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CONTINUOUS AND DISCONTINUOUS DISAPPEARANCE OF CAPILLARY SURFACES  

Paul Concus and Robert Finn 

This note relates to a series of recent papers [1-9] describing behavior of 

capillary free surfaces in the absence of external (gravity) force fields. Those 

papers were concerned with the characteristic property, that to every cylinder 

Z with (planar) section () there corresponds a critical angle 'ye,  0 15 !f- ii!?, 

such that a capillary surface S projecting simply onto 0 and meeting Z in a 

prescribed angle y exists when 7>70 (if 70  ;4  rr/ 2) and fails to exist when 7  <7 

(if ;4  0). The surface can be represented by a solution of the (nonlinear) equa-

tion 

divTu =2 - cosy 

in a with 

TU = 	___ Vu 
V1+IVuI 2  

under the boundary condition 

V. Tu = cos 7 

with ti the unit exterior normal on E = 81. We use the symbols E, C], 	to denote 

alternatively a set or its measure. 

The question of what happens when y = 	was dealt with in [1-9] only 

indirectly, in the sense that the answer was reduced to the question of whether a 

curve (or system of curves) 170 c C] can be found, cutting off a non-null subdomain 

W C C] bounded by I' and by subarcs V c E, for which the functional 

(1) 

with H7  = -CO5 7. satisfies 'F[Fo;70 J!!~ 0 (cf. Figure 1). It was proved in [ 1 ] that 
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the existence of such a F0  implies the nonexistence of a solution to the capillary 

problem. We refer to this behavior as the existence-nonexistence property. 

Given a domain 0, we define -yo  = mint -, sup y:FcQ, 	O. If Yo = rr/2 

then the capillary surface u const trivially satisfies the required conditions. 

Our interest here centers on the case 0<70 <rn 2. The existence of a solution 

when 7o  <7 !-c rn 2 follows from the results of Giusti [9]. 

We prove here the following result. 

Theorem. Let Z = M be piecewise smooth, in the sense that E E C 2  

except perhaps at a finite number of vertices F', at which two uniformly smooth 

boundary arcs meet to form an interior angle 2a.. Let a = mint in/2, mina1 . 
2 	 2 

(If there are no vertices, set a = 1r/2.) Then 7 	.- - a. If F—a<70  <rn/2 

there is no surface of the tjpe described corresponding to 7 = yo. If  vo = F- a 

then a surface may or may not exist at 	depending on the remaining 

geometry of Q. 

We may note the apparent conflict with intuition -- in the case 0 < yo < 

the surface fails to exist at 7 7 when E is smooth but may exist if a corner 

appears. The matter may however also be considered from another point of 

view: if E is smooth the surface disappears continuously, while if a corner is 

present the surface may disappear discontinuously, as 7  decreases past y. 

Proof of the theorem. Our principal tool will be the characterization of the 

extremal sets for 4), given in [7]. Suppose first F —a <70< 	Consider a 

sequence of values 7 approaching 7o  from below. To each such 7  there 

corresponds a domain W bounded by F and by V. such that 	0. 

For fixed y.  we consider a nnimizing sequence of such curves F. each of 

which may be assumed (as in [7]) to consist of a countable number of 
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components. According to Theorem 1 (and the preceding material) of [7], a 

non-null minimizing set I' exists in 0, and consists of a finite number of disjoint 

subarcs of semicircies, each of radius R7  = Hi'. At any intersection point of 

such an arc interior to a smooth subarc of E, the two arcs meet with angle y, as 

indicated in Figure 2. Intersections at the P, can occur only if a1  > rr/2. At 

such points the angles , " satisfy ' 7. fl"  ~t 11-7. 

We now let y approach y from below. If the arcs of I' and of 	bounding a 

given component of CI O  are traversed simply, and then E is traversed in a 

specified sense to the next component, and so on until all components are 

included, we obtain a curve in D in which F is traversed once and E at most 

twice. Since I!f-O, the lengths JTJ are equibounded as y approaches y o  from 

below, hence we obtain a family of curves in , equibounded in length. It follows 

there is a subsequence that converges uniformly and lower semicontinuously in 

length, to a curve in Cl of finite length. 

Each member of the subsequence contains at least one non-null circular 

arc F in Cl, and since 70 > 0 the length of each such arc is bounded from zer o .(1) 

We restrict attention to these interior arcs I'; we observe that they converge to 

a non-null set of circular arcs I', of radius R70 , and that [F0;y0] = Em [F;y] 15 0. 

This relation does not in itself exclude the possibility of a solution at y,  as 

I' could conceivably lie partly or wholly on E (cf. Figure 3), and hence would not 

be admissible for as originally defined. We consider a component fl o  deter-

mined by the limit set I's, for which the functional , defined in the sense implied 

by the limiting procedure, is non-positive. For simplicity we denote the boun-

dary of Cl again by I'd, E l' We write , = F LJl', with F = l' nO, Pa.  = F0  nE. We 

have 

(1)Note this assertion could fail if 70 = 
if

- a. 
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[F0:y0] = F+F—ECoSy+H70f:LcO 	 (3) 

where E = urn E' may in part coincide with F 

Suppose F 76  0. Letting E' = lnE, we may write 

E0  = E+F0 nE 

and then from (3) 

0 F—E'cos yo+H70  +I'—(FtnEo')cos y 

Fa—'cosy0 +H70Q= 

so that, by the existence-nonexistence property, no solution can exist at 7=Yo. 

Suppose F =0. Then either Q 	or O= 0. In the former case E F, and 

we find from (3) 

0 ~ [F0;y0} = Fo1'(l—cosy)> 0, 

a contradiction. If Q= 0, (3) yields 

IE 0~ F0 —E0cos7+ [cosvj 0 

= Fd'(1 —cos7) > 0, 

again a contradiction. We conclude F 	and hence no solution can exist, as 

was to be proved. 

We consider finally the case Yo 	- a. In this case at least one corner P 0  

must occur, with interior half angle a 0  = F - 7o• When that happens, the arcs 

jrj can degenerate to P0  for 7 
-. 0 (cf. Figure 4). Various types of behavior can 

occur, depending on the remaining geometry. For example, it can happen that 

other arcs of 	converge to a non-null F0  c 0. for which [F0 ;70] tc- 0. In that 

event, no capillary surface over 0 will exist at 7.  The particular situation in 
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whjch all arcs of I' disappear at the corners has a special interest, and will be 

discussed as a special case of a more general result of the latter author that is 

now in preparation [10]. We remark here only that in the case just mentioned it 

can happen that a surface exists at A simple example is obtained by choos- 

ing for 0 an equilateral triangle. Here a = in 6; the lower hemisphere whose 

equatorial circle is the circumscribing circle for 0 yields a capillary surface over 

0 that meets the vertical bounding walls in the constant angle = 	- a = 
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Figure 3 
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