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The Role of Osteocytes in Temporomandibular Joint Diseases 

Abstract 

Marianne Demirdji 

Temporomandibular joint disorders (TMJDs) are a highly prevalent spectrum of conditions occurring in 

about 6 to 12% of the adult US population totaling over 10 million people and costing billions of dollars 

in health care and lost productivity. TMJDs frequently present with pain, functional limitations and joint 

sounds associated with degenerative joint disease, an osteoarthritis (OA)-like condition that significantly 

affects the quality of life due to its impact on critical functions such as eating and speech. While the 

etiologies of the temporomandibular joint (TMJ) OA remain unknown, due to the propensity of these 

disorders in adolescent females- an age group that coincides with orthodontic treatment- orthodontic 

therapy has often been attributed as a causative or predisposing factor for TMJ OA. Furthermore, severe 

forms of these disorders such as idiopathic condylar resorption impact on the orthodontist’s ability to 

deliver predictable treatment outcomes. Thus, understanding the causation or predisposing factors for 

TMJ OA are of critical importance to our profession.  

The loss of cartilage extracellular matrix and a compromised subchondral bone are characteristic features 

of OA of the TMJ. While previous concepts of OA pathogenesis have proposed that cartilage loss is a 

primary contributor or initiator of OA, more recently it has become clear that cartilage-bone cross-talk are 

key elements in the pathogenesis of OA. Thus, altered bone quality including its increased or decreased 

density are known to lead to cartilaginous defects and progression of OA. Bone quality in turn is 

determined by bone forming and degrading cells including osteoblasts, osteocytes and osteoclasts. 

Although osteocytes have come to be recognized as key regulators of bone quality, their role in 

contributing to OA is not currently known. Published data has shown that osteocyte-mediated remodeling 

is essential for bone and joint health in long bones. More specifically, we have shown that mice with 

osteocyte specific ablation of matrix metalloproteinase-13 (MMP13), which is involved in perilacunar 
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remodeling (PLR) by osteocytes have bone quality defects due to collagen disorganization and matrix 

hypermineralization. However, the role of osteocyte function and osteocyte-mediated bone remodeling in 

TMJ OA remains unknown. Because OA is a disorder that involves complex and as yet largely unknown 

cross-talk between cartilage and subchondral bone, we anticipate a potential link between altered bone 

metabolism through loss of MMP-13 in osteocytes and TMJ OA. Our long-term goal is to understand the 

contribution of osteocyte-mediated bone phenotypic changes to the progression and severity of TMJ OA 

by testing the hypothesis that altered PLR through osteocyte-specific knockdown of MMP13 aggravates 

chemically-induced TMJ OA.  Towards this long-term goal, here we performed studies to address the 

following Specific Aims: 

1. Establish and confirm a reproducible and effective method for intra-articular injection of OA-

inducing agent, monosodium iodoacetate (MIA) by administration of Fast Green dye. 

2. Using data from previous studies on mouse knee joint and rat TMJ, test and establish an effective 

dose of an OA-inducing agent, monosodium iodoacetate (MIA) that results in OA-like changes in 

the mouse TMJ.   

3. Histologically quantify TMJ health via modified Mankin scoring in WT and MMP13OCY-/- male 

mice. 

Besides providing fundamental information on osteochondral interactions and the role of each of these 

tissues to the initiation and / or progression of TMJ OA, this study will be important in better 

understanding the pathogenesis of this disorder and in providing insights into potential therapeutic targets 

to prevent or alleviate degenerative diseases of the TMJ. Furthermore, determination of an effective MIA 

dose that generates TMJ OA will establish a mice model for TMJ OA that could be valuable for future 

studies to identify disease mechanisms.   
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CHAPTER 1: INTRODUCTION 

1.1. The TMJ in Health and Disease 

Temporomandibular Joint Disorders (TMJDs) are a highly prevalent spectrum of conditions occurring in 

about 6 to 12% of the adult US population totaling over 10 million people and costing billions of dollars 

in health care and lost productivity. Patients with TMJDs frequently present with facial pain and 

headaches, joint sounds and functional limitations that significantly affect the quality of life due to its 

impact on critical functions such as eating and speech. Approximately 10-25% of patients with 

temporomandibular joint (TMJ) pain demonstrate features of TMJ osteoarthritis (OA).1,2 TMJ OA is a 

condition that is classified as low-inflammatory arthritic condition, implying it’s chronic and slow onset.1 

Patients with TMJ OA often present with other crippling co-morbidities such as chronic pain and 

fibromyalgia, and have also been reported to have elevated levels of suicidal ideation, depression, and 

anxiety as compared to the general population.3,4 Therefore, new therapies to treat TMJD are clearly 

needed. While the etiologies of the TMJ OA remain unknown, due to the propensity of these disorders in 

adolescent females, an age group that coincides with orthodontic treatment, orthodontic therapy has often 

been attributed as a causative or predisposing factor for TMJ OA.1,5 Furthermore, severe forms of these 

disorders such as idiopathic condylar resorption impact on the orthodontist’s ability to deliver predictable 

treatment outcomes. Thus, understanding the causation or predisposing factors for TMJ OA are of critical 

importance to our profession. 

Joint health and optimal function in the TMJ as well as in the appendicular skeleton is a product of 

healthy articular cartilage, soft connective tissues including ligaments surrounding the joint, and 

subchondral bone. Defects in any of these can disrupt the crosstalk among these tissue that can lead to 

disease. Though there is evidence to show that this interaction between the various tissues in the joint are 

important in joint health and disease, the cellular and molecular mechanisms of this crosstalk are less 

clear. We have recently found that osteocytes in subchondral bone play a critical causal role in the 
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progression of joint disease. Specifically, we have found that osteocyte-mediated defects in subchondral 

bone contribute to the progression of OA of the knee joint (see Chapter 2). Given that the TMJ is a unique 

joint with distinct developmental origin, composition and function that are different from the knee and 

other appendicular joints, these findings may not be readily translatable to the TMJ.6 Therefore, we 

propose to determine the extent to which defects in osteocyte function contribute to the progression and 

severity of TMJ OA. 

1.2. Contribution of Matrix Metalloproteinases and Perilacunar Remodeling to Joint Degeneration and 

OA 

Matrix metalloproteinases (MMPs) are a family of 25 enzymes that are characterized by their 

extracellular matrix substrate specificity, zinc-dependent activity, extracellular inhibition by tissue 

inhibitors of metalloproteinases (TIMPs), secretion as a zymogen and sequence similarities.7 When 

MMPs are divided by functionality, MMP13 is identified specifically as a collagenase, with its primary 

substrates being helical collagens such as types I and II collagen, the predominant collagens found in 

bone and cartilage, respectively. Osteoblasts and chondrocytes express MMP13 and are directly involved 

with the degradation of collagen I and II.2 Indeed, MMP13 expressed by chondrocytes is a key proteinase 

implicated in cartilage matrix degradation and propagation of OA.6 In contrast to the known contributions 

of MMP13 to cartilage matrix loss, the effects of altered levels MMP13 expressed by bone cells 

particularly osteocytes to OA remains largely unknown. This information is of critical importance due to 

the fact that altered subchondral bone phenotype is increasingly implicated in contributing to the 

pathogenesis of OA. Specifically, it has been shown that increased or decreased subchondral bone density 

leads to secondary adverse changes in overlying cartilage and the perpetuation of OA.8–10 As bone cells 

are overloaded in OA, there are extensive changes to the structural framework of the subchondral bone. 

Some visible features include but are not limited to cartilage thickening, sclerosis, osteophytes, and bone 

marrow lesions. As the OA progresses, the cartilage layer thickens and becomes increasingly calcified, 

effectively reducing its primary function of diffusing loads. From these studies, it has been concluded that 
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the subchondral bone and overlying cartilage effectively function together to promote distribution of 

mechanical loads. Thus, not only do perturbations in cartilage health induce or aggravate bone 

degenerative changes, but primary or secondary changes in bone or poor bone quality perpetuate cartilage 

degeneration.8,9,11 This interplay between cartilage and bone make the understanding of the effect of one 

tissue on the other extremely critical to understanding and preventing OA. 

In this context, our studies show that the MMP13 ablation results in defective bone matrix organization 

and impaired bone quality in long bones, defects that we trace to impaired osteocyte function. Similarly, 

the administration of glucocorticoid represses MMP13 expression in osteocytes in long bones and in the 

mandible in proximity to defects in bone matrix collagen and mineral organization in the perilacunar 

regions.3,12 These lacunae house osteocytes and have a spanning network of canaliculi that have a variety 

of proposed functions including perilacunar remodeling (PLR).3 PLR is a process where osteocytes 

housed in lacunae resorb and replace the local bone matrix to achieve stable systemic mineral levels. The 

canaliculi off-shooting from the lacunae depend on this remodeling to maintain connectivity of osteocytes 

to one another and to the vascular supply. In the absence of PLR, there is observed degeneration of the 

osteocyte lacuno-canalicular network, collagen disorganization, and matrix hypermineralization. Our 

preliminary analysis of bone from mice with osteocyte-specific MMP13 ablation indicate that cell-

intrinsic MMP13 is required for normal PLR and bone homeostasis in long bones (see Chapter 2). 

