UCSF UC San Francisco Previously Published Works

Title

Short and sweet: Associations between self-reported sleep duration and sugar-sweetened beverage consumption among adults in the United States

Permalink

https://escholarship.org/uc/item/1qq479g9

Journal Sleep Health, 2(4)

ISSN 2352-7218

Authors

Prather, Aric A Leung, Cindy W Adler, Nancy E <u>et al.</u>

Publication Date

2016-12-01

DOI

10.1016/j.sleh.2016.09.007

Peer reviewed

HHS Public Access

Author manuscript *Sleep Health.* Author manuscript; available in PMC 2017 December 01.

Published in final edited form as:

Sleep Health. 2016 December; 2(4): 272–276. doi:10.1016/j.sleh.2016.09.007.

Short and sweet: Associations between self-reported sleep duration and sugar-sweetened beverage consumption among adults in the United States

Aric A. Prather, Ph.D.^{1,2}, Cindy Leung, Sc.D, M.P.H.², Nancy E. Adler, Ph.D.^{1,2}, Lorrene Ritchie, Ph.D., R.D.³, Barbara Laraia, Ph.D., M.P.H., R.D.^{2,4}, and Elissa S. Epel, Ph.D.^{1,2} ¹Department of Psychiatry, University of California, San Francisco

²Center for Health and Community, University of California, San Francisco

³Nutrition Policy Institute, University of California, Division of Agriculture and Natural Resources

⁴Division of Community Health and Human Development, School of Public Health, University of California, Berkeley

Abstract

Objectives—Sugar sweetened beverages (SSBs) are a major factor in the development of obesity and cardiometabolic disease. Shortened sleep duration has also been linked to increased appetite and obesity. Here, we examined whether there was an association between self-reported sleep duration and SSB consumption among adults aged 18 years and older.

Methods—Using data from 2005–12 NHANES we examined self- reported sleep duration and beverage intake (types of SSBs, juice, water, coffee, tea) from two 24-hour dietary recalls among 18,779 adults. Adults who slept 7–8 hours/night were considered the reference group. Generalized linear models were computed adjusting for sociodemographics and health characteristics as well as total energy intake.

Results—Thirteen percent slept 5 or fewer hours per night. In fully adjusted models, those who slept 5 hours or less had 21% higher SSB consumption, (RD = 1.21, 95% CI 1.11–1.32). When broken down by beverage type this was due to caffeinated sugary beverages. Longer sleepers (9 hour sleepers) consumed fewer servings of coffee and water. There were no associations between self-reported sleep duration and consumption of 100% juice, tea, or diet drinks.

Conclusions—Short sleep is associated with greater intake of sugared caffeinated sodas, a relationship which may have important, though unrecognized, implications for physical health. Directionality of this relationship cannot be determined from this study. While caffeinated drinks could account for impaired sleep, it is possible that short sleep could influence one's appetitive

Corresponding Author: Aric A. Prather, Ph.D., Center for Health and Community, University of California, San Francisco, 3333 California St., Suite 465, San Francisco, CA 94118, aric.prather@ucsf.edu, Work: (415) 476-7758, Fax: (415) 502-1010.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

drive for sugared caffeine drinks. Further examination of this relationship using prospective designs is warranted.

Keywords

sleep; sugar-sweetened beverage; diet; NHANES

INTRODUCTION

Sugar sweetened beverages (SSBs) are the primary source of added sugar in the American diet (1). SSBs are linked to weight gain (2, 3) and increased incidence of coronary heart disease and type 2 diabetes (4–6). Epidemiologic data indicate that approximately 50% of the U.S. population consumes a SSB on any given day (7) and from the late 1970s to 2001 there was a three-fold increase in SSB consumption (3.9% to 9.2% of calories consumed) (8). The new 2015–20 U.S Department of Agriculture (USDA) Dietary Guidelines recommends added sugar consumption be limited to less than 10% of an individual's daily caloric intake (9). While the consumption of added sugars has declined in recent years, average consumption among Americans remains above recommended levels (10) (i.e., 88 grams of sugar per day) (11); excess SSB consumption significantly contributes to these high levels.

