation to interoperate with

CTNET, and ultimately Cartesius—this configuration is shown in 5.1. Here, links

to the simulated control and sensor systems are provided by Testbed plugins. Free-

way data coming from the Paramics ATMS plugin flows into the Testbed database (a

mock version in this simulated implementation) through direct communication with

the plugins. This configuration mimics the architecture of the Real-time Data Intertie

described in section 2.5.1. Similarly, traffic signal data flows to and from the AB3418e

Paramics plugin to the CTNET CommServer. A custom CTNET client connects to

the CommServer over the CTNET Comm Protocol and pushes arterial traffic signal

data into the database. Cartesius uses a traffic measurement data access object

(DAO) to obtain real-time sensor data for monitoring the system. A demand model

also uses this DAO to get measurements to update the system’s estimate of prevailing

demands, which Cartesius accesses via the Demand DAO.

When events dictate a Cartesius response, the agent collective selects a global

response strategy from available control actions. In this simulated mode, these control

actions are pushed to the field controllers using the Signal Control, Ramp, and CMS

DAOs and traffic monitoring continues as described above.

The system will also be connected in a read-only manner to real-world data feeds to

evaluate its recommendations as compared with actual operations. This configuration

is shown in figure 5.2. The only differences in real-world operation are in the lower

half of the figure. Here, freeway data is sent to the Testbed from the D12 FEP and

pushed into the Testbed database by the common ITS data processor as described

in section 2.5.1. Arterial sensor data has two paths into the system. The existing

path described in section 2.5.1, uses the custom input acquisition software (IAS)

software to obtain arterial sensor data, which is read by the ITS data processor and

sent to the Testbed database. This data is also bridged to the CTNET CommServer

so that CTNET can access IAS systems. Where field controllers deploy the the

41

Caltrans TSCP program, these controllers can communicate directly with the CTNET

CommServer. Beyond these low-level communications, all processing in the real-world

mode of the system continues as described above. In the final analysis of the real-

world operation, we will assess the degree to which constraining the control actions

available to CARTESIUS (e.g, by using only pre-vetted signal timing patterns stored

in CTNET) impacts the quality of the system’s response to incidents by comparing

recommended actions with those actions taken by the TMC.

42

Figure 5.1: Simulation data flows

43

Figure 5.2: Real-world data flows

44

References

Chen, C. (2003). Freeway Performance Measurement System (PeMS). Technical

Report UCB-ITS-PRR-2003-22, California PATH.

Chootinan, P., Chen, A., and Recker, W. W. (2005). Improved path flow estimator

for estimating origin-destination trip tables. Transportation Research Record, 1923.

Gensym (1995). G2: Reference Manual. Version 4.0. Gensym Corporation, Cam-

bridge, MA.

Iteris, Inc (2002). National ITS architecture. Technical report, US Department of

Transportation. URL http://itsarch.iteris.com/itsarch/.

Lesser, V. R. and Corkill, D. D. (1981). Functionally Accurate, Cooperative dis-

tributed systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-

11(1):81–96.

Logi, F. (1999). CARTESIUS: A Cooperative Approach to Real-time Decision Support

for Multijurisdictional Traffic Congestion Management. PhD thesis, University of

California, Irvine.

Logi, F., Rindt, C. R., McNally, M. G., and Ritchie, S. G. (2001). Advancd trans-

portation management system test bed for evaluation of interjurisdictional traffic

management strategies. Transportation Research Record, 1748:125–131.

Logi, F. and Ritchie, S. G. (1997). Verification, validation and evaluation of TCM,

a knowledge-based system for traffic congestion management. Technical report,

Institute of Transportation Studies, University of Califorina, Irvine.

Minderhoud, M. M., Botma, H., and Bovy, P. H. L. (1997). Assessment of roadway

capacity estimation methods. Transportation Research Record, 1572.

45

Nie, Y., Zhang, H. M., and Recker, W. W. (2003). Equilibrium-based o-d estimation

using a constrained generalized least squares path flow estimator. Technical Report

UCD-ITS-Zhang-2003-4, Institute of Transportation Studies, UC Davis.

Nie, Y., Zhang, H. M., and Recker, W. W. (2005). Inferring origin-destination trip ma-

trices with a decoupled gls path flow estimator. Transportation Research, 39B:497–

518.

Rindt, C. R. (2005). A preliminary comparison of cartesius and

CTNET. Technical report, University of California, Irvine. URL

http://parsons.its.uci.edu/projects/cartesius/ctnet-integration/

reports%/cartesius-ctnet-integration.pdf.

Rindt, C. R. and McNally, M. G. (2007). Field deployment and operational test of

an agent-based, multi-jurisdictional traffic management system. Technical Report

UCB-ITS-PWP-2007-1, University of California Irvine.

46