However, the consequences and contributions of the resulting changes in bone phenotype to fibrocartilage 

health and TMJ OA has not been elucidated. Our proposed studies will set the foundation to elucidate the 

contributions of subchondral osteocytes and bone quality to cartilage degeneration and OA progression in 

the TMJ. 

1.3. Murine Mandibular Anatomy 

The mandible develops by intramembranous ossification with the earlier developing Meckel’s cartilage 

serving as a template. Nevertheless the condyle develops endochondrally as a secondary cartilage.13 This 
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is of significance because this secondary cartilage of the condyle serves as a growth site for the mandible, 

whereby chondrocytes proliferate to promote growth. Besides functioning as a growth plate, the condylar 

cartilage has an articular role that includes responding to functional and masticatory stresses. Following 

growth, the cartilage remains to continue serving as articular surface for the joint.14 Additionally, the 

shape and location of the TMJ changes in murine and human models with age.15  Liang et al., 

characterized the development of the murine TMJ from embryonic day 13.5 to post-natal day 180.16 They 

characterize TMJ formation over three stages: initiation, growth, and cavitation. The condyle develops 

upwards into the glenoid fossa with which it articulates. Furthermore, through proliferation and apoptosis 

that is regulated by a variety of transcription factors and MMPs, the murine condyle develops into the 

skeletally mature state at the 3-month mark of the animal’s life.16 The posterior portion of the condyle 

displaces posteriorly – lending to the up and back position of the condyle.17  

1.4. Methods to induce TMJ OA – particularly Monosodium Iodoacetate (MIA) 

MIA has been utilized for osteoarthritis induction for over 20 years, with its effects on joints 

characterized extensively. Localized injection of MIA into the synovial space of joints in the appendicular 

skeleton as well as in the rat TMJ results in a cascade of events affecting the function of chondrocytes. 

The metabolism of chondrocytes is impaired resulting in subsequent cartilage degeneration. Histological 

analysis has demonstrated this destruction is comparable to that of human OA.18  While previous studies 

have used MIA in mediating mice knee joint OA and rat TMJ OA, no information is currently available 

currently in the dosing and effects of MIA in the mouse TMJ.2,19–22 We will use the dosing and outcomes 

data from these studies to test the calculated MIA dose bracket and temporal effects in inducing OA in the 

mouse TMJ.  Current mouse TMJ OA models include dietary models, forced mouth opening, occlusal 

adjustments, and chemical induction. Dietary models are frequently used and present a non-invasive 

approach to discerning how changes in mechanical loading alter tissue phenotype. However, varying the 

pellet hardness (normal diet being hard pellets; experimental being soft) or size is often found to be 

insufficient in producing degenerative changes in the TMJ.13 Additionally, the joint changes in this model 
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are not thoroughly characterized. Forced mouth opening models present an aggressive model to induce 

TMJ changes which have notable outcomes such as subchondral bone thickening, increased expression of 

specific genetic markers, and chondrocyte irregularities.23 However, custom designed springs on mice 

present logistical issues to maintain the spring, and variations in reproducibility of loading forces. 

Malocclusion models for TMJ OA such as placement of a unilateral bonded wire to irregularly load the 

TMJ are not well characterized.24 Studies using chemical approaches to induction of TMJ OA show 

reproducible findings, are well-characterized and present a reliable option for TMJ induction.25 Current 

approaches include use of complete Freund’s adjuvant and MIA. Freund’s adjuvant-induced arthritis is 

highly inflammatory with features similar to that of rheumatoid rather than osteoarthritis.26 In contrast, the 

MIA OA model has been used to successfully and reliably induce OA-like disease in rat and rabbit and in 

the rat TMJ.2,19–22  

1.5. Summary and Significance 

A review of the literature and previously adopted methods led us to use MIA for inducing OA in the 

mouse TMJ. This required modifying approaches, doses and timelines that have previously been 

characterized in the mouse knee joint and rat TMJ to establish both the optimal conditions and to 

effectively administer MIA into the mouse TMJ to result in reproducible TMJ OA. Given the voids in our 

knowledge on the role of osteocyte-mediated bone remodeling in TMJ OA and because OA is a disorder 

that involves complex and as yet largely unknown cross-talk between cartilage and subchondral bone, we 

propose to explore the potential link between altered bone metabolism through loss of MMP13 in 

osteocytes and TMJ OA. Our overall goal is to understand the contribution of osteocyte-related bone 

phenotypic changes to the progression and severity of TMJ OA. Because the etiopathogenesis of TMJ OA 

is poorly understood, current treatments are largely palliative and designed to alleviate symptoms rather 

than rational and specific approaches to address cause(s) of these disorders. With increasing severity of 

the disease, it is treated with a spectrum of progressively invasive measures - from observation to full 

joint replacement. The proposed studies will not only provide fundamental information on osteo-chondral 
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interactions and the role of each of these tissues to the initiation and / or progression of TMJ OA, but will 

be important in better understanding the pathogenesis of this disorder and in providing insights into 

potential therapeutic targets to specifically prevent or alleviate degenerative diseases of the TMJ. For 

example, if the effect of bone phenotype on fibrocartilage degeneration is demonstrated, then optimal 

treatment strategies for OA might include targeting both the bone and cartilage compartments. Also, by 

focusing on the TMJ rather than the hyaline cartilage joints, we will be able to decipher the specifics of 

fibrocartilage responses to altered bone quality, that will be critical to understanding disease progression 

that is unique to the TMJ. Thus, the findings will be highly relevant to potential therapies that are specific 

for TMJ OA. 

Previous studies have shown that systemic and osteocyte-specific ablation of MMP13 interferes 

with PLR in the mouse femur and tibia resulting in altered collagen matrix organization and 

hypermineralization in the trabecular compartment of long bones.6 These defects manifest as bone 

sclerosis and canalicular network degeneration in subchondral bone and exacerbate the severity of joint 

degeneration in appendicular joints. Specifically, defective PLR results in full-thickness cartilage loss and 

severe bone sclerosis in the knee joint of MLI mouse model of OA as compared to moderate articular 

cartilage degeneration in MLI WT mice (see Chapter 2). Though our preliminary data support a causal 

role for osteocytic PLR in appendicular joint disease, the extent to which proteinases involved PLR such 

as MMP13 play a causal role in TMJ OA remains to be determined. Equally importantly, while we show 

the adverse effect PLR defects in subchondral bone on hyaline cartilage joint, it is not yet clear how these 

boney changes impact the progression of TMJ OA. Therefore, to evaluate the causal role of PLR in TMJ 

OA, we performed initial studies to evaluate the TMJ OA phenotype in MMP13OCY-/-  mice in the MIA 

model using the optimal dose conditions. 
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CHAPTER 2: PREVIOUSLY PUBLISHED MATERIALS 
 
2.1. PLR is Controlled by Regulating Essential PLR Enzymes 

Osteocyte specific MMP13 null mice that will be used in these studies have been used to generate 

important preliminary data that points to the potential role of PLR in TMJ OA. The importance of 

osteocyte-mediated PLR in health and disease has been characterized by studying the effects of enzymes 

that regulate bone remodeling on this process. Several osteocyte derived proteins have been implicated in 

PLR including cathepsin K, MMP13, MMP14, MMP2, TRAP, carbonic anhydrase 2, and the Na/H+ 

exchanger.12 Deficiency in each of these key enzymes impairs canalicular networks and yields other 

hallmarks of defective PLR. More specifically, dysregulation of bone remodeling caused by systemic or 

osteocyte-specific ablation of MMP13 significantly compromises bone quality (Figure. 2.1). This 

includes aberrant collagen organization, hypermineralization and decreased resistance to fracture.12 

Figure 2.1. MMP-13-deficiency results in increased trabecular bone volume and the altered distribution 
cortical bone mineralization��The trabecular bone contoured from the proximal region of the tibia 
confirms previous observations that MMP13−/− bones have significantly increased trabecular bone volume 
fraction (BV/TV; p < 0.05) (A, B, E, F). MMP13-deficiency did not affect the geometric structure of the 
cortical bone (cortical thickness; p = 0.52) (C, D, G). Nonetheless, a histographic plot of the cortical bone 

Figure 1. MMP-13-deficiency results in increased trabecular bone volume and the altered
distribution cortical bone mineralization
The trabecular bone contoured from the proximal region of the tibia confirms previous
observations that MMP-13−/− bones have significantly increased trabecular bone volume
fraction (BV/TV; p < 0.05) (A, B, E, F). MMP-13-deficiency did not affect the geometric
structure of the cortical bone (cortical thickness; p = 0.52) (C, D, G). Nonetheless, a
histographic plot of the cortical bone tissue mineral densities (Cortical TMD) reveals that
MMP-13−/− mice have significantly altered TMD distribution (p < 0.001), characterized by
an increased incidence of lower and higher TMD compared to the WT (H). This can in part
be explained by the osteoid remnants, which stain red with Safranin-O, that are
predominantly observed in the middle and proximal aspects of the tibia (I). However there
were no detectable differences in Safranin-O staining in the distal region near the
tibiofibular junction where bulk of the subsequent analyses were performed (J).