Factors that contribute to SSB consumption are multifaceted, and include a range of social, environmental, and behavioral determinants. One factor that has received little attention is the role of sleep, despite the fact the growing cross-sectional and prospective evidence linking short sleep duration (e.g., sleeping less than 6 hours per night) to weight gain and obesity (12–15) as well as other negative physical health outcomes (e.g. type 2 diabetes (16–19)) observed at greater frequency among those who consume high levels of SSBs.

The relationship between sleep and SSB consumption is likely complex. Experimental evidence indicates that acute and prolonged sleep loss can have substantial biologic and behavioral effects that may influence SSB consumption. For instance, adults exposed to either total or partial sleep restriction display alterations in satiety hormonal regulators such as ghrelin (20) and leptin (20, 21), report increases in hunger (20, 22), consume food beyond the energy costs of being awake (23), and report preferences for high fat, high carbohydraterich foods (22, 24). In addition to food preferences, sleep loss also affects food choice. In this regard, compared to a night of normal sleep, participants who undergo a night of total sleep deprivation and then subjects to a food purchasing task were significantly more likely to use their fixed budget to purchase high caloric foods, including those high in fat and sugar (25). Alternatively, SSB consumption may result in shorter sleep duration. Many SSBs include caffeine, a well-recognized stimulant that increases alertness and, when consumed near bedtime, negatively influences one's ability to sleep. Indeed, caffeine avoidance is one of the key components of sleep hygiene recommendations (26). Research on associations between sleep and SSB consumptions, in general, has been limited and there are no studies exploring the sleep-SSB link in adults.

If there is evidence that sleep duration is related to amount of SSB consumption, adequate sleep may serve as a viable intervention target for curbing weight-related disease risk.

Accordingly, the aim of the present study was to examine the associations between selfreported measures of sleep duration and sugar-sweetened beverage consumption in a nationally representative sample from the National Health and Nutrition Survey (NHANES).

PARTICIPANTS AND METHODS

Study Population

NHANES is an ongoing, multi-stage cross-sectional survey administered by the National Center for Health Statistics. NHANES is designed to be representative of the civilian, non-institutionalized U.S. population and collects information on general health status, nutritional intake, health-related behaviors, and physiologic measurements from a questionnaire and a physical examination. This study combined data from 2005–12 NHANES cycles (i.e., 2005–06; 2007–08; 2009–10; 2011–12), yielding data on 18,779 adults aged 18 years and older.

Self-reported sleep

Questions about sleep habits and sleep disorders were added to the NHANES questionnaire beginning in 2005 and were asked to adults aged 16 years and older. Average sleep duration was calculated from the question, "How much sleep do you usually get on weekdays or workdays?" and collapsed into four categories: 5 hours/day, 6 hours/day, 7–8 hours/day, 9 hours/day (27).

Sugar-sweetened beverage consumption

Two 24-hour dietary recalls were administered to NHANES study participants; the first was conducted in person, and the second was conducted over the phone 3–10 days after the examination. Data from the USDA Food and Nutrient Database for Dietary Studies were used to estimate dietary variables of interest.

Daily consumption (in 8 ounce servings) of beverages was estimated and averaged across two days of intake for each participant. Because our interest was in total SSB intake, we created a summary measure of total SSB consumption as our primary outcome, which included sugar-sweetened sodas (i.e., regular soda) and non-carbonated sugary beverages (e.g. fruit drinks, smoothies, sports drinks, energy drinks, flavored milk, sweetened coffee and tea drinks, and sweetened waters). We also included other frequently consumed beverages, such as 100% fruit juice, diet drinks (e.g. beverages containing artificial sweeteners), plain (unsweetened) coffee, plain (unsweetened) tea, and plain water. Beverages associated with sleep duration were further categorized into caffeinated and decaffeinated.

Study covariates

Covariates of interest included sociodemographics and health characteristics. Sociodemographic characteristics included age, gender, race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, other race/multiracial), highest level of education (< 12 years, high school diploma or equivalent, some college, college graduate), ratio of household income to the federal poverty level (FPL; 0–100% FPL, 100–200% FPL, 200–300% FPL,

300-400% FPL, >400% FPL), and marital status (married or living with partner, separated/ widowed/divorced, never married). Health characteristics and behaviors included smoking status (never, former, current), physical activity (sedentary, moderately active, vigorously active), self-reported health status (fair or poor, good, very good or excellent), and selfreported diagnosis of a sleep disorder (yes/no). Total energy intake and survey year (e.g. 2005-06; 2007-08; 2009-10; 2011-12) were also included as covariates. Missing indicators were used to account for missing information for educational level (n=17), marital status (n=713), household income (n=1394), smoking status (n=110), physical activity (n=1478), self-reported health status (n=1102) and diagnosis of a sleep disorder (n=24).