Tang et al. Page 16
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tissue mineral densities (Cortical TMD) reveals that MMP13 OCY-/- mice have significantly altered TMD 
distribution (p < 0.001), characterized by an increased incidence of lower and higher TMD compared to 
the WT (H). This can in part be explained by the osteoid remnants, which stain red with Safranin-O, that 
are predominantly observed in the middle and proximal aspects of the tibia (I). However there were no 
detectable differences in Safranin-O staining in the distal region near the tibiofibular junction where bulk 
of the subsequent analyses were performed (J). 

2.2. PLR is suppressed in human joint disease 

Although the abnormal subchondral bone of post-traumatic OA (PTOA) and osteonecrotic joints has been 

well-described, the integrity of PLR in these conditions has not previously been known.27–29 We found 

that subchondral bone from patients with PTOA and osteonecrosis exhibits each of the classical hallmarks 

of defective PLR. Femoral head subchondral bone from patients with glucocorticoid- induced 

osteonecrosis has reduced levels of MMP13, disorganized collagen, truncated canaliculi, smaller lacunae, 

and hypermineralization (Figure 2.2). Our preliminary data indicate that the same hallmarks are present in 

PTOA tibial plateaus from veterans receiving knee replacements.3 Among these, the most compelling 

evidence of PLR suppression is that canalicular length is reduced by 56% in PTOA bone, relative to bone 

from non-PTOA cadaveric donors (Figure 2.3, p=0.003). Furthermore, canaliculi on the medial side of the 

tibial plateau, the most common site of PTOA, appear to be shorter than those on the relatively healthier 

lateral side of the same joint. Collectively, our findings strongly support the conclusion that PLR is 

suppressed in human osteonecrosis and in PTOA. However, analysis of tissues with terminal disease does 

not clarify whether PLR suppression contributes to disease progression, or is a result of the disease 

process. Thus, there is substantial value to performing in vivo mechanistic studies to understand the 

temporal relationship between PLR and OA and the direct contributions that aberrant PLR makes to OA. 
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Figure 2.2. PLR suppression in human osteonecrosis. Trabeculae from the sclerotic regions of human 
femoral heads (B,E,H,K,N) show hallmarks of defective PLR relative to those distant from the lesion 
(A,D,G,J,M). These include reduced MMP13 expression (IHC, A–C) (scale bar, 20 µm), defects in 
collagen organization (picrosirius red stain, D–F) (scale bar, 50 µm), and reduced canalicular length 
(silver nitrate stain, G–I). Bar graph represents mean ± SEM of n ≥ 3 regions from human cadaveric or 
human osteonecrotic bone samples, * p-value ≤ 0.05 compared to control. Xray tomographic microscopy 
shows hypermineralization (L, red arrows) and reduced lacunar size (O) in osteonecrotic bone (K,N) 
relative to trabeculae that are more distant (J,M). Vertical lines (L,O) signify peak volumes.  

www.nature.com/scientificreports/

8Scientific RepoRts | 7:44618 | DOI: 10.1038/srep44618

Figure 7. Organization and composition of human osteonecrosis subchondral bone has hallmarks of 
defective perilacunar remodeling. Trabeculae from the sclerotic regions of human osteonecrotic femoral 
heads (B,E,H,K,N) show histologic and radiographic hallmarks of defective perilacunar remodeling relative to 
trabeculae that are distant from the lesion (A,D,G,J,M). These include reduced MMP-13 expression as assessed 
by immunohistochemistry for MMP-13 or negative control (A–C) (scale bar =  20 µm), defects in collagen 
organization as assessed using picrosirius red staining (D–F) (scale bar =  50 µm), and reduced canalicular 
length as assessed by silver nitrate staining (G–I). For graph, bars represent mean ±  SEM of n ≥  3 regions from 
either normal human cadaveric or human osteonecrotic bone samples, * p-value ≤  0.05 compared to control. 
As in GC-treated mouse bone, SRµ T shows hypermineralization (L) (red arrows highlight hypermineralized, 
sclerotic, collagen layers) and reduced lacunar size (O) in the bone from human osteonecrosis lesions (K,N) 
relative to trabeculae that are more distant (J,M). Vertical dotted lines signify peak lacunar volume values.

Figure 8. Schematic model comparing balanced perilacunar remodeling with glucocorticoid-mediated 
suppression. Within the bone matrix during normal perilacunar remodeling (A), there exists extensive 
lacunocanalicular connectivity, linearized collagen, and maintenance of mineral content around the osteocyte 
lacuna. Inset shows linearized collagen. In the presence of excess glucocorticoids (B), perilacunar remodeling 
is suppressed. Dysregulation of osteocyte enzyme expression likely precedes changes in bone matrix collagen 
alignment, lacunocanalicular circulation, and mineralization status; all of which contribute to the poor bone 
quality, sclerosis and increased fracture risk observed in osteonecrosis. Inset shows disorganized collagen 
matrix with accompanying hypermineralization. Illustration by M. Ouchida.
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Figure 2.3. Disrupted lacunocanalicular networks in human OA subchondral bone. Control cadaveric (A, 
C, D) and OA (B, E, F) specimens stained with Safranin-O/ Fast Green and imaged at 0.5x (A, B) or 10x 
(C-F) magnification displayed differences in articular cartilage and subchondral bone morphology on the 
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lateral and medial sides of the tibial plateau. Subsequent analyses compared the indicated regions of 
interest (black boxes in A, B) between control and OA specimens, and between the less affected lateral 
side with the more severely degraded medial side. These identified regions of interest in Ploton silver 
stained sections were evaluated at low (4x, G-J) and high (100x, K-N) magnification to visualize the 
lacunocanalicular network of subchondral bone. Quantification of lacunocanalicular area normalized to 
bone area (O) and canalicular length (P) revealed significant OA-dependent reductions in both parameters 
(n=5). Scale bars are 400 µm in C-F, 200 µm in G-J, and 20 µm in K-N. *p<0.05 compared to respective 
regions of control specimens, p<0.05 between regions by Holm-Sidak post-hoc tests.  

 2.3. PLR suppression compromises subchondral bone quality and plays a causal role in PTOA 

In addition to our findings on effects of dysregulated PLR on trabecular bone in long bones, we have 

found sclerotic bone and abrogated canalicular networks (Figure 2.4) in subchondral bone in mice with 

either systemically ablated MMP13, or with osteocyte-specific knockout of MMP13.12 Our preliminary 

data further support the causal role of PLR suppression in joint disease. Using an established medial 

collateral ligament (MLI) injury model of knee joint PTOA in which the medial collateral ligament is 

transected and the medial meniscus is removed, we tested the hypothesis that PLR suppression would 

exacerbate the severity of PTOA.30,31 While the analyses are still underway, the preliminary data support 

this hypothesis. Relative to the anticipated moderate degeneration of articular cartilage in MLI wild-type 

mice Figure 2.5B, the degeneration in an osteocyte-intrinsic model of PLR suppression (TBRII OCY-/-) 

demonstrated full-thickness cartilage loss and severe bone sclerosis as visualized histologically (Figure 

2.5D). These findings support and extend the conclusions derived from the osteonecrosis model, in which 

glucocorticoid excess affected multiple cell populations. Specifically, we find that osteocyte-intrinsic 

suppression of PLR is sufficient to exacerbate the severity of joint degeneration. The extent to which 

similar processes participate in the degeneration of the TMJ remain to be determined and are the focus of 

this study. 
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Figure 2.4. Osteocyte-intrinsic ablation of the PLR enzyme MMP13 causes subchondral bone sclerosis 
and canalicular network degeneration. Osteocyte-specific ablation of MMP13 results in trabecular bone 
sclerosis (A,B) and reduced canalicular length (silver nitrate stain, C,D). These findings complement 
those in human PTOA and in systemic MMP13-deficient mice, which also show poor bone quality with 
significantly reduced work- to-fracture (E). * p-value ≤ 0.05 compared to control. 

 

Figure 2.5. Increased PTOA severity in TβRIIOCY-/- mice shows critical role of osteocytes in joint 
disease. Meniscal/ligamentous injury (MLI) in WT mice results in a PTOA phenotype with loss of 
proteoglycan staining and subchondral bone sclerosis (Safranin- O/Fast Green stain, B) compared with 
non- injured controls (A) (scale bar = 20 µm). Defective PLR, induced by osteocyte-specific ablation of 
TβRII, exacerbates cartilage degeneration and subchondral bone sclerosis in the presence of injury (D) 
compared with uninjured TβRII OCY-/-. Canalicular networks are disrupted in TβRII OCY-/- mice (G, H) 
compared with WT mice (E,F). Blinded reviewers consistently ranked the joints of the MLI TβRII OCY-/- 

mice as the most severe PTOA phenotype. This qualitative preliminary data is representative of N=5 
mice/group. 
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analysis of tissues with terminal disease does not clarify 
whether PLR suppression contributes to disease 
progression, or is a result of the disease process. Thus, 
there is substantial value to performing in vivo 
mechanistic studies to understand the temporal 
relationship between PLR and OA and the direct 
contributions that aberrant PLR makes to OA.  