Statistical analysis

To make nationally representative estimates, complex dietary survey weights were used to account for different sampling probabilities and participation rates across the eight-year period. Individuals with an incomplete dietary recall, with total energy intake <500 or >5,000 calories, and women pregnant at the time of the survey were excluded from the analysis, resulting in an analytic sample of 18,779 participants.

Descriptive statistics were used to compare distributions of sociodemographic and health characteristics by sleep categories. To account for the skewed distribution of beverage intakes, we examined associations with sleep categories using generalized linear models (GLM), assuming a gamma distribution and log link. These results are interpreted as the relative differences (RD) in beverage intakes between groups, using 7–8 hours/day of sleep as the reference. Models were adjusted for all sociodemographic and health characteristics listed previously. All statistical significance tests were two-sided and significance was considered at P<0.05. Statistical analyses were performed using SAS 9.3 (SAS Institute Inc., Cary, NC) and Stata/ SE 12.1 (Stata Corp, College Station, TX).

RESULTS

Sample Characteristics

Of the 18,779 participants in this sample, 2,879 (weighted 13.0%) reported sleeping 5 or fewer hours per night while 4,350 (weighted 22.8%) reported 6 hours, 10,075 (weighted 56.6%) reported between 7 and 8 hours, and 1,475 (weighted 7.7%) reported sleeping 9 or more hours per night (Table 1). Compared to other sleep categories, participants reporting 5 or fewer hours of sleep were more likely to be Black, to have less than a high school education, have a lower household income, be separated, divorced or widowed, be a current smoker and sedentary, report fair/poor health, and diagnosed with a sleep disorder. Individuals sleeping 9 or more hours were also more likely to have lower household income and lower educational attainment when compared to 7 to 8 hour sleepers.

Sleep duration and sugar-sweetened beverage consumption

SSB consumption by sleep category is presented in Table 2. Total consumption of SSBs was greater with shorter sleep duration. More specifically, those who reported sleeping 5 hours per night on average consumed significantly more SSBs compared to individuals who slept 7 to 8 hours per night independent of survey cycle, sociodemographic factors (age, sex, race/

ethnicity, education level, household income, marital status), health characteristics (smoking status, physical activity, and self-reported health status, sleep disorder diagnosis) and total energy intake (RD = 1.21, 95% CI 1.11–1.32). Elevated levels of consumption were also observed among 6-hour sleepers (RD = 1.11, 95% CI 1.05–1.18) compared to 7–8 hour sleepers.

Examination of beverage type further illuminated the link between self-reported sleep duration and SSB consumption. In our models (Table 2), sleeping 5 hours was associated with 26% higher intake of sodas (RD = 1.26, 95% CI 1.13–1.40) and sleeping 6 hours was associated with 14% higher intake of sodas (RD = 1.14, 95% CI 1.04–1.25); 5 hours (RD = 1.18, 95% CI 1.05–1.32) and 6-hour sleepers (RD = 1.09, 95% CI 1.01–1.19) also consumed significantly more non-carbonated sugary beverages compared to 7–8 hour sleepers. Self-reported sleep duration was unrelated to diet drinks, 100% juice, and tea consumption. Individuals who reported sleeping 9 hours on average consumed less coffee and less water than 7–8 hour sleepers.

Sugar sweetened beverages were further categorized as caffeinated or decaffeinated. As displayed in Table 3, the consumption of decaffeinated SSBs was similar across sleep categories. In contrast, total consumption of caffeinated SSBs were 33% higher in 5 hours (RD = 1.33, 95% CI 1.18–1.50) and 15% higher in 6-hour sleepers (RD = 1.15, 95% CI 1.06–1.26) compared to 7–8 hour sleepers. Greater consumption was observed among 5 and 6 hour sleepers for both caffeinated sodas and caffeinated non-carbonated sugary drinks compared to 7–8 hour sleepers.