2.3 PLR suppression compromises subchondral bone quality and plays a causal role in PTOA 
In addition to our findings on effects of dysregulated PLR on trabecular bone in long bones, we have 
found sclerotic bone and abrogated canalicular networks (Fig. 4) (Tang et al., 2012) in subchondral 
bone in mice with either systemically ablated MMP13, or with osteocyte-specific knockout of MMP13. 
Our preliminary data further support the causal role of PLR suppression in joint disease. Using an 
established medial collateral ligament (MLI) injury model of knee joint PTOA in which the medial 
collateral ligament is transected and the medial meniscus is removed (Kamekura et al., 2005; 
Sampson et al., 2011), we tested the hypothesis that PLR suppression would exacerbate the severity 
of PTOA. While the analyses are still underway, the preliminary data support this hypothesis.  
Relative to the anticipated moderate degeneration of articular cartilage in MLI wild-type mice (Fig. 
5B), the degeneration in an osteocyte-intrinsic model of PLR suppression (TERIIOCY-/-) demonstrated 
full-thickness cartilage loss and severe bone sclerosis as visualized histologically (Fig. 5D).  These 
findings support and extend the conclusions derived from the osteonecrosis 
model, in which glucocorticoid excess affected multiple cell populations. 
Specifically, we find that osteocyte-intrinsic suppression of PLR is sufficient 
to exacerbate the severity of joint degeneration.  The extent to which similar 
processes participate in the degeneration of the TMJ remain to be 
determined and are the focus of this study.  

Figure 4. Osteocyte-
intrinsic ablation of the 
PLR enzyme MMP13 
causes subchondral bone 
sclerosis and canalicular 
network degeneration. 
Osteocyte-specific ablation 
of MMP13 results in 
trabecular bone sclerosis 
(A,B) and reduced 
canalicular length (silver 
nitrate stain, C,D). These 
findings complement those 
in human PTOA and in 
systemic MMP13-deficient 
mice, which also show poor 
bone quality with 
significantly reduced work-
to-fracture (E). * p-value ≤ 
0.05 compared to control.   
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Figure 3. PLR disruption in subchondral bone of veterans correlates with 
the severity of PTOA. PTOA tibial plateau samples demonstrate a loss of 
cartilage thickness, reduced proteoglycan staining in the superficial zone, 
and cartilage fibrillation (Safranin-O/Fast Green stain, D,E) compared to 
healthy cadaveric controls (A,B). Canalicular network organization is 
disrupted in the subchondral bone of PTOA tibial plateaus (silver nitrate 
stain, F), relative to healthy cadaveric tibial plateaus (C), and results in a 
reduction of canalicular length by 56.2% in arthritic samples compared to 
healthy samples (G). Bar graph represents mean ± SEM of n ≥ 3 regions in 
human subchondral bone from PTOA or healthy donors, * p-value ≤ 0.05 
compared to control. Samples from veterans receiving knee replacements 
due to severe PTOA were matched to healthy, non-PTOA cadaveric controls 
in age, sex, and BMI (H). 
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2.4 Experiments to Induce TMJ OA and Assay TMJ Degeneration 
Dr. Kapila has extensive experience in TMJ pathobiology for which he has been funded over the 
years by the NIH and the AAOF. His research group developed and characterized the first 
reproducible animal model of inflammatory TMJ disease (Kapila et al., 1995a) and were also the first 
to document the mandibulofacial growth changes in juvenile rheumatoid arthritis (JRA)-like disease 
of the TMJ in this animal model (Tavakkoli et al., 1999). His laboratory was the first to characterize 
the MMPs expressed by TMJ cells (Kapila et al., 1995b), which has provided the foundation of 
subsequent work by several investigators in deciphering the TMJ disease progression and markers 
of disease. The preliminary data provided below demonstrates the technical and intellectual 

knowhow to conduct the studies proposed in 
this application, which include histochemical 
and biochemical assays on changes in 
cartilage matrix macromolecules (Fig. 6) and 
PCT analyses of subchondral bone porosity 
(Fig. 7). 

3. EXPERIMENTAL DESIGN AND METHODS
3.1 Aim 1: Establish and Characterize an MIA-Induced TMJ OA Model in Mice  

We will adapt a previously established monosodium iodoacetate (MIA)-induced mice knee OA model 
to the TMJ by determining the MIA dose and temporal effects on the initiation and progression of 
mouse TMJ OA assessed histologically and by PCT analyses.  

Figure 5. Increased PTOA severity in 
TβRIIOCY-/- mice shows critical role of OCY in 
joint disease. Meniscal/ligamentous injury 
(MLI) in WT mice results in a PTOA
phenotype with loss of proteoglycan staining
and subchondral bone sclerosis (Safranin-
O/Fast Green stain, B) compared with non-
injured controls (A) (scale bar = 20 μm).
Defective PLR, induced by osteocyte-specific
ablation of TβRII, exacerbates cartilage
degeneration and subchondral bone sclerosis in
the presence of injury (D) compared with
uninjured TβRIIocy-/-. Canalicular networks are
disrupted in TβRIIocy-/- mice (G, H) compared
with WT mice (E,F).  Blinded reviewers
consistently ranked the joints of the MLI
TβRIIocy-/- mice as the most severe PTOA
phenotype. This qualitative preliminary data is
representative of N=5 mice/group.

TβRII OCY‐/‐ + MLIWT + MLIWT TβRII OCY‐/‐

20 μm 20 μm 20 μm 20 μm

20 μm 20 μm 20 μm 20 μm
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2.4 Experiments to Induce TMJ OA and Assay TMJ Degeneration 

Our lab (Kapila et al., 1995) has previously developed and characterized the first reproducible animal 

model of inflammatory TMJ disease and were also the first to document the mandibulofacial growth 

changes in juvenile rheumatoid arthritis (JRA)-like disease of the TMJ in this animal model.26 We have 

also characterized the MMPs expressed by TMJ cells, which provided the foundation of subsequent work 

by several investigators in deciphering the TMJ disease progression and markers of disease.32 The 

preliminary data provided below demonstrates the technical and intellectual know-how to conduct the 

studies proposed in this application, which include histochemical and biochemical assays on changes in 

cartilage matrix macromolecules (Figure. 2.6) and µCT analyses of subchondral bone porosity (Figure 

2.7). 
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Figure 2.6. In Vivo Effects of Estrogen (Est) on Collagen and Glycosaminoglycan (GAG) content of TMJ 
Fibrocartilage. Ovariectomized (OVX) young female mice were administered PBS or estrogen for seven 
days and TMJ or fibrocartilage harvested for histochemical staining (A and C) or biochemical assays for 
collagen (B) or GAG (D), respectively. (A) Masson’s trichome staining showing diminished collagen 
staining (blue) in TMJ fibrocartilage from estrogen treated mice relative to controls, that corresponds with 
loss of collagen as determined by hydroxyproline assay (B). (C) Safranin-O staining demonstrates 
decreased staining for GAG (orange) in TMJ fibrocartilage from estrogen treated mice relative to PBS 
control mice, which is confirmed quantitatively by Alcian Blue assay (D). Sham-operated mice were used 
as controls (P < 0.05). 
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Figure 2.7. In Vivo Effects of Estrogen (Est) on Subchondral Bone Porosity. Ovariectomized (OVX) 
young female mice were administered PBS or estrogen and TMJs retrieved for microCT after 28 days. 
Three-dimensional reconstruction (A) and coronal sections (B) of representative condyles show increased 
subchondral porosity. (C) This finding was confirmed quantitatively by analyzing the porosity in the 
subchondral zone (demarcated by the red line in the panel) and found to be statistically significant in mice 
administered estrogen relative to sham and PBS control mice (**P < 0.01).   
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CHAPTER 3: EXPERIMENTAL DESIGN AND METHODS 

3.1. Selected Mice and Allocated Groups 

A power analyses (see Statistical Analyses) indicates that a sample size of 4 specimens per group will 

result in a statistical significance at the 0.05 level (two-tailed). Statistical analyses on the effects of MIA 

on OA severity and other quantitative data will be performed as described below (see Statistical 

Analyses). Mice were generated by breeding homozygous MMP13-floxed mice that possess loxP sites 

flanking exons 3, 4, and 5, which encode the enzyme’s active site with hemizygous -10kb-DMP1-cre+/- 

mice, which express Cre recombinase primarily in osteocytes.33,34 Half of the mice from the resulting 

cross were DMP1-Cre+/-; MMP13flfl (named MMP13 OCY-/-) and half were DMP1-cre-/-; MMP13fl/fl 

littermate controls (named WT mice), as confirmed by PCR genotyping. All experiments were initiated 

on 12-week old mice using animal procedures approved by the Institutional Animal Care and Use 

Committee of the University of California San Francisco and the Indiana University School of Medicine. 