DISCUSSION

Sugar sweetened beverage consumption is one of the key dietary habits shown to contribute to the development and progression of several cardiometabolic conditions linked to obesity (1, 2); however, the factors that lead to excess SSB consumption are not well elucidated. In the present study, analyses revealed that short self-reported sleep duration (5 hours and 6 hours per night) was associated with greater SSB consumption in a nationally representative sample of nearly 19,000 adults in the United States, after holding constant a bevy of sociodemographic factors (age, gender, race/ethnicity, marital status, level of education, household income), as well as health variables (total energy intake, smoking status, physical activity, self-reported health status, reports of sleep disorders). After these statistical adjustments, there was a dose response relationship with total consumption of SSBs was 21% higher among 5 hour sleepers and 11% higher among 6 hour sleepers relative 7 to 8 hour sleepers.

The association between sleep duration and total SSB consumption was observed when beverages were separated into sodas and non-carbonated sugary beverages; however, the effects appeared somewhat stronger for sodas. Indeed, compared to 7–8 hours sleepers, individuals who averaged 5 hours per night consumed 26% more sodas while this same category of sleepers consumed 18% more non-carbonated sugary beverages. Regardless of the source, such excess sugar consumption may have considerable health implications (3, 28). For instance, high levels of fructose, such as those observed in sodas, have been linked

to increased insulin resistance (29, 30), disruption in lipid processing (30), excess inflammation (31), oxidative damage (32), and the development of the metabolic syndrome (32, 33) and non-alcoholic fatty liver disease (32).

The present findings align with a small but emerging literature investigating sleep and SSBs in children and adolescents. In recent study of nearly 2,500 elementary school students, participants obtaining fewer hours of sleep than recommended for their age reported greater soda consumption than students obtaining "optimal" sleep (i.e., 10 hours/weekday) (34). In a study of 676 children (aged 8 to 11), shorter sleep duration, measured objectively using wrist actigraphy, was associated with greater SSB consumption (35); the present study is the first to extend these findings to a nationally representative sample of adults.

Associations in this sample varied as a function of caffeine content. In this regard, 5 hour and 6-hour sleepers reported greater consumption of caffeinated SSBs compared to 7–8 hour sleepers; such differences were not observed for de-caffeinated SSBs. As such, the excess consumption among shorter sleepers is most prominent in beverages with both added sugar and caffeine. It also raises the possibility that short sleepers may seek out caffeinated SSBs to increase alertness and stave off daytime sleepiness. Of course, an alternative explanation may be that excess caffeinated SSB consumption leads to shortened sleep duration. Indeed, experimental evidence suggests that regular caffeine consumption can result in significant decrements in sleep (36). High levels of consumption of beverages with the combination of high caffeine and sugar, such as energy drinks, has been raised as a cause of short sleep duration and the metabolic conditions that appear at high prevalence among short sleepers (e.g., type 2 diabetes) (37). Unfortunately, the cross-sectional nature of the data, including the lack of information about when a participant routinely consumes SSBs (e.g., during the day vs. near bedtime) precludes any inferences regarding the directionality of these findings.

This study is not without its limitations. As noted, the cross-sectional nature of the data precludes any clear inferences about causality or temporality. While accurate assessments of dietary intake are inherently challenging, the 24-hour dietary recall employed in the NHANES protocol uses the five-step multiple-pass method, which has been validated previously (38, 39) and is considered the best method for assessing population-level intakes (40). In contrast, sleep assessment relied on a single item self-report measure, which has not been validated using gold-standard measures (e.g., polysomnography). Studies examining associations of sleep with dietary intake using objective measures of sleep are needed. Additionally, while analyses adjusted for sociodemographic and health characteristics known to show prior associations with sleep and SSB consumption, other potential confounders (e.g., psychological stress, neighborhood socioeconomic status) unmeasured in NHANES may play a role in the sleep-SSB link. Replications and extensions of this work in large prospective cohort studies are warranted.