Once determined, the final injection protocol was practiced until sufficient competence was achieved for 

establishment of the injection protocol as proposed in Aim 1. Mice used for dose determination in Aim 2 

was allocated as follows: four mice for the 0.10 mg (4 mg/kg) MIA dose, two for the 0.05 mg (2 mg/kg) 

MIA dose, and 3 for the saline group due to time constraints and limitations in animal availability. While 

this is insufficient to draw conclusions due to a lower power and sample size, conclusions can be drawn 

from the preliminary analysis to allow for further studies. In order to compare 28 day male WT vs 

MMP13OCY-/- as described in Aim 3, five samples were obtained per group. Representative male and 

female samples at 7 and 28 day WT and MMP13 OCY-/- were also collected for future studies and are 

displayed in Figures 9-11.  

3.2 TMJ Injection Protocol 

In order to establish a proper injection protocol, a variety of needle gauges, lengths, and paths of injection 

were attempted. A 30 gauge needle was determined to not effectively pierce the mouse tissue. From this a 
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25 gauge needle was used to effectively pierce through the mouse tissue. Differing lengths of needles 

were used and eventually decided based of efficacy of delivery. The influencing factors for this decision 

were the length of the mouse from the TMJ to the nose tip as well as the volume of the fluid to be injected 

to the TMJ. A 25 gauge 0.625 inch was eventually used for all injections. Differing angulations of 

injection were also tried which are detailed in the Discussion. The final chosen injection method was to 

insert and place the needle parallel to and directly inferior to the zygomatic arch, as medial as possible. 

The needle lies directly parallel to the mouse head. The needle is then inserted until it hubs against nose 

of mouse and lateral to mouse molars as shown in Figures 3.1A and 3.1B. When the needle hubs, the tip 

is nearly flush with cochlea.  

 

Figure 3.1. Injection into the TMJ. Characterizing and verifying an optimal method for intra-articular 
TMJ injection in the mouse. Lateral (A) and anterior (B) views showing direction of needle insertion. (C) 
Dissected mouse head showing Fast Green staining of condylar head and TMJ fossa (arrow).  

3.3 Procedure for Aim 1 

12 week old mice allocated for Aim 1 were euthanized post-injection via lethal dose of CO2, followed by 

cervical dislocation. Intra-articular administration of Fast Green dye was confirmed by TMJ dissection as 

A 

B 

C 
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demonstrated in Figure 3.1C. These procedures were modified as needed and repeated until injections 

were noted to deposit the dye into the joint as desired for future injections. Once an optimal method was 

identified, these experiments were repeated in anaesthetized mice to confirm the adequacy of this 

technique  

3.4 Procedure for Aim 2 

The TMJ OA was induced by injection of MIA dissolved in 10 µl saline into both TMJs of 12-week old 

mice using a 25 gauge 0.625 inch needle under anesthesia without surgical assistance. In establishing and 

characterizing OA TMJ model in mice, we performed preliminary dose-response analysis of the effects 

MIA administered into mouse TMJs. Using dose data from previous studies on MIA-induced OA in 

mouse knee joint and rat TMJ adjusted by joint volume and weight, respectively, we calculated a low and 

high range of MIA dose and optimal volume to use in the mouse TMJ.20,21,25,35 These calculations 

indicated a low MIA dose of 0.05 mg (2 mg/kg) and high MIA dose of 0.10 mg (4 mg/kg) in saline 

should generate reproducible OA in the mouse TMJ. Similarly, these studies have demonstrated joint 

changes characteristic of OA within 3 to 21 days of intraarticular administration of MIA.20,21,25,35 Thus 

using a small sample of mice and 10 µl of PBS or low (0.05 mg) or high (0.10 mg) dose of MIA we 

histologically assayed mice at 28 days following administration of MIA or PBS.  Un-injected control 

animals did not receive anesthesia or analgesics. All animals were allowed unrestricted activity, food, and 

water. At 28 days post injection (dpi), animals were euthanized via lethal dose of CO2, followed by 

cervical dislocation and hemi-mandibles were harvested for histological and radiographic analyses. The 

left hemi-mandible were frozen for future µCT studies.  The right hemi-mandible was fixed overnight in 

4% paraformaldehyde, decalcified, sectioned, stained with Safranin-O/Fast Green stain and OA severity 

determined through modified Mankin scoring. 

3.5 Procedure for Aim 3 and representative samples 



	 19	

Since OA studies will be performed at 7 and 28 following injection of MIA in 12-week old mice, for this 

part of the study, we analyzed tissues from representative control mice 13 weeks (controls for 7 dpi mice) 

and 16 weeks (controls for 28 dpi mice) of age. Representative samples at these time points for male and 

female WT and MMP13 OCY-/- were collected. Of these five samples each from WT and MMP13OCY-/- 16-

week old male mice (controls for 28 dpi) were analyzed per group for the current studies while the rest 

were banked for ongoing studies.  Un-injected animals did not receive anesthesia or analgesics. All 

animals were allowed unrestricted activity, food, and water. Mice were euthanized via lethal dose of CO2, 

followed by cervical dislocation. 

3.6 Histology and OA Quantitation 

The hemi-mandibles were dissected and fixed in 10% neutral buffered formalin and then decalcified in 

10% EDTA until fully decalcified, followed by serial ethanol dehydration and paraffin embedding. 

Coronal sections (6 µm thick) were generated using a microtome (Leica Microsystems, Buffalo Grove, 

IL) for Safranin-O/Fast Green stain.  

Safranin-O with Fast Green protocol was adapted from University of Rochester (University of Rochester 

Center for Musculoskeletal Research. Safranin O/Fast Green stain for Cartilage. 

https://www.urmc.rochester.edu/musculoskeletal-research/core- services/histology/protocols.aspx. 

Published 2017. Accessed May 1, 2018). Briefly, paraffin sections were deparaffinized, rehydrated, and 

stained in Weigert’s Iron Hematoxylin for 5 minutes then washed in water and differentiated in 1% acid-

alcohol. Slides were then incubated in 0.02% Fast Green for 15 minutes, followed by staining with 1.0% 

Safranin-O for 20 minutes and subsequently dehydrated, cleared, and mounted. Images were captured 

using a Nikon Eclipse E800 bright-field microscope for OA quantitation.  

A minimum of three sections of each condyle taken as close as possible to the midcoronal location of the 

joint were used to quantitate OA using modified Mankin score that is scored from 0 (normal cartilage) to 

14 (aggressive cartilage destruction)  as shown in Table 3.1. 36,37 
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Table 3.1. Modified Mankin Score used to characterize osteoarthritis severity37

  

3.7. Statistical Analyses and Data Management 

Sample Size Calculations: Power analysis was performed using conservative assumptions and based upon 

data from prior studies by our group and others. This analysis indicates an 80% chance of reaching 

statistical significance at the 0.05 level (two-tailed) with a sample size of 4 specimens per group. q1 = 

0.500 [MMP13OCY-/- mice with TMJ OA]; q0 = 0.500 [DMP1 mice with TMJ OA]; Alpha = 0.05 (2-sided); 

Beta = 0.20 (80% power); E = 1.3 - 0.5 = 0.80; S = 0.4. Five WT and five MMP13 OCY-/- mice at 16 weeks 

old were analyzed to assess for differences in OA severity. Histologic analysis was performed using the 

modified Mankin OA score. The panels of images were scored by 3 independent blinded graders. Scores 

were summed and averaged. These scores were used for the descriptive and statistical purposes. Data was 
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analyzed using Excel software with an unpaired two sample and two tail t-test with the assumption that 

the data is normally distributed.  
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CHAPTER 4: RESULTS 

4.1 Selected Method of Intra-articular Injection 

Due to the size of the mouse TMJ we used a 25 gauge 0.625 inch needle for all injections. After several 

trials we identified the optimal method of injections. This involved placing the needle parallel to and 

directly inferior to the zygomatic arch, as medial as possible relative to the nasal midline. With the needle 

lying directly parallel to the mouse head in a sagittal direction, it is the inserted into the skin until it hubs 

against nose of mouse and lateral to mouse molars. The solution is deposited within the glenoid fossa of 

the articulating TMJ condylar head. 

4.2 Histological Observations in Un-injected Control Mice 

Figures 4.1-4.3 demonstrate representative samples of mice from groups of either WT or MMP13OCY-/-, 

male and female mice at 13 weeks old (7 dpi controls) or 16 weeks (28 dpi controls). Statistical analyses 

were not conducted on these animals since each group is presented with a representative sample of n = 1.  

The females on average appear to have a slightly smaller width of Safranin-O staining in comparison to 

the males. The females additionally show slightly greater amount of Safranin-O staining throughout the 

neck of the condyles as compared to the males. Males generally show greater cellular disorganization that 

the females. Additionally, although there are shape differences in the condyles across the panels, this can 

be attributed to differences in sectioning protocol. However, female 28 dpi demonstrates significant 

flattening and shape irregularities as well as thinness of Safranin-O staining region. 
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Figure 4.1. Coronal sections of male versus female WT and MMP13OCY-/- TMJ at 13 weeks (7 dpi 
controls) and 16 weeks (28 dpi controls) with Safranin-O/Fast-green stain at 10x (un-injected controls) 

 

Figure 4.2. Coronal sections of male versus female WT and MMP13OCY-/- TMJ at 13 weeks (7 dpi 
controls) and 16 weeks (28 dpi controls) with Safranin-O/Fast-green stain at 20x (un-injected controls) 
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Figure 4.3. Coronal sections of male versus female WT and MMP13OCY-/-  TMJ at 13 weeks (7 dpi 
controls) and 16 weeks (28 dpi controls) with Safranin-O/Fast-green stain at 40x (un-injected controls) 

 

4.3 Effects of MIA on Induction of OA in the TMJ  

Figures 4.4 to 4.6 demonstrate coronal sections of saline versus MIA injected TMJs in WT mice at 28 dpi 

three different magnifications. Each panel represents a different animal. The first panel for 0.10 mg MIA 

dose demonstrates significant loss of cellularity and staining (black arrow) just above the subchondral 

bone. Slight loss of cellularity is also observed in first panel for 0.05 mg MIA dose (yellow arrow). A 

differential gradient of staining is observed for all samples. There is less Safranin-O staining with MIA 

than saline which appears to be more substantial with 0.1mg MIA than 0.05mg MIA. This is similarly 

exhibited for cellularity. 
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Figure 4.4. Coronal sections of TMJs from control PBS MMP13OCY-/- vs 0.05 mg MIA WT and 0.10 mg 
MIA WT mice at 28 dpi (10x magnification) 
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Figure 4.5. Coronal sections of TMJs from control PBS MMP13OCY-/- vs 0.05 mg MIA WT and 0.10 mg 
MIA WT mice at 28 dpi (20x magnification).  
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Figure 4.6. Coronal sections of TMJs from control PBS MMP13OCY-/- vs 0.05 mg MIA WT and 0.10 mg 
MIA WT mice at 28 dpi (40x magnification). 

 

The sample was quantified by Mankin scoring, but due to the lack of power for this group, statistical 

analyses was not performed. The modified Mankin scoring demonstrated that MIA at 0.10 mg dose 

appeared to have higher scores in all categories apart from cartilage erosion scoring. MIA at 0.05 mg dose 

was second highest in scoring again in all categories apart from cartilage erosion scoring. Cartilage 

erosion scoring shows the most variable results in comparison to all other OA features. 
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Figure 4.7. Modified Mankin Scores of TMJs from PBS control MMP13OCY-/-- vs 0.05 mg MIA WT and 
0.10 mg MIA WT mice.  
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Figure 4.8. Modified Mankin Scores of TMJs from PBS control MMP13OCY-/-- vs 0.05 mg MIA WT and 
0.10 mg MIA WT mice.  

 

4.4. Histological Observations and Quantitation in WT and MMP13ocy-/- Mice 

Figures 4.9 and 4.10 demonstrate coronal sections of male WT and MMP13OCY-/- - TMJs at 16 weeks of 

age (28 dpi controls), that were analyzed via modified Mankin scoring (Figures 4.11 and 4.12). There are 

visible histological differences between the samples such as the cellular organization in the cartilage 

layer, the cartilage surface, and the stain intensities. Sample 4 in Figure 4.10 demonstrates superficial 

fibrillation (black arrow); but does not go so deep as to demonstrates separation of the calcified and 

uncalcified layers. 
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Figure 4.9. Coronal sections of TMJs from 16 week-old (28 dpi controls) WT vs MMP13OCY-/- male mice 
(10x magnification). 

Figure 4.10. Coronal sections of TMJs from 16 week-old (28 dpi controls) WT vs MMP13OCY-/- male 
mice (20x magnification). 
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Figure 4.11.  Modified Mankin Scores in each of the four histological categories in 16 week-old (28 dpi 
controls) WT vs MMP13OCY-/- mice. 

 

Figure 4.11 demonstrates the modified Mankin scores in each histological category to be slightly higher 

than that of the MMP13OCY-/-. However there was no statistically significant differences between the two 

groups (P<0.05, two tailed, tcrit = 2.7) for each of the individual histological categories, which translated to 

having to accept the null hypothesis. The total Modified Mankin score was also found not to be 

statistically significantly different between WT and MMP13OCY-/- mice (P<0.05, two tailed, tcrit = 2.4). 
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Figure 4.12. Total Modified Mankin Score comparison between 16 week-old (28 dpi controls) WT vs 
MMP13OCY-/- mice. 
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CHAPTER 5: DISCUSSION 

This study established the foundations for investigation the presentation of OA in WT and 

MMP13OCY-/- specific to the TMJ. It was postulated that the osteocyte specific MMP13 knockout would 

result in an increased qualitative expression of OA due to the disorganization the canaliculi projecting 

from the osteocytes.3 These canaliculi have been associated with maintenance of bone quality.12 The 

direct mechanism is not yet established; however, PLR by virtue of these canaliculi is necessary to 

achieve bone homeostasis. Because the disorganization of the bony and chondrocytic matrices exposes 

the structures to degradation which clinically presents in the TMJ degeneration or osteoarthritis, it is 

expected that these studies would provide important insights in the role of osteocytes and subchondral 

bone to TMJ OA initiation and progression. 

5.1 Injection and Anesthetic Methods 

The initial portion of this study was aimed at elucidating the most effective and reliable method 

for intraarticular injection in order to use a chemically-mediated injury model of OA in the mouse TMJ. 

Previous studies have injected rabbit, rat or pig TMJs; however, this is the first study to demonstrate 

consistent intraarticular injection into the mice TMJ.29–31 This goal presented a multitude of difficulties. 

Some included the small size of the animal, the inability to find an effective anesthetic dose, as well as the 

differing anatomy of different age groups of the mice.  

To ensure reproducible and predictable OA induction that requires intraarticular delivery of MIA 

into the TMJ, we utilized the administration of Fast Green dye into the putative location of TMJ as 

described previously.25 A series of trials with different approaches of accessing and depositing the dye 

were undertaken starting with mouse heads to live mice under ketamine/xylazine injectable anesthetic to 

optimize intra-articular injections of fast green dye.  Anesthetized mice were euthanized post-injection via 

lethal dose of CO2, followed by cervical dislocation. The goal of these trials was to determine optimal 

access, precise location and volume of agent to be delivered. Intra-articular administration of the dye was 
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confirmed by TMJ dissection as demonstrated in Figure 3.1C. This work serves as an important 

springboard for undertaking future studies to establish temporal dependent outcomes with MIA in using 

osteocyte-specific MMP13 null mice.  

Initial methods involved injection from an infero-superior aspect using the masseter and posterior 

border of the mouse mandible as an anterior limit. The difficulty in using the injection direction was 

determining the vertical depth and medial to lateral depth of the TMJ with which to insert the needle. Too 

deep a vertical depth resulted in piercing of the temporal bone into the and death of the animal. Too 

lateral of an injection resulted in ineffective injection of the dye into the joint. The dye in this scenario 

would seep into the adjacent fascial tissue and did not reach the desired TMJ capsule location. This 

method was slightly more effective in younger mice that we anticipated using because the condyle tends 

to be more upright, and if a sufficient medial depth was realized without encroaching on the brain tissue, 

successful injection was achieved. However, after confirming this method of injection, transitioning to 

older mice to be used in our study resulted in poor injection success. Upon further investigation of the 

mouse anatomy as well as general growth, it was concluded that the condyle grows in an up and back 

direction.38 That is, using the vertical injection method on the correct aged mice resulted in completely 

missing the condyle due to the now posteriorly displaced location of the condyle. Using a group of 

correctly aged mice, a new injection protocol was devised.  

An additional difficulty was ensuring adequate depth of anesthesia for the mice. Using an 

inhalant method of anesthesia necessitates having a nose cone placed over the animal’s nasal portion to 

deliver the gas. However, this impeded the eventual selected method of injection as described in the 

Methods section. Furthermore, due to variabilities in gender and genetic line, the mice required different 

doses of anesthetic to achieve proper anesthetic depth to not feel the injection. Due to these difficulties, it 

was eventually decided to use an injectable form of anesthetic; a ketamine/xylazine formulation to allow 

for adequate anesthetic depth and one that did not impede the mode of injection. Once the proper 

anesthetic doses were ascertained, determination of the best injection method was resumed.  
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Another approach used was from a direct anterior approach. The medial border was essentially 

the maxillary buccal bone region. Care was taken to inject as medial as possible so as to not bypass the 

TMJ capsule from a lateral aspect. The superior limit was directly inferior to the zygomatic arch. The last 

variable that is allotted for was the depth of needle injection. Through various attempts it was determined 

that encountering bone and then depositing the dye presented the most consistent results. The portion of 

bone that was encountered could either be the posterior wall of the glenoid fossa; or the direct frontal 

surface of the condylar head.  At either of these injection points the deposition of the dye would logically 

allow for the dye to seep into the compartment and stain the condylar head. This presented about a 70-

80% success rate of injection through repeated trials and it was determined to be the most reliable method 

of injection. As pointed out later in Chapter 6, Future Directions, independent studies can be undertaken 

to determine truly the most effective means of injection. Additionally, the only current method of 

confirming injection other than upon final analysis includes premature euthanization and gross dissection 

to confirm uptake of the dye at the condylar head. Using fluorescent tracers or x-ray methods during 

injection can lend to greater confidence for injection other than waiting for the end of the experiment to 

confirm injection success. 