The long-term health consequences of excessive SSB consumption, including obesity, and economic burden that obesity and obesity-related medical conditions place on the health care system are substantial (41). There is a need to identify tractable behavioral pathways that may serve as opportunities for prevention. Self-control efforts are impaired by sleep debt (42). It may be that sufficient sleep can help bolster individual's ability to resist SSBs when

in a neighborhood or work environment highly saturated with SSB availability. These findings provide novel evidence that sleep duration may reflect a possible target for attenuating SSB consumption in adults, although there are likely bidirectional relationships between sleep and SSB consumption, particularly among caffeinated SSBs. Prospective studies tracking longitudinal changes in sleep and SSB consumption are warranted.

Acknowledgments

Dr. Prather's involvement in this study was supported by a Career Development Award (K08HL112961) from the National Heart, Lung, and Blood Institute. Dr. Leung's participation was supported by a Career Development Award (K99HD084758) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development.

References

- Hu FB. Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2013; 14(8):606–619. [PubMed: 23763695]
- Malik VS, Schulze MB, Hu FB. Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition. 2006; 84(2):274–288. [PubMed: 16895873]
- Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. American journal of public health. 2007; 97(4):667– 675. [PubMed: 17329656]
- de Koning L, Malik VS, Kellogg MD, Rimm EB, Willett WC, Hu FB. Sweetened beverage consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation. 2012; 125(14):1735–1741. S1. [PubMed: 22412070]
- Huang C, Huang J, Tian Y, Yang X, Gu D. Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis. 2014; 234(1):11–16. [PubMed: 24583500]
- Malik VS, Popkin BM, Bray GA, Despres JP, Willett WC, Hu FB. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes care. 2010; 33(11):2477– 2483. [PubMed: 20693348]
- Ogden CL, Kit BK, Carroll MD, Park S. Consumption of sugar drinks in the United States, 2005– 2008. NCHS data brief. 2011; (71):1–8.
- Popkin BM, Nielsen SJ. The sweetening of the world's diet. Obes Res. 2003; 11(11):1325–1332. [PubMed: 14627752]
- 9. Agriculture USDoHaHSaUSDo. 2015-2020 Dietary Guidelines for Americans. 2015
- Welsh JA, Sharma AJ, Grellinger L, Vos MB. Consumption of added sugars is decreasing in the United States. The American journal of clinical nutrition. 2011; 94(3):726–734. [PubMed: 21753067]
- Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009; 120(11):1011–1020. [PubMed: 19704096]
- Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008; 31(5):619–626. [PubMed: 18517032]
- Gangwisch JE, Malaspina D, Boden-Albala B, Heymsfield SB. Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep. 2005; 28(10):1289–1296. [PubMed: 16295214]
- 14. Vgontzas AN, Bixler EO. Short sleep and obesity: are poor sleep, chronic stress, and unhealthy behaviors the link? Sleep. 2008; 31(9):1203. [PubMed: 18788643]

Page 8

- Hasler G, Buysse DJ, Klaghofer R, Gamma A, Ajdacic V, Eich D, et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004; 27(4): 661–666. [PubMed: 15283000]
- Ayas NT, White DP, Al-Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes care. 2003; 26(2): 380–384. [PubMed: 12547866]
- Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes care. 2010; 33(2):414–420. [PubMed: 19910503]
- Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007; 30(12):1667– 1673. [PubMed: 18246976]
- Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population. Diabetes care. 2005; 28(11):2762–2767. [PubMed: 16249553]
- Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Annals of internal medicine. 2004; 141(11):846–850. [PubMed: 15583226]
- Spiegel K, Leproult R, L'Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. The Journal of clinical endocrinology and metabolism. 2004; 89(11):5762–5771. [PubMed: 15531540]
- 22. Greer SM, Goldstein AN, Walker MP. The impact of sleep deprivation on food desire in the human brain. Nature communications. 2013; 4:2259.
- 23. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110(14):5695–5700. [PubMed: 23479616]
- Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. The American journal of clinical nutrition. 2009; 89(1):126–133. [PubMed: 19056602]
- Chapman CD, Nilsson EK, Nilsson VC, Cedernaes J, Rangtell FH, Vogel H, et al. Acute sleep deprivation increases food purchasing in men. Obesity. 2013; 21(12):E555–E560. [PubMed: 23908148]
- 26. Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: A review of empirical evidence. Sleep medicine reviews. 2014
- Prather AA, Leung CW. Association of Insufficient Sleep With Respiratory Infection Among Adults in the United States. JAMA internal medicine. 2016; 176(6):850–852. [PubMed: 27064773]
- Lustig RH, Schmidt LA, Brindis CD. Public health: The toxic truth about sugar. Nature. 2012; 482(7383):27–29. [PubMed: 22297952]
- Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010; 299(5):E685–E694. [PubMed: 20823452]
- Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of clinical investigation. 2009; 119(5):1322–1334. [PubMed: 19381015]
- 31. Aeberli I, Gerber PA, Hochuli M, Kohler S, Haile SR, Gouni-Berthold I, et al. Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. The American journal of clinical nutrition. 2011; 94(2):479–485. [PubMed: 21677052]