5.2 Rationale for Specific Mouse Line 

 The use of this mouse line for this study allows for setting the foundation of future determinations 

of the relationship between PLR, cartilage breakdown and OA. Rather than using a global MMP13 

knockout, this specific line has suppression of MMP13 only at the osteocyte level. This is to ensure that 

conclusions drawn regarding the cartilage degradation of the TMJ can be attributed specifically to that of 

the MMP13 knockout in osteocytes. Furthermore, the destruction in the cartilage with a loss of MMP13 

in osteocytes demonstrates the relationship between bone and its overlying cartilage. In a concurrent 

study run within the lab, osteocyte-specific MMP13 ablation increased trabecular bone mass and 

disrupted canalicular and collagen organization. Systemic ablation caused decreased post yield deflection 

and decreased fracture toughness, while osteocyte specific knockout mice demonstrated changes to 
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cortical bone stiffness and ultimate strength only.39 Finally, the value in investigating this mouse line was 

because it allows for a gene knockout whose effects mimic the ingestion or administration of exogenous 

steroids that are sometimes used for suppression of inflammation in OA therapy.  

5.3 The Modified Mankin Scoring 

Severity of OA was assessed using a common scoring tool - Mankin scoring. The general scoring 

protocol was modified for the purposes of this study in only the ‘Chondrocyte Periphery Staining’ 

category.37 The original paper describes an increase in peripheral intensity staining for OA; whereas all 

samples in this study demonstrated a normal to decreased staining intensity. Normal staining intensity 

was given a score of ‘0,’ slightly decreased was ‘1,’ and intensely decreased was ‘2.’ The independent 

graders were calibrated and reviewed various features of OA in order to achieve a consistent assessment 

of the photomicrographs. Grades that presented with a different of more than two points were re-graded 

until they were within two points. These scores were averaged and the sum total of the modified Mankin 

score was used for statistics. Normalcy of the data was assumed, as well as ensuring the test was for 

independent, two tailed groups. With a larger sample size, the more ideal statistical measure would have 

been the Mann-Whitney test because it allows for non-normal data.  

Cartilage erosion scoring and cartilage periphery staining was determined by examining the 

border outline of the condylar head. Periphery staining was assessed by ascertaining if the border of the 

condyle demonstrated a normal amount of safranin dye as compared to the rest of the cartilage layer; or if 

it presented as slightly or intensely decreased.  

Spatial arrangement of the chondrocytes was scored based of the organization and quality of the 

chondrocytes. For example, the left panel 1 of Figures 4.3 to 4.6 for 0.10 mg MIA WT demonstrates an 

absolute loss of cellularity and disorganization of the cells. In comparison, panel 2 of Figure 16 for the 

WT row shows a generally normal pattern of chondrocyte proliferation with stacked cells. Background 
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staining intensity was assessed by viewing the uptake of safranin along the cartilage layer which varied 

from a pale pink to an intense, normal red. 

5.4. Histologic Findings of the Effects of MIA on the TMJ  

Figures 4.3 to 4.7 demonstrate that as a whole, the MIA 0.10 mg dose mice resulted in the 

greatest severity of OA features. While the current small sample prevents the derivation of valid statistics, 

with additional samples greater weight can be added to these initial findings. Furthermore, the obvious 

loss of cells at the condylar level demonstrate the effectiveness of MIA as an injury model for OA. The 

only trend difference observed in Figure 4.7 is the scores for cartilage erosion scoring. Further sub-

analysis can be done for this category once a sufficient n is achieved. Our results are consistent with other 

studies using MIA as a method for OA induction – even with different animals and different locations. 

For example, punctuate allodynia and weight bearing deficits in rats injected with MIA has been 

demonstrated for up to 10 weeks and was able to be reversed with pain medications.18 Similarly, our 

foundational paper demonstrated that OA-inducing effects of MIA on rat TMJs can be observed within 

just a few days.25 Knee OA has also been induced with MIA in rabbits – with characteristic lesions 

presenting such as thickening and fibrillation. MIA has been used previously as a chemical method to 

induce OA and serves great value as a models for future studies.  

5.5 OA Phenotype in WT and MMP13OCY-/- Mice 

Modified Mankin scoring for the WT and MMP13OCY-/-  in Figure 4.2 demonstrates that the mean scores 

from graders were higher in the WT animals than in MMP13OCY-/- mice. While this is an unexpected 

finding, the differences were not statistically between the two groups. It is plausible that the sample size 

was underpowered and that additional samples with a more consistent protocol could allow for further 

confirmation of this conclusion. A two sample paired t test was utilized to compare individual categories 

as well as the total Mankin score. The t values obtained for cartilage erosion, chondrocyte periphery 

staining, spatial arrangement of chondrocytes, and background staining intensity was 0.059, 0.009, 0.101, 
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and 0.005, respectively (P<0.05, df = 4, tcrit = 2.7). For the total Mankin score tcrit = 2.4 with the t = 0.030. 

In all cases the null was unable to be rejected. The largest culprit in this inability is likely the small 

sample size that does not allow for a smaller tcrit value. If with further samples statistically significant 

greater OA scores are found in WT than MMP13 null mice, this would warrant further investigation as to 

possible mechanisms of spontaneous OA in WT mice and the protective effect of the absence of MMP13 

in osteocytes in mitigating this OA. Possible suggestions include that the absence of the MMP13 in 

osteocytes could lead to upregulation of other MMPs to ensure homeostasis of the condylar tissues.  
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CHAPTER 6: FUTURE DIRECTIONS 

The proposed studies will serve as a foundation for long term investigations that include determining the 

basis by which defects in osteocyte matrix remodeling affect the function of the fibrocartilage-bone 

complex. To go to the beginning of the study, a new study can be stemmed simply from the injection 

protocol. Various methods were analyzed for this study and the most predictable method of injection was 

chosen. However, a variety of methods and techniques have been presented in the literature for larger 

animals. In this study, using a smaller animal for the purposes of using the specific genetic line of mice 

presented a new challenge in exploring the best method of injection as well as induction of anesthesia. 

Exploring these avenues in studies devoted solely to each individual task would heighten the confidence 

in the conclusions drawn from each respective study. This study explored a single gender within a single 

time point between WT and MMP13OCY-/-. This study sets up the basis for future studies to include both 

sexes, in addition to multiple time points. Furthermore, addition of more samples would allow for greater 

ability to distinguish between inherent variability of such studies and actual significant differences 

between the two animal groups. Although histologic observations showed substantial differences between 

the control and the different MIA dosage groups, increasing the sample size for this determination would 

add to the robustness of the study.  

Additionally, including other quantitative parameters to measure the differences in chondrocyte 

presence and quality can be performed in the future on this sample collected from this study as well as the 

additional animals that could be included. Another dimension of analysis to include for this study is µCT 

analysis. While current methods of µCT analysis are well demarcated for mice knee OA or OA for larger 

animals, studying mice TMJs present additional challenges due to the very small size of tissues. While 

µCT analysis was attempted for this study, several difficulties were encountered in the process of 

attempting to do the analysis. Firstly, the parameters to obtain a high quality image for analysis were 

difficult to identify. A high quality image of the condyle is necessary in order to demarcate the superficial 
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condylar layer from the trabecular bone. Additionally, the thickness of this layer is variable throughout 

the condyle. While a computer program is able to extrapolate estimates of this layer from a starting, 

midpoint, and final region of interest – the exact thickness is unknown.  Follow up work with a lab 

conversant with µCT analyses of TMJs are currently being pursued.  

In the longer term, we intend to decipher whether the progression and severity of OA in response 

to subchondral bone defects are different between joints with hyaline articular cartilage versus the 

fibrocartilage-lined TMJ. Additional future directions of study include testing the ability of molecular 

interventions that rescue osteocyte function to mitigate the severity of TMJ OA. Thus, the work in this 

study, as well as in future proposals will establish the model system and show proof of concept for the 

role of osteocytes in TMJ disease, providing the foundation needed for future studies intended to identify 

new therapeutic interventions. Finally, the data collected from this study will be critical to seeking NIH 

funding to undertake more thorough mechanistic studies on the interactions between subchondral bone 

and fibrocartilage in contributing to progression of OA and the specificity of this response to the TMJ as 

opposed do appendicular hyaline cartilage joints. 
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CHAPTER 7: CONCLUSIONS 

7.1 Injection and Anesthetic Method 

Through the various attempts from this study, it can be concluded that the most predictable method of 

injection is from an anterior aspect, as medial as possible, directly inferior to the zygomatic process. The 

depth limiting factor is the needle tip encountering bone. 

7.2 WT vs MMP13OCY-/- 

Based on the statistical analysis, we are unable to reject the null hypothesis and conclude that there is no 

difference between the osteoarthritic features of the WT vs MMP13OCY-/- mice at 12 to 16 weeks of age. 

This conclusion can be further affirmed by future studies, further calibration of the injection protocol, and 

increasing the sample size. 

7.3 MIA Dosage 

From the observable OA characteristics in the TMJ at 0.10 mg MIA dose, it can be concluded for future 

studies that this is an effective dose to successfully induce OA. Since there appears to be an effect at 0.05 

mg MIA dose, this lower dose may be useful in providing more dynamic range in the severity of injury 

induced OA to discern the combined effects of genotype and injury on TMJ OA. 