- 32. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010; 7(5): 251–264. [PubMed: 20368739]
- Rutledge AC, Adeli K. Fructose and the metabolic syndrome: pathophysiology and molecular mechanisms. Nutr Rev. 2007; 65(6 Pt 2):S13–S23. [PubMed: 17605309]
- 34. Franckle RL, Falbe J, Gortmaker S, Ganter C, Taveras EM, Land T, et al. Insufficient sleep among elementary and middle school students is linked with elevated soda consumption and other unhealthy dietary behaviors. Preventive medicine. 2015; 74:36–41. [PubMed: 25712328]
- 35. Kjeldsen JS, Hjorth MF, Andersen R, Michaelsen KF, Tetens I, Astrup A, et al. Short sleep duration and large variability in sleep duration are independently associated with dietary risk factors for obesity in Danish school children. International journal of obesity. 2014; 38(1):32–39. [PubMed: 23924757]
- Bonnet MH, Arand DL. Caffeine use as a model of acute and chronic insomnia. Sleep. 1992; 15(6):526–536. [PubMed: 1475567]
- Grandner MA, Knutson KL, Troxel W, Hale L, Jean-Louis G, Miller KE. Implications of sleep and energy drink use for health disparities. Nutr Rev. 2014; 72(Suppl 1):14–22. [PubMed: 25293540]
- Conway JM, Ingwersen LA, Moshfegh AJ. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc. 2004; 104(4): 595–603. [PubMed: 15054345]
- 39. Conway JM, Ingwersen LA, Vinyard BT, Moshfegh AJ. Effectiveness of the US Department of Agriculture 5-step multiple-pass method in assessing food intake in obese and nonobese women. The American journal of clinical nutrition. 2003; 77(5):1171–1178. [PubMed: 12716668]
- Thompson, FE., Subar, AF. Dietary assessment methodology. In: Ferruzzi, M.Coulston, AM., Boushey, CJ., editors. Nutrition in the prevention and treatment of disease. 3rd. San Diego: Elsevier; 2013. p. 5-30.
- Finkelstein EA, Trogdon JG, Cohen JW, Dietz W. Annual medical spending attributable to obesity: payer-and service-specific estimates. Health affairs. 2009; 28(5):w822–W831. [PubMed: 19635784]
- 42. Pilcher JJ, Morris DM, Donnelly J, Feigl HB. Interactions between sleep habits and self-control. Front Hum Neurosci. 2015; 9:284. [PubMed: 26029094]

Author Manuscript

Descriptive statistics of 18,779 adults aged 18 and older: National Health and Nutrition Examination Surveys, United States, 2005–2012.

Prather et al.

	5 hours (n=2879)	5 hours n=2879)	6 ho (n=4	6 hours (n=4350)	7–8 h (n=1(7–8 hours (n=10075)	9 h (n=1	9 hours (n=1475)	Ρ
	u	<i>b</i> %	u	<i>b</i> %	u	<i>0</i> %	u	<i>b</i> %	
Age (mean \pm SE)	46.1 :	± 0.6	45.9	± 0.4	46.4	46.4 ± 0.4	46.6	46.6 ± 0.9	0.55
Female	1463	51.7	2167	47.9	5141	52.4	808	59.9	<0.0001
Race/ethnicity									
White	1075	59.1	1842	66.6	5017	72.9	772	72.1	<0.0001
Black	1002	22.1	1129	14.0	1745	8.3	281	10.6	
Hispanic	640	13.0	1072	13.3	2603	12.9	342	12.8	
Other race	162	5.8	307	6.2	710	6.0	80	4.6	
Highest education level									
<12 years	890	23.6	1076	15.8	2602	16.4	489	25.3	<0.0001
High school diploma or equivalent	735	27.3	1069	25.6	2278	21.9	370	24.9	
Some college	873	33.9	1317	33.6	2796	29.6	399	29.0	
College graduate	377	15.0	885	25.0	2392	32.1	214	20.5	
Marital status									
Married or living with partner	1528	53.7	2434	61.7	5976	63.3	708	53.8	<0.0001
Never married	521	19.5	798	18.3	1805	17.9	304	20.7	
Separated, divorced, or widowed	758	25.5	984	17.9	1897	16.0	353	19.2	
Household income (ratio to FPL)									
0-100% FPL	728	19.9	825	13.8	1872	12.1	354	18.8	<0.0001
100–200% FPL	753	25.5	1058	18.0	2347	17.9	407	21.7	
200–300% FPL	393	15.2	639	14.9	1362	13.4	213	16.7	
300-400% FPL	279	11.4	441	11.7	1135	13.3	155	12.2	
>400% FPL	502	21.3	1071	35.6	2608	37.4	243	25.8	
Smoking status									
Never smoker	1356	44.5	2294	52.3	5525	55.9	736	52.8	<0.0001
Former smoker	658	22.4	994	23.5	2491	24.8	353	20.4	
Current smoker	849	32.8	1045	24.1	2003	19.0	365	25.8	

–
<u> </u>
ō
\simeq
\leq
മ
_
_
S
0
_
- - - -
0
_

Author Manuscript

Author Manuscript

	5 hours (n=2879)	5 hours n=2879)	6 hours (n=4350)	urs 350)	7–8 hours (n=10075)	ours 075)	9 h (n=1	9 hours (n=1475)	Р
	u	<i>p</i> %	u	<i>p</i> %	u	<i>p</i> %	u	<i>p</i> %	
Physical activity in last 30 days									
Vigorous and moderate activity	1718	29.5	955	15.8	237	7.3	164	19.4	<0.0001
Moderate activity only	1962	30.3	1989	31.0	815	22.5	270	24.5	
No physical activity	2271	30.0	3555	45.3	2780	66.8	585	48.3	
Self-reported health status									
Excellent or very good	713	29.1	1466	40.7	3996	47.8	485	38.7	<0.0001
Good	1060	38.1	1670	38.1	3732	33.8	564	38.2	
Fair or poor	920	26.7	957	15.5	1769	12.6	345	18.3	
Diagnosed with sleep disorder	461	16.6	337	7.5	561	6.3	107	7.8	<0.0001