 

 

  



	 42	

REFERENCES 

1.  Das SK. TMJ osteoarthritis and early diagnosis. J Oral Biol Craniofacial Res. 2013. 

doi:10.1016/j.jobcr.2013.10.003 

2.  Ozeki N, Kawai R, Yamaguchi H, et al. IL-1β-induced matrix metalloproteinase-13 is activated by 

a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells. Exp 

Cell Res. 2014. doi:10.1016/j.yexcr.2014.02.018 

3.  Fowler TW, Acevedo C, Mazur CM, et al. Glucocorticoid suppression of osteocyte perilacunar 

remodeling is associated with subchondral bone degeneration in osteonecrosis. Sci Rep. 2017. 

doi:10.1038/srep44618 

4.  Cheatle MD, Wasser T, Foster C, Olugbodi A, Bryan J. Prevalence of suicidal ideation in patients 

with chronic non-cancer pain referred to a behaviorally based pain program. Pain Physician. 2014. 

5.  Zingg M, Iizuka T, Geering AH, Raveh J. Degenerative temporomandibular joint disease: surgical 

treatment and long-term results. J Oral Maxillofac Surg. 1994. 

6.  Wadhwa S, Kapila S. TMJ disorders: future innovations in diagnostics and therapeutics. J Dent 

Educ. 2008. doi:72/8/930 [pii] 

7.  Van Doren SR. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol. 2015. 

doi:10.1016/j.matbio.2015.01.005 

8.  Bellido M, Lugo L, Roman-Blas JA, et al. Subchondral bone microstructural damage by increased 

remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther. 

2010. doi:10.1186/ar3103 

9.  Cevidanes LHS, Walker D, Schilling J, et al. 3D osteoarthritic changes in TMJ condylar 

morphology correlates with specific systemic and local biomarkers of disease. Osteoarthr Cartil. 



	 43	

2014. doi:10.1016/j.joca.2014.06.014 

10.  Karsdal MA, Madsen SH, Christiansen C, Henriksen K, Fosang AJ, Sondergaard BC. Cartilage 

degradation is fully reversible in the presence of aggrecanase but not matrix metalloproteinase 

activity. Arthritis Res Ther. 2008. doi:10.1186/ar2434 

11.  Shi J, Lee S, Pan HC, et al. Association of Condylar Bone Quality with TMJ Osteoarthritis. J Dent 

Res. 2017. doi:10.1177/0022034517707515 

12.  Tang SY, Herber RP, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for osteocytic 

perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res. 2012. 

doi:10.1002/jbmr.1646 

13.  Ramaesh T, Bard JBL. The growth and morphogenesis of the early mouse mandible: A 

quantitative analysis. J Anat. 2003. doi:10.1046/j.1469-7580.2003.00210.x 

14.  Murakami T, Fukunaga T, Takeshita N, et al. Expression of Ten-m/Odz3 in the fibrous layer of 

mandibular condylar cartilage during postnatal growth in mice. J Anat. 2010. doi:10.1111/j.1469-

7580.2010.01267.x 

15.  Gepstein A, Arbel G, Blumenfeld I, Peled M, Livne E. Association of metalloproteinases, tissue 

inhibitors of matrix metalloproteinases, and proteoglycans with development, aging, and 

osteoarthritis processes in mouse temporomandibular joint. Histochem Cell Biol. 2003. 

doi:10.1007/s00418-003-0544-1 

16.  Liang W, Li X, Gao B, et al. Observing the development of the temporomandibular joint in 

embryonic and post-natal mice using various staining methods. Exp Ther Med. 2016. 

doi:10.3892/etm.2015.2937 

17.  Ohshima T, Yonezu H, Nishibori Y, Uchiyama T, Shibahara T. Morphological Observation of 



	 44	

Process of Mouse Temporomandibular Joint Formation. Bull Tokyo Dent Coll. 2011. 

doi:10.2209/tdcpublication.52.183 

18.  Combe R, Bramwell S, Field MJ. The monosodium iodoacetate model of osteoarthritis: A model 

of chronic nociceptive pain in rats? Neurosci Lett. 2004. doi:10.1016/j.neulet.2004.08.023 

19.  Bendele A. Animal models of rheumatoid arthritis. J Musculoskelet Neuronal Interact. 2001. 

doi:10.1002/eji.200939578 

20.  Cledes G, Felizardo R, Foucart JM, Carpentier P. Validation of a chemical osteoarthritis model in 

rabbit temporomandibular joint: a compliment to biomechanical models. Int J Oral Maxillofac 

Surg. 2006. doi:10.1016/j.ijom.2006.05.003 

21.  Güler N, Kürkü M, Duygu G, Am B. Sodium iodoacetate induced osteoarthrosis model in rabbit 

temporomandibular joint: CT and histological study (Part I). Int J Oral Maxillofac Surg. 2011. 

doi:10.1016/j.ijom.2011.07.908 

22.  Kobayashi K, Imaizumi R, Sumichika H, et al. Sodium iodoacetate-induced experimental 

osteoarthritis and associated pain model in rats. J Vet Med Sci. 2003. doi:10.1292/jvms.65.1195 

23.  Ikeda Y, Yonemitsu I, Takei M, Shibata S, Ono T. Mechanical loading leads to osteoarthritis-like 

changes in the hypofunctional temporomandibular joint in rats. Arch Oral Biol. 2014. 

doi:10.1016/j.archoralbio.2014.08.010 

24.  Matias EMC, Mecham DK, Black CS, et al. Malocclusion model of temporomandibular joint 

osteoarthritis in mice with and without receptor for advanced glycation end products. Arch Oral 

Biol. 2016. doi:10.1016/j.archoralbio.2016.05.007 

25.  Wang XD, Kou XX, He DQ, et al. Progression of Cartilage Degradation, Bone Resorption and 

Pain in Rat Temporomandibular Joint Osteoarthritis Induced by Injection of Iodoacetate. PLoS 



	 45	

One. 2012. doi:10.1371/journal.pone.0045036 

26.  Tavakkoli-Jou M, Miller AJ, Kapila S. Mandibulofacial Adaptations in a Juvenile Animal Model 

of Temporomandibular Joint Arthritis. J Dent Res. 1999. doi:10.1177/00220345990780080801 

27.  Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: Structure, 

function and cartilage bone crosstalk. Nat Rev Rheumatol. 2016. doi:10.1038/nrrheum.2016.148 

28.  Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of 

osteoarthritis. In: Annals of the New York Academy of Sciences. ; 2010. doi:10.1111/j.1749-

6632.2009.05240.x 

29.  Weinstein RS. Glucocorticoid-Induced Bone Disease. In: Primer on the Metabolic Bone Diseases 

and Disorders of Mineral Metabolism: Eighth Edition. ; 2013. doi:10.1002/9781118453926.ch58 

30.  Kamekura S, Hoshi K, Shimoaka T, et al. Osteoarthritis development in novel experimental mouse 

models induced by knee joint instability. Osteoarthr Cartil. 2005. doi:10.1016/j.joca.2005.03.004 

31.  Sampson ER, Beck CA, Ketz J, et al. Establishment of an index with increased sensitivity for 

assessing murine arthritis. J Orthop Res. 2011. doi:10.1002/jor.21368 

32.  Kapila S, Tavakkoli Jou MR, Lee C, Miller AJ, Richards DW. Development and Histologic 

Characterization of an Animal Model of Antigen-induced Arthritis of the Juvenile Rabbit 

Temporomandibular Joint. J Dent Res. 1995. doi:10.1177/00220345950740121001 

33.  Stickens D. Altered endochondral bone development in matrix metalloproteinase 13-deficient 

mice. Development. 2004. doi:10.1242/dev.01461 

34.  Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ. DMP1 -Targeted Cre expression in 

odontoblasts and osteocytes. J Dent Res. 2007. doi:10.1177/154405910708600404 



	 46	

35.  Tanaka E, Detamore MS, Mercuri LG. Degenerative Disorders of the Temporomandibular Joint: 

Etiology, Diagnosis, and Treatment. J Dent Res. 2008. doi:10.1177/154405910808700406 

36.  van der Sluijs JA, Geesink RGT, van der Linden AJ, Bulstra SK, Kuyer R, Drukker J. The 

reliability of the mankin score for osteoarthritis. J Orthop Res. 1992. doi:10.1002/jor.1100100107 

37.  Matías EMC, Mecham DK, Black CS, et al. Malocclusion model of temporomandibular joint 

osteoarthritis in mice with and without receptor for advanced glycation end products. Arch Oral 

Biol. 2016. doi:10.1016/j.archoralbio.2016.05.007 

38.  Mashiatulla M, Moran MM, Chan D, et al. Murine articular cartilage morphology and 

compositional quantification with high resolution cationic contrast-enhanced µCT. J Orthop Res. 

2017. doi:10.1002/jor.23595 

39.  Mazur CM, Woo JJ, Yee CS, et al. Suppressed Osteocyte Perilacunar / Canalicular Remodeling 

Plays a Causal Role in Osteoarthritis. bioRxiv. 2019. doi:10.1101/534768 

 