a weighted percentage

Author Manuscript

Author Manuscript

Table 2

Associations between self-reported sleep duration and beverage intake *

	4)	5 hours	s	9	6 hours		7	7–8 hours	S	6	9 hours	s
	Mean (SE) servi ngs	R U	95% CI	Mean (SE) servin gs	R U	95% CI	Mean (SE) servi ngs	аu	95% CI	Mean (SE) servi ngs	чO	95% CI
100% fruit juice	0.3 (0.02)	0. 98	0.87, 1.11	$\begin{array}{c} 0.3 \\ (0.01) \end{array}$	0. 96	0.86, 1.06	$\begin{array}{c} 0.3 \\ (0.01) \end{array}$	R ef.	ı	$\begin{array}{c} 0.3 \\ (0.03) \end{array}$	1. 17	0.91, 1.50
Sugar-sweetened beverages (total)	2.4 (0.11)	1. 21	1.11, 1.32	2.0 (0.05)	11	1.05, 1.18	1.6 (0.04)	R ef.	ı	$ \begin{array}{c} 1.8 \\ (0.11) \end{array} $	1. 01	0.91, 1.12
Regular Sodas	1.3 (0.08)	1. 26	1.13, 1.40	1.0 (0.04)	1 .1	1.04, 1.25	0.8 (0.03)	R ef.	ī	1.0 (0.09)	1 .	0.89, 1.20
Non-carbonated sugary beverages	$ \begin{array}{c} 1.2 \\ (0.07) \end{array} $	1. 18	1.05, 1.32	1.0 (0.03)	1 .	1.01, 1.19	0.9 (0.03)	R ef.	ı	0.8 (0.05)	0.95	0.84, 1.08
Diet drinks	0.6 (0.05)	1. 02	0.82, 1.26	0.6 (0.04)	1.00	0.88, 1.14	0.6 (0.03)	R ef.	ı	$\begin{array}{c} 0.5 \\ (0.06) \end{array}$	-1 00	0.80, 1.26
Tea (plain)	0.4 (0.05)	1. 10	0.87, 1.39	0.4 (0.04)	0.92	0.77, 1.09	0.5 (0.02)	R. ef.	ī	0.4 (0.08)	0. 87	0.71, 1.06
Coffee (plain)	$ \begin{array}{c} 1.3 \\ (0.07) \end{array} $	- 00	0.89, 1.12	1.3 (0.06)	1.00	0.93, 1.09	1.3 (0.03)	R ef.	ı	0.9 (0.05)	0. 76	0.67, 0.86
Water (plain)	4.3 (0.13)	1 .	0.98, 1.10	4.44 (0.12)	$^{1.}_{01}$	0.97, 1.07	4.4 (0.08)	R ef.	,	3.7 (0.15)	92 92	0.86, 0.99

Sleep Health. Author manuscript; available in PMC 2017 December 01.

ealth characteristics (smoking status, physical activity, and self-reported health status, sleep disorder diagnosis) and total energy intake.

Bolded values are statistically significant compared to the reference group (7–8 hours).

~
$\mathbf{\Sigma}$
~
7
÷
1
\mathbf{U}
~
\sim
$\overline{0}$
lar
b
b
anu
anu
anu
anu

Table 3

Associations between self-reported sleep duration and caffeinated and decaffeinated sugar sweetened beverages *

	41	5 hours	s	9	6 hours		7-	7–8 hours	S	6	9 hours	s
	Mean (SE) servin gs	R U	95% CI	Mean (SE) servi ngs	DR	95% CI	Mean (SE) servi ngs	R U	95% CI	Mean (SE) servi ngs	R U	95% CI
With caffeine												
Sugar- sweetened beverages (total)	$ \frac{1.5}{(0.10)} $	1. 33	1.18, 1.50	1.1 (0.04)	1. 15	1.06, 1.26	0.9 (0.04)	Re f.	i.	1.0 (0.09)	1.02	0.89, 1.17
Sodas	1.0 (0.08)	1. 37	1.17, 1.61	0.7 (0.04)	1. 18	1.07, 1.31	0.6 (0.03)	Re f.	ı.	0.8 (0.08)	1. 12	0.92, 1.35
Non- carbonated sugary drinks	0.5 (0.06)	30 . 1.	1.09, 1.55	0.4 (0.02)	1. 15	1.02, 1.29	0.3 (0.02)	Re f.	i.	0.3 (0.03)	0. 87	0.69, 1.11
Without caffeine												
Sugar- sweetened beverages (total)	1.0 (0.05)	1.03	0.93, 1.15	0.9 (0.03)	$\frac{1}{05}$	0.97, 1.14	0.8 (0.02)	Re f.	i.	0.8 (0.05)	0. 99	0.88, 1.12
Sodas	0.3 (0.02)	0. 94	0.78, 1.13	0.3 (0.02)	$^{1.0}_{0.03}$	0.87, 1.21	0.2 (0.01)	Re f.	ı.	0.2 (0.03)	0. 79	0.63, 1.00
Non- carbonated sugary drinks	0.7 (0.04)	$\frac{1}{08}$	0.94, 1.24	0.6 (0.03)	$^{1.}_{07}$	0.96, 1.19	0.5 (0.02)	Re f.	ı.	0.6 (0.04)	1. 06	0.90, 1.24

Sleep Health. Author manuscript; available in PMC 2017 December 01.

* Models adjusted for sociodemographics (age, sex, race/ethnicity, education level, household income, marital status), health characteristics (smoking status, physical activity, and self-reported health status, sleep disorder diagnosis) and total energy intake.

Bolded values are statistically significant compared to the reference group (7–8 hours).